
3D Reconstruction Using Kinect and RGB-D SLAM

Shengdong Liu, Pulak Sarangi, Quentin Gautier

June 9, 2016

Abstract

Visualization is a powerful technique to reinforce human cognition, and archaeologists uses it extensively
to study and showcase artifacts and architectures. Currently, archaeologists create visualization using draw-
ings, which is inefficient especially visualizing big artifacts and architectures. This project aims to provide
archaeologists with a mobile system that can reconstruct an artifact with real-time feedback. Our system
consists of a Microsoft Kinect sensor to scan the artifact and a laptop to run RGB-D SLAM, which generate
a 3D point cloud of artifact. After some field testing in Guatemala, we concluded that while the portability
of the setup needs to be improved, the system is stable and it can generate a 3D representation of up to 25
meters of a tunnel in 20 minutes.

1 Introduction

As technology advances, we have access to newer and faster ways to complete a task. This project aims to
apply the technology we have in the field of archeology, specifically in visualizing large artifacts and
architectures. Visualization helps archaeologists to document their findings to be studied off-site, shared with
other archaeologists, and presented to interested audience, thus it is important for archaeologists to have a
reliable way to create accurate visualization of their finding. Currently, the most common way for
archaeologists to create visualization is to draw the artifact by hand. This approach, although effective, takes
a long time. For big artifacts and architectures, a painstaking effort is needed to create a detailed and
accurate 3D representation by hand. The 3D reconstruction project seeks to tackle this problem using a
mobile system that can reconstruct an object in 3D with real-time feedback. This system will help
archaeologists create 3D visualizations of the artifacts or architectures at a much faster pace.

The 3D reconstruction project is supervised by Quentin Gautier, a member of Engineer for Exploration group
at University of California San Diego. The group strive for engineering solutions that extend beyond
technology itself to drive the future of exploration. They have projects in aquatic, terrestrial and aerial
environments, as well as international collaborators in ecology, conservation and archeology[2]. Through
Engineer for Exploration, we collaborate with archaeologists in an effort to 3D reconstructs an underground
environment of Mayan architectures in Guatemala.

The main components of our system are a Microsoft Kinect Senor and a laptop. The Kinect sensor is a
web-cam style camera with added infrared and other peripherals. The Kinect services support depth image,
RGB-image, tilt, microphone array, and skeleton tracking[3]. For our project, we use the RGB-image and
depth image information to create the 3D point cloud to visualize an artifact or architecture. We also use a
laptop equipped with i7 processor and graphics processing unit (GPU), which enables smooth rendering of the
visual feedback.

For creating the 3D representation of the object, we use RGB-D SLAM, which is a simultaneous localization
and mapping algorithm that uses both the RGB image and the depth sensor to generate an accurate point
cloud[4]. The advantage of using a SLAM algorithm is that as the mapping takes place, the algorithm also
calculates the position of the camera relative to the map generated. This feature allows the algorithm to
dynamically correct drift and fix inaccuracies in the point cloud.

This paper broken down into two major sections. The Technical Material section aim to walk the reader
through of the require equipments, the setup steps and the usage of our system. At the end of the section, we
also discuss some of the results from our own test and field test in Guatemala, as well as some of the issues
our system face. The milestone section shows our project timeline. This include milestones we had set for this
project on a weekly basis and what milestones we were able to complete.

1

2 Technical Material

2.1 3D Reconstruction System

This section focus on how to put the 3D reconstruction system together. We will list the components needed
for the system and walk through the setup step go get RGB-D SLAM up and running.

2.1.1 System Requirements

For this system, we have the following components:

• Microsoft Kinect sensor

• Laptop (prefer GNU on board but it is not necessary)

• External battery and power converter to power the Kinect.

2.1.2 Set Up Instructions

The work environment for this project is Ubuntu[5] with C++. We also need the following open source
projects, ROS[6], OpenCV[7], OpenGL[8], PCL[?], OctoMap[9], SiftGPU[10], and g2o[11] since they are
dependencies of RGB-D SLAM[4]. We will list the resources we use to set up our system in this section.

1. Install Ubuntu 14.04 Trusty Tahr. Ubuntu is an open source operating system popular among
software developers, and it is the OS we used to set up this project. Here is a link to install Ubuntu
14.04: http://howtoubuntu.org/how-to-install-ubuntu-14-04-trusty-tahr

2. Install ROS Indigo Igloo. ROS is an open-source robotics framework that uses publisher-subscribers
to communicate information. the RGB-D SLAM algorithm is created in this framework, thus having the
ROS frame before installing the RGB-D SLAM is essential. We highly recommend ROS Indigo because
it is the latest stable vision. You can find the installation instructions here:
http://wiki.ros.org/indigo/Installation/Ubuntu

3. Install OpenCV 2.4 OpenCV is an open-source computer vision library that RGBD-SLAM depends
on. We recommend OpenCV 2.4 because ROS frames work set OpenCV 2.4 as the default version of
OpenCV to look for. Thus installing OpenCV 2.4 will save a lot of trouble linking dependencies. You
can find the source code on http://opencv.org/downloads.html and installation instruction on
http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html.

