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This work presents a split-inference strategy for embedded deep learning that leverages unified memory to enable concurrent
CPU-GPU execution on the NVIDIA Jetson AGX Orin. By partitioning models at natural architectural boundaries and using
shared pinned memory, we overlap GPU processing of one batch with CPU post-processing of the previous batch. Our
implementation is lightweight, written entirely in Python, and requires no model modification or low-level CUDA integration.
Applied to MobileNetV2, EfficientNet-B2, and ViT-Tiny, our pipeline achieves up to 21.2% throughput improvement over
standard GPU-only inference while preserving accuracy. Across all tested models, throughput gains ranged from 11.2% to
21.2%.
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1 Introduction
As deep learning becomes increasingly central to real-time systems on the edge—such as drones, autonomous
vehicles, and embedded IoT platforms—the demand for high-throughput inference under constrained power and
compute budgets continues to grow. While GPU acceleration is the norm for deploying deep neural networks,
most embedded platforms also include underutilized CPU resources and support shared memory models that
enable more efficient execution strategies.
The NVIDIA Jetson AGX Orin is one such platform. It integrates an Ampere-based GPU and a 12-core CPU

cluster with support for unified memory (UM), allowing both processors to access shared virtual memory without
explicit data transfers. Traditional GPU-only inference pipelines fail to take advantage of this architecture,
resulting in idle CPU cycles and unnecessary memory movement.

In this paper, we introduce a pipeline-parallel inferencemethod that splits execution across the GPU andCPU. By
identifying a natural partition point in the model—typically after feature extraction and before classification—we
allow the GPU to process batch 𝑁 +1while the CPU completes batch 𝑁 . This overlap improves resource utilization
without requiring changes to model architecture or training.

We evaluate this approach on three diverse vision models: MobileNetV2, EfficientNet-B2, and ViT-Tiny. Across
all models, we achieve throughput improvements ranging from 11.2% to 21.2% on the Jetson AGX Orin while
maintaining full model accuracy.
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Contributions
• We present a lightweight, Python-based split inference pipeline using unified memory to enable seamless
CPU-GPU co-execution on embedded systems.

• We demonstrate generalizability across CNN and transformer architectures by applying the method to
MobileNetV2, EfficientNet-B2, and ViT-Tiny.

• We achieve throughput gains of up to 21.2% without modifying model structure, adding hardware, or
introducing CUDA-level complexity.

• We analyze performance using NVIDIA Nsight Systems to confirm parallel execution and low-overhead
memory sharing between processors.

2 Related Work

2.1 Unified Memory and Heterogeneous Execution
Unified memory (UM) offers a shared virtual address space, allowing pointer-level sharing between CPU and
GPU [10], simplifying memory management and reducing overhead associated with explicit data transfers. While
commonly used in desktop and datacenter contexts [? ], its use in embedded systems remains less explored.
Prior studies have shown that Unified Memory can reduce development complexity and enable better memory
locality in heterogeneous CPU-GPU environments [7]. Recent work further shows that despite UM availability
on embedded SoCs, performance bottlenecks persist due to underdeveloped memory management strategies [? ].
Prior studies have shown that Unified Memory can reduce development complexity and enable better memory
locality in heterogeneous CPU-GPU environments [7].

2.2 Split Inference and Pipeline Parallelism
Pipeline-parallel training methods such as PipeDream [3] and GPipe [5] demonstrate the value of stage-wise exe-
cution across multiple devices.Recent embedded-focused research investigates splitting models across processors,
as demonstrated by AMP4EC [? ], which adaptively partitions deep learning models for distributed execution
on edge devices. Recent work has proposed runtime scheduling and adaptive model partitioning frameworks
that optimize execution across heterogeneous processors [3, 12]. In contrast, our approach requires no graph
transformation and executes entirely in standard PyTorch.

2.3 Optimizing Inference on Embedded Hardware
Inference optimization for embedded systems often involves quantization, pruning, or compilation into platform-
specific formats (e.g., TensorRT [9], TVM). “Other works focus on maximizing GPU utilization alone [6], leaving
CPU resources idle. Some research investigates model compression for Jetson deployment [1, 8], but these
techniques require architectural changes. Our method improves performance with no model modifications.

