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1 Abstract

An important goal in seismology is the ability to accurately predict future earthquakes before they occur.
Anticipating major earthquakes is very important for short-term response - i.e. preparation of emergency
personnel and disaster relief. In seismology, earthquake prediction is well defined: the identification of
severity, bounded geographic region, and time window in which a quake will occur with high probability.
We plan to approach earthquake prediction from the perspective of computer science. In particular, we
will apply efficient techniques from predictive machine learning and statistics to a restricted version of this
problem - prediction of the time-to-failure or time-to-fault.

2 Introduction

Earthquake prediction is a well-studied problem. However, there is a gap between the application traditional
statistics-based modeling and modern machine learning-based methods. In this project, we explore the appli-
cation of a broad set of approaches and techniques from machine learning, statistics, and optimization includ-
ing deep neural networks (LSTM, CNN, WaveNet), sparse quantile regression, and other online regression
algorithms. In addition to applying these techniques to do prediction on the raw signal, we also experimented
with various pre-processing and feature learning algorithms (Robust PCA, MFCC features, and spectral em-
beddings). Our intent is to design algorithms that are effective for forecasting quakes, but also to make sure
that they are efficient (fast, low footprint) enough to potentially run on embedded monitoring devices in the
field. Thus, we propose to evaluate the efficiency of inference of our algorithms by calculuating a normalized
sparsity metric. We leveraged a gold-standard synthetic & real dataset released by Los Alamos National
Laboratory. The data is hosted at https://www.kaggle.com/c/LANL-Earthquake-Prediction/data and
consists of simulated acoustic waveform signal.

In summary, our contributions include:

• Design an accurate end-to-end framework design for earthquake prediction

• Validate a variety of prediction algorithms with special focus on systems that can adapt online - i.e.
learning with only one pass through the data.

• Investigate techniques to deal with a signal that is grossly corrupted by noise.

In section 3 we review the technical material behind our project and give an overview of the data, our
preprocessing techniques, feature selection algorithms, and prediction algorithms. In section 4 we describe
the milestones we accomplished over the quarter. In section 5 we conclude by summarizing our results and
offering some interesting ideas for future work.

2.1 Prior Work

The data for this challenge comes from a gold-standard laboratory earthquake experiment that has been
studied in depth as an synthetic analog of seismogenic faults for decades. A number of physical laws widely

1

https://www.kaggle.com/c/LANL-Earthquake-Prediction/data


Figure 1: Prediction pipeline.

used by the geoscience community have been derived from this earthquake data that have been validated on
real earthquakes.

Earthquake Prediction and Analysis

There has been significant prior work on earthquake prediction. [20, 18, 8] performed a machine learning-
based analysis using the same techniques used to produce our data and evaluated their methods on time-to-
failure prediction. They conclude that random forests are effective for this task. [19] provided initial results
on applying the methods developed on lab data to field data with success, on a particular type of earthquakes
known as slow earthquakes. [13] leveraged lab data to predict earthquake magnitudes via regression using
random forests.

Orthogonal to learning-based methods, earthquakes have traditionally been modeled as point processes, e.g.
[2, 15].

An important facet to seismic wave analysis is pre-processing of the waveform. Traditional approaches
include a manual analysis of the waveform in its frequency domain. Additional approaches include de-
noising via Robust Principal Component Analysis (R-PCA) [3] as in [1, 6, 12] and dictionary learning
[5]. Recent methods have expanded this prior work to leverage nonlinear methods to analyze seismic data
including Spectral Graph Laplacian-based approaches [16, 16] and Multiscale Principal Component Analysis
(M-PCA) [9].

Neural network-based methods applied to modeling earthquake events have also show promise [17]. We
leveraged convolutional neural networks (CNNs) [10] long short-term memory networks (LSTMs) [7] and
their joint architecture [23] for representation learning and modeling earthquakes. In addition we evaluate a
recent technique developed for audio processing: Wavenet [22].

3 Technical Material

In this section we review the technical details of the algorithms we applied to this problem and detail our
analysis and numerical results. We decompose the prediction problem into stages as in Fig 1.