4. Install RGB-D SLAM.. Now you should be able to setup and compile RGB-D SLAM, the mapping
algorithm we are using. You can find the source code and instruction for indigo version on
https://github.com/felixendres/rgbdslam_v2.

5. Install any missing library. Most of the aforementioned dependencies comes with either ROS or
OpenCV, but you might still need to install libraries manually. Check RGB-D SLAM compilation
message to see if your system is missing any library.

6. Install OpenNI. This open-source project can be use to visualize the RGB-D SLAM during run time.
To install from commandline: $ sudo apt-get install ros-indigo-openni-launch

2.1.3 RGB-D SLAM Parameters

This section, we will go over some of the RGB-D SLAM parameters. Tuning these parameter can optimize the
algorithm for an specific setting. There are three columns in the table presented below, they are RGB-D
parameter name, the value we use for our setup, and the description of the parameter.

2

 http://howtoubuntu.org/how-to-install-ubuntu-14-04-trusty-tahr
http://wiki.ros.org/indigo/Installation/Ubuntu
http://opencv.org/downloads.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/linux_install/linux_install.html
https://github.com/felixendres/rgbdslam_v2

Parameter Value Description
topic image mono std::string(“/camera/rgb/image rect color”) Color or grayscale image of the

environment.
camera info topic std::string(“/camera/rgb/camera info”) Required for backproject if no

pointcloud topic.
topic image depth std::string(“/camera/depth registered/sw

registered/image rect raw”)
Depth image of the environment.

bagfile name std::string(“”) Read data from a bagfile, make
sure to enter the right topics
above.

cloud creation skip step static cast<int> (2) Downsampling factor (rows and
columns, so size reduction is
quadratic) for the point cloud.

create cloud every nth node static cast<int> (10) Create a point cloud only for ev-
ery nth frame. Increase this pa-
rameter if you dont need a dense
point cloud.

feature detector type std::string(“ORB”) SIFTGPU, SURF or ORB
feature extractor type std::string(“ORB”) SIFTGPU, SURF or ORB.
matcher type std::string(“FLANN”) SIFTGPU or FLANN or

BRUTEFORCE.
detector grid resolution static cast<int> (3) detect on a 3x3 grid (to spread

ORB keypoints and parallelize
SIFT and SURF)

max keypoints static cast<int> (600) Extract no more that this many
keypoints. Increase this to stitch
the point cloud more accurately
at the cost of slower run time.

max matches static cast<int> (300) Keep the best n matches. In-
crease this to stitch the point
cloud accuracy at the cost of
slower run time. Should be lower
than max keypoints.

min sample candidates static cast<int> (4) Frame to Frame comparison to
random frames for big loop clo-
sures.

predecessor candidates static cast<int> (4) Frame to frame comparisons to
sequential frames.

neighbor candiates static cast<int> (4) Frame to frame comparisons to
graph neighbor frames.

ransac iterations static cast<int> (300) Number of iterations for registra-
tion. Increase this to stitch the
point cloud accuracy at the cost
of slower run time.

cloud display type static cast<std::string>(“POINTS”) POINTS, TRIANGLE STRIPE.
Drastically affect rendering time.

pose relative to std::string(“largest loop”) optimize only a subset of the
graph: “largest loop” for every-
thing from the earliest matched
frame to the current one, “first”
for full graph, “inaffected” for
frames that were matched.

backend solver std::string(“pcg”) “pcg” is faster and good for
continuous online optimization,
“cholmod” and “csparse” are
better for offline optimization.

optimizer skip step static cast<int> (300) Optimize only every n-th frame.
Increase this value to reduce
computation during run time.
Also this process slows down over
time, so use wisely.

3

2.2 System Usage

In this section, we will cover how to use the system.

To launch RGB-D SLAM with default parameters, you can ros-launch script at the commandline by typing in:

$ roslaunch rgbdslam rgbdslam.launch

To improve tweak experience, we created an custom launch file with fine tuned parameter as well as an shell
script to run RGB-D SLAM and record the camera data at the same time. This way, the archaeologist could
launch the system with a simple command:

$./launch rgbdslam [bagfile name]

and they will get real time feedback of their reconstruction progress as well as saving the camera data for post
processing.

