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1. Abstract 

Tryton is a modular, low-cost, 3D-printable underwater remotely operated vehicle (ROV) 
designed for real-time video feedback, sensor-assisted control, and stable manual operation. Built 
on the open-source CPS5 platform, Tryton integrates open hardware and software components 
including a Pixhawk flight controller, depth and inertial sensors, and a Raspberry Pi onboard 
computer. Over the course of the quarter, the system was fully assembled, sealed, and validated 
through successful pool and open-water testing. With its sensor-guided stabilization and robust 
communication pipeline over Ethernet, Tryton establishes a functional and extensible foundation 
for future autonomous behaviors such as object tracking or mapping, leveraging onboard 
compute already in place. 

2. Introduction 

Underwater exploration and monitoring have historically required expensive and specialized 
equipment, placing advanced oceanographic tools out of reach for educational institutions, small 
research labs, and hobbyists. In recent years, the emergence of open-source hardware and 
low-cost manufacturing methods such as 3D printing has made it feasible to build affordable 
remotely operated vehicles (ROVs). However, most low cost ROVs remain limited in capability: 
they typically support only basic video streaming and manual control, with little to no onboard 
sensing or autonomy. This severely restricts their usefulness for precision tasks like marine 
surveying, object inspection, or scientific sampling, where stable positioning and environmental 
awareness are essential. 

 



 

Tryton addresses this gap by providing a modular, low cost, open-source ROV platform that 
integrates core sensing, stabilization, and control features. Built on top of the CPS5 underwater 
drone design, Tryton combines 3D printed mechanical components with open source flight 
control software (ArduPilot), real-time video feedback, and onboard sensing using a depth sensor 
and inertial measurement unit (IMU). Our goal was to develop a minimum viable product (MVP) 
that demonstrates stable underwater operation, reliable teleoperation, and sensor-based depth 
hold  all within a compact and affordable architecture that could be easily replicated and 
extended by others. 

Tryton’s software architecture leverages a Pixhawk flight controller running ArduSub (an 
ArduPilot variant), paired with QGroundControl as a surface interface. Commands are sent 
through an Ethernet tether, and manual control is achieved through a USB gamepad connected to 
a topside laptop. The ROV also includes a Raspberry Pi that serves as a flexible platform for 
potential computer vision or autonomy modules, though advanced features such as object 
detection were deferred in favor of focusing on core functionality and stability. This architecture 
was chosen to future proof the system for autonomous upgrades while keeping the current 
implementation accessible. 

The physical structure of the ROV was fabricated using 3D-printed components derived from the 
CPS5 design, housing all electronics in a sealed acrylic enclosure. The vehicle is neutrally 
buoyant and capable of maneuvering in six degrees of freedom using four thrusters. All 
mechanical, electrical, and software systems were developed and tested in parallel throughout the 
quarter, with field tests conducted to validate control performance, waterproofing integrity, and 
underwater stability. 

The broader significance of Tryton lies in its proof of concept for a low cost ROV architecture 
that supports modular autonomy. By demonstrating a fully operational underwater platform with 
sensor guided control and real-time feedback, we lay the groundwork for future extensions such 
as onboard object tracking, mapping, or environmental monitoring. These capabilities could 
transform Tryton from a teleoperated device into a smart subsea agent capable of executing 
mission-level objectives. 

3. Related Works 

Commercial Open-Source ROVs​
OpenROV broke ground in 2012 with an affordable, palm-sized kit featuring a BeagleBone 
Linux board, three brushless thrusters, LED equipped camera, and a 100 Mbit/s Ethernet tether 
for real-time video streaming and control [1]. Its fully open hardware and software drew 
thousands of DIY builders, though many reported challenges sourcing specialized batteries and 
ensuring reliable waterproofing under extended use. OpenROV’s commercial offering, the 
Trident underwater drone, then evolved toward a more professional design, with a hydrodynamic 



 

torpedo frame, up to 70 m depth rating, and two-hour runtime [8]. Building on this, Blue 
Robotics released the BlueROV2 in 2016: a 6-thruster vectore-drive vehicle powered by the 
ArduSub autopilot firmware and QGroundControl interface, rated to 100 m (upgradeable to 300 
m) [2]. Its aluminum-and-acrylic frame is designed for modular expansion users routinely add 
manipulators, sonar units, and environmental sensors making it a versatile tool for inspection, 
research, and education. 

 

 
Figure 1: OpenROV Trident  

 
Figure 2: Blue Robotics Rov 

 

Community & Educational Kits​
Single maker projects like Aruna demonstrate that fully 3D-printed, sub-$500 ROVs can support 
real-time video and basic navigation, with design files and build instructions released under 
permissive open licenses to encourage remixing and improvement [3]. At the same time, 
SeaPerch kits have introduced thousands of middle and high school students to ROV design, 
using PVC-based frames, inexpensive bilge-pump thrusters, and simple wired controllers for 
under $200 [4]. Competitions like the Marine Advanced Technology Education (MATE) ROV 
Competition provide annual challenges for students to design modular, low cost vehicles, with 
open-source submissions and detailed technical reports freely available online [9]. Though 
rudimentary, these educational platforms power robotics contests and can be upgraded by 
students to carry cameras or custom microcontroller boards, illustrating how minimal cost can 
still foster deep learning and innovation. 

