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We describe the security verification of OpenTitan. We illustrate how information flow tracking 
turns human knowledge of assets and security requirements into formal security properties verified 
using Cycuity’s Radix. The verification uncovered weaknesses and helped produce hardware fixes to 
eliminate vulnerabilities.

O penTitan is a commercial-grade, open-source 
hardware root of trust (RoT). RoTs perform 

security-critical functionalities such as secure boot, 
the configuration of operation modes (e.g., debug ver-
sus normal), and management of sensitive data (e.g., 
cryptographic keys). OpenTitan is targeted for use by 
enterprises, platform providers, and chip manufacturers 
as a platform integrity module, universal second-factor 
security key, and trusted platform module. The OpenTi-
tan includes a security-enhanced RV32IMCB RISC-V 
Ibex core, various security peripherals (e.g., Advanced 
Encryption Standard, Keccak Message Authen-
tication Code, Hash-based Message Authentication 
Code), multiple memories [e.g., ROM, FLASH, static 
random-access memory (SRAM), one-time program-
mable (OTP)] with dedicated controllers for access 
control and scrambling purposes, and different input–
output peripherals.

OpenTitan has well-documented security require-
ments and verification procedures. The OpenTitan 
threat model describes the security assets, poten-
tial attacker profiles, attack surfaces, and methods. 
The threat model is used to derive relevant security 
requirements. OpenTitan defines a security model 
specification that includes device provisioning and 
run-time operations, secure hardware design guide-
lines, and functional guarantees. OpenTitan includes 
testing plans, testbench architecture, a security coun-
termeasure verification framework, design guides, and 
integrates with formal and simulation-based verifica-
tion tools.

This article steps through the security verification 
process for the OpenTitan OTP controller. The OTP 
holds secret data used for secure boot, lifecycle provi-
sioning, and attestation. Thus, it plays a key role in the 
overall security of OpenTitan. We describe an impor-
tant security asset, derive requirements for that asset 
and the OTP operation, and write formal properties 
that specify the requirements. The goal is to give the 
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reader an understanding of the state of the art in silicon 
security verification.

Our security verification process uses information 
flow tracking (IFT) to perform hardware security 
verification. Using IFT, we find a potential hardware 
weakness, localize the weakness, propose a hardware 
patch, and verify the patch is secure. IFT enables veri-
fication engineers to reason about noninterference1 
expressed as a hyperproperty.2 Hyperproperties pro-
vide a more concise and expressive representation 
of confidentiality, integrity, and availability, which is 
crucial for hardware security verification.3 Commer-
cial hardware IFT techniques have emerged as a criti-
cal tool for hardware security.

We use Cycuity’s Radix to formalize and verify 
the security requirements. Radix is an IFT-enhanced 
simulation tool that allows designers to express and 
verify security properties easily. The verification engi-
neer must identify critical design assets and formalize 
the security requirements for those design assets using 
security properties. Those properties are provided to 
IFT security verification tools, which uncover secu-
rity property violations. We describe how to assess the 
severity of these weaknesses and determine how to 
repair the security weakness to eliminate unnecessary 
confidential information leakage. This hardware patch 
was integrated into the OpenTitan design.

The contributions of the article include the following:

 ■ describing the state of the art in hardware security 
verification using open-source OpenTitan hardware 
root of trust

 ■ demonstrating the value and effectiveness of hardware 
IFT as a verification approach to formalize the secu-
rity property, identify a potential weakness, debug the 
root cause, and repair the flaw

 ■ uncovering a weakness in the OpenTitan OTP mem-
ory controller, providing a patch to fix the OpenTitan, 
and submitting a common weakness enumeration 
(CWE) around the weakness.

OpenTitan OTP Memory Controller
The OTP memory controller is a peripheral on the chip 
interconnect bus which manages the OpenTitan’s OTP 
memory. The OTP data are nonvolatile and irreversible, 
and includes information critical to secure system oper-
ation like device calibration settings, hardware configu-
ration data, test and unlock tokens, and root keys. The 
controller provides access control to the OTP memory. 
Secret data are not readable by software once it is locked 
and is scrambled in storage. Data can be set to be read 
and write lockable and undergo integrity and storage 
consistency checks. The OTP controller is crucial for 
the correct and secure operation of OpenTitan.