You can find the source code for our launch file at:

https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/

2041ced88c51465708d8e32cb05b581b57dfba23/rgbdslam_v2/launch/rgbdslam+record.launch?at=

kinect&fileviewer=file-view-default

and the shell script at:

https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/

2041ced88c51465708d8e32cb05b581b57dfba23/launch_rgbdslam.sh?at=kinect&fileviewer=

file-view-default

Once you launch the RGB-D SLAM, you will see the following interface: /par

The top half of the screen is where the point cloud will be displayed. The four panels on the bottom will
display color image, depth image, feature matching, and corner detection in that order. As the images below
shows.

4

https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/2041ced88c51465708d8e32cb05b581b57dfba23/rgbdslam_v2/launch/rgbdslam+record.launch?at=kinect&fileviewer=file-view-default
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/2041ced88c51465708d8e32cb05b581b57dfba23/rgbdslam_v2/launch/rgbdslam+record.launch?at=kinect&fileviewer=file-view-default
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/2041ced88c51465708d8e32cb05b581b57dfba23/rgbdslam_v2/launch/rgbdslam+record.launch?at=kinect&fileviewer=file-view-default
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/2041ced88c51465708d8e32cb05b581b57dfba23/launch_rgbdslam.sh?at=kinect&fileviewer=file-view-default
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/2041ced88c51465708d8e32cb05b581b57dfba23/launch_rgbdslam.sh?at=kinect&fileviewer=file-view-default
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/2041ced88c51465708d8e32cb05b581b57dfba23/launch_rgbdslam.sh?at=kinect&fileviewer=file-view-default

In these example images we mapped a shelf of tool boxes. The image on the left is what the camera sees
initially, and the image on the right is the result of mapping the shelf. The point cloud can then be saved and
visualized again in an 3D point cloud viewer, such us pcl viewer.

2.3 Test Result

We Tested our devices against the tool shelf, as the shelf is in an plan yet has a lot of texture because of all
the different boxes it holds. We believe this set has the most similar to that of an tunnel with Mayan
architecture we can find within our reach. As the images in the previous section shows, our system can
accurate create a 3D representation of the shelf while provide feedback in real time.

Quentin, who took our 3D reconstruction system using Kinect and RGB-D SLAM to field test in Guatemala,
told us that the Kinect“turn out to be pretty reliable”. It did not lose track of the environment often, and
when it did, it was able to recover nicely. However, Quentin does advise us to avoid sudden movements to
minimize the chance the algorithm gets lost. The algorithm slows down over time because it keeps track of a
growing point cloud. Even then, the algorithm is decently fast for a mapping algorithm, and definitely faster
than drawing an archaeological site by hand. Quentin was able to map out a roughly 25-meter tunnel in about
20 minutes.

One issue we encountered was portability. We initially envisioned our system to have only a Kinect sensor
plugged into a laptop. However, Kinect is quite power hungry and needs its own energy source independent of
the laptop. This means we have to add external battery to power the Kinect as well as power converter cables.
These added components make the mapping process difficult to perform with a single person. Therefore, we
would like to improve on portability of our system in the future.

5

3 Milestones

This project was completed in the course of ten weeks as an class project, thus well will include our timeline
and the completion status of all the milestone we set. In the following table there are three columns: week
number, milestone, and comments on the completion status. Notice there are no milestones for the first two
weeks because we put together our initial milestones during week 3. (*Note these milestones are not
necessarily completed in that order, but for simplicity, we ordered them according to our original milestones.)

Week Objective Completion Status
3 Complete Project Specifications Completed:Project Spec
3 Set Up Kinect Completed:Setup Instruction
4 Set Up Project Webpage Completed:Project Webpage
4 Get Data From Kinect Sensor Completed:RGB-D SLAM Video Demo
4 Choose the most fitting SLAM

Algorithm
Completed:RGB-D SLAM

5 Oral Project Update Completed:Update Presentation Slides
5 Test Kinect functionality and capabilities Completed:RGB-D SLAM Video Demo
6 Launch RGBD-SLAM on a com-

puter
Completed:Run Instruction

6 Test SLAM using bagfiles Completed:Bagfile Video Demo
7 Milestone Report Completed:Milestone Report
7 Test Mapping with SLAM in real

time
Completed:RGB-D SLAM Video Demo

7 Formulate a controlled test for
Kinect vs Tango results

Completed:SLAM Benchmarks

8 Optimize SLAM Parameters Completed:Launch file with custom parame-
ters

8 Controlled Kinect testing with
SLAM.

Not completed: We put most of our time dur-
ing week 8 and 9 to tune for the optimal pa-
rameters to achieve stability in the algorithm,
getting ready for the field test in Guatemala
on week 10

9 Compare result from Kinect and
Tango

Not completed: We put most of our time dur-
ing week 8 and 9 to tune for the optimal pa-
rameters to achieve stability in the algorithm,
getting ready for the field test in Guatemala
on week 10

9 Try Implementing RTAB Not completed: This idea was original brought
us as an mean to compare our system with the
Tango system. However, we scrap this task in
the end in favor of making our system more
stable and more user friendly for field testing.

