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Abstract—Fish are a vital food source for humans and play
a crucial role in marine ecosystems around the world. However,
overfishing poses a serious threat, prompting efforts to assess and
manage fisheries more effectively. Current monitoring programs
are resource-intensive, requiring expert involvement and manual
data collection to inform fisheries management decisions. Data
on fish stocks are often collected through hook-and-line surveys,
where fisheries scientists collect information on fish population
size, structure, community composition, and individual body
condition. This process relies heavily on expert scientists, creating
a bottleneck in the data-collection workflow. FishSense Mobile
uses LIDAR and RGB imaging technologies available on Apple
iPhones and iPads to automate fish measurement, thereby reduc-
ing the workload of experts. We further demonstrate that these
tools can be utilized by independent citizen scientists, facilitating
large-scale data collection. We demonstrate that the app achieves
an average measurement accuracy of within +2 cm with respect
to length board measurements collected by scientists.

Index Terms—fisheries management, LiDAR, edge-computing,
iOS, machine learning, citizen science, fishing, computer vision

I. INTRODUCTION

Fish are a critical source of dietary protein for communities
worldwide [10]. Fish heavily influence the biomass and the
species composition found in their ecosystem [18]. They also
play a vital role in nutrient cycling through excretion and
movement between habitats, which supports plant growth and
helps maintain ecological balance.[4]].

Unfortunately, overfishing poses a serious threat to the
sustainability of living marine resources, with many regions
already experiencing significant declines [17]. As a result,
many efforts are dedicated to understanding and mitigating
these impacts. One such program is the California Collabora-
tive Fisheries Research Program (CCFRP), an effort dedicated
to evaluating the health and recovery of fish populations off the
California coast. In collaboration with local sportfishing fleets

and volunteer anglers, CCFRP scientists conduct standardized
hook-and-line surveys to generate management-relevant data
on nearshore fish stocks.

Citizen scientist-based research programs, such as CCFRP,
often rely on volunteer anglers who assist in collecting fish
specimens. After an angler catches a fish, it is brought to a
scientist on deck, who identifies its species, measures it on a
measuring board, evaluates its health, tags it, and then returns
it to the ocean [[11]. The reliance on trained scientists creates a
significant bottleneck for these evaluations. CCFRP excursions
couple highly trained scientists with volunteer participants,
making them extremely expensive and challenging to replicate
in many parts of the world. We need techniques that can scale,
especially to resource and data-limited fisheries, which often
have inadequate management.

Rather than relying solely on trained scientific field crews,
fisheries monitoring can be expanded by engaging recreational
anglers as contributors to data collection through independent
citizen science. Recreational anglers represent a vast, largely
untapped resource for scalable observation with an estimated
118 million participants across North America, Europe, and
Oceania—and global figures ranging from 220 to 770 mil-
lion [3]. If provided with tools that deliver scientifically
accurate measurements, anglers could significantly broaden the
spatial and temporal coverage of fisheries data.

To effectively engage recreational anglers as independent
citizen scientists, the ideal tool should require minimal train-
ing to ensure accessibility across a wide range of users. It
must also be cost-effective to maximize adoption. The most
affordable and practical option is a device that anglers already
own—namely, a smartphone.

Modern smartphones are increasingly equipped with ad-
vanced sensors that make them well-suited for field-based data
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collection. Nearly all include RGB cameras capable of captur-
ing high-resolution imagery, which can be used for automated
species identification and individual recognition [T16]. In
addition, some higher-end models incorporate depth-sensing
technologies—such as time-of-flight (ToF) LiDAR—that en-
able the capture of 3D spatial information through depth maps
or point clouds. This depth context eliminates the need for
a fiducial marker (i.e., a reference object) within the frame,
reducing both training requirements and user error. Notably,
Apple Pro devices from the iPhone 12 Pro and iPad Pro
4th generation onward include such sensors, making them
ideal candidates for implementing a mobile fish measurement
system.

These devices also offer substantial processing power, en-
abling real-time analysis of captured images and measure-
ment quality. Providing immediate feedback allows users to
remeasure a fish on the spot if the initial capture is insuffi-
cient, reducing data loss and improving reliability. Performing
these operations on-device is crucial, as recreational anglers
often operate in remote environments—such as offshore loca-
tions—where internet connectivity is limited or unavailable.
By leveraging edge computing, a system can ensure that key
functions remain accessible regardless of network conditions.