Figure 1 describes the OTP controller architecture. 
It contains eight OTP partitions (P0 - P7) that hold data 
from the OTP memory. Partitions P0, P1, and P2 are 
unbuffered, i.e., they do not store data; data are retrieved 
from the OTP memory on every access request. Parti-
tions P3–P7 are buffered. The data in the buffered par-
titions are retrieved upon boot from the OTP memory 
and stored locally in the OTP controller after that.

Each of these partitions contains unique data with 
different access control requirements. The data in 
partitions P4, P5, P6 are SECRET. SECRET data are 
stored encrypted (scrambled) in the OTP memory. 
Data can be read and write locked from software access 
statically or at run-time. Locked data are stored with 
a digest for integrity checks. Buffered data are stored 
with error correction control protection also used for 
integrity checks.

The OTP scrambling datapath performs light-
weight scrambling operations as requested by the 
partitions and its different interfaces. The OTP scram-
bling datapath uses the lightweight 64-bit PRESENT 
block cipher. Secret data stored in the OTP memory 
are scrambled to protect against physical attacks. A 
global netlist constant is used as the key, which is set at 
hardware design time (premanufacturing). The scram-
bling datapath also computes lightweight ephemeral 
key derivation function for RAM and FLASH scram-
bling mechanisms.

The interfaces manage the interactions between 
OTP memory, the buffers, and other OpenTitan hard-
ware modules. The register interface enables soft-
ware to interact with the underlying OTP block. The 
direct-access interface facilitates accessing and pro-
gramming the contents of the OTP memory. The life 
cycle interface (LCI) allows the OpenTitan’s life cycle 
controller to update the life cycle state stored in P7 once 
per power cycle. The key derivation interface (KDI) 
enables OpenTitan’s key manager to interact with the 
scrambling datapath and partition P5 that holds the 
scrambling root keys used to derive static and ephem-
eral scrambling keys for the OpenTitan FLASH and 
SRAM memories.

Security Verification
Hardware security verification can be broken down into 
six steps.4

1. Create the threat model.
2. Identify the assets.
3. Determine security weaknesses for the assets.
4. Define the security requirements based on Steps 1, 2, 

and 3.
5. Specify security properties.
6. Verify the security properties.
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The first five steps of this process are still largely 
manual. They rely heavily on verification engineers to 
describe the threat model, explicitly define the assets, 
develop the weakness and requirements, and finally 
specify the properties. Once the properties are speci-
fied, automated verification tools can take the proper-
ties and assess whether the hardware design adheres to 
them. Verification engineers often iterate these steps to 
refine the properties to more precisely define the secu-
rity properties and provide adequate security coverage.

Now we use this six-step process to verify the con-
fidentiality of the key to encrypt secret data stored in 

the OTP memory. We discussed how hardware IFT 
verification is crucial to assess potential security vul-
nerabilities. Our analysis uncovered a weakness in the 
OTP memory controller. We describe how to assess the 
severity of the weaknesses and determine an appropri-
ate hardware patch. This patch was integrated into the 
OpenTitan design.

Step 1: Create the Threat Model
The OTP controller specification states that its 
primary purpose is to provide “high-level logical 
security protection, such as integrity checks and 

Figure 1. Block diagram of the OpenTitan’s OTP Memory Controller. The OTP controller provides access control to different interfaces. 
Data can be marked as secret (stored encrypted), locked, and integrity checked. The scrambling datapath provides lightweight encryption 
operations to assist in different aspects of the access control. LFSR: linear feedback shift register.
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scrambling of sensitive content.” Secret data are stored 
encrypted in the OTP memory to help secure it 
against physical attacks, e.g., to protect the data 
from readout, fault injection, and probing. Open-
Titan encrypts secret data using a netlist constant 
key that is fixed in the hardware at design time. Our 
security verification focuses on the confidentiality 
of this scrambling key.

Step 2: Identify Assets
RndCnstKey is the security asset under verifica-
tion. RndCnstKey is a global netlist constant in the 
OTP scrambler used as a key to protect secret data 
stored in the OTP memory. Secret data includes the 
test tokens, scrambling keys, and root key and return 
material authorization tokens stored in partitions P4, 
P5, and P6 (see Figure 1). Scrambled data moves to 
many locations within the OTP controller includ-
ing the partitions, scrambling datapath, LCI, KDI, 
and register interface. Thus, there are many ways that 
RndCnstKey could inadvertently leak outside of the 
OTP controller.

