
 Copublished by the IEEE Computer and Reliability Societies May/June 2023 27
This work is licensed under a Creative Commons
Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

Digital Object Identifier 10.1109/MSEC.2023.3251954
Date of current version: 20 April 2023

Security Verification of the
OpenTitan Hardware Root of Trust

Andres Meza and Francesco Restuccia | University of California San Diego
Jason Oberg | Cycuity
Dominic Rizzo | OpenTitan
Ryan Kastner | University of California San Diego

We describe the security verification of OpenTitan. We illustrate how information flow tracking
turns human knowledge of assets and security requirements into formal security properties verified
using Cycuity’s Radix. The verification uncovered weaknesses and helped produce hardware fixes to
eliminate vulnerabilities.

O penTitan is a commercial-grade, open-source
hardware root of trust (RoT). RoTs perform

security-critical functionalities such as secure boot,
the configuration of operation modes (e.g., debug ver-
sus normal), and management of sensitive data (e.g.,
cryptographic keys). OpenTitan is targeted for use by
enterprises, platform providers, and chip manufacturers
as a platform integrity module, universal second-factor
security key, and trusted platform module. The OpenTi-
tan includes a security-enhanced RV32IMCB RISC-V
Ibex core, various security peripherals (e.g., Advanced
Encryption Standard, Keccak Message Authen-
tication Code, Hash-based Message Authentication
Code), multiple memories [e.g., ROM, FLASH, static
random-access memory (SRAM), one-time program-
mable (OTP)] with dedicated controllers for access
control and scrambling purposes, and different input–
output peripherals.

OpenTitan has well-documented security require-
ments and verification procedures. The OpenTitan
threat model describes the security assets, poten-
tial attacker profiles, attack surfaces, and methods.
The threat model is used to derive relevant security
requirements. OpenTitan defines a security model
specification that includes device provisioning and
run-time operations, secure hardware design guide-
lines, and functional guarantees. OpenTitan includes
testing plans, testbench architecture, a security coun-
termeasure verification framework, design guides, and
integrates with formal and simulation-based verifica-
tion tools.

This article steps through the security verification
process for the OpenTitan OTP controller. The OTP
holds secret data used for secure boot, lifecycle provi-
sioning, and attestation. Thus, it plays a key role in the
overall security of OpenTitan. We describe an impor-
tant security asset, derive requirements for that asset
and the OTP operation, and write formal properties
that specify the requirements. The goal is to give the

https://orcid.org/0000-0002-4283-0833
https://orcid.org/0000-0001-6955-1888
https://orcid.org/0009-0002-8327-6696
https://orcid.org/0009-0006-0785-8271
https://orcid.org/0000-0001-9062-5570

28 IEEE Security & Privacy May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

reader an understanding of the state of the art in silicon
security verification.

Our security verification process uses information
flow tracking (IFT) to perform hardware security
verification. Using IFT, we find a potential hardware
weakness, localize the weakness, propose a hardware
patch, and verify the patch is secure. IFT enables veri-
fication engineers to reason about noninterference1
expressed as a hyperproperty.2 Hyperproperties pro-
vide a more concise and expressive representation
of confidentiality, integrity, and availability, which is
crucial for hardware security verification.3 Commer-
cial hardware IFT techniques have emerged as a criti-
cal tool for hardware security.

We use Cycuity’s Radix to formalize and verify
the security requirements. Radix is an IFT-enhanced
simulation tool that allows designers to express and
verify security properties easily. The verification engi-
neer must identify critical design assets and formalize
the security requirements for those design assets using
security properties. Those properties are provided to
IFT security verification tools, which uncover secu-
rity property violations. We describe how to assess the
severity of these weaknesses and determine how to
repair the security weakness to eliminate unnecessary
confidential information leakage. This hardware patch
was integrated into the OpenTitan design.

The contributions of the article include the following:

 ■ describing the state of the art in hardware security
verification using open-source OpenTitan hardware
root of trust

 ■ demonstrating the value and effectiveness of hardware
IFT as a verification approach to formalize the secu-
rity property, identify a potential weakness, debug the
root cause, and repair the flaw

 ■ uncovering a weakness in the OpenTitan OTP mem-
ory controller, providing a patch to fix the OpenTitan,
and submitting a common weakness enumeration
(CWE) around the weakness.

