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Microcontrollers are low cost, lightweight, and low power, making them the perfect device to monitor species in the wild.
This paper explores the implementation of a resource-constrained machine learning model for acoustic analysis in research
environments. Long-term monitoring and tracking of wildlife and endangered species in their natural environment is
challenging due to human factors and logistical limitations. We present a microcontroller-based acoustic classification system
that can identify the density of wildlife species in an ecological environment where human presence may be undesirable.
We use the STM32H7471-DISCO board to record audio and run inference on the device using TinyML. The device is able to
capture and classify audio from burrowing owls, allowing for research into their health, community, and behavior.
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1 Introduction

Tiny machine learning (TinyML) is a fast growing field that focuses on deploying machine learning models
on extremely resource constrained devices, such as microcontrollers (MCUs). These devices often have limited
memory, low compute capability, and strict energy constraints, yet they are increasingly used in edge computing
applications where always on, local intelligence is required.

This project presents the design, implementation, and evaluation of an embedded acoustic classification system
capable of identifying burrowing owl vocalizations in real time using a TinyML model deployed on an STM32
microcontroller. The goal of this system is to enable low power, long term monitoring of owl populations in
environments where human presence is either impractical or undesirable. Our system performs end to end audio
capture, signal processing, and classification directly on the microcontroller, leveraging a fully quantized neural
network to infer vocalization types on device.

We begin with the BUOWSET (burrowing owl set) dataset, a large collection of labeled burrowing owl audio
clips provided by the San Diego Zoo Wildlife Alliance (SDZWA) and Engineering for Exploration (E4E). This
dataset contains recordings across six vocalization categories, including alarm calls, chick begging, and ambient
noise. These audio files are preprocessed into mel spectrograms, a time frequency representation that emphasizes
perceptually meaningful frequency bands. We evaluate two lightweight convolutional neural network (CNN)
architectures, MobileNetV2 [13] and ProxylessNAS [2], both commonly used in TinyML benchmarks. In addition,
we design a custom model TinyOwlINet that is specifically tailored to operate within the MCU’s strict memory and
latency limits. All models are quantized to 8 bit integer format to reduce memory usage and improve inference
efficiency.

The complete system is built to operate entirely on device. Audio is recorded using the MEMS microphone on
the STM32 board, converted from Pulse Density Modulation (PDM) to Pulse Code Modulation (PCM) format, and
then processed into mel spectrograms using a series of optimized digital signal processing (DSP) routines. These
spectrograms are passed to the inference engine, which classifies the audio in real time. We use STMicroelectronics
X-Cube-Al framework to compile and deploy the quantized models onto the MCU, and the entire inference
process fits within the 512KB D1 cache of the Cortex-M7 core. By designing and profiling each step of this
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pipeline, we ensure that the system maintains real-time performance and meets memory constraints without
relying on external computation or cloud services.

Our custom TinyOwlNet model achieves competitive accuracy while maintaining a compact footprint suitable
for field deployment. Furthermore, the integration of audio preprocessing, neural inference, and efficient runtime
scheduling on the STM32 platform exemplifies the principles of TinyML in a real world conservation application.
By enabling smart, on device classification of wildlife sounds, this system represents a step toward more scalable,
low power ecological monitoring solutions that can operate unattended in the field for extended durations.

2 Related Works

Deploying deep learning on microcontrollers (MCUs) has spurred the development of TinyML frameworks that
jointly optimize model design and inference execution for severe resource constraints. One prominent example is
MCUNet, which combines a neural architecture search (TinyNAS) with a memory optimized inference engine
(TinyEngine) [9]. MCUNet’s co design enables ImageNet scale models to run on off the shelf MCUs by tailoring
both network structure and scheduling; it achieved the first >70% ImageNet top 1 accuracy on a microcontroller
with dramatically lower memory usage than prior MobileNet or ResNet baselines. ProxylessNAS [2]itself was an
earlier NAS approach that directly searched for efficient architectures on target tasks and hardware, yielding
networks that surpassed MobileNetV2 in accuracy and speed by specializing to deployment constraints. These
efforts illustrate how automated model design can push the limits of on-device inference. In parallel, the EdgeML
initiative [11]explored ultra compact models like ProtoNN and Bonsai, which eschew deep convolutional networks
for lightweight algorithms amenable to MCUs. Such models have demonstrated high accuracy (e.g. 98 % on
MNIST) with as little as 6-8KB of memory, though their applicability to more complex audio/vision tasks is
limited. Overall, modern TinyML strategies range from co-designed deep networks to radically small ML models,
all aiming to expand the scope of Al on microcontrollers.