Security Asset: RndCnstKey

There are many other assets in the OpenTitan OTP 
controller. While we focus on security verification of 
RndCnstKey, the general methodology applies to other 
assets in the OpenTitan design.

Step 3: Determine Security Weaknesses
It is critical for RndCnstKey to remain confidential; access 
to RndCnstKey would enable an adversary to decrypt sen-
sitive data from the OTP memory. Any information related 
to the RndCnstKey should remain within the OTP control-
ler; no knowledge about RndCnstKey should leak outside 
the controller. Based on this, we can specify the security 
objective and security boundary for RndCnstKey.

Security Objective: Confidentiality

Security Boundary: All outputs of the OTP 
 controller

Step 4: Define Security Requirements
Using the asset, objective, and boundary, we can specify 
the following plain-language security requirement:

Security Requirement: Any information related to 
RndCnstKey should not be visible on the outputs of 
the OTP controller.

The “should not be visible” portion of the requirement 
comes about from the security objective of confidential-
ity. Similarly, the “on the outputs of the OTP controller” 
comes from the security boundary. We want to verify that 
RndCnstKey data stays within the OTP controller.

Step 5: Specify Security Properties
Now, we convert our plain-language security require-
ment into a formally specified security property. A prop-
erty should precisely state the security requirements in a 
manner that can be analyzed by verification tools.

Verification involves writing properties about behav-
iors and using tools to assess if the hardware upholds 
those properties. Verification uses assertion languages 
to write statements about the behaviors. It allows the 
specification of temporal behaviors including event 
sequences, latencies, and pipelines. System Verilog Asser-
tions and Property Specification Language are common 
languages for hardware verification.

Consider the PRESENT block cipher used in the 
OTP Scrambler. Figure 2 shows a simplified version 

(a)

(b)

(c)

Figure 2. (a) A simplified block diagram of the PRESENT 
block cipher. (b) Waveform showing a single functional 
execution trace of the PRESENT block cipher module. (c) 
Waveform showing a single IFT-enhanced execution trace 
of the PRESENT block cipher module with red shading to 
indicate that a particular signal contains information (i.e., 
at least one of its security labels is HIGH) which originated 
from key.
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of PRESENT, which takes as input a key and data to 
scramble and outputs the scrambled data cipher. The 
ready signal indicates that the cipher data are valid. 
reset reinitializes the datapath. Figure 2(b) provides 
an example execution or trace.

Functional verification properties are typi-
cally expressed as trace properties, which describe 
behaviors over a single execution trace. Consider 
the trace property defined for the PRESENT block 
cipher module:

(reset != 1) || (ready! = 1)

The trace property specifies that if reset is 1 then 
ready is 0. The property can also be specified using the 
implication operator: | —>

(reset == 1) |—> (ready != 1)

A counterexample for a trace property can be des -
cribed by a single trace of execution. Figure 2(b) pro-
vides a counterexample trace where reset == 1 at the 
same time that ready == 1.

Trace properties are valuable for security verifica-
tion, but they have limited expressiveness for many 
security-related properties. For example, confiden-
tiality properties state that no information about 
some data (e.g., RndCnstKey) can ever be leaked or 
inferred at another location. Or, more generally, infor-
mation should not flow from a source to a destination. 
The dual of this is that the source data should never 
be able to affect the sink data, which expresses prop-
erties related to data integrity. Confidentiality and 
integrity properties cannot be easily specified using a 
trace property. They require a more expressive prop-
erty language.

Hardware IFT is a security verification tech-
nique that monitors how information from some 
source propagates throughout the hardware.3 Hard-
ware IFT adds security labels that indicate where 
information propagates and tracks how their infor-
mation moves as the hardware executes. Hardware 
IFT enables designers to analyze the security of 
their design more efficiently. Verification engineers 
can learn where and how asset information travels 
throughout the hardware.

The key aspect of IFT properties is specifying the 
notion of information flows (or lack thereof). We adopt 
the notation using the no-flow operator =/=>, as used 
by Cycuity’s Radix software, to indicate noninterfer-
ence between the source signal and the destination sig-
nal. For example, we may want to assert that information 

from the key can never be inferred by observing the 
ready output signal.