Together, these considerations define the key constraints that
shape our system design. To ensure the solution is practical,
accessible, and scientifically robust, the target device must
satisfy a specific set of hardware and usability requirements.
These constraints are as follows:

o Depth Sensor: Necessary for acquiring accurate depth
information, which allows pixel-based measurements to
be converted into real-world distances without requiring
an external size reference object.

« High-resolution RGB Imager: Required to capture de-
tailed imagery of fish, enabling detection of the fish
within the image, whether manual or automatic.

e Onboard compute capabilities: Essential for running
Al-based inference locally, providing real-time feedback
on measurement quality and enabling offline operation
in remote environments where internet connectivity is
unavailable.

o Commercial availability to end users: The device
should be one that recreational anglers are likely to own
or can easily acquire, minimizing barriers to adoption and
maximizing scalability.

With these constraints in mind, we develop FishSense
Mobile — an 10S-based mobile application designed for devices
that satisfy all of the outlined requirements, such as the iPhone
Pro and iPad Pro. Figure [I] shows a screenshot of FishSense
Mobile in action. FishSense Mobile measures the length of the
fish by determining the distance of the fork and snout from the
camera using the mobile device’s depth camera. The fish need
not be on a measuring board; this was done to opportunistically
gather and validate fish length during a CCFRP survey.

The remainder of this paper focuses on evaluating the
feasibility of implementing FishSense Mobile in a practical,
real-world data collection setting. We assess the system’s

Fig. 1: Example interface of FishSense Mobile, measuring a
Black Seaperch during a CCFRP field deployment.

ability to provide accurate fish fork length measurements
under typical field conditions, including both controlled labo-
ratory environments and active catch-and-release operations.
To maintain a focused scope, this study does not explore
advanced algorithmic extensions such as snout-fork detection,
species identification, pose correction, or individual recogni-
tion. Instead, we focus on validating the core measurement
functionality and leave these extensions for future work.

II. RELATED WORK

To contextualize our analysis of FishSense Mobile, we
first review existing systems used in hook-and-line fisheries
surveys. We begin by examining the tools and methodologies
currently employed by scientists for evaluating fish length,
followed by a discussion of technologies developed to improve
or augment these workflows.

A. Hook-and-line Surveys

Hook-and-line surveys are a common research tool em-
ployed by fisheries scientists to monitor and evaluate fish
populations. One simple, yet critically important piece of
morphometric information that scientists collect is fish length



data, which is generally obtained using traditional measuring
boards. The process involves catching a fish, bringing it to
a measuring board, and then having an expert evaluate it
for species identification and tagging. Reliance on expert
knowledge prevents citizens from further contributing to the
process and introduces a bottleneck in deployments. This
bottleneck, which is amplified when large quantities of fish
are caught, can increase the amount of time fish spend out of
the water, causing them stress [7]. As such, it is crucial to
minimize the amount of time spent measuring the fish.

Several factors further hinder data collection. The need
to take handwritten notes introduces additional work and
potential for error, as digitization requires additional human
labor and can result in clerical mistakes. Another potential
source of error is the reliance on a human to capture data from
the length board accurately. Humans tend to choose numbers
according to patterns when reporting values (referred to as
digit preference [3]). As such, they can introduce varying
levels of inconsistencies when reporting length data to be
recorded [8]].

B. Technology

The traditional method of hook-and-line fisheries surveys
is often time-consuming, costly, and susceptible to observer
bias. Technology has been considered to reduce the handling
of animals, lower costs, and minimize observer biases.

Photogrammetry has emerged as a promising tool for
enhancing hook-and-line fisheries surveys by enabling non-
invasive, image-based measurement of fish. Traditional length
measurements in these surveys typically involve bringing fish
aboard and measuring them manually—an approach that can
be time-consuming, labor-intensive, and stressful for the ani-
mals. Photogrammetric techniques offer a scalable alternative
by allowing fish to be measured from images or video,
reducing handling time and observer bias [2].