2.4 Model Architecture Studies
We selected MobileNetV2, EfficientNet-B2, and ViT-Tiny due to their prevalence in edge AI applications and their
diverse structural characteristics. MobileNet and EfficientNet are widely adopted for efficient image classification
[4, 11], while ViT-Tiny introduces attention-based representations with minimal compute overhead [2]. Prior
work such as EdgeViTs [? ] analyzes the compute behavior of vision models on embedded hardware, providing
evidence that architectural patterns can guide efficient hardware utilization—a principle our method builds upon.
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3 System Architecture

3.1 Hardware Platform: NVIDIA Jetson AGX Orin
All experiments in this study were conducted on the NVIDIA Jetson AGX Orin, a high-performance embedded
computing platform that integrates a 12-core Arm Cortex-A78AE CPU cluster and an Ampere-based GPU with
2048 CUDA cores and 64 Tensor Cores. The platform also includes up to 32 GB of LPDDR5 memory, shared across
processing units via NVIDIA’s unified memory architecture.

This system-on-module (SoM) is designed for low-power AI inference, offering a rare combination of heteroge-
neous compute resources and memory sharing in a compact footprint. While it supports advanced acceleration
tools such as TensorRT and DeepStream, our implementation intentionally avoids these, instead leveraging only
the built-in capabilities of PyTorch and the shared memory model.

3.2 Unified Memory in Embedded Systems
Unified memory (UM) provides a single virtual address space accessible from both CPU and GPU, eliminating the
need for manual data transfers using ‘cudaMemcpy‘. On the Jetson platform, UM is backed by an I/O Memory
Management Unit (IOMMU), which ensures memory consistency across devices. This design abstracts away
low-level data movement, enabling more flexible execution models for CPU-GPU collaboration.

In our pipeline, UM allows the GPU to write intermediate tensors directly to memory locations later accessed
by the CPU—without serialization, duplication, or explicit synchronization. This reduces memory overhead and
improves execution fluidity, especially when paired with pinned buffers that ensure low-latency memory access.

3.3 Practical Implications for Pipeline Inference
UM is not just a convenience—it is the enabler of the concurrent inference pipeline we propose. By allocating
all intermediate activations in pinned unified memory, we maintain visibility across processors and avoid the
need for secondary memory staging or custom memory management. CPU and GPU can effectively “see” and
process the same tensor objects, allowing us to build a producer-consumer pipeline using high-level Python
multiprocessing queues.
This architectural synergy allows for:
• Zero-copy handoff of activations between GPU and CPU,
• Simplified implementation using only PyTorch and NumPy,
• Lower memory footprint due to reduced duplication,
• Reduced GPU idle time through overlapping execution.

These properties are critical for embedded deployment, where memory, compute, and power are tightly
constrained and runtime simplicity is essential for robustness.

4 Pipeline Parallel Inference Design

4.1 Motivation for Temporal Pipeline Parallelism
Typical inference execution on edge devices assumes a monolithic model mapped entirely to the GPU. While this
yields strong performance for highly parallelizable workloads, it leaves the CPU idle and overlooks architectural
opportunities enabled by unified memory. We propose a temporal pipeline strategy where the model is split into
two subgraphs: a GPU-handled front-end and a CPU-handled back-end. These execute in parallel but on different
input batches, forming a producer-consumer relationship over time.
This design is particularly suitable for architectures with sequential classification heads. It also generalizes

across models with deep feature extractors, as we offload only the final layers, avoiding complex interleaving of
model segments.
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4.2 Batch-Overlapping Pipeline Structure
During inference, our pipeline executes batch 𝑁 + 1 on the GPU while concurrently executing the tail of batch 𝑁

on the CPU. This is achieved using a Python ‘multiprocessing.Queue‘ to coordinate the handoff of intermediate
activations. The GPU writes outputs to pinned unified memory, allowing the CPU to access them directly with
no explicit data transfer or serialization.

Fig. 1. Conceptual timing diagram comparing full GPU inference (top) to split pipeline inference (bottom).

As illustrated in Figure 1, this pipelined structure enables horizontal concurrency across batches, keeping both
processors actively engaged and reducing GPU idle time. While our method improves throughput via pipeline
parallelism, it may introduce slight increases in per-batch latency due to CPU-side processing lagging behind
GPU-only execution. This potential latency trade-off warrants deeper investigation in future work, particularly
for real-time or interactive inference scenarios.