OpenTitan OTP Memory Controller
The OTP memory controller is a peripheral on the chip
interconnect bus which manages the OpenTitan’s OTP
memory. The OTP data are nonvolatile and irreversible,
and includes information critical to secure system oper-
ation like device calibration settings, hardware configu-
ration data, test and unlock tokens, and root keys. The
controller provides access control to the OTP memory.
Secret data are not readable by software once it is locked
and is scrambled in storage. Data can be set to be read
and write lockable and undergo integrity and storage
consistency checks. The OTP controller is crucial for
the correct and secure operation of OpenTitan.

Figure 1 describes the OTP controller architecture.
It contains eight OTP partitions (P0 - P7) that hold data
from the OTP memory. Partitions P0, P1, and P2 are
unbuffered, i.e., they do not store data; data are retrieved
from the OTP memory on every access request. Parti-
tions P3–P7 are buffered. The data in the buffered par-
titions are retrieved upon boot from the OTP memory
and stored locally in the OTP controller after that.

Each of these partitions contains unique data with
different access control requirements. The data in
partitions P4, P5, P6 are SECRET. SECRET data are
stored encrypted (scrambled) in the OTP memory.
Data can be read and write locked from software access
statically or at run-time. Locked data are stored with
a digest for integrity checks. Buffered data are stored
with error correction control protection also used for
integrity checks.

The OTP scrambling datapath performs light-
weight scrambling operations as requested by the
partitions and its different interfaces. The OTP scram-
bling datapath uses the lightweight 64-bit PRESENT
block cipher. Secret data stored in the OTP memory
are scrambled to protect against physical attacks. A
global netlist constant is used as the key, which is set at
hardware design time (premanufacturing). The scram-
bling datapath also computes lightweight ephemeral
key derivation function for RAM and FLASH scram-
bling mechanisms.

The interfaces manage the interactions between
OTP memory, the buffers, and other OpenTitan hard-
ware modules. The register interface enables soft-
ware to interact with the underlying OTP block. The
direct-access interface facilitates accessing and pro-
gramming the contents of the OTP memory. The life
cycle interface (LCI) allows the OpenTitan’s life cycle
controller to update the life cycle state stored in P7 once
per power cycle. The key derivation interface (KDI)
enables OpenTitan’s key manager to interact with the
scrambling datapath and partition P5 that holds the
scrambling root keys used to derive static and ephem-
eral scrambling keys for the OpenTitan FLASH and
SRAM memories.

Security Verification
Hardware security verification can be broken down into
six steps.4

1. Create the threat model.
2. Identify the assets.
3. Determine security weaknesses for the assets.
4. Define the security requirements based on Steps 1, 2,

and 3.
5. Specify security properties.
6. Verify the security properties.

www.computer.org/security 29

The first five steps of this process are still largely
manual. They rely heavily on verification engineers to
describe the threat model, explicitly define the assets,
develop the weakness and requirements, and finally
specify the properties. Once the properties are speci-
fied, automated verification tools can take the proper-
ties and assess whether the hardware design adheres to
them. Verification engineers often iterate these steps to
refine the properties to more precisely define the secu-
rity properties and provide adequate security coverage.

Now we use this six-step process to verify the con-
fidentiality of the key to encrypt secret data stored in

the OTP memory. We discussed how hardware IFT
verification is crucial to assess potential security vul-
nerabilities. Our analysis uncovered a weakness in the
OTP memory controller. We describe how to assess the
severity of the weaknesses and determine an appropri-
ate hardware patch. This patch was integrated into the
OpenTitan design.

Step 1: Create the Threat Model
The OTP controller specification states that its
primary purpose is to provide “high-level logical
security protection, such as integrity checks and

Figure 1. Block diagram of the OpenTitan’s OTP Memory Controller. The OTP controller provides access control to different interfaces.
Data can be marked as secret (stored encrypted), locked, and integrity checked. The scrambling datapath provides lightweight encryption
operations to assist in different aspects of the access control. LFSR: linear feedback shift register.

30 IEEE Security & Privacy May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

scrambling of sensitive content.” Secret data are stored
encrypted in the OTP memory to help secure it
against physical attacks, e.g., to protect the data
from readout, fault injection, and probing. Open-
Titan encrypts secret data using a netlist constant
key that is fixed in the hardware at design time. Our
security verification focuses on the confidentiality
of this scrambling key.