3.1 Data Overview

Recall that our goal was to build a model that predicts the time remaining before failure from a chunk of
seismic data.
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Figure 2: TTF distribution.

Figure 3: Power-spectra distribution.

The input is a chunk of 0.0375 seconds of seismic data (ordered in time), which is recorded at 4MHz, hence
150’000 data points, and the output is time remaining until the following lab earthquake, in seconds. The
seismic data is recorded using a piezoceramic sensor, which outputs a voltage upon deformation by incoming
seismic waves. The seismic data of the input is this recorded voltage, as integers. Both the training and the
testing set come from the same experiment. The data is recorded in bins of 4096 samples. Withing those
bins seismic data is recorded at 4MHz, but there is a 12 microseconds gap between each bin, an artifact of
the recording device. The distribution of time-to-failures is provided in Fig 2.

3.2 Preprocessing

We experimented with two approaches to pre-processing: manual noise filtering and an automatic denoising
technique.

High-frequency Noise Filtering

The first approach we took to pre-processing involved plotting the distribution of power spectra of earthquake
signal segments and manually isolating a range which contains high spectral density. From the plot in Fig
3, we see that the regions of high power density are localized in a range between Khz and 300 Khz.
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R-PCA for automatic de-noising

Principal component analysis (PCA) [3] is an effective tool for random noise attenuation. It has been widely
used in seismic data processing for the enhancement of the signal-to-noise ratio of seismic data. However,
PCA lacks robustness to gross outliers. We adopt a robust PCA (RPCA) framework that can be utilized
in the frequency-space domain to automatically filter erratic noise typical in seismic data. The method
adopts a nuclear norm constraint that exploits the low rank property of the desired data while using an l1
norm constraint to properly estimate erratic (sparse) noise. Our seismic data is natively represented as a
temporally varying waveform. We apply Robust PCA on data transformed via Short-Time Fourier Transform
(STFT) into it’s frequency domain. It’s representation is a matrix D. As mentioned before, a reasonable
assumption is that natural data, regardless of it’s extrinsic representation, exhibits intrinsic low-dimensional
structure. The underlying assumption of Robust PCA is that the desired signal is low-rank and corrupted
by noise. i.e. Robust PCA suggests the following decomposition:

D = L+ S (1)

Where L is the low-rank signal we wish to recover, and S corresponds to sparse, additive noise. The problem
of separating L and S can be formulated as an optimization problem:

min
L,S

rank(L) + λ||S||0 s.t. L+ S = D (2)

where ||S||0 denotes the number of nonzero entries of S and λ is a balancing parameter. Due to the
combinatorial nature of both terms in the objective, this problem is NP-Hard. A a relaxed version which
substitutes convex surrogates for both terms is typically solved instead:

min
L,S
||L||∗ + λ||S||1 s.t. L+ S = D (3)

where ||L||∗ corresponds to the sum of the absolute values of the eigenvalues of L and ||S||1 corresponds to
the sum of the absolute values of the entries of S. To solve this problem, we adopt the method of Augmented
Lagrange [11] relaxes the hard equality constraint and reformulates the problem to facilitate unconstrained
optimization:

min
L,S,Y

||L||∗ + λ||S||1 +
µ

2
||D − L− S||2F + 〈Y,D − L− S〉 (4)

For Lagrange multipliers µ ∈ R, Y ∈ Rd×d ≥ 0 whose magnitudes influence the satisfaction of the equality
constraint in (2).

3.3 Feature Selection

In this section we describe two approaches to feature selection we evaluated. Statistical features are selected
by deriving various statistical metrics to represent the underlying signal. Acoustic features are is based on an
audio-centric interpretation of seismic signals. Learning features encompasses a set of ambitious techniques
to learn discriminative features exclusively from the raw data.