Despite their advantages, photogrammetric systems also
introduce sources of error. Variability in camera intrinsics
and the orientation of the camera relative to the fish can
significantly impact measurement accuracy [13]. To address
these issues, many systems incorporate fiducial markers—such
as paired laser dots [12] or calibrated reference objects placed
within the scene—to provide consistent scale and spatial refer-
ence [, [1]]. The integration of such tools reflects a growing
effort to make image-based measurement more reliable and
accessible, particularly in the hands of independent users
and citizen scientists operating outside of controlled scientific
settings.

Some fiducial marker systems—such as the one proposed
by Monkman et al.—improve measurement accuracy by en-
abling camera calibration and correcting for geometric distor-
tions [15)]. However, their method requires a combination of
external components, including a laser pair, a size-calibrated
background checkerboard, and a foreground checkerboard,
which significantly increases system complexity. The use of
action cameras further limits accessibility for recreational
users who may not own or be familiar with such equipment.
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Fig. 2: Proof ball used as a fiducial marker by the Fishtechy
mobile app.

This reliance on external markers and post-capture processing
reduces the practicality of the system in field settings and
hinders real-time operation, making it less suitable for rapid
or independent citizen science workflows.

MrRuler is another example of a system that leverages
fiducial markers to estimate fish length [6]. Rather than relying
on multiple checkerboards and lasers, MrRuler uses a simpler
reference object—two perpendicular lines forming a “cross
scale.” While this design reduces physical setup complexity,
it still requires the cross scale to be correctly placed within
the frame and the fish to be without distortion. Although this
approach may not demand extensive user training, acquiring or
preparing an accurately scaled cross can still pose a barrier for
independent citizen scientists. Moreover, the system’s reliance
on post-processing continues to limit its applicability in real-
time data collection workflows.

Ocean Ruler also relies on fiducial markers—specifically,
reference objects with known dimensions—to estimate fish
lengths [9]]. Unlike systems requiring custom markers, Ocean
Ruler allows users to employ any object of known size as
a reference, lowering the barrier to entry. For example, a
US quarter—commonly available to many users—can serve
as the reference. However, incorporating a reference object
still introduces practical challenges: it must be placed within
the frame during image capture. Additionally, the authors
report that Ocean Ruler consistently overestimates fish lengths,
a systematic error that requires further investigation. Any
distortions in the fish or the reference object can further
degrade measurement accuracy.

Another example is Fishtechy, which uses a proprietary
size reference object—referred to as the “proof ball”’—along
with edge detection techniques to estimate fish length (see
Figure 2) [1]. While the method is generalizable across fish
species, the proof ball must be positioned at the same depth
as the fish relative to the camera to ensure accurate scaling.
This requirement adds complexity to the measurement process,
as users must keep both the fish and the reference object
within the frame and on the same imaging plane. Although
the proof ball is commercially available, it lacks the acces-
sibility of Ocean Ruler’s use of everyday objects like coins.



However, it offers the advantage of being more controlled and
rotationally invariant. Like other fiducial-based systems, it also
relies heavily on off-device post-processing, which limits its
usability in remote or real-time field environments. Given its
shared goal of enabling independent citizen science through
image-based fish measurement, Fishtechy serves as a primary
point of comparison for FishSense Mobile.

III. FISHSENSE MOBILE SYSTEM DESIGN

As introduced in Section |} our goal is to support accurate
and accessible in-field fish measurement through a system
that minimizes complexity while maximizing usability. To
achieve this, we identified four essential hardware require-
ments: a depth sensor to enable real-world distance estima-
tion without fiducial markers, a high-resolution RGB camera
to support fish measurement, onboard computing for real-
time and offline processing, and commercial availability to
ensure accessibility for recreational anglers. These criteria
led us to target consumer devices that already meet these
requirements—specifically, Apple’s iPhone Pro and iPad Pro
models—which provide a robust foundation for our system.

In addition to meeting current measurement requirements,
we designed the system with future extensibility in mind. For
example, the inclusion of an RGB camera enables potential
expansion to species identification and virtual tagging. Simi-
larly, selecting a device with sufficient processing power lays
the groundwork for future support of real-time feedback, even
though this functionality is not yet implemented in the current
version.