4.3 Queue and Memory Management
The implementation is entirely in Python, using PyTorch and NumPy. The GPU-side worker processes the
backbone layers of each batch and places the resulting activation tensor into a pre-allocated shared memory
buffer. That buffer is referenced via a multiprocessing queue, where the CPU worker retrieves it and performs
classification.

Unified memory allows both processors to access the same memory region without duplication. Using pinned
memory ensures low-latency access, and all memory buffers are allocated once at startup to reduce runtime
overhead. No CUDA kernels, graph compilers, or graph surgery are required.
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4.4 Generalizability and Simplicity
The method generalizes cleanly to any model with a backbone-classifier structure. We used the following split
configurations:

• ResNet-18: GPU processes all residual blocks and global pooling; CPU runs the fully connected (FC) layer.
• MobileNetV2: GPU executes all inverted residual blocks and adaptive pooling; CPU executes the classifier.
• EfficientNet-B2: GPU handles all MBConv blocks and pooling; CPU executes the classification head.
• ViT-Tiny: GPU runs patch embedding and all transformer blocks; CPU performs final MLP classification.

By choosing split points after the last significant nonlinear layer, we preserve model integrity and avoid the
need for intermediate reshaping, token manipulation, or architectural rewriting. The result is a lightweight,
general-purpose pipeline design suitable for deployment on a wide range of embedded vision models.

5 Milestones

5.1 Initial Milestone Plan
Our initial plan outlined a staged implementation across multiple architectures, beginning with MobileNetV2
and expanding to EfficientNet and ViT-Tiny, with stretch goals including transformer and NLP-based models
(e.g., DistilBERT). The following milestones were successfully completed:

• Week 3: Finalized model list (MobileNetV2, EfficientNet-B0, ViT-Tiny)
• Week 4: Implemented baseline GPU-only inference for MobileNetV2
• Week 5–6: Recreated MobileNetV2 in PyTorch, implemented queue-based split inference, validated perfor-
mance with throughput measurements and Nsight profiling

MobileNetV2 served as the Minimum Viable Product (MVP). We demonstrated an 11% throughput improvement
using CPU-GPU split inference on Jetson AGX Orin while maintaining identical accuracy.

5.2 Revised Scope and Updated Plan
Originally, the project included plans to implement split inference on DistilBERT or MobileBERT. However, due
to time constraints and the desire for architectural diversity in convolutional models, the scope shifted toward
EfficientNet and ViT-Tiny, which represent deeper and attention-based vision architectures, respectively.
The updated milestone plan was:
• Week 7: Recreate EfficientNet-B2 and ViT-Tiny in PyTorch
• Week 8: Implement and benchmark CPU-GPU split inference for each model
• Week 9: Optimize and profile pipeline execution with Nsight
• Week 10: Finalize report, GitHub repository, and presentation materials

5.3 Unmet Goals and Adaptation
While the project achieved all major technical goals, the stretch goal of reintroducing transformer-based language
models was not met. This decision allowed for deeper optimization and analysis of EfficientNet and ViT-Tiny
split inference, ultimately strengthening the core narrative around generalizability of the method.

5.4 Challenges and Solutions
Key challenges included:

• Model Rebuilding: Custom reconstruction of PyTorch models was required to precisely insert split points.
We overcame this through layer-by-layer tracing and controlled reimplementation.

• Memory Visibility: Debugging data transfer patterns in unified memory proved difficult. We relied on
Nsight Systems’ timeline and memory access views to confirm concurrent CPU-GPU usage.
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• Load Balancing: Preventing CPU bottlenecks required tuning thread affinity and selecting split points
that preserved parallelism without introducing stalls.

Overall, the milestone-driven structure helped maintain focus while remaining flexible to shift project scope
toward the most valuable outcomes.

6 Results and Evaluation

6.1 Experimental Setup
All experiments were conducted on an NVIDIA Jetson AGX Orin with 12-core CPU set to performance mode and
GPU operating in MAXN power profile. Models were evaluated using a batch size of 64 on a 4096-sample subset
of ImageNet. Accuracy, throughput, and timing were measured using PyTorch and NVIDIA Nsight Systems.
Each model was tested under three configurations:
(1) GPU-only baseline: full model executed on GPU.
(2) Split pipeline (ours): backbone layers on GPU, classifier layers on CPU.
(3) Optimized GPU-only (optional): includes pinned memory, async prefetching, and dataloader tuning.
Throughput is reported as average images per second (img/sec) over 50+ batches after warm-up.

