
Smart Integrated Tile  
Final Report for CSE 237D 

Team Member 

Liren Chen, lic002@eng.ucsd.edu, A53288236  

Xuanyi Yu,  xuyu@eng.ucsd.edu,   A53267999 

 

Acknowledgment 

Prof. Ryan Kastner 

Dr. Brian Zgliczynski 

Eric Lo 

 

 

1. Abstract 
In this project, we explore different hardware choices in order to develop a cheap, reliable depth                
sensor device for Scripps Institute of Oceanography. The sensor will log and display depth              
readings in relatively shallow, high-illumination conditions in coral reef communities. The depth            
information will then be used in conjunction with photographs to create 3D models of the coral                
reefs. The current method for collecting this depth information is by manually measuring the              
depth just above the coral reefs, which is strenuous for the divers and prone to errors. We provide                  
a reliable alternative that automates this process and increases the precision of the             
measurements. Major design decisions include choosing a method of displaying depth data and             
how to quickly and easily transfer the collected information while maintaining the integrity of the               
waterproofing at an affordable cost. 

2. Introduction 
Background - The 100 Island Challenge is a collaborative effort based at Scripps Institution of               
Oceanography to describe the variation of coral reefs from across the globe. Scientists combine              
classical field surveys with innovative imaging and data technologies to archive reefs digitally and              
watch how populations change through time[1]. In order to achieve this goal of 100 Island               
Challenge, they are monitoring coral reef communities by scanning and constructing 3D models             
in long time series. To calibrate these models, the depth information is a must. However,               
manually measuring the depth information just above the coral reefs is strenuous for the divers               
and prone to errors. A device that can automate the depth measurement process will greatly               
facilitate the efficiency of collecting data.  

mailto:lic002@eng.ucsd.edu
mailto:xuyu@eng.ucsd.edu


 

Figure 1: Divers were scanning coral reefs underwater. 

Requirements - Researchers from Scripps Institution of Oceanography wish to work with this             
device under the following conditions: Bring the device on a boat and turn it on before going                 
diving with the corals. Then they dive down and place the devices on the coral reef, and the                  
device starts collecting depth information and displaying it on the screen. The divers swim back               
and forth to do the photomosaic survey, capturing images of the devices and the data shown on                 
the screen. After that, they collect the devices and return to the boat. They read the data from the                   
devices and download it for backup. Finally, they turn off the device and charge the device                
overnight. 

Objectives - Based on the requirements from Scripps Institution of Oceanography, we are             
building a device that can measure and display depth information when it’s placed on coral reefs.                
Then the depth information could be captured by cameras and retrieved from images. The other               
detailed functions are described as follows. 

- Switch: Since researchers want this device to work only underwater to save the battery              
as much as possible, a switch is needed to make sure the device can turn on before                 
diving and turn off when it’s back to land.  

- Waterproof: Since the device needs to be working under 10-15 meters of salt water for               
around 4 hours, it should be strictly waterproof to avoid erosion. This is the most pivotal                
part of this project. Since without practical waterproof design, the device cannot work             
stably for a long period. Waterproof also means that there may not be any buttons or                
plugs on this device. 

- Clear display: The device works in relatively shallow, high-illumination conditions in coral            
reef communities. There will be sunlight, wind, and wave changing over time. The display              
module should display the depth information as clear as possible under different            
conditions to make sure the information can be retrieved from the images accurately. 

- Rechargeable: The device needs to be reusable and rechargeable. Since the device is             
strictly waterproof, wireless charging is a better option compared to using plug and cable.              
The battery needs to be working for around 4 hours and can be charged fully over one                 
night. In addition, there should be a strategy such as LED to indicate how much battery                
left. 



- Data storage: There may be cases that researchers fail to retrieve accurate depth             
information from unclear images. For backup consideration, this device should be           
integrated with a data storage module such as a SD-card. 

- Data Transmission: In order to download the depth data, a reliable wireless data             
transmission module is needed. The device should be able to transfer depth data to              
computer, and the computer should be able to download data from multiple devices. 

3. Design Decisions 

Previously, Dan Sturm and Robert Barlow built the very first prototype (namely Ver.0) for Reef Pin                
project during summer 2018. They worked for 10 weeks full-time for this project. They are               
pioneers and did an amazing job. To continue with the project, we did borrow some design ideas                 
from them. Instead of simply replicating their work, we explore a wide range of hardware choices                
and develop the software from scratch. 