Step 2: Identify Assets
RndCnstKey is the security asset under verifica-
tion. RndCnstKey is a global netlist constant in the
OTP scrambler used as a key to protect secret data
stored in the OTP memory. Secret data includes the
test tokens, scrambling keys, and root key and return
material authorization tokens stored in partitions P4,
P5, and P6 (see Figure 1). Scrambled data moves to
many locations within the OTP controller includ-
ing the partitions, scrambling datapath, LCI, KDI,
and register interface. Thus, there are many ways that
RndCnstKey could inadvertently leak outside of the
OTP controller.

Security Asset: RndCnstKey

There are many other assets in the OpenTitan OTP
controller. While we focus on security verification of
RndCnstKey, the general methodology applies to other
assets in the OpenTitan design.

Step 3: Determine Security Weaknesses
It is critical for RndCnstKey to remain confidential; access
to RndCnstKey would enable an adversary to decrypt sen-
sitive data from the OTP memory. Any information related
to the RndCnstKey should remain within the OTP control-
ler; no knowledge about RndCnstKey should leak outside
the controller. Based on this, we can specify the security
objective and security boundary for RndCnstKey.

Security Objective: Confidentiality

Security Boundary: All outputs of the OTP
 controller

Step 4: Define Security Requirements
Using the asset, objective, and boundary, we can specify
the following plain-language security requirement:

Security Requirement: Any information related to
RndCnstKey should not be visible on the outputs of
the OTP controller.

The “should not be visible” portion of the requirement
comes about from the security objective of confidential-
ity. Similarly, the “on the outputs of the OTP controller”
comes from the security boundary. We want to verify that
RndCnstKey data stays within the OTP controller.

Step 5: Specify Security Properties
Now, we convert our plain-language security require-
ment into a formally specified security property. A prop-
erty should precisely state the security requirements in a
manner that can be analyzed by verification tools.

Verification involves writing properties about behav-
iors and using tools to assess if the hardware upholds
those properties. Verification uses assertion languages
to write statements about the behaviors. It allows the
specification of temporal behaviors including event
sequences, latencies, and pipelines. System Verilog Asser-
tions and Property Specification Language are common
languages for hardware verification.

Consider the PRESENT block cipher used in the
OTP Scrambler. Figure 2 shows a simplified version

(a)

(b)

(c)

Figure 2. (a) A simplified block diagram of the PRESENT
block cipher. (b) Waveform showing a single functional
execution trace of the PRESENT block cipher module. (c)
Waveform showing a single IFT-enhanced execution trace
of the PRESENT block cipher module with red shading to
indicate that a particular signal contains information (i.e.,
at least one of its security labels is HIGH) which originated
from key.

www.computer.org/security 31

of PRESENT, which takes as input a key and data to
scramble and outputs the scrambled data cipher. The
ready signal indicates that the cipher data are valid.
reset reinitializes the datapath. Figure 2(b) provides
an example execution or trace.

Functional verification properties are typi-
cally expressed as trace properties, which describe
behaviors over a single execution trace. Consider
the trace property defined for the PRESENT block
cipher module:

(reset != 1) || (ready! = 1)

The trace property specifies that if reset is 1 then
ready is 0. The property can also be specified using the
implication operator: | —>

(reset == 1) |—> (ready != 1)

A counterexample for a trace property can be des -
cribed by a single trace of execution. Figure 2(b) pro-
vides a counterexample trace where reset == 1 at the
same time that ready == 1.

Trace properties are valuable for security verifica-
tion, but they have limited expressiveness for many
security-related properties. For example, confiden-
tiality properties state that no information about
some data (e.g., RndCnstKey) can ever be leaked or
inferred at another location. Or, more generally, infor-
mation should not flow from a source to a destination.
The dual of this is that the source data should never
be able to affect the sink data, which expresses prop-
erties related to data integrity. Confidentiality and
integrity properties cannot be easily specified using a
trace property. They require a more expressive prop-
erty language.

Hardware IFT is a security verification tech-
nique that monitors how information from some
source propagates throughout the hardware.3 Hard-
ware IFT adds security labels that indicate where
information propagates and tracks how their infor-
mation moves as the hardware executes. Hardware
IFT enables designers to analyze the security of
their design more efficiently. Verification engineers
can learn where and how asset information travels
throughout the hardware.

