RSA Timing Attack

Chen Yang
Eric Hsieh
Xiaoxi Liu

Advised by:
Vinnie Hu

Abstract

The Rivest, Shamir Adleman (RSA) public-key cryptosystem is the industry standard for protecting both the
confidentiality and integrity of sensitive data. It is widely deployed in secure systems involved in political
dissents communicating outside of repressive regimes and in online shops handling customer financial data.
The strength of RSA relies on the mathematical problem behind it: factoring large integers is extremely
difficult. However, its weaknesses lie in that runtime of RSA encryption may reveal a significant amount of
information about the secret key. This project will attempt to exploit such a weakness: using runtime
measures to recover the private key for RSA cores.

Introduction

Background:

Because RSA is so widely used, it has a reputation as the golden standard for public key cipher based
securing communications between two parties. With the recent revelations of government surveillance and
the increasing number of large data breaches, protecting data has become a priority. Thus, existing
cryptosystems must be evaluated for any weaknesses that can compromise them. While the mathematical
problem behind the RSA system is difficult to solve, the weaknesses of RSA lie in the its implementations.
These implementations can potentially leak information about the secret key, which will render the
cryptosystem useless. The information can be leaked in many ways: by measuring the power consumed,
recording the acoustic noise emitted by a fan on top of the encryption core, and in this case: the variation in
the computation time.

Application:

To measure the computation time, a customized RSA attack framework is instantiated on a Virtex-7 FPGA.
The framework consists of a UART core for serial communication, the RSA implementation, a pseudo
random number generator for producing plaintext, and a counter for measuring clock cycles. A counter
keeps track of the number of cycles and then sends it back to the MATLAB application. This approach is
mainly for a proof of concept, but it could be expanded to include practical applications. For example by
using a faster protocol, such as PCI-E, it allows for real time measurements. By shifting to PCI-E, and using
the same techniques, it opens the possibility for an actual attack against implementations out in the real
world.

The attack framework will have two main components: a MATLAB application to communicate with the
FPGA device and analyze the data, the FPGA with the attack framework programmed into it, and the RSA
implementation that is under attack.

Development:

The RSA Attack framework has the following requirements:

Hardware

Software

Xilinx Virtex-7 FPGA Board

Vivado Design Suite
Used for synthesis of FPGA code

MATLAB
Used for analyzing collected data.

Advantages:

One of the main advantages of the using the FPGA is the speed and the flexibility. It only required about 2
seconds on average to encrypt 8000 plaintext (using a 32-bit RSA core) and send the cycle count to the
MATLAB application. In fact, the main speed bottleneck in this RSA attack framework was the UART

module.

The RSA Attack framework was also designed to be flexible. It would be trivial to instantiate multiple
instances of the same implementation to gather more data in parallel. In addition, different implementations

(i.e., RSA cores of different key size) could be swapped in and out.

Technical Material

Data Flow:

FIFO QUEUE

Sends Count to UART

Sends Count to MATLAB
for Analysis
MATLAB LART MODLULE

h

Sends Key or Guess Key

Stores Count in FIFO

Starts Counter

Sends Key and
Start Encryption Signal

Psuedo Random RSA CORE

Sends Plain Text Counter

Mumber Generator

Stops Counter after
Encryption is done

Figure 1: Flow Diagram of RSA Attack Core

MATLAB sends the key, modulus, random number seed in that order to the RSA Attack framework. The
“START” command is then sent to the framework. Once it is received, the RSA Attack framework will then
use the private key to encrypt 8000 plaintext values, and the cycle count for each entry is reported back to
MATLAB.

MATLAB will now send the guess key. Since keys are odd numbers, the least significant bit (Bit 0) is always
set to one. Therefore, the attack attempts to guess the second least significant bit (Bit 1). This is guess key
is run against the same 8000 plaintext values, and all the cycle counts is reported back to MATLAB.

The variance of each guess key is measured, and MATLAB will use this to guide the next guess, and keeps
the bit that leads to larger decrease in variance as the guessed key bit.

Implementation:

The algorithm runs as follows:

Let the cycle counts from the actual key be known as KEY. Let the cycle counts from the key 0001 be
GUESS_0001, and the cycle counts of key 0011 be GUESS_0011. First take the variance decrease, VAR of
the difference of the KEY and GUESS_0001, that is VAR(KEY - GUESS_0001). Then, find VAR(KEY -
GUESS_0011). Whichever guess key yields the lower value, is kept as the guessed key bit and is compared
to the next guess.