To speed up the prototyping process. We are building prototypes with breakout components as              
possible. Since our design decisions might change rapidly, we want to keep components             
modularized for unit testing and fast assembling.  

Price, power consumption, waterproof, and reliability are the most important factors during            
making design decisions. Normally, it should be a trade-off between these factors. Our goal is to                
find a sweet spot that could meet all of the requirements. 

MCU - We choose STM32F103C8T6 as our microcontroller. The other two choices are MSP430              
and Arduino. MSP430 has the lowest power consumption. Arduino the easiest one for software              
development. We choose STM32 because it is the most powerful one. Since we might need I2C                
bus, SPI bus, and multiple USART ports. STM32 has enough pins to connect to a wide range of                  
peripherals. The price for each STM32F103C8T6 breakout board is about 5$. The power             
consumption during runtime is about 50mA, which is acceptable. 

 
Figure 2: STM32f103c8t6 breakout 

Display - In Ver.0, Dan and Robert use 7-segment LED to display depth and heading               
information. However, since there is no test record for Ver.0, we didn’t know how the LED                
perform underwater. In our first prototype (namely Ver.1) we want to integrate a LED display and                
test it underwater to see if it’s bright enough for data reading. We choose Adafruit 1.2" 4-Digit                 
7-Segment Display since it’s the largest modular display with I2C bus which we could find in                
Amazon. We also explore other kinds of displays. E-ink display has ultra-low power consumption              
and it can passively reflect sunlight. We also integrate a 2.9 inch E-ink module in Ver.1. 



 

Figure 3: LED and E-ink display module 

Depth Sensor - We use MS5803-14BA pressure sensor. This sensor is accurate and durable.              
Theoretically, it could withstand about 130 meters of water, which is sufficient in coral reef areas.                
In Ver.1, we use a breakout bought from Amazon. Because the breakout part 20$ more               
expensive than the raw sensor, we assembled our own breakout parts with PCBs since our               
second iteration. The red one above is bought from Sparkfun, the other two are assembled by us. 

 

Figure 4: Pressure sensor breakouts 

Waterproof Connector - In Ver.0, they didn’t expose any pins. To make the device              
reprogrammable, we need to figure out a solution for a waterproof connection. In Ver.1, we tried                
waterproof connectors for automobiles. These connectors have rubber seals to prevent water, but             
they are not rated for diving. This is a temporal solution for our first several underwater tests. In                  
Ver.2, we tried to use pogo pins to reprogram the device. Several copper pads are exposed on                 
the surface of the device. Pogo pins have springs inside, and they can tap on the pads on the                   
device. For underwater usage, copper pads are fully covered by hot glue to prevent erosion.  

 

Ver.1 Connector           Ver.2 Pogo pins 

Figure 5: Potential choices of connectors 

Battery - In Ver.0, they are using 2Ah Li-ion batteries. Those batteries are very compact and                
nicely built. However, they are around 13$ each. We choose 18650 Li-ion batteries instead. It’s               
relatively bulky but is only about 5$ each. The capacity is about 2-3Ah depending on different                



brands. Generally, it could power the device for running 10-20 hours. The batteries we are               
actually using are bought by Eric 5 years ago, which is still functioning. 

    

2Ah Li-ion 3.4Ah 18650 Li-ion 

Figure 6: Potential choices of battery 

Charging - We use TP4056 breakout to charge and protect the battery. The input of TP4056                
should be 5V. In Ver.1, we wired out the charging port through the waterproof connector. In Ver.2,                 
we use the Qi receiver to power the charging chip. The Qi an open interface standard that defines                  
wireless power transfer using inductive charging. The receivers are bought during last summer.             
They are about 15$. Potentially, they could be replaced by more inexpensive alternatives in the               
future. 

     

TP4056 breakout  Qi receiver 

Figure 7: Parts in charging module 

Power Design - The MCU breakout is powered by 5V or 3.3V. We use a step-up regulator to                  
raise the battery voltage to 5V. When the device is idle, we want to use as low power as possible.                    
The MCU could turn into standby mode, in which the current is around uA. During building Ver.1                 
and Ver.2, we haven’t figure out the cut-off circuit, the sensors and displays are always powered.                
On the breadboard, we tested linear dropout regulator, which is controlled by enable pin. Then,               
the MCU could use GPIO to control the power for sensors. 