10 Final Presentation Completed:Final Presentation Slides

Although we didn’t get an chance to create a rigorous test comparing our system against an Tango, our field
test result shows that Kinect is more stable. Quentin told us that the Tango devices is prone to crash when
the architecture to map is large, whereas the Kinect system does not suffer from crashing. Thus, our project
to reconstruction environment in 3D using a Kinect and RGB-D SLAM is recommend for mapping large
architectures or when portability is not an issue.

4 Conclusion

Visualization help archaeologists bring their finding off-site to study and showcase and currently it takes a
long time to create those visualization as they are usually hand drawn. The our project, 3D reconstruction
using Kinect and RGB-D SLAM, presents a efficient and stable way of reconstructing an 3D environment for
archaeologists. Through collaborating and with Engineer for Exploration, we are able to conduct so field test
in tunnels in Guatemala. The preliminary result shows us that our system, although suffer a little from
portability issue, can create 3D representation of a 20 25 meter tunnel in 20 minutes. This will significantly
help archaeologists speed up their process of creating visualization of artifacts and architecture. Our
immediate future goal is to improve portability and usability, so that every archaeologist can bring our system
to create 3D reconstruction of their finding if they so desire.

6

https://docs.google.com/document/d/17OzljZpkj0QvxSmJxBCETPm2VFP3r_SdPSLqNIkL3DA/edit
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/wiki/Set%20up%20for%20Kinect
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/wiki/Home
https://www.youtube.com/watch?v=krMPHg7H608
https://github.com/felixendres/rgbdslam_v2
https://docs.google.com/presentation/d/1dn0D-aTo01wTUklFfIbqrP0THBRyKPXe3AqrNSCXsQs/edit#slide=id.g12d93f984c_0_0
https://www.youtube.com/watch?v=krMPHg7H608
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/wiki/Run%20Instruction%20for%20Kinect
https://www.youtube.com/watch?v=PGPWtHqPfYE&feature=youtu.be
https://docs.google.com/document/d/1gZYwBMuM_N7t2pW-M-VM_e2yBeF8swWP98VjxwNJgPE/edit
https://www.youtube.com/watch?v=krMPHg7H608
http://vision.in.tum.de/data/datasets/rgbd-dataset
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/2041ced88c51465708d8e32cb05b581b57dfba23/rgbdslam_v2/launch/rgbdslam+record.launch?at=kinect&fileviewer=file-view-default
https://bitbucket.org/cse145237d3dreconstruction/3d-reconstruction/src/2041ced88c51465708d8e32cb05b581b57dfba23/rgbdslam_v2/launch/rgbdslam+record.launch?at=kinect&fileviewer=file-view-default
https://docs.google.com/presentation/d/1C4wJn1XjBHLSJe380SK3NTW06AOyzIKWqtuuzg2Jffw/edit#slide=id.g142c5aede4_8_45

References

[1] Robot Operation System http://www.ros.org/

[2] Engineer for Exploration http://ngs.ucsd.edu/

[3] Microsoft Kinect Sensor https://msdn.microsoft.com/en-us/library/hh438998.aspx

[4] RGB-D SLAM http://felixendres.github.io/rgbdslam_v2/

[5] Ubuntu http://www.ubuntu.com/

[6] OpenCV http://opencv.org/

[7] OpenGL https://www.opengl.org/

[8] OctoMap https://octomap.github.io/

[9] SiftGPU http://www.cs.unc.edu/~ccwu/siftgpu/

[10] g2o: A General Framework for Graph Optimization https://openslam.org/g2o.html

7

http://www.ros.org/
http://ngs.ucsd.edu/
https://msdn.microsoft.com/en-us/library/hh438998.aspx
http://felixendres.github.io/rgbdslam_v2/
http://www.ubuntu.com/
http://opencv.org/
https://www.opengl.org/
https://octomap.github.io/
http://www.cs.unc.edu/~ccwu/siftgpu/
https://openslam.org/g2o.html

	Introduction
	Technical Material
	3D Reconstruction System
	System Requirements
	Set Up Instructions
	RGB-D SLAM Parameters

	System Usage
	Test Result

	Milestones
	Conclusion