//IFT Property
key =/=> ready

In other words, this IFT property states that no 
information from signal key should ever be deducible 
by viewing the signal ready. Any change in key should 
never affect the ready signal; they should operate inde-
pendently. If there was a flow, then the attacker could 
learn information about the key by observing the ready 
signal, which would indicate a timing side channel in 
the PRESENT scrambler.

IFT properties are a type of hyperproperty that 
expresses noninterference behaviors specified over a set 
of execution traces.2 Hyperproperties are fundamen-
tally more expressive than trace properties. A counter-
example for an IFT property requires more than one 
trace to describe an interfering behavior. A counterex-
ample for key =/=> ready hyperproperty requires at 
least two traces with differing values of key which show 
an effect on the ready value.

The Cycuity Radix tools use IFT analysis for secu-
rity verification. Radix takes as input IFT properties 
(also called Radix rules) that articulate behaviors related 
to the security requirements. These properties gener-
ally take the form of:

//Radix Security Rule/IFT Property
{src_signal_set} =/=> {dest_signal_set}

The property fails if any information from the src_
signal_set flows to the dest_signal_set. Vari-
ous additional qualifiers exist, e.g., qualifiers to specify 
when the source data should be tracked and conditions 
under which data flows to the destination are allowable. 
Some of these qualifiers will become clearer when dem-
onstrated later on in this article.

Radix translates the IFT property into an informa-
tion flow security monitor using the design register 
transfer level code. Radix then tracks information flows 
over time allowing the verification engineer to uncover 
potential weakness, localize sources of the vulnerabil-
ity, and develop hardware patches that eliminate the 
weakness.

IFT-enhanced traces are more powerful than func-
tional traces because they provide additional secu-
rity properties to support noninterference using HIGH 
and LOW labels.5 If a security label of a signal in an 
IFT-enhanced trace is HIGH, then it contains informa-
tion from an asset defined in the src_signal_set 
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(that was initially marked as HIGH), i.e., any signal 
whose label is HIGH contains information about the 
source assets. Thus, one IFT-enhanced trace is suffi-
cient in determining noninterference—this exemplifies 
the power and value of hardware IFT.

Figure 2(c) depicts a single IFT-enhanced trace that 
provides a counterexample to the key =/=> ready prop-
erty. The key always has a HIGH label (depicted with red 
shading) as this is the information that property expresses 
to track. Later in the trace the ready and cipher signals 
are marked as HIGH, which indicates information about 
the key was transferred into those signals at that time, thus 
providing a counterexample to the trace.

Developing IFT properties is straightforward given 
a security requirement, objective, and boundary. The 
following IFT property shows the IFT property for the 
security requirement related to RndCnstKey:

assert iflow(
u_otp_ctrl_scrmbl.rnd_cnst_key_anchor
=/=>
$all_outputs
); 

Since the security objective for RndCnstKey’s require-
ment is confidentiality, we make RndCnstKey the 
source signal for the IFT property by placing its corre-
sponding design signal (rnd_cnst_key_anchor) on 

the left-hand side of the no-flow operator (=/=>). Simi-
larly, we make the destination signals of the IFT prop-
erty all outputs of the OTP controller (specified using 
Cycuity’s $all_outputs shorthand) based on the 
requirement’s associated security boundary. This prop-
erty will fail if any information from RndCnstKey flows 
to any of the outputs of the OTP controller. It should 
be noted that this information is tracked through logi-
cal and sequential transformations and is independent 
of the value of RndCnstKey.

Step 6: Verify Security Properties
Now that we have formally specified a security prop-
erty, we can verify whether this property holds for the 
OTP controller. This verification is performed via the 
functional simulation of OpenTitan alongside Radix. 
Radix automatically generates the security monitor, 
which precisely tracks information flows in the Open-
Titan design. The security property provides an ini-
tial labeling of the RndCnstKey asset, i.e., setting its 
security label equal to HIGH. During simulation, Radix 
reports if/when the associated security property is 
violated by checking if the OTP output labels are set 
as HIGH.