FishSense Mobile fulfills these design goals by providing a
streamlined, accessible solution for in-field fish measurement
that requires minimal training or additional equipment. The
system captures RGB imagery and LiDAR-based depth data
using the built-in sensors on supported Apple devices, enabling
accurate, scale-aware length estimation without the need for
fiducial markers or size reference objects. By targeting widely
available consumer hardware, FishSense Mobile lowers the
barrier to entry for recreational anglers and independent citizen
scientists.

Figure [3|shows a flowchart illustrating the FishSense Mobile
processing pipeline. The remainder of this section provides a
step-by-step overview of how the FishSense Mobile system
converts an RGB image and corresponding LiDAR depth data
into an estimated fork length measurement of the fish.

A. Image, Depth Map, and Confidence Map Collection

First, an RGB image (Figure [4a), a LiDAR-based metric
depth map (Figure {ib), and a confidence map (Figure
are collected using Apple’s ARKit framework. The confidence
map, as defined by Apple [13], encodes the reliability of
each depth estimate using three discrete values: 0 (low), 1
(medium), and 2 (high) confidence.

In many systems, performing sensor fusion between RGB
and depth data requires manual calibration, which can be a
significant barrier for widespread use in citizen science. A
key advantage of using Apple’s iPhone and iPad Pro devices is
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confidence map
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Fig. 3: The FishSense Mobile System Flowchart describes the
relationship between processing tasks to ensure high-quality
fish measurements.
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Fig. 4: Associated confidence map (right) and LiDar depth map (middle) for an iPhone photo taken of a fish (left). Each image

has the head and tail position labeled for reference.

that they are factory-calibrated, ensuring consistent alignment
between the RGB camera and LiDAR sensor. This built-
in calibration provides the spatial correspondence necessary
for accurate fish length estimation without requiring user
intervention.

B. Finding the Snout and Fork

Next, the system must determine whether a fish is present
in the image. We focus this paper on evaluating FishSense
Mobile’s length measurement capabilities and use fish detec-
tion performed by a human labeler. If a fish is present, the
head (snout) and fork are also manually annotated. In future
versions, this process could be automated using computer
vision models. Once these key points are identified, their
corresponding depth confidence values are extracted from the
confidence map. An example of these labeled points is shown
in Figure [4] If either the snout or fork is occluded or poorly
visible in the image, the image can be flagged as invalid and
prompt the user to capture a new one.

C. Determining the Quality of the Measurement

The confidence score assigned to an image is determined
by evaluating the confidence levels at the labeled snout and
fork positions within the ARKit confidence map. Each of these
labels is associated with a confidence value—low (0), medium
(1), or high (2)—and the overall image confidence is defined
by the lower of the two. For example, in Figure the fork
label is assigned a high-confidence value. In contrast, the snout
is labeled with medium confidence, resulting in an overall
measurement confidence score of medium (1). Apple’s ARKit
computes these confidence values based on the LiDAR sen-
sor’s ability to reliably measure depth at each pixel, which can
be degraded by highly reflective or light-absorbing surfaces.
The accuracy of each depth measurement is quantified using
ARKit’s raw ARConfidenceLevel values [13].

The resulting confidence score can be used to reject images
with low-confidence depth measurements, preventing unreli-
able data from being processed. In such cases, the measure-
ment workflow is terminated early, and users are prompted to
retake the image to ensure better data quality.

D. Calculating the Fork Length

To accurately estimate fish length from image and depth
data, the system performs a multi-step pipeline that maps 2D
annotations to 3D space, corrects for alignment discrepancies,
and projects the points using camera intrinsics. LiDAR pro-
vides an accurate depth map that enables reconstruction of the
scene’s 3D geometry, allowing pixel measurements in the RGB
image to be converted into real-world distances. To achieve
this, annotated 2D points on the RGB image (e.g., the fish’s
snout and fork) must first be mapped onto the corresponding
depth map. The RGB and depth images differ in resolution.
Thus, we convert between coordinate spaces by expressing the
labeled points as percentages of the RGB image’s height and
width, then scaling these percentages to the dimensions of the
depth map.

After this mapping, the projected points may not lie pre-
cisely on the fish due to slight misalignments between the RGB
and LiDAR data. To correct this, we calculate the midpoint
of the line connecting the snout and fork, segment the surface
surrounding this midpoint, and snap the snout and fork points
to their nearest neighbors on the segmented surface. This
step ensures that both points lie on the fish—or a connected
surface—with minimal error introduced.