The key aspect of IFT properties is specifying the
notion of information flows (or lack thereof). We adopt
the notation using the no-flow operator =/=>, as used
by Cycuity’s Radix software, to indicate noninterfer-
ence between the source signal and the destination sig-
nal. For example, we may want to assert that information

from the key can never be inferred by observing the
ready output signal.

//IFT Property
key =/=> ready

In other words, this IFT property states that no
information from signal key should ever be deducible
by viewing the signal ready. Any change in key should
never affect the ready signal; they should operate inde-
pendently. If there was a flow, then the attacker could
learn information about the key by observing the ready
signal, which would indicate a timing side channel in
the PRESENT scrambler.

IFT properties are a type of hyperproperty that
expresses noninterference behaviors specified over a set
of execution traces.2 Hyperproperties are fundamen-
tally more expressive than trace properties. A counter-
example for an IFT property requires more than one
trace to describe an interfering behavior. A counterex-
ample for key =/=> ready hyperproperty requires at
least two traces with differing values of key which show
an effect on the ready value.

The Cycuity Radix tools use IFT analysis for secu-
rity verification. Radix takes as input IFT properties
(also called Radix rules) that articulate behaviors related
to the security requirements. These properties gener-
ally take the form of:

//Radix Security Rule/IFT Property
{src_signal_set} =/=> {dest_signal_set}

The property fails if any information from the src_
signal_set flows to the dest_signal_set. Vari-
ous additional qualifiers exist, e.g., qualifiers to specify
when the source data should be tracked and conditions
under which data flows to the destination are allowable.
Some of these qualifiers will become clearer when dem-
onstrated later on in this article.

Radix translates the IFT property into an informa-
tion flow security monitor using the design register
transfer level code. Radix then tracks information flows
over time allowing the verification engineer to uncover
potential weakness, localize sources of the vulnerabil-
ity, and develop hardware patches that eliminate the
weakness.

IFT-enhanced traces are more powerful than func-
tional traces because they provide additional secu-
rity properties to support noninterference using HIGH
and LOW labels.5 If a security label of a signal in an
IFT-enhanced trace is HIGH, then it contains informa-
tion from an asset defined in the src_signal_set

32 IEEE Security & Privacy May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

(that was initially marked as HIGH), i.e., any signal
whose label is HIGH contains information about the
source assets. Thus, one IFT-enhanced trace is suffi-
cient in determining noninterference—this exemplifies
the power and value of hardware IFT.

Figure 2(c) depicts a single IFT-enhanced trace that
provides a counterexample to the key =/=> ready prop-
erty. The key always has a HIGH label (depicted with red
shading) as this is the information that property expresses
to track. Later in the trace the ready and cipher signals
are marked as HIGH, which indicates information about
the key was transferred into those signals at that time, thus
providing a counterexample to the trace.

Developing IFT properties is straightforward given
a security requirement, objective, and boundary. The
following IFT property shows the IFT property for the
security requirement related to RndCnstKey:

assert iflow(
u_otp_ctrl_scrmbl.rnd_cnst_key_anchor
=/=>
$all_outputs
);

Since the security objective for RndCnstKey’s require-
ment is confidentiality, we make RndCnstKey the
source signal for the IFT property by placing its corre-
sponding design signal (rnd_cnst_key_anchor) on

the left-hand side of the no-flow operator (=/=>). Simi-
larly, we make the destination signals of the IFT prop-
erty all outputs of the OTP controller (specified using
Cycuity’s $all_outputs shorthand) based on the
requirement’s associated security boundary. This prop-
erty will fail if any information from RndCnstKey flows
to any of the outputs of the OTP controller. It should
be noted that this information is tracked through logi-
cal and sequential transformations and is independent
of the value of RndCnstKey.

Step 6: Verify Security Properties
Now that we have formally specified a security prop-
erty, we can verify whether this property holds for the
OTP controller. This verification is performed via the
functional simulation of OpenTitan alongside Radix.
Radix automatically generates the security monitor,
which precisely tracks information flows in the Open-
Titan design. The security property provides an ini-
tial labeling of the RndCnstKey asset, i.e., setting its
security label equal to HIGH. During simulation, Radix
reports if/when the associated security property is
violated by checking if the OTP output labels are set
as HIGH.