Radix translates the security properties into secu-
rity monitors. The security monitor can then be exe-
cuted in simulation or emulation alongside the original 
design RTL. This process is shown in Figure 3. Radix 
can be run with any functional testbench. However, 

Figure 3. An overview of the Radix workflow. Radix security rules are combined with the design RTL to create a set of information flow security 
monitors. These security monitors are then inserted into the existing semiconductor simulation (shown) or hardware emulation (not shown) 
environments for execution.
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certain testbenches will be more helpful in verifying a 
particular property than others due to how they stimu-
late the target design. We used the simulations speci-
fied in the chip_sw_otp_ctrl_smoketest—an 
OpenTitan’s testbench explicitly designed for testing 
the OTP controller.

Figure 4 shows an IFT-enhanced trace where 
rnd_cnst_key_anchor is a source asset, i.e., those 
security labels are initialized as HIGH. We aim to 
understand where the RndCnstKey information 
flows. Any register with a HIGH label is shaded red. 
Indicated by the red shading on otp_lc_data_o.
test_unlock_token, information from RndCnst-
Key leaks outside of the OTP controller via otp_lc_
data_o.test_unlock_token which means that the 

specified security property does not hold for OpenTi-
tan’s OTP controller. Figure 5 shows the hierarchical 
path through which this information leakage occurs.

We found a violation of the security property. Now 
we must determine the extent of these weaknesses. 
IFT tools can help guide this debugging process.

Analyzing a Falsified Security Property
There are generally two approaches to consider when 
a property has been violated. The first approach 
assumes that the security requirement and properties 
are correct and attempts to find an error in the design’s 
implementation by reviewing its source RTL code. 
The second approach attempts to determine if the 
security requirement was incorrectly specified.

Figure 5. The hierarchical path through which information related to RndCnstKey leaks to the output of the OTP controller (test_
unlock_token). Each node (i.e., colored rectangle) in the figure represents a design component (e.g., register, wire, and so on) in the OTP 
controller or one of its submodules. Each edge (i.e., arrow) indicates the flow of information from one design component to another.

Figure 4. The first three waveforms (indicated in 1) correspond to RndCnstKey. Red indicates that the register’s security label contains 
information from RndCnstKey. Information related to RndCnstKey leaks to the output of the OTP controller (test_unlock_token) as 
indicated in 2. The number 3 shows unintended leakage of RndCnstKey via the OTP scrambler’s output data_o.
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In this case, the property is too restrictive. The prop-
erty fails to account for the fact that encrypted data will 
hold information about the key, but it is mathematically 
secure. That is, due to the nature of the one-way encryp-
tion function, no information about the key is inferable 
from the output, even though the output depends on 
the marked asset (the key). It is important to note that 
this property is only true when the module implement-
ing the PRESENT cipher outputs fully encrypted data; 
outputting intermediate cryptographic state/results 
during the encryption process invalidates the assump-
tion that the key is protected by the one-way encryp-
tion function. A refined version of the RndCnstKey  
property, which performs an explicit downgrade of 
information from the output of the PRESENT cipher, 
is as follows:

assert iflow(
u_otp_ctrl_scrmbl.rnd_cnst_key_anchor
=/=>
$all_outputs
ignoring
u_otp_ctrl_scrmbl.data_o
when (u_otp_ctrl_scrmbl.ready_o == 1)
); 

The base property remains the same—information 
from RndCnstKey should not flow to any of the out-
puts of the OTP controller. However, we now have an 
additional clause that explicitly ignores any information 
flows through the OTP scrambler’s output (i.e., data_o) 
when the encryption operation is complete (i.e., when 
ready_o == 1. This is known as a label downgrade or 
declassification.6 The information contained in data_o 
when ready_o is 1 is fully encrypted data. It is ok for 
this fully encrypted information to propagate outside of 
the OTP controller. Since RndCnstKey encrypts data 
within the OTP controller and only fully encrypted 

data are sent outside of the controller, the declassifica-
tion of these flows using the ignoring clause is allow-
able. We pass this updated security property to Radix-S 
and perform security verification.

Figure 6 shows the simulation with this refined 
security property rnd_cnst_key_anchor. The differ-
ence between this result and the previous one is that 
the information leakage from RndCnstKey to the out-
put of the OTP controller (otp_lc_data_o.test_
unlock_token) no longer causes a property failure 
because it has been marked as an allowable flow. If this 
result still had the same property failure, that would 
indicate that the flow we saw in the initial result did 
not travel through data_o when ready_o was 1. How-
ever, since the addition of the ignoring clause removed 
the property failure, we know that the flow we previ-
ously saw was indeed due to the movement of the fully 
encrypted data.