 



 

 
Figure 3: Aruna ROV  

 

Academic Low-Cost & Modular Designs​
Researchers have shown that a Raspberry Pi 3, six brushless thrusters, and open-source PID 
controllers can yield a 100 m-depth ROV streaming 42 fps video over Ethernet for under $1,000 
complete with a Python-based GUI for topside control [5]. Projects like Modularis take 
modularity further, providing plug and play electronics bays and dual-mode ROS support 
(tethered ROS 1 topside, untethered ROS 2 onboard) to let scientists swap sensors and 
experiment with autonomy without rewiring [6]. Similarly, Aristizábal et al.’s Visor3 redesign 
replaced a legacy frame with open-source microcontrollers and a layered software stack, greatly 
simplifying integration of new payloads and rapid diagnostics [7]. The ros_rov GitHub project 
further demonstrates a ROS-based architecture for hobbyist ROVs, complete with plug-and-play 
sensor nodes, underwater communication protocols, and example autonomy scripts [10]. 

4. Technical Material 

Hardware 
Structural Frame and Enclosure 
Tryton ROV uses a fully waterproof, 3D-printed frame and acrylic pressure hulls. The main body 
comprises two acrylic tubes one for the electronics and one for the camera sealed at each end 
with custom 3D-printed endcaps featuring O-ring gaskets. Cable penetrations are minimized; a 
single waterproof connector on the main enclosure houses the Ethernet tether feedthrough and is 
sealed with epoxy for reliability. The hull design is tuned so the vehicle is nearly neutrally 
buoyant, allowing it to hover when thrusters are idle. 
 



 

 
Inside of Tryton 

 
3D Printed Frame 

 
 
Propulsion and Thrusters 
Five brushless DC thrusters provide the vehicle’s propulsion. Two horizontal thrusters mounted 
on opposite sides handle forward/reverse motion and yaw control, while three vertical thrusters 
(one front, two rear) manage depth control and pitch/roll stabilization. Each motor is potted in 
epoxy and fitted with ceramic bearings to resist corrosion. Custom 3D-printed propellers attach 
directly to the motor shafts. Thruster speed is controlled via individual electronic speed 
controllers (ESCs) mounted inside the electronics tube, which receive PWM signals from the 
flight controller. 
 
 

 
Five Degrees of freedom 

 
 
 



 

Power Supply and Wiring 
A rechargeable lithium-ion battery pack (11.1 V nominal) powers the ROV for approximately 
one hour. The battery resides in the main hull, connected to a DC–DC converter that provides 5 
V for low-voltage electronics. High-current wiring and connectors are marine-grade and sealed 
with epoxy or waterproof plugs. Inside the hull, wiring is neatly organized: the ESCs draw 
directly from the battery bus, and signal lines run to the Pixhawk controller. A power-monitoring 
circuit tracks battery voltage and current, and includes a MOSFET-based cutoff to protect against 
deep discharge. 
 

 
 

 
11.1V Battery 

 
Battery wired to electronics  

 
 
Onboard Electronics 
The primary autopilot is a Pixhawk board running ArduSub firmware. It interfaces with an 
onboard IMU for orientation sensing and a depth sensor for real-time depth feedback. An 
external magnetometer provides heading information. A Raspberry Pi companion computer 
connects to the Pixhawk over MAVLink, handling high-level tasks such as video streaming and 
additional sensor polling. The Pi manages the HD camera, encoding the video feed for 
transmission and logging mission data. All electronics are mounted on a sled inside the pressure 
tube, designed to withstand pressures down to 100 m depth. 
 
 



 

  

 
 
Tether and Topside Connection 
Communication and command signals travel over a lightweight, neutrally buoyant Ethernet 
tether rated for up to 100 m. The tether connects to a top side computer running a mission control 
software. This setup separates power and data, as the ROV runs on its own battery, avoiding 
power loss over long cables and simplifying the tether design. 
 
 

 
Soldering of ROV connector 

 
Ethernet Tether 

 



 

 

Software Architecture 
ArduSub Firmware 
The Pixhawk runs ArduSub, an open-source autopilot firmware for underwater vehicles. 
ArduSub implements PID-based control loops for depth hold, auto-level, and heading hold 
modes. It reads IMU and depth sensor data at high rates and outputs PWM signals to the ESCs. 
Pilot inputs (from a joystick or gamepad) are mixed by ArduSub according to the vehicle’s 
five-thruster configuration to achieve the desired motion. 
 
Companion Computer Software 
The Raspberry Pi runs a lightweight Linux environment with a MAVLink router that bridges 
Pixhawk telemetry to the surface over Ethernet. It also runs a video-streaming pipeline (e.g., 
GStreamer) to capture and encode HD camera output. The Pi can host additional scripts or 
services for logging and interfacing with extra sensors, but leaves real-time control to the 
Pixhawk. 
 