Another algorithm tested is to compare the values separately: instead of finding variance of the difference
between the cycle count of each key, the entire distribution is evaluated together. That is, the variance of the
key cycle count VAR(KEY) is compared to the variance of the guess key VAR(GUESS). The difference of
VAR(KEY) - VAR(GUESS) should indicate how far from the key the guess key was.

In addition, using 8000 random plaintexts did not yield a normal distribution in the cycle counts. The plaintext
generation was changed to use the random seed, and incrementing the value by 1 for 8000 iterations.

Data:

Below is the table of variances of the guess keys and the actual keys. The first column is the guess value of
the 4 least significant bits. The row labeled “KEY” is the variance of the cycle count for the actual key. The
hexadecimal values at the top at each column is the key that was used.

The table below was used for the VAR(KEY) - VAR(GUESS) analysis.

Table 1: Calculated Variances of least 4 significant bits

Variance of Cycle Counts

0x2A948815 0x05F33131 | 0x0676D829 | 0x00903AD9 0x6992FCD1 | 0x7B832F2FD
0001 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0011 | 2.031522 2.223499 2.239267 2.097927 2.238374 2.256977
0101 | 3.948747 4.673284 4.484885 4.321725 4.438128 4.550383
0110 | 5.981293 6.929706 6.641861 6.505288 6.682853 6.947632
0111 | 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1001 | 2.031522 2.223499 2.239267 2.097927 2.238374 2.256977
1011 | 3.948747 4.673284 4.484885 4.321725 4.438128 4.550383

1101

5.981293

6.929706

6.641861

6.505288

6.682853

6.947632

KEY

58.09158

58.132984

58.324112

47.38206

67.912124

67.13123

One of the observed issues was that the guess with the most 1s will a more significant reduction in variance.
As a result, the algorithm will always guess a key that was all 1s. The algorithm was tweaked to look at the
variance in the difference in the cycle counts, that is VAR(KEY - GUESS). In this case, the guess that
yielded the variance closest to the actual key was chosen. This had the same result as the previous case.

Table 2: Variances in the differences of the cycle counts

Variance of Differences in Cycle Counts
0x2A948815 0x05F33131 | 0x0676D829 | 0x00903AD9 | 0x6992FCD1 | 0x7B832F2FD
0001 | 58.09158 58.132984 58.324112 47.382061 67.912124 67.131230
0011 | 55.92242 55.861092 56.325534 45.105285 65.541103 64.651431
0101 | 53.691889 53.497945 54.413323 43.003629 63.404915 61.894892
0110 | 51.715569 51.392056 52.002646 40.797642 60.779433 59.794349
0111 | 58.09158 58.132984 58.324112 47.382061 67.912124 67.131230
1001 | 55.92242 55.861092 56.325534 45.105285 65.541103 64.651431
1011 | 53.691889 53.497945 54.413323 43.003629 63.404915 61.894892
1101 | 51.715569 51.392056 52.002646 40.797642 60.779433 59.794349
KEY | 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

In the next attempt, it was observed that the some 4 most significant bits of the key yielded variances that
were the same as the actual key (highlighted in yellow). While this did not yield the exact key, it can be used
to reduce the search space in a brute force attack.

On average, there were 3 values of the 4 most significant bits that yielded the same variances as the actual

key. Also, given that the value has to be odd, thus the total # of possible values remaining is:

Number of V alues * [(28¢"mng Bitsy o

Using 3 as the “Number of Values” and 28 as the remaining number of bits, the nhumber of remaining
possible keys is 402653184. This only 10% of the original 2432 search space, a reduction of 90%.

Discussion:

After a closer look at the RSA algorithm and the RSA code under attack. The runtime difference in the RSA
algorithm flow is primarily caused by the additional modular multiplication performed when the key bit is 1.

Such runtime different will always be present for software based implementations, which run through the
algorithm sequentially. For the RSA core tested, the additional modular multiplication runs in parallel with a
modular square operation, which is performed regardless of the value of the key bit. The modular square
operation tends to take longer time to complete than the additional modular multiplication. This will cause the
runtime difference of the additional modular multiplication to be invisible due to the parallel implementation
of RSA. When guessing a 1 bit, it will lead to more significant reduction in runtime and further a larger

decrease in variance.