Finally, the corrected 2D points are projected into 3D
camera space using an inverse pinhole camera model. This
process leverages the per-pixel depth values from the LiDAR
map and the factory-calibrated intrinsic parameters of the
RGB camera. The tight alignment between the RGB and
LiDAR sensors on supported devices eliminates the need for
physical reference objects, enabling precise and scalable length
estimation directly from image and depth data.

IV. METHODS

To evaluate the scientific accuracy of FishSense Mobile, we
curated a dataset designed to assess its ability to estimate
fish length under realistic conditions. This study focuses on
validating the system’s length measurement performance as a
foundation for its potential use in field-based fisheries research.
Data were collected in collaboration with the California Col-
laborative Fisheries Research Program (CCFRP) and include
samples from two distinct settings: (1) on-deck during routine



hook-and-line surveys and (2) in a laboratory prior to specimen
dissection. These environments allow us to examine the system
under both operational and controlled conditions.

To quantify measurement error, we compared software-
derived length estimates to traditional hand measurements
obtained using a length board. While these manual measure-
ments are widely used as reference values in fisheries science,
they are not free from error. Elstner et al. [9] reported a
hand measurement error (0hang) of 11.1 mm in their dataset.
Consequently, while we treat hand measurements as reference
values in this study, we acknowledge that they are subject to
their own sources of uncertainty. Comparing software-based
errors to known rates of manual error could be a valuable
avenue for future work.

For the software length measurements analyzed in this
study, we rely on manually annotated data rather than auto-
matically detected keypoints. Specifically, human annotators
labeled the snout and fork positions in fish images collected
during both laboratory and field testing. This approach was
chosen to minimize confounding variables and isolate mea-
surement performance, thereby avoiding additional sources of
error introduced by automated detection algorithms. This area
is left for future development beyond the scope of this work.

A. Lab Testing

During their scientific data collection, CCFRP retained
samples of deceased fish for later analysis. We leveraged
this collection to obtain high-quality measurement data un-
der controlled conditions. Photos were taken outdoors in
bright sunlight to approximate on-deck lighting environments.
The dataset comprises 266 FishSense Mobile images and 75
Fishtechy images.

We took multiple photos of each individual to assess mea-
surement consistency. Each fish was placed on a flat surface,
and at least 14 images were captured from varying angles with
an iPhone 15 Pro and a 7th-generation iPad Pro. Photos were
taken at distances ranging from 40 to 80 cm, with the device
positioned as parallel to the fish as possible.

To benchmark our system, we also evaluated the current
state-of-the-art citizen science tool for automatic fish length
detection, Fishtechy. To ensure a fair comparison, each photo
used for testing Fishtechy was captured on the same devices.
As Fishtechy requires a fiducial marker for scale—specifically,
its proprietary proof ball was included in each image (see
Figure [2). Fishtechy results were obtained via cloud-based
inference after uploading each image. Only successful length
outputs were included in the comparison.

B. Field Testing

This study addresses the critical question of whether Fish-
Sense Mobile is feasible for use in real-world field scenarios.
In collaboration with the California Collaborative Fisheries
Research Program (CCFRP), we participated in live fishing de-
ployments to evaluate the system under operational conditions.
These trips encompassed a variety of challenges, including fish
movement, inconsistent lighting, and complex backgrounds.

During each survey, volunteer anglers used standardized tackle
to target local groundfish species. We tested the system on
a diverse range of species, including various rockfish, Scor-
pionfish, California Sheephead, and Ocean Whitefish. This
dataset consists of 125 FishSense Mobile images, as well as
corresponding lengthboard measurements of fish fork length.

Once caught, fish were transferred to a measuring board
for evaluation by the onboard scientific team. While the fish
were being assessed, we captured images using FishSense
Mobile by positioning the device approximately 40 to 80 cm
above the fish, aligned as parallel as possible to the plane
in which the fish was resting. Care was taken to ensure the
fish lay flat before capturing the image. The measurements
and species identifications provided by the scientists served as
reference values for evaluating system accuracy. All fieldwork
associated with this project was conducted in full compliance
with appropriate research permits and approved animal care
and use protocols. Fish specimens were handled only by
trained CCFRP staff.