                   

             Step-up regulator  Linear dropout regulator 

Figure 8: Parts in power module 

4. Implementations 

a. Hardware Assembly 
Generally, we built two potted prototypes and a test prototype on a breadboard. 
First Prototype (Ver.1) - This prototype includes MCU, pressure sensor, LED display, E-ink             
display, RTC module, battery, step-up regulator, and reed switch. First, the components are             
assembled on a breadboard to test the integrity. The power consumption during runtime is              
114mA, which is measured by 3.7V power supply. On the breadboard, each module is tested to                
make sure they are functioning. Then, all parts are soldered on a prototyping board. On this                
board, all wires including power, I2C, SPI, are soldered with wires. There are 6 wires connect to                 
the outside: GND, VCC, SCLK, SDIO, TX, RX. VCC is using for charging. SCLK and SDIO are                 
used for reprogramming the MCU. TX and RX are for data transmission. Soldering all of these                
wires requires decent soldering techniques and tons of time. Since space is very tight, all               
components need to be carefully placed to make sure there are no conflicts. With the prototyping                
board, there is much flexibility, but any wrong manipulation may lead to serious consequences. If               
time permits, it’s better to make a PCB instead. 

 

Figure 9: Test with the breadboard, assemble with prototyping board. 

After soldering, the device is put in the mold. The mold is made by the previous group. We really 
like the design for the bottom of the device. Before potting, to make LEDs inside visible, we 
covered LEDs with hot glue. We use plastic tapes to make a cylinder around the depth sensor. 
LED display and E-ink display is also surrounded by tapes and hot glues to prevent covered by 



epoxy. The above techniques completely covered the displays and depth sensor. They also 
enable us to pour more epoxy above the height of displays and sensor. Actually, we made a 
mistake here. The RTC module is installed higher than displays. We have to pour more epoxy 
than expected to fully cover the battery for RTC. 

 

Figure 10: Potting process 

After the epoxy is cured, redundant tapes and epoxy around displays and sensor are removed. 
The overlook of the device is as follows. 

 

Figure 11: Overlook of 1st iteration 

Second Prototype (Ver.2) - This prototype is built after the failure of the first prototype.               
Compared with the first one, we removed the LED display, RTC module, and waterproof plug. We                
use the RTC module on STM32 chip and pogo pins instead. A Qi receiver is integrated into the                  
device. We didn’t put the Zigbee module inside because we hadn’t figured out the LDO at that                 
moment. If the power of Zigbee is not cut off, the standby power consumption will be around                 
20mA, which is too high. The main purpose of this prototype is to verify the pogo pin connection                  
and further test E-ink display. If it works reliably, it could be delivered to divers for deeper                 
underwater tests. 



 

Figure 12: Potting process of the 2nd iteration 

Breadboard Prototype - This is our debugging and testing platform, integrated with SD card,              
Zigbee module, and LDO module. This prototype is closest to our final design with maximum               
functionality. 

 

Figure 13: Breadboard Prototype 

b. Software Development 
Overview - The software development consists of two parts, one is STM32 embedded software,              
another is a GUI running on PC for data transmission purpose. Our embedded software is located                
under ./stm32 folder. Since the schematic for two prototypes is different, the code for each               
prototype is located in folders ending with different version numbers. The code for GUI is located                
in ./GUI folder. 



IDE & Toolchain - To develop STM32 software, the most popular IDE is Keil. Since it’s a very                  
expensive commercial software, we use SW4STM32 IDE instead. SW4STM32 is an official free             
software produced by STM32. It is compatible with both Windows and Mac. We use ST-Link to                
download software into the embedded chip. With ST-Link and SW4, we can use step-by-step              
debugging. 

Library - Our embedded software is fully dependant on STM32 Standard Peripheral Libraries.             
This library is older than HAL library. Basically, these two libraries has the same functionality, we                
choose Std Peripheral libraries simply because we are more familiar with them. 

Basic Components - In general, we use GPIO, USART, I2C, SPI, ADC, EXTI, PWR, and RTC in                 
STM32 Std Peripheral libraries.  

Structure - The driver code for each module is developed separately. The code for depth sensor,                
SD card, and E-ink module are developed based on their Arduino libraries. Most of the breakout                
sensors are provided with Arduino libraries that could instantly plugin. Basically, we are rewriting              
these libraries with STM32 backend. Most of the user logic is defined in main.c file. The                
embedded software is modularized and extendable for future teams. 