Statistical Features

As mentioned above, statistical features are selected by deriving various statistical metrics that represent
different local and global aspects of the underlying signal. We compute sliding-window features for a variety
of different window sizes to capture local and global descriptors of the earthquake signal. In total, we
compute 180 features including moment statistics about the waveform distribution (mean, variance, skewness,
kurtosis) as well as quantile information.
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Acoustic Features

To model acoustic features of earthquake seismic signals, we utilize the widely adopted Mel-frequency cepstral
coefficients (MFCC) [4] representation as implemented in Librosa [14]. MFCC-based representations are an
effective and popular representation that has been used for a variety of speech and audio processing tasks
[4]. We briefly summarize the model:

Spectrum-to-MFCC computation is composed of invertible pointwise operations and linear matrix operations
that are pseudoinvertible in the least-squares sense. This leads to a straightforward reconstruction process:
Let the MFCC sequence C be computed as

C = D log(MS) (5)

Where S is a pre-emphasized Short-time fourier transform (STFT) magnitude spectrogram, M is a mel-
filterbank matrix, and D is a truncated discrete cosine transform matrix. The reconstruction of the magni-
tude spectrum is obtained simply by

Ŝ = M+ exp(D+C) (6)

Where A+ denotes the pseudoinverse of A. We used the first 20 components, and first downsampled earth-
quakes to 40kHz. Without performing this initial downsampling step, the useful information is distributed
significantly more components.

Feature Learning

As mentioned before, when dealing with high-dimensional natural data, it is common and reasonable to
assume that there is an intrinsic dimensionality, or an underlying & unobserved small number of relevant
degrees of freedom. A variety of linear and nonlinear methods for discovering this intrinsic dimensionality
are used in practice. We apply two algorithms: one based on Multi-Dimensional Scaling (PCA/MDS) and
spectral analysis.

We first evaluated linear embeddings derived from a Multi-Dimensional Scaling Algorithm [?] which is
nothing but an application of PCA to a n× n matrix of euclidean distances between points. projecting our
data onto the top k eigenvectors resulting from this process yields k-dimensional embeddings. A visualization
of this process is provided in Fig. 4.

A manifold structure formalizes this idea for nonlinear dimensionality reduction. A manifold can be summa-
rized as a mathematical space that looks and behaves locally like a Euclidean space of some fixed dimension.

Spectral methods have emerged as popular set of techniques for nonlinear dimensionality reduction, and
they can learn representations that facilitate clusters which do not form convex regions in the embedding
space. We will briefly summarize the idea. Spectral embeddings are derived using eigenvectors of an affinity
matrix A (nonnegative and symmetric) which is built to represent the distance between points. If D is the
diagonal matrix whose (i, i)-th entry is the sum of the entries of row i in matrix A, the top k eigenvectors
of the Discrete Graph-Laplacian,

L = D−1/2AD−1/2 (7)

can clustered (i.e. via K-means) to compute a discrete partitioning of the points. These eigenvectors can be
interpreted as a reduced dimension representation of the original samples and encodes the connectivity of
the network. Intuitively, points whose embeddings are close are connected close in the graph representation.
A visualization of the first two eigenvectors is provided in Fig. 5.

3.4 Prediction Algorithms

We evaluated several different classes of predictors on our learned features. In this section, we will briefly
summarize and discuss the relative performance of each algorithm we applied and address their advantages
and disadvantages in the context of seismic modeling. A summary of the algorithms is given in Table 2, and
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Figure 4: MDS.

Figure 5: Spectral embedding of MFCC vectors from seismic activity (non-linear reduction from 48 to
3 dimensions). Color of points shows the TTF structure of the projection (higher TTF in one side in
opposition to lower TTF).
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reports for 5-fold cross validation experiments are given in Table 1. SVR gives the best performance, while
the sparse linear algorithms provide good performance and efficiency with respect to normalized sparsity.
We characterize the algorithms we applied into three groups:

3.4.1 Offline Algorithms

We do offline prediction using two algorithms: Linear Least Squares Estimation (LLSE) and, XGBoost
(Gradient Boosting). We adopt LLSE as a baseline - any algorithm we apply should do better. We set
XGBoost to minimize the least squares error, defined to be 1

n

∑n
i=1(Ŷi − Yi)2 where Ŷi is a prediction on

the i-th example. XGBoost is an implementation of the Gradient Boosting algorithm. Gradient Boosting
constructs an ensemble - or weighted averaging of a set of decision trees by iteratively adding new trees -
or updating old trees - to the ensemble such that the new ensemble is guaranteed to reduce the loss. More
formally, assuming the set of decision trees is differentiable, we update our mode according to the following
step on the m-th iteration:

• Fm(x) = Fm−1(x)− γm
∑n
i=1∇Fm−1

L(yi, Fm−1(xi)

• γm = arg minγ
∑n
i=1∇Fm−1

L(yi, Fm−1(x)− γmFm−1(xi))

Since we restrict the set of decision trees to be finite, a decision tree is chosen at each iteration which
represents the projection of the gradient into this set. Fast implementations exist for both algorithms, and
we were able to apply them our dataset.

3.4.2 Online Algorithms

We also adopted a set of online algorithms to evaluate. These algorithms are desirable because they can
learn in a streaming fashion out of core - i.e. they do not require the entire dataset be stored in memory
and they only need a single pass through the dataset to do learning. We used the Vowpal Wabbit library
implementations of these algorithms, and implemented the Online-Lasso algorithm independently with Fast
Iterative Shrinkage Thresholding (FISTA) [21]. To summarize, quantile regression is a robust mean estimator.
We had hoped that this kind of algorithm would be more robust to noisy seismic data. The Lasso formulation
is identical to LLSE, but includes a regularization term that induces sparsity in the model. By inducing
sparsity, our model learns to select a small number of predictive features. We observe for both algorithms the
selected features are identical - 4 MFCC features and 2 statistical features. We applied Gaussian Kernel-SVR
which learns the unique line that minimizes the deviation from all points to a region around the line.

3.4.3 KNN-type Algorithms

Finally, we wanted to evaluate our learned features. We do this by applying the K-Nearest-Neighbors-type
algorithm for regression to our learned features. K-NNR learns a weighted combination of nearby points,
where the weights are proportional to euclidean distance.

3.5 Deep Learning

3.5.1 Recurrent Models

We also approached this problem, by using deep learning methods that have shown the potential to learn a
strong feature space. Our first approach was to use a Recurrent Neural Network that takes in the sequential
data and outputs predictions. Since, the dataset is huge, with all sequences of length 150,000, training
recurrent models was not feasible. It is also shown that such long sequences would arise to the problem
of vanishing gradient, which hinders the training of RNNs. In order to avoid that, we split each sequence
into smaller sequences of length 1000 each. For example, a single sequence of length 150000 would have
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Alg\Metric MAE (mean, var) Normalized S (s/|W |) Runtime (s) Training-time
LSE [2.3, 0.22] 194/200 = 0.97 0.10 0.0016
XGBoost [2.21, 0.216] n/a 0.004 0.59
Online-SQR [2.29, 0.02] 6/200 = 0.03 0.00026 n/a
Online-SVR [2.1, 0.1] 2110/4194 = 0.5 0.000231 n/a
Online-Lasso [2.26, 0.11] 6/200 = 0.03 0.000209 n/a
PCA-KNN [2.3, 0.16] n/a 0.000359 n/a
MFCC-Spec-KNN [2.18,0.352] n/a 0.000356 n/a

Table 1: Numerical results of our predictors. Bolded entries represent comparatively superior results. PCA-
KNN and MFCC-Spec-KNN are restricted to learned features, while the rest of the algorithms operate on
staistical + audio features.

Alg\Summary Model-type Model Minimizer Algorithm

LSE nonlinear 1
N ||Ŷ − Y ||

2
2 Expectation XGboost/GD

Quantile Regression linear Q-Loss Median deviation LP/GD/OGD

Lasso linear 1
N ||Ŷ − Y ||

2
2 + λ||β||1 Regularized Expectation FISTA/O-FISTA

Kernel-SVR nonlinear max(0, 1− Y · Ŷ ) 0-1 Approximation SMO/OGD
Robust-PCA Factorization minL+S=D rank(L) + ||S||0 Factorization Aug. Lagrangian

Table 2: Review of objective, loss, and optimization algorithms. Q-Loss = τ(y − p)I(y ≥ p).