Table 3: Variance in the cycle counts of the 4 most significant bits.

Variance of Guessing 4 Most Significant Bits
0x2A948815 0x0676D829 0x00903AD9 0x6992FCD1 0x7B832F2FD
0x00000001 0.00000000 0.00000000 0.000000000 0.00000000 0.00000000
0x10000001 54.8141 60.4566694 57.85468594 64.3067449 62.5820378
0x20000001 57.5931544 62.9246924 59.53086994 66.4670198 64.7853098
0x30000001 57.5931544 62.9246924 59.53086994 66.4670198 64.7853098
0x40000001 59.0510878 65.032984 61.516856 69.564731 67.6910778
0x50000001 59.0510878 65.032984 61.516856 69.564731 67.6910778
0x60000001 59.0510878 65.032984 61.516856 69.564731 67.6910778
0x70000001 59.0510878 65.032984 61.516856 69.564731 67.6910778
0x80000001 61.4417484 67.807671 64.34192244 72.3228569 70.4520024
0x90000001 61.4417484 67.807671 64.34192244 72.3228569 70.4520024
0xA0000001 61.4417484 67.807671 64.34192244 72.3228569 70.4520024
0xB0000001 61.4417484 67.807671 64.34192244 72.3228569 70.4520024
0xC0000001 61.4417484 67.807671 64.34192244 72.3228569 70.4520024
0xD0000001 61.4417484 67.807671 64.34192244 72.3228569 70.4520024
0xE0000001 61.4417484 67.807671 64.34192244 72.3228569 70.4520024
0xF0000001 61.4417484 67.807671 64.34192244 72.3228569 70.4520024
KEY 57.5931544 55.293496 47.752511 69.564731 67.6910778

Milestones:

Original Milestones:

These were the original milestones for what we had wanted to accomplish on at the beginning quarter.

Establish Serial Communication with MATLAB Application and UART Core

Fully Functional RSA Attack Core with Counter, UART and RSA core.

Launch attack against 32-Bit RSA Keys to Measure performance and gather data.
Attack More Complex RSA Core

Replace UART and PCI-E

Attempt RSA attack using real time measurements instead of clock cycles.

Revisions

One of the biggest challenges that we encountered over the course of this project was the UART module. A
large portion of our time was spent working having it talk to the MATLAB application on the computer. At this
point it was assumed that everything would work fine, so we went ahead and implemented the entire RSA
Attack Core. Again we ran into another issue where it was not functionally properly. Further diagnosis
revealed that the core was buffering the data incorrectly. Yet, the timing diagrams from the simulation
showed that it was working fine. A significant amount of time was spent trying to resolve this issue, and it
had a huge impact on what could be accomplished later. The milestone list was then revised in order to
ensure that we could accomplish our core deliverables.

Revised Milestones:

Establish Serial Communication with MATLAB Application and UART Core

Fully Functional RSA Attack Core with Counter, UART and RSA core.

Add an extra RSA core to run attacks in parallel.

Launch attack against 32-Bit RSA Keys to Measure performance and gather data

Due to the difficulties of getting our RSA core working, we were provided with an existing RSA core to do
collect our data. In addition, we were unable to fully complete the GUI, but we have it's necessary functions
spread out across multiple files.

Conclusion:

From this project, it can be shown that by measuring the time needed for calculations, an attack can be
launched against RSA. It was observed that observing the least significant bits of the key did not yield any

meaningful results. This was caused due to the the parallelism built into the RSA core, which masked some
of the timing information. Consequently, this is one potential way to protect against timing attacks.

However, by observing the most significant bits, it is possible to reduce the search space. In addition the
search space can be reduced even further by calculating all the prime numbers and using those as all
candidate space.

However, there are some modifications that would increase the impact of this experiment. Primarily, this
experiment was done using only 5 RSA keys, and to have more meaningful results, a larger sample size of
keys will be needed. In addition, 32-bit RSA keys are almost ever used as they are not secure enough. If the
key length was increased to 1024-bits, and the same pattern was observed, then it would have more impact
as 1024-bits is the minimum number of bits used in industry.