GUI - The GUI is based on Tkinter. Tkinter is the standard GUI library for python. With the GUI,                   
users can connect to the device, change device settings and download depth data. We want to                
make the software as lightweight as possible. The program use pySerial to talk to the serial port.                 
Data are transmitted through the serial port, Zigbee module, and finally received by the other               
Zigbee module in the device. We use multi-threading to listen to receiving buffer for pySerial. For                
now, the GUI is not fully developed. We’ve finished the first layer of the data transmission                
protocol. With this protocol, data could be sent by frames. Noise information from other Zigbee               
devices is eliminated. The command set needs to be further developed based on users’ demand. 

 

Figure 14: Simple GUI based on Tkinter 

5. Milestones 
We anticipate having two iterations during this quarter. In each iteration, we are building one               
deliverable and testable prototype.  

First Iteration - During the first 4 weeks, we’ve built the first fully integrated prototype. It has a                  
depth sensor, LED display, E-ink display, real-time clock, and battery monitor system. The device              
is reprogrammable and rechargeable by using sealed connectors. We’ve tested it in a swimming              
pool, recorded videos to compare the performance of two different kinds of displays. 

Milestones Status and Tasks Accomplished: 



Deliverable  TimeLine  Status 

Design whole schematic, 
including battery 
management module, switch 
module and display module. 

05/07 Done 

Build an experimental 
prototype on a breadboard 
and test it 

05/08 Done 

Writing code for STM32 to 
communicate with 
peripherals: SPI/I2C 
Interfaces for depth sensor 
and display, standby mode 
logic 

05/07 Done 

Build prototype with soldering 
board and pot it 

05/13 Done 

Underwater test 05/16 Done 

Problems - After running for about 2 weeks, our first prototype died suddenly. Unfortunately, this               
bug is not diagnosable and reproducible. Since the device is totally potted with epoxy, we cannot                
reopen it to debug the hardware. This accident greatly changed our plan for the rest of the time in                   
this quarter. We have added some tasks related to diagnosis for the first iteration. 

Second Iteration - We finished the second prototype during the rest of the quarter. Generally, we                
have made several improvements compared to the first iteration, integrating wireless charging            
module, wireless data transmission, and data storage module additionally. The design decisions            
for the second prototype largely depend on the test results of the first one, we chose to use E-ink                   
module as our display. Because of more complexity, more uncertainty is inherited in the second               
iteration. We have changed the plan during our development. 

Milestones Status and Tasks Accomplished: 

Deliverable  TimeLine  Status 

Design additional schematic, 
including updated battery 
management module, 
wireless charging module, 
pogo-pin reprogramming 
strategy, and wireless data 
transmission. 

05/30 Done 

Build an experimental 
prototype on a breadboard 
and test it for a long time 

05/30 Done. Since our 1st 
prototype only survived for 
2 weeks, we want to test 
the 2nd prototype on the 
breadboard longer for 
durability test. 



Build a prototype with 
soldering board and pot it 

06/03 Done 

PCB design for depth sensor 
breakout and main board 

06/06 We have finished the PCB 
design for depth sensor 
breakout and handed it 
over to manufacture, it 
works well. 

As for the main board of 
device, we have finished a 
version of PCB design. 
But since we have tested 
the 2nd for only limited 
times, this version of PCB 
design may need further 
revision after long period 
underwater tests.  

Design data transmission 
protocol and the interface 
between computer and 
device 

06/07 We have finished the 
protocol for transferring a 
frame of data. 
 
For now, the protocol 
doesn’t support 
transferring large files. 
 

Underwater test 06/06 Done 

 

6. Conclusion 
In this project, we built a waterproof device that can measure the depth and display it on the                  
screen clearly based on the requirements from Scripps of Institute Oceanography, used for             
achieving the goal of 100 Island Challenge. In order to design a reliable device, we have                
compared multiple choices for each requirement and finalized our design based on the test result.               
In this quarter, we have built two iterations combining different hardware choices. The 1st              
iteration focused on comparing two display module as well as integrating the core depth              
measurement module. The 2nd iteration has additionally integrated with wireless charging and            
wireless data transmission revised the previous design of some modules based on the test result               
of 1st iteration. We have tested both prototypes in the lab and underwater, tried to mimic the real                  
working condition of the device. In the future, this project will continue to build a more robust and                  
more durable version, and the device will be handed over to researchers to have it tested in the                  
ocean. 

7. References 
[1] Understanding the World's Coral Reefs  http://100islandchallenge.org/ 