Radix translates the security properties into secu-
rity monitors. The security monitor can then be exe-
cuted in simulation or emulation alongside the original
design RTL. This process is shown in Figure 3. Radix
can be run with any functional testbench. However,

Figure 3. An overview of the Radix workflow. Radix security rules are combined with the design RTL to create a set of information flow security
monitors. These security monitors are then inserted into the existing semiconductor simulation (shown) or hardware emulation (not shown)
environments for execution.

www.computer.org/security 33

certain testbenches will be more helpful in verifying a
particular property than others due to how they stimu-
late the target design. We used the simulations speci-
fied in the chip_sw_otp_ctrl_smoketest—an
OpenTitan’s testbench explicitly designed for testing
the OTP controller.

Figure 4 shows an IFT-enhanced trace where
rnd_cnst_key_anchor is a source asset, i.e., those
security labels are initialized as HIGH. We aim to
understand where the RndCnstKey information
flows. Any register with a HIGH label is shaded red.
Indicated by the red shading on otp_lc_data_o.
test_unlock_token, information from RndCnst-
Key leaks outside of the OTP controller via otp_lc_
data_o.test_unlock_token which means that the

specified security property does not hold for OpenTi-
tan’s OTP controller. Figure 5 shows the hierarchical
path through which this information leakage occurs.

We found a violation of the security property. Now
we must determine the extent of these weaknesses.
IFT tools can help guide this debugging process.

Analyzing a Falsified Security Property
There are generally two approaches to consider when
a property has been violated. The first approach
assumes that the security requirement and properties
are correct and attempts to find an error in the design’s
implementation by reviewing its source RTL code.
The second approach attempts to determine if the
security requirement was incorrectly specified.

Figure 5. The hierarchical path through which information related to RndCnstKey leaks to the output of the OTP controller (test_
unlock_token). Each node (i.e., colored rectangle) in the figure represents a design component (e.g., register, wire, and so on) in the OTP
controller or one of its submodules. Each edge (i.e., arrow) indicates the flow of information from one design component to another.

Figure 4. The first three waveforms (indicated in 1) correspond to RndCnstKey. Red indicates that the register’s security label contains
information from RndCnstKey. Information related to RndCnstKey leaks to the output of the OTP controller (test_unlock_token) as
indicated in 2. The number 3 shows unintended leakage of RndCnstKey via the OTP scrambler’s output data_o.

34 IEEE Security & Privacy May/June 2023

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

In this case, the property is too restrictive. The prop-
erty fails to account for the fact that encrypted data will
hold information about the key, but it is mathematically
secure. That is, due to the nature of the one-way encryp-
tion function, no information about the key is inferable
from the output, even though the output depends on
the marked asset (the key). It is important to note that
this property is only true when the module implement-
ing the PRESENT cipher outputs fully encrypted data;
outputting intermediate cryptographic state/results
during the encryption process invalidates the assump-
tion that the key is protected by the one-way encryp-
tion function. A refined version of the RndCnstKey
property, which performs an explicit downgrade of
information from the output of the PRESENT cipher,
is as follows:

assert iflow(
u_otp_ctrl_scrmbl.rnd_cnst_key_anchor
=/=>
$all_outputs
ignoring
u_otp_ctrl_scrmbl.data_o
when (u_otp_ctrl_scrmbl.ready_o == 1)
);

The base property remains the same—information
from RndCnstKey should not flow to any of the out-
puts of the OTP controller. However, we now have an
additional clause that explicitly ignores any information
flows through the OTP scrambler’s output (i.e., data_o)
when the encryption operation is complete (i.e., when
ready_o == 1. This is known as a label downgrade or
declassification.6 The information contained in data_o
when ready_o is 1 is fully encrypted data. It is ok for
this fully encrypted information to propagate outside of
the OTP controller. Since RndCnstKey encrypts data
within the OTP controller and only fully encrypted

data are sent outside of the controller, the declassifica-
tion of these flows using the ignoring clause is allow-
able. We pass this updated security property to Radix-S
and perform security verification.