Ideally, images would be captured without any hands on the
fish; however, with live specimens, this is often impractical. As
discussed in Section [[I, removing fish from water frequently
induces erratic movement, making it necessary for anglers to
stabilize the fish by hand. As a result, many images in our
field dataset include hands in the frame.

To isolate the accuracy of LiDAR-based fish length esti-
mation, we used hand-labeled annotations for the snout and
fork, which were projected onto the corresponding ARKit
confidence map (see Figure db). A confidence score was then
computed based on the depth quality at these two key points.

The confidence map quantifies the reliability of depth data
at each pixel, with the snout and fork labels serving as
reference points for evaluating measurement quality. We used
a confidence score of 1—indicating a minimum of medium
confidence at both of the labeled points—as the threshold for
including an image in the analysis. For example, in Figure [5b}
both the snout and fork fall within high-confidence regions,
resulting in a score of 2. In contrast, Figure [5d| shows a case
where the snout falls in a moderate-confidence region, yielding
a total score of 1. This threshold ensures that only images with
accurate 3D depth information at both endpoints are used in
length calculations.

V. RESULTS

This section presents our evaluation of FishSense Mobile,
focusing on its ability to provide accurate fork-length measure-
ments under realistic conditions. We report results from two
settings described in Section field deployments and labora-
tory testing. In both cases, measurements are compared against
reference values obtained by CCFRP scientists using length
boards. For the lab dataset, we also benchmark FishSense
Mobile against Fishtechy, the state-of-the-art citizen science
tool. Our analysis emphasizes the practical performance of
FishSense Mobile in field-relevant scenarios.
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Fig. 5: RGB images (left column) and corresponding confidence maps (right column).

A. Field Testing

During field testing, we evaluated the performance of Fish-
Sense Mobile by comparing its fork-length estimates to those
collected by onboard scientists using traditional fork-length
measuring boards. While these manual board length measure-
ments serve as a standard reference in fisheries science, they
are subject to known biases and should not be considered
exact ground truth [3} [8]. Therefore, we treat them as reference
values and evaluate FishSense Mobile using percent difference.

Figure [6] presents the percent difference distributions for the
iPhone 15 Pro and iPad Pro M4. Both devices exhibit compa-
rable error profiles, with similar means and standard deviations
summarized in Table [l While both tend to overestimate fish
length slightly, there is no statistically significant difference in
measurement bias between the iPad and iPhone (two-sided t-
test, p = 0.08). In total, this analysis considers 125 FishSense
Mobile photos—>54 from the iPad and 71 from the iPhone.

Figure [§] breaks down the percent difference by species.
Although our dataset does not support detailed statistical
analysis of inter-species variance, some species appear to

3I?)ercent Difference of Fish Length Measurements
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Fig. 6: Distribution of percent error between FishSense Mo-
bile-measured lengths and onboard measuring board lengths,
separated by device (iPhone 15 Pro vs. iPad Pro M4). Positive
values indicate overestimation.



TABLE I: Summary of FishSense Mobile (FSM) performance

in the field (percent difference)

Statistic iPad | iPhone
Mean (%) 4.64 1.90
Standard Deviation (%) | 7.09 8.63

FishSense Mobile Length vs. Measuring Board Length
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Fig. 7: FishSense Mobile length vs. measuring board length
from field deployment data.

show a greater spread of bias than others. This consideration
suggests that future work could explore species-specific effects
in more detail.

When evaluated across the whole field deployment dataset,
FishSense Mobile exhibits a strong correlation (R? = 0.994)
with measuring board lengths, as shown in Figure[7] FishSense
Mobile’s measured fork-length is within = 1.92 cm with
respect to the measurements collected by the expert scientists,
on average. This result suggests that FishSense Mobile can re-
liably approximate traditional fork-length measurements under
field conditions, although it exhibits a slight overestimate.

Overall, these results demonstrate the potential for LiDAR-
derived scaling to replace physical fiducial markers in field-
based fish length measurements. In both Figures [6] and [8] a
mean percent difference that is close to zero is suggested,
implying that FishSense Mobile is accurate on average. This
may provide a way to improve accuracy on single fish through
a simple multi-shot strategy, which may help improve accuracy
in future deployments. We will further explore this in the next
section.