6.2 Throughput Comparison
Table 1 compares baseline and split inference performance. Our pipeline consistently improves throughput across
all architectures, with relative gains up to +21.2%.

Table 1. Throughput Comparison: GPU-Only vs. Split CPU-GPU Inference

Model GPU-Only (img/sec) Split (img/sec) Gain (%)

MobileNetV2 463.5 515.4 +11.2%
EfficientNet-B2 311.3 351.6 +12.9%
ViT-Tiny 274.0 332.1 +21.2%

6.3 Performance Interpretation
Split pipeline gains stem from temporal overlap between GPU and CPU workloads. By offloading only the final
layers to the CPU, the GPU begins work on batch 𝑁 + 1 while the CPU finalizes batch 𝑁 . This hidden latency
increases throughput without changing the model itself.
ViT-Tiny yielded the largest gain due to its deep GPU-dominant encoder and a minimal CPU classification

head—ideal for our strategy. EfficientNet-B2 also benefitted from a sizable final block. MobileNetV2, despite
having a lightweight classifier, still improved by over 11%, showing that pipeline concurrency yields measurable
benefits even under modest CPU load.

6.4 Batch Size Sensitivity
We evaluated batch sizes of 16, 32, 64, and 128 to understand the pipeline’s responsiveness to input volume.

• Batch 16: Gains dropped to 3–4% as queue overhead outweighed CPU work.
• Batch 64: Peak concurrency—GPU and CPU remained synchronized with minimal stalls.
• Batch 128: CPU bottleneck slightly reduced gains, particularly for MobileNetV2.

Results suggest the pipeline is most effective between batch sizes 64–96, where each core stays actively engaged
without overloading memory or scheduler resources.
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6.5 Latency Trade-Offs
While this work focuses on throughput, we note that single-batch latency increases slightly in the split con-
figuration due to inter-process coordination. However, in realistic settings involving multi-batch streaming or
continuous inference, total throughput dominates performance concerns—making our trade-off favorable.

6.6 Profiling Confirmation
Nsight Systems confirmed that pipeline parallelism was functioning as intended. Timeline traces show GPU
kernels launching for batch 𝑁 + 1 while CPU threads process batch 𝑁 outputs in parallel. This concurrency
reduced GPU idle time and validated our hypothesis that unified memory enables practical temporal pipelining.

7 Profiling Observations
To confirm the effectiveness of our split pipeline design, We used NVIDIA Nsight Systems to analyze runtime
behavior across both CPU and GPU. This included examining kernel launch timing, memory access behavior,
synchronization events, and thread-level CPU activity.

7.1 GPU Activity and Idle Time
In GPU-only inference runs, theNsight timeline revealed repeated blocks of idle time between kernel launches—particularly
following the forward pass during post-processing. In contrast, the split configuration showed a denser timeline
with reduced idle gaps. The GPU began execution of batch 𝑁 + 1 while the CPU simultaneously processed the
tail of batch 𝑁 , resulting in higher GPU utilization and improved device throughput.

7.2 CPU Utilization and Scheduling
In the baseline configuration, CPU activity was limited primarily to data loading. Under the split configuration,
CPU threads became active during the classifier phase, overlapping with GPU processing. Although the CPU
workload was relatively small, it was sufficient to maintain useful concurrency. Profiling confirmed that thread
scheduling did not interfere with GPU launch timing, maintaining consistent execution rhythms.

7.3 Memory Access and Unified Buffer Behavior
No ‘cudaMemcpy‘ calls were observed in split-mode runs. All intermediate activations were accessed directly via
unified memory-backed pinned buffers. The low latency and consistent access timing between GPU writes and
CPU reads suggest effective use of NVIDIA’s IOMMU and shared memory features. This validates our assumption
that unified memory enables zero-copy data sharing with minimal synchronization overhead.