150 smaller sequences of length 1000. For each of the smaller sequence, we replace the sequence by four
features: mean of the sequence, minimum, maximum and the standard deviation. By doing this processing,
our 150000 length sequence is now transformed to 150 × 4. This allows us to use a recurrent model, where
at every timestep, a feature vector of length 4 is being given, for a total of 150 timesteps. This model gave
us a MAE of 2.034

3.5.2 Convolutional Neural Nets

Another approach was to leverage Convolutional Networks to learn features from the sequential data. CNNs
do not suffer from the vanishing gradient problem. We convert the sequences to the frequency domain and
obtain spectrograms, which are then fed to the CNN architecture. We use 5 layers of Convolutions, along
with pooling and batch normalization layers. We were able to achieve a MAE of 2.3. This was surprising,
because we were hoping the CNN model would perform better than the recurrent model.

Method MAE
RNN 2.034
CNN 2.3
Wavenet + LSTM 1.8

Table 3: Review of Deep Learning Approaches

3.5.3 WaveNet + LSTM

One of the main reasons for the previous models’ low performance, was that those models were not able
to extract a meaningful and useful latent space for making predictions. We ascribe this to the high dimen-
sionality of the data. In order to extract meaningful features, we take inspirations from audio generation
models. The intuition behind this is that, a stronger generative model should also be able to understand the
structure of the data better. We use WaveNet [19] as our model and transform it from a generative model
to a feature extraction model. WaveNet uses causal dilated convolutions to build a generative model for
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Figure 6: Architecture of WaveNet

audio. Figure 6 shows the architecture of Wavenet. As we can see, causal dilated convolutions can represent
sequences (blue nodes in the bottom layer) by a single node (right most orange node in the top layer). Using
this, we extract 150 nodes (for every 1000 nodes) for one sequence of length 150000. These features are then
passed to a LSTM which makes the predictions. This method gave us the best results, with MAE of 1.8.
Table 3 shows the consolidated results of the deep learning approaches.

4 Milestones

4.1 Milestone 1: Literature Review

Our first milestone was to survey existing works in predicting earthquakes. We performed a comprehensive
review of the literature and compiled a short summary of the prior work. The literature survey gave us a lot of
inspirations and ideas, that ultimately lead to our final results in conjunction with the audio-recommendation
made by Professor Kastner around week 4.

4.2 Milestone 2: Exploratory Analysis

Exploratory Analysis was challenging because of the high dimensionality of the data. We used a lot of
denoising techniques and downsampled the signal. Our initial approach to denoising was based on manually
looking at several spectrograms derived from earthquake data. Noting that the majority of meaningful signal
is concentrated at frequencies below 30k HZ we downsampled the signal to 90hz.

Motivated by prior work, we also evaluated an alternative approach based on robust PCA (https://en.
wikipedia.org/wiki/Robust_principal_component_analysis): by observing the spectrogram of the sig-
nal, we note that the speckled noise exhibits a sparse structure. Through decomposition of the spectrogram
(after thresholding as before) into a sparse part (corresponding to the speckled noise) and low rank part
(the underlying signal), we can recover the true signal and then undo the DFT operation on the low rank
component to recover the earthquake waveform.

4.3 Milestone 3: Feature Selection

We evaluate two methods for feature selection. Our first approach is based on manually computing rolling-
window statistics (i.e. rolling mean, rolling variance, window-quantiles, etc.) for windows of sizes [10,50,100]
and concatenating them. Furthermore, we concatenated spectral features (real + imaginary coefficients of
the DFT transform) to our feature vector. In total, our representation of an earthquake is a vector of 180
numbers.
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Our second method is based on automatic feature engineering. We compute a euclidean distance matrix
between earthquake segments in our dataset and apply PCA. This technique is known as Multi Dimensional
Scaling (MDS) and produces low dimensional representations that preserve distances. By observing a 2-d
projection of these representations, we find clear cluster structure (point-intensity corresponds to time-to-
failure), and we can use these representations directly as features (see our application of KNN below).
Experimentation using other pairwise metrics is future work.