The refined security property validates that 
OpenTitan does indeed prevent RndCnstKey from 
reaching the output of the OTP controller. How-
ever, both simulation results contain an unexpected 
weakness that could potentially jeopardize the con-
fidentiality of RndCnstKey. There is an information 
flow during the intermediate results of the encryp-
tion operation.

Fixing Intermediate Leakage of RndCnstKey
Figures 4 and 6 show that the output of the OTP scrambler 
(data_o) exposes intermediate encryption results (when 
ready_o == 0) which contains information related to 
RndCnstKey. Additionally, the OTP scrambler exposes 
the input to the scrambler via data_o (see Figures 4 and 
6). Although the modules which sample data_o only do 
so when ready_o is 1, a fault, bug, or attack on the sam-
pling logic of any of the connected modules could lead 
to this intermediate state being sampled which poses a 
threat to the confidentiality of RndCnstKey and secrets 
encrypted in the OTP memory with this key.

Figure 6. The first three waveforms (indicated in 1) correspond to RndCnstKey. Red indicates that the register’s security label contains 
information from RndCnstKey. Unlike the trace shown in Figure 4, information related to RndCnstKey does not leak to the output of the OTP 
controller (test_unlock_token) as indicated by the lack of red in 2. The number 3 shows unintended leakage of RndCnstKey via the OTP 
scrambler’s output data_o.
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We address this leakage with a simple fix.

//Old Code (Original Design)
assign data_o = data_state_q;

//New Code (Our Solution)
assign data_o = (valid_q)? 
         data_state_q: 0;

At the start of an encryption operation, data_
state_q is assigned the value of the input to the scram-
bler (data_i). Following this, data_state_q is assigned 
the result of each successive round of encryption (there 
are 32 in total). data_state_q will only contain the 
fully encrypted version of data_i after all rounds of 
encryption have completed. Before this, data_state_q 
will contain intermediate cryptographic state that could 
be used to learn the value of RndCnstKey and other 
secret assets. The old code continuously drives data_
state_q to the output of the OTP scrambler (data_o), 
which leads to the intermediate state leakage outside of 
the OTP scrambler. To prevent this intermediate leak-
age, our proposed solution only drives data_state_q to 
data_o when data_state_q contains fully encrypted 
data; otherwise, it drives a safe default value (e.g., 0) to 
data_o. Figure 7 shows how this solution impacts infor-
mation flows from RndCnstKey.

We disclosed this potential weakness and our pro-
posed solution to the OpenTitan team. OpenTitan 
issued a patch to mitigate this leakage. The potential 
weakness is a low risk according to their threat model. 
However, the mitigation is simple, with minimal over-
head. In addition to this disclosure to the OpenTitan 
team, we also submitted a new CWE to Mitre’s CWE 
database7 to cover the improper protection and leak-
age of intermediate cryptographic state; this weakness 
was not previously covered by existing CWEs and is 
expected to appear in future CWE releases.

W e demonstrate the value of simulation-based 
hardware IFT analysis for hardware secu-

rity verification. IFT quickly moves knowledge about 
design assets to define security requirements, secu-
rity objectives, and security boundaries. IFT enables 
concise specification of security properties related to 
confidentiality, integrity, and availability. IFT hard-
ware verification tools like Cycuity Radix can help 
verify, refine, and extend security properties. We 
identified a weakness in the OpenTitan OTP mem-
ory controller, localized the source of the error, and 
developed a hardware patch that was accepted as a 
pull request into the OpenTitan repository. We also 
submitted the findings as a hardware weakness to the 
CWE database. 

References
 1. J. McLean, “Proving noninterference and functional cor-

rectness using traces,” J. Comput. Secur., vol. 1, no. 1, pp. 
37–57, Jan. 1992, doi: 10.3233/JCS-1992-1103.

 2. M. R. Clarkson and F. B. Schneider, “Hyperproperties,”  
J. Comput. Secur., vol. 18, no. 6, pp. 1157–1210, Jan. 2010, 
doi: 10.3233/JCS-2009-0393.

 3. W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware 
information flow tracking,” ACM Comput. Surv., vol. 54, 
no. 4, pp. 1–39, May 2021, doi: 10.1145/3447867.