Figure 6 shows the simulation with this refined
security property rnd_cnst_key_anchor. The differ-
ence between this result and the previous one is that
the information leakage from RndCnstKey to the out-
put of the OTP controller (otp_lc_data_o.test_
unlock_token) no longer causes a property failure
because it has been marked as an allowable flow. If this
result still had the same property failure, that would
indicate that the flow we saw in the initial result did
not travel through data_o when ready_o was 1. How-
ever, since the addition of the ignoring clause removed
the property failure, we know that the flow we previ-
ously saw was indeed due to the movement of the fully
encrypted data.

The refined security property validates that
OpenTitan does indeed prevent RndCnstKey from
reaching the output of the OTP controller. How-
ever, both simulation results contain an unexpected
weakness that could potentially jeopardize the con-
fidentiality of RndCnstKey. There is an information
flow during the intermediate results of the encryp-
tion operation.

Fixing Intermediate Leakage of RndCnstKey
Figures 4 and 6 show that the output of the OTP scrambler
(data_o) exposes intermediate encryption results (when
ready_o == 0) which contains information related to
RndCnstKey. Additionally, the OTP scrambler exposes
the input to the scrambler via data_o (see Figures 4 and
6). Although the modules which sample data_o only do
so when ready_o is 1, a fault, bug, or attack on the sam-
pling logic of any of the connected modules could lead
to this intermediate state being sampled which poses a
threat to the confidentiality of RndCnstKey and secrets
encrypted in the OTP memory with this key.

Figure 6. The first three waveforms (indicated in 1) correspond to RndCnstKey. Red indicates that the register’s security label contains
information from RndCnstKey. Unlike the trace shown in Figure 4, information related to RndCnstKey does not leak to the output of the OTP
controller (test_unlock_token) as indicated by the lack of red in 2. The number 3 shows unintended leakage of RndCnstKey via the OTP
scrambler’s output data_o.

www.computer.org/security 35

We address this leakage with a simple fix.

//Old Code (Original Design)
assign data_o = data_state_q;

//New Code (Our Solution)
assign data_o = (valid_q)?
 data_state_q: 0;

At the start of an encryption operation, data_
state_q is assigned the value of the input to the scram-
bler (data_i). Following this, data_state_q is assigned
the result of each successive round of encryption (there
are 32 in total). data_state_q will only contain the
fully encrypted version of data_i after all rounds of
encryption have completed. Before this, data_state_q
will contain intermediate cryptographic state that could
be used to learn the value of RndCnstKey and other
secret assets. The old code continuously drives data_
state_q to the output of the OTP scrambler (data_o),
which leads to the intermediate state leakage outside of
the OTP scrambler. To prevent this intermediate leak-
age, our proposed solution only drives data_state_q to
data_o when data_state_q contains fully encrypted
data; otherwise, it drives a safe default value (e.g., 0) to
data_o. Figure 7 shows how this solution impacts infor-
mation flows from RndCnstKey.

We disclosed this potential weakness and our pro-
posed solution to the OpenTitan team. OpenTitan
issued a patch to mitigate this leakage. The potential
weakness is a low risk according to their threat model.
However, the mitigation is simple, with minimal over-
head. In addition to this disclosure to the OpenTitan
team, we also submitted a new CWE to Mitre’s CWE
database7 to cover the improper protection and leak-
age of intermediate cryptographic state; this weakness
was not previously covered by existing CWEs and is
expected to appear in future CWE releases.

W e demonstrate the value of simulation-based
hardware IFT analysis for hardware secu-

rity verification. IFT quickly moves knowledge about
design assets to define security requirements, secu-
rity objectives, and security boundaries. IFT enables
concise specification of security properties related to
confidentiality, integrity, and availability. IFT hard-
ware verification tools like Cycuity Radix can help
verify, refine, and extend security properties. We
identified a weakness in the OpenTitan OTP mem-
ory controller, localized the source of the error, and
developed a hardware patch that was accepted as a
pull request into the OpenTitan repository. We also
submitted the findings as a hardware weakness to the
CWE database.

References
 1. J. McLean, “Proving noninterference and functional cor-

rectness using traces,” J. Comput. Secur., vol. 1, no. 1, pp.
37–57, Jan. 1992, doi: 10.3233/JCS-1992-1103.

 2. M. R. Clarkson and F. B. Schneider, “Hyperproperties,”
J. Comput. Secur., vol. 18, no. 6, pp. 1157–1210, Jan. 2010,
doi: 10.3233/JCS-2009-0393.