4.4 Milestone 4: Model Implementation

We evaluated several non-neural network-based methods for predicting runtime. In particular, we leveraged
batch-regressors implemented in SK-Learns library [https://scikit-learn.org/stable/] on the 180 fea-
tures derived during the previous milestone. The methods include an LSE baseline, XGBoost, Kernel-SVR,
Random Forest, and Lasso. Pre-feature engineering, the data is approximately 10 gb. Even after feature
engineering, the data remains on the order of gigabytes. We adopted several fast online algorithms from Vow-
pal Wabbit [https://github.com/VowpalWabbit/vowpal_wabbit] including Online Kernel-SVR, quantile
regression, and online lse. In an attempt to improve upon algorithms utilizing our previous analysis, we also
implemented an augmented online-lasso formulation from scratch in Python+Numpy. Our initial experiments
validate the performance of this approach with respect to runtime and normalized sparsity. Due to online-
lassos nature, no training time is required and the parameters are updated in a streaming fashion. In particu-
lar, we implemented augmentations to the standard Lasso formulation including a nonconvex SCAD penalty,
a locally linear approximation algorithm to produce an optimal penalty multiplier, and an optimal algorithm
(fast proximal gradient method (A Fast Iterative Shrinkage-Thresholding Algorithm - FISTA)). The imple-
mentation of this algorithm has been made available here: https://github.com/choltz95/LASSO-SCAD

We applied a Recurrent Network using the features mentioned above per timestep. We also worked on
applying Convolutional Networks to the spectrogram resulting from application of a DFT. Using a distinct
spectrogram for each earthquake in the training set, we applied a CNNs to model time-to-failure. All the
implementations used Python, Tensorflow and Keras. Our best approach was using WaveNet to learn a
strong feature representation and then use a LSTM. All our notebooks will be posted on our github (Please
check link above)

4.5 Milestone 5: Evaluation Results

We carried out a variety of experiments - recording results based on 5-fold cross validation. We present the
CV-mean and CV-variance of MAE for each algorithm as well as the mean normalized sparsity, runtime
(to predict on a new sample), and training time for our offline algorithms. The reported KNN results is
computed on MDS features, and we are surprised at how competitive it is.

5 Conclusions and Future work

We explore and evaluate audio based approaches to processing and machine learning and deep learning to
analyze seismic patterns in order to predict the time remaining till the next earthquake. We believe that
this would help save a lot of life and property if it can be incorporated in a real life scenario. We also hope
that more research in this direction is pursued, as it looks really promising, based on our results.

Through our analysis, we have developed a number of ideas to pursue as future work. We have divided them
into the following categories
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Manifold Regularization

Inspired by the cluster structure we have observed from our PCA analysis, we hope to further explore the
low dimensional structures of earthquakes. Additionally, we were surprised at the performance of KNN on
learned feature representations, and this motivated us to further explore nonlinear dimensionality reduction
algorithms for feature learning including MDS and spectral embeddings. In the future, we would like to
more closely integrate these techniques with our predictive algorithms via spectral regularization.

Efficiency Analysis

Many of the techniques we have applied perform well for the task of earthquake time-prediction. However
we would also like to explore the efficiency of algorithms for prediction. In many cases, earthquakes are
sudden and early prediction of earthquakes increases the effectiveness of early response. It would be great
if we could facilitate on-device prediction to eliminate time required for latency and data transfer. Since
seismic sensors in the field are often power-efficient, we are motivated to explore methods and algorithms to
reduce the energy and time required to do prediction. Although we have performed an additional analysis
of the normalized sparsity and run-time of each algorithm, there are many interesting ideas worth pursuing.

More Deep Learning Architectures

We found that deep learning models were able to perform considerably better in comparison with classical
machine learning models. With the rise of newer models like Attention etc, we definitely would love to
experiment with such techniques, which are powerful sequential models.

Alternative Objectives

To successfully predict an earthquake and take evacuationary measures, it is important to predict not only
the time, but also the place and the magnitude of the earthquake. Without one of these three main factors,
evacuation would not be possible. It would be interesting to see if the current dataset has traits that can
effectively predict the other two factors as well. It would also be interesting if we could induce learning more
general representations - i.e. by including a term in the objective which corresponds to forecasting error.
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