 4. R. Kastner, F. Restuccia, A. Meza, S. Ray, J. Fung, 
and C. Sturton, “Automating hardware security prop-
erty generation,” in Proc. Des. Automat. Conf., 2022,  
pp. 1–6.

 5. J. A. Goguen and J. Meseguer, “Security policies and secu-
rity models,” in Proc. IEEE Symp. Secur. Privacy, 1982, 
p. 11, doi: 10.1109/SP.1982.10014.

 6. S. Chong and A. C. Myers, “Security policies for down-
grading,” in Proc. 11th ACM Conf. Comput. Commun. Secur., 
2004, pp. 198–209, doi: 10.1145/1030083.1030110.

 7. MITRE. [Online]. Available: https://cwe.mitre.org/
data/index.html

Figure 7. The first three waveforms correspond to RndCnstKey. Red indicates that the register’s security label contains information from 
RndCnstKey. The number 3 shows that the unintended leakage of RndCnstKey has been fixed by our proposed solution. Instead of 
driving intermediate cryptographic state to the OTP scrambler’s output (data_o), our solution drives a safe default value which carries no 
information from RndCnstKey.

http://dx.doi.org/10.3233/JCS-1992-1103
http://dx.doi.org/10.3233/JCS-2009-0393
http://dx.doi.org/10.1145/3447867
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1145/1030083.1030110


IMPACT OF EMERGING HARDWARE ON SECURITY AND PRIVACY

Andres Meza is a researcher at the University of Cali-
fornia San Diego (UCSD), La Jolla, CA 92093 USA. 
His research interests include hardware security, opti-
mization of machine learning models for hardware 
deployment, and computer vision. Meza received a 
B.S. in both computer science and cognitive science 
with a machine learning and neural computation 
specialization from UCSD. He is a Member of IEEE. 
Contact him at anmeza@ucsd.edu.

Francesco Restuccia is a postdoctoral researcher at 
the University of California San Diego, La Jolla, CA 
92093 USA. His research interests include predict-
ability, safety, security for hardware acceleration on 
heterogeneous platforms, cyber-physical systems, and 
time predictable hardware acceleration of deep neural 
network models on system-on-chip platforms. Res-
tuccia received a Ph.D. in computer engineering (cum 
laude) from the Scuola Superiore Sant’Anna Pisa, 
Italy, in 2021. Contact him at  frestuccia@ucsd.edu.

Jason Oberg is a cofounder and chief technology offi-
cer (CTO) of Cycuity, San Jose, CA 95113 USA. His 
research interests include hardware security, security 

verification, and vulnerability analysis. Oberg received 
a Ph.D. in computer science from the University of 
California San Diego. Contact him at jason@cycuity.com.

Dominic Rizzo is the founder and project director of the 
OpenTitan project, Cambridge CB2 1GE, United 
Kingdom. His research interests include hardening 
silicon implementations against physical attacks and 
side channels, trustworthy authenticators, and for-
mal methods to provide implementation security and 
correctness guarantees. Rizzo received a B.S. in aero-
space engineering from the Massachusetts Institute 
of Technology and an M.S. in computer science from 
the California Institute of Technology. Contact him at 
domrizzo@opentitan.org.

Ryan Kastner is a professor of Computer Science and 
Engineering at the University of California San 
Diego, La Jolla, CA 92093 USA. His research inter-
ests include hardware acceleration, hardware secu-
rity, and remote sensing. Kastner received a Ph.D. 
in computer science from the University of California 
Los Angeles. He is a Fellow of IEEE. Contact him at  
kastner@ucsd.edu.

Don’t miss IEEE Quantum Week 2023—
the IEEE International Conference 
on Quantum Computing and 

Engineering (QCE) bridging the gap 
between the science of quantum 

computing and the development 
of the industry surrounding it. 

In-person registration space is 
limited. Register today!

Council on Superconductivity

®

qce.quantum.ieee.org

IEEE
QUANTUM

WEEK

BELLEVUE, W
A, U

SA

17
–2

2 S
EPT 20

23

Register Today!

Digital Object Identifier 10.1109/MSEC.2023.3271182

mailto:anmeza@ucsd.edu
mailto:frestuccia@ucsd.edu
mailto:domrizzo@opentitan.org
mailto:kastner@ucsd.edu

	27_21msec03-meza-3251954.pdf