 3. W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware
information flow tracking,” ACM Comput. Surv., vol. 54,
no. 4, pp. 1–39, May 2021, doi: 10.1145/3447867.

 4. R. Kastner, F. Restuccia, A. Meza, S. Ray, J. Fung,
and C. Sturton, “Automating hardware security prop-
erty generation,” in Proc. Des. Automat. Conf., 2022,
pp. 1–6.

 5. J. A. Goguen and J. Meseguer, “Security policies and secu-
rity models,” in Proc. IEEE Symp. Secur. Privacy, 1982,
p. 11, doi: 10.1109/SP.1982.10014.

 6. S. Chong and A. C. Myers, “Security policies for down-
grading,” in Proc. 11th ACM Conf. Comput. Commun. Secur.,
2004, pp. 198–209, doi: 10.1145/1030083.1030110.

 7. MITRE. [Online]. Available: https://cwe.mitre.org/
data/index.html

Figure 7. The first three waveforms correspond to RndCnstKey. Red indicates that the register’s security label contains information from
RndCnstKey. The number 3 shows that the unintended leakage of RndCnstKey has been fixed by our proposed solution. Instead of
driving intermediate cryptographic state to the OTP scrambler’s output (data_o), our solution drives a safe default value which carries no
information from RndCnstKey.

http://dx.doi.org/10.3233/JCS-1992-1103
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1145/3447867
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1145/1030083.1030110

IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

Andres Meza is a researcher at the University of Cali-
fornia San Diego (UCSD), La Jolla, CA 92093 USA.
His research interests include hardware security, opti-
mization of machine learning models for hardware
deployment, and computer vision. Meza received a
B.S. in both computer science and cognitive science
with a machine learning and neural computation
specialization from UCSD. He is a Member of IEEE.
Contact him at anmeza@ucsd.edu.

Francesco Restuccia is a postdoctoral researcher at
the University of California San Diego, La Jolla, CA
92093 USA. His research interests include predict-
ability, safety, security for hardware acceleration on
heterogeneous platforms, cyber-physical systems, and
time predictable hardware acceleration of deep neural
network models on system-on-chip platforms. Res-
tuccia received a Ph.D. in computer engineering (cum
laude) from the Scuola Superiore Sant’Anna Pisa,
Italy, in 2021. Contact him at frestuccia@ucsd.edu.

Jason Oberg is a cofounder and chief technology offi-
cer (CTO) of Cycuity, San Jose, CA 95113 USA. His
research interests include hardware security, security

verification, and vulnerability analysis. Oberg received
a Ph.D. in computer science from the University of
California San Diego. Contact him at jason@cycuity.com.

Dominic Rizzo is the founder and project director of the
OpenTitan project, Cambridge CB2 1GE, United
Kingdom. His research interests include hardening
silicon implementations against physical attacks and
side channels, trustworthy authenticators, and for-
mal methods to provide implementation security and
correctness guarantees. Rizzo received a B.S. in aero-
space engineering from the Massachusetts Institute
of Technology and an M.S. in computer science from
the California Institute of Technology. Contact him at
domrizzo@opentitan.org.

Ryan Kastner is a professor of Computer Science and
Engineering at the University of California San
Diego, La Jolla, CA 92093 USA. His research inter-
ests include hardware acceleration, hardware secu-
rity, and remote sensing. Kastner received a Ph.D.
in computer science from the University of California
Los Angeles. He is a Fellow of IEEE. Contact him at
kastner@ucsd.edu.

Don’t miss IEEE Quantum Week 2023—
the IEEE International Conference
on Quantum Computing and

Engineering (QCE) bridging the gap
between the science of quantum

computing and the development
of the industry surrounding it.

In-person registration space is
limited. Register today!

Council on Superconductivity

®

qce.quantum.ieee.org

IEEE
QUANTUM

WEEK

BELLEVUE, W
A, U

SA

17
–2

2 S
EPT 20

23

Register Today!

Digital Object Identifier 10.1109/MSEC.2023.3271182

mailto:anmeza@ucsd.edu
mailto:frestuccia@ucsd.edu
mailto:domrizzo@opentitan.org
mailto:kastner@ucsd.edu

	27_21msec03-meza-3251954.pdf