B. Laboratory Testing

During laboratory testing, we focused on evaluating the vari-
ance of FishSense Mobile by taking repeated measurements of
the same fish. Because the fish were deceased and immobile,
this setting allowed for controlled, consistent data collection.
The stable internet connection also enabled us to benchmark
against Fishtechy, which relies on cloud-based processing. For
FishSense Mobile, we collected 133 photos each from the iPad
and iPhone. In comparison, we obtained 36 iPad photos and 39
iPhone photos for Fishtechy, with the discrepancy in sample
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Fig. 8: Distribution of the percent difference in measurement
between FishSense Mobile and measuring boards for common
fish species.
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Fig. 9: App Length vs. measuring board length for Fishsense
Mobile (FSM) and Fishtechy (FT) from lab data.

counts due to differences in the timing and duration of image
collection for each system.

TABLE II: Summary of FishSense Mobile (FSM) and
Fishtechy (FT) performance in the lab, measured in percent
difference.

iPad iPhone
Statistic FSM FT FSM FT
Mean 462 | 0.183 | 546 | -0.155
Standard Deviation | 2.89 1.95 3.02 3.38

Table [I] lists the statistics for the laboratory testing. These
results are not significantly different than the CCFRP field
data (p = 0.14), suggesting that the conclusions drawn from
the field data will continue to hold in the laboratory setting.

FishSense Mobile demonstrates a correlation with length
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Fig. 10: Distributions of percent difference between app length
Fishsense Mobile (FSM) and Fishtechy (FT) from lab data.

board measurements in the lab environment, as shown in
Figure 0] The lab data also has a difference of + 1.03 cm
compared to the expert scientists’ measurements, on average.
This indicates that FishSense Mobile achieves similar perfor-
mance to the state-of-the-art citizen science fish measurement
tool without requiring a fiducial marker. Each vertical group
of points in Figure [9 represents repeated measurements of an
individual fish, showing more variance with FishSense Mobile
than Fishtechy. Figure further illustrates that FishSense
Mobile exhibits greater variance across repeated measurements
of the same fish compared to Fishtechy, suggesting that multi-
shot sampling could mitigate this variance.

C. Practical Considerations

The measurements produced by FishSense Mobile across the
field and laboratory datasets demonstrate promising accuracy.
As shown in the results above, the system’s estimates exhibit
a strong correlation with length measurements obtained by
scientists using traditional measuring boards. These findings
suggest that FishSense Mobile has the potential to support
independent citizen science efforts by enabling reliable, in-
field fish length measurements without requiring specialized
equipment.

VI. CONCLUSION

FishSense Mobile provides key advantages over tradi-
tional human-based measurement, including usability by non-
experts, reduced handling time for fish, and decreased reliance
on manual data entry. FishSense Mobile maintained an ac-
curacy of less than £2 cm with respect to the length board
measurement collected by the expert scientists. The system
runs on commercially available hardware, uniquely positioning
it to scale without additional infrastructure costs.

The success of FishSense Mobile in the field highlights
the potential of integrating consumer-grade sensing to support
scalable and efficient fisheries monitoring. As we expand
validation with live fish and integrate species identification
capabilities, this system empowers scientists and independent
citizen scientists to contribute to more sustainable participatory
marine resource management. To evolve from a measurement
tool into a comprehensive fisheries management platform,
several core functionalities must be developed, and support
for additional devices must be expanded. We are currently
working on adding Android support, automatic fish species
recognition, pose correction, and snout and fork detection of
fish in images.

To test additional features, more field expeditions are
needed, as well as broader adoption by fisheries research
programs outside California. Ease of use, efficacy, and acces-
sibility to a wider variety of devices will ensure that programs
external to the University of California research network can
successfully contribute to the growing number of FishSense
Mobile measurements. With the implementation of a central
database, recreational anglers, researchers, and policymakers
alike could contribute to and learn from FishSense statistics.
With the advancements mentioned above and expanded usage,
FishSense Mobile holds promise to increase the amount of
data available to fisheries managers and enhance engagement
with local fishing communities, especially in understudied
regions. With FishSense Mobile, citizens around the world can
contribute to efforts to understand our oceans.
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