Topside Control Interface 
On the surface, the operator uses QGroundControl on a laptop or tablet. QGroundControl 
displays live video, telemetry dashboards (attitude, depth, battery status), and offers modes like 
depth hold and auto-level. Control inputs via joystick are translated into MAVLink commands 
and sent down the tether. The low-latency link enables responsive teleoperation and easy mission 
configuration, including parameter tuning and sensor calibration. 
 

 
QGroundControl 

 



 

5. Milestones 

At the beginning of the quarter, we defined a series of technical deliverables to structure the 
Tryton ROV project. These milestones included mechanical assembly, electronics integration, 
control system configuration, and real-world testing. Our stretch goal included implementing 
computer vision-based object detection. Over the course of the project, we completed all core 
milestones and made design adjustments based on testing outcomes and time constraints. 

Completed Milestones 

D1 – Frame and Electronics Assembly 

We successfully assembled the full Tryton frame using 3D-printed CPS5 components and 
enclosed the electronics in a sealed acrylic housing. All internal wiring, ESCs, sensors, and 
power components were integrated and validated through continuity and voltage testing. 

During early electrical integration, we discovered multiple solder joints had become 
disconnected during handling. We used a multimeter extensively to trace signal paths and verify 
continuity, identifying and resoldering problem points across ESC, power, and signal wires. 
Additionally, the Pixhawk’s main connector cable physically detached from the board three 
separate times over the quarter. Chris resoldered it once, his friend another time, and we did it 
ourselves the third — highlighting how fragile certain parts of the board are under even light 
strain. 

D2 – ArduPilot + QGroundControl Setup 

The Pixhawk was flashed with ArduSub, and joystick controls were mapped through 
QGroundControl. We confirmed motor actuation, telemetry streaming, and basic control loop 
functionality. 

D3 – Depth and Position Hold Tuning 

We tuned the depth sensor and IMU to allow for stable underwater control. The ROV was able to 
maintain depth and orientation with minimal drift during pool tests, achieving stable hover using 
onboard sensor feedback. 

One major hurdle in achieving stable underwater hover was misconfigured motor directions. 
Several thrusters initially spun the wrong way, causing the ROV to pitch unpredictably and fail 
to stabilize. We resolved this by inverting motor channels in software and verifying orientation 
manually through a controlled test routine. 

D4 – Real-Time Video Streaming 



 

A Raspberry Pi onboard the ROV successfully transmitted live video over Ethernet to the surface 
station. Integration with QGroundControl allowed for simultaneous control and video 
monitoring. 

D5 – Open Water Field Test 

We conducted a successful open-water test, validating waterproofing, communication stability, 
and control performance under real-world conditions. 

During our first open-water test, one of the vertical thrusters detached from its mount 
mid-mission. Fortunately, the affected area was fully waterproofed, and no internal components 
were exposed. We recovered the vehicle without damage and re-secured the motor with 
additional epoxy and mechanical reinforcement. 

D6 – Computer Vision Integration 

While we prepared the software environment for object detection using ROS 2 and MAVLink, 
we chose to defer implementation of computer vision in order to prioritize system stability, 
sensor tuning, and field testing. The Raspberry Pi remains onboard and configured to support 
future autonomous functionality. 

Technical Challenges and Resolutions 

During the project, we encountered several challenges: 

Sensor Calibration Issues: Initial IMU readings showed drift, and motor directions required 
remapping. We resolved this by recalibrating the IMU under real conditions and creating a test 
routine to verify thruster orientation. 

Voltage Drop Over Tether: Brownouts during high-throttle maneuvers were traced to voltage sag 
over the Ethernet tether. We mitigated this by adjusting power distribution and current limits. 

Enclosure Sealing: Minor leakage during early submersion tests led us to revise the sealing 
method. We replaced the original gaskets with higher-quality O-rings and validated the seal with 
extended vacuum and dunk tests. 

Despite these setbacks, we achieved full MVP functionality and a stable underwater platform 
ready for future autonomous upgrades. 

 

 



 

6. Conclusion 
The Tryton project set out to design and implement a functional, modular underwater ROV that 
combines open-source hardware, real-time feedback, and sensor-assisted stability all within a 
low-cost and accessible platform. Over the course of the quarter, we completed the mechanical 
assembly, integrated all major electrical subsystems, and developed a reliable software control 
stack using ArduPilot and QGroundControl. The system was validated through successful field 
testing, demonstrating stable manual operation, depth hold, and live video transmission. 
 
Tryton’s architecture emphasizes extensibility. By embedding a Raspberry Pi alongside the 
Pixhawk controller and establishing sensor feedback loops, the ROV is already equipped to 
support more advanced features such as onboard autonomy, computer vision, and navigation. 
These capabilities were deliberately scoped for future work, but the current implementation 
proves that the platform is technically sound and ready to support them. 
 
This project not only delivers a working underwater ROV but also contributes a replicable 
framework for future development in low-cost subsea robotics. Whether for education, research, 
or hobbyist use, Tryton provides a clear path forward for affordable, intelligent underwater 
systems. 
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