7.4 Queue Dynamics and Pipeline Stability
Queue inspection confirmed that the system maintained stable producer-consumer timing. The GPU enqueued
intermediate tensors at a regular cadence, while the CPU dequeued them within a bounded window. No buffer
overruns, dropped frames, or consumer stalls were observed at batch sizes of 64 or above. This indicates that our
temporal pipeline achieved stable throughput without requiring complex flow control mechanisms.

8 Discussion

8.1 Understanding the Gains from Pipelining
Our findings demonstrate that strategically splitting a model at a natural boundary—such as the feature-classifier
interface—enables effective temporal pipeline parallelism, even on constrained edge devices. The performance
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gains stem not from additional hardware or model optimizations, but from unlocking latent concurrency in
sequential graph execution by leveraging unified memory.

This supports the broader insight that shared-memory heterogeneity can be harnessed at the software level to
improve hardware efficiency with minimal architectural disruption.

8.2 Deployment Context and Practical Benefits
The method presented here is well-suited to real-world deployment settings, particularly where throughput,
latency, and power efficiency are all critical:

• Edge AI workloads — including vision systems on drones, wearables, or IoT cameras.
• Real-time inference — such as frame-by-frame classification in robotics or autonomous navigation.
• Battery-sensitive applications — where improved hardware utilization reduces time-to-idle and total
energy usage.

Importantly, the pipeline requires no model retraining, no quantization, and no conversion to vendor-specific
graph formats. This makes it especially attractive for teams working with standard PyTorch workflows or rapid
prototyping.

8.3 Limitations and Open Design Space
Despite its advantages, this method has several limitations:

• Overhead at small batch sizes: At low batch sizes (e.g., 16), the fixed overhead of process coordination
becomes significant.

• Static split points: Our implementation assumes a fixed division of work. Dynamic runtime adjustment
was not explored.

• Limited parallel depth: Our design uses a simple two-stage pipeline. Multi-threaded or multi-stage
partitioning could unlock further gains but would add architectural complexity.

8.4 Generalization Potential
We expect this method to generalize across vision models that share a common architecture: deep backbone
encoders followed by shallow classification heads. This includes most CNNs, ResNets, efficient vision transformers,
and potentially even some segmentation networks with head modules that can be cleanly isolated.

Future work could explore adaptations to object detection (e.g., YOLO), lightweight multimodal architectures,
and dynamic vision transformers with early-exit branches.

9 Conclusion and Future Work
This work presented a lightweight yet effective strategy for accelerating deep learning inference on embedded
platforms by combining unified memory with pipeline parallelism. By splitting model execution between GPU
and CPU and overlapping their workloads across input batches, we achieved consistent throughput gains—up to
21.2%—without altering model architecture or sacrificing accuracy.

The approach is implemented entirely in Python, using standard PyTorch APIs and NVIDIA’s unified memory
abstraction. It requires no graph transformation, retraining, or hardware-specific compilation. We validated its
effectiveness across diverse architectures—MobileNetV2, EfficientNet-B2, and ViT-Tiny—demonstrating general-
izability and ease of integration.

Key Takeaways
• Unifiedmemory enables efficient zero-copy tensor access across GPU and CPU, eliminating costly explicit
data transfers.
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• Temporal pipeline parallelism maximizes processor utilization by interleaving batch execution across
devices.

• Architecture-agnostic: The method generalizes across CNNs, transformers, and hybrid models.
• Minimal overhead: Requires no CUDA/C++ code or specialized scheduling libraries.

Future Work
Future extensions of this work may include:

• Dynamic split-point selection based on runtime profiling or model introspection,
• Application to more complex models such as object detectors and multimodal architectures,
• Fine-grained multi-stage pipelining to enable deeper interleaving across layers,
• Power and thermal profiling to quantify efficiency gains under real-world constraints.

Overall, this work demonstrates thatmeaningful performance improvements on edge devices can be achieved—not
by increasing compute power, but by rethinking how existing compute is utilized. Through careful coordination
and memory sharing, heterogeneous systems like the Jetson AGX Orin can unlock new levels of efficiency and
responsiveness for on-device AI.
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A Research Methods

A.1 Part One
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi malesuada, quam in pulvinar varius, metus nunc
fermentum urna, id sollicitudin purus odio sit amet enim. Aliquam ullamcorper eu ipsum vel mollis. Curabitur
quis dictum nisl. Phasellus vel semper risus, et lacinia dolor. Integer ultricies commodo sem nec semper.
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