On device audio classification has emerged as a key TinyML application domain, with techniques developed
for both speech and environmental sound recognition on embedded hardware. Keyword spotting (KWS) is a
classic example [17], it showed that a small deep network can run continuously on a few kilobyte MCU and
still achieve high accuracy (over 95% on a voice command task) by using an efficient depthwise separable CNN
architecture. Their Hello Edge study demonstrated that with careful model selection (e.g. a depthwise CNN
instead of a fully connected network), one can meet the strict memory and latency constraints of always on voice
interfaces without sacrificing accuracy. Subsequent work has built full KWS pipelines on microcontrollers like
the STM32, achieving real-time inference on 216 MHz Cortex-M7 cores with inference times on the order of
tens of milliseconds. For instance, Wang and Li present a 12 class KWS system on an STM32F7 that produces
predictions every 37 ms (including on-device mel spectrogram extraction) [16]. Notably, their baseline 8-bit CNN
runs entirely on chip with 512KB of RAM, proving that non-trivial audio models can execute under tight MCU
budgets. Beyond speech commands, researchers have also explored embedded environmental sound classification.
Elliott et al. train Tiny Transformers on mel spectrogram features to classify office and ambient sounds, managing
to outperform a traditional CNN with a model of only 6k parameters [4]. This Transformer based model, inspired
by BERT but heavily pruned, achieved equal or better accuracy than a larger MFCC-based CNN while being
small enough to fit on a microcontroller. Similarly, Choudhary et al. introduce LEAN, a two-stream audio model
combining a learnable waveform encoder and a lightweight spectrogram CNN, which attains competitive results
on the FSD50K sound dataset with a mere 4.5 MB memory footprint [3].

A crucial enabler for TinyML audio systems is model compression and inference optimization. Quantization to
8-bit (int8) weights and activations is now a standard practice to reduce model size and leverage efficient fixed
point arithmetic on MCUs. Many frameworks (e.g. TensorFlow Lite Micro, X-Cube-Al) support quantization-aware
training so that accuracy remains high after converting 32-bit models to int8. The above KWS system on STM32,



for example, uses quantized CNN kernels and even exploits ARM CMSIS-NN SIMD instructions to meet real-time
speeds [16]. The authors also evaluate pruning: removing redundant weights to sparsify the network. Their
findings indicate that structured pruning (e.g. removing entire filters) is far more beneficial on microcontrollers
than arbitrary unstructured pruning, since structured sparsity can be mapped to skip whole operations without
incurring irregular memory access overhead. In essence, pruned models need to be hardware friendly to truly
yield speedups on MCU hardware. Other work focuses on optimizing memory usage during inference. Liberis
and Lane propose reordering neural network operations to minimize the peak RAM needed for intermediate
activations [8]. By carefully scheduling layer executions, they manage to deploy a standard CNN on an MCU
with only 512KB of SRAM. This idea of memory aware scheduling is complementary to methods like network
pruning: for instance, TinyEngine (from MCUNet) globally plans layer memory allocation and reuse, reducing
peak usage by up to 4.8 times compared to naive layer by layer execution.

Our project’s focus real-time bioacoustic monitoring on embedded platforms ties into a growing body of work
on wildlife acoustics and conservation tech. Traditional passive acoustic monitoring often generates enormous
recordings that must be post processed, but on-device Al can instead analyze audio locally and transmit only
detections, saving power and bandwidth. Vuilliomenet et al. present acoupi, an open-source framework that
integrates end-to-end audio capture, neural inference, and wireless reporting on devices like the Raspberry Pi
[15]. They demonstrated acoupi with pre-trained models (BirdNET for bird species and BatDetect2 for bat calls)
running autonomously in the field over a month long deployment. This shows the feasibility of continuous
bioacoustic classification on low cost hardware. Our work on burrowing owl call detection is conceptually similar,
but pushes into even more constrained hardware territory the STM32 microcontroller a custom-made lightweight
CNN model for real-time inference.

On the applied side, [10] built a real-time audio classifier on an Arm Cortex-M0+ (RP2040), using Arm’s
CMSIS-DSP [1] for feature extraction and an 8-bit quantized TensorFlow Lite model for inference. Their pipeline
processed 512-sample (~ 32 ms) audio frames in only 24 ms of compute time, leaving headroom for I/O and
meeting real-time constraints. The fast computation for audio processing steps from Arm’s CMSIS-DSP library
contributed to our selection of the STM32 board. Similarly, [14] deployed a TinyML keyword spotting model on
an STM32 Cortex-M4 board using the Edge Impulse studio. Their model was under 20 KB and the auto-generated
C++ inference library leveraged the MCU’s FPU, SIMD, and optimized CMSIS-DSP/NN kernels to maximize
performance while minimizing RAM/flash usage (with the added benefit that all audio processing stays on
device). Another experiment even ran a pruned RNN on an STM32 based hearing aid prototype, achieving 4.3
ms latency (well below a 10 ms audio threshold) after reducing model size by 47% [5]. These works informed
our approach by underscoring the importance of model compression and quantization for memory constrained
inference, the utility of vendor DSP libraries and peripheral optimizations for speed, and the need to carefully
configure onboard sensors (e.g. microphone ADC/PDM interfaces) so that streaming audio data can be processed
and inferred in real-time on the STM32 hardware. On tiny wake word benchmarks, MCUNet’s specialized
models outperformed earlier MobileNetV2 and ProxylessNAS networks while running 2-3 times faster and
using 4 times less SRAM. [7] offer a comprehensive survey of TinyML, exploring the end-to-end toolchain
from model building frameworks (e.g., TensorFlow Lite Micro, uTensor, Edge Impulse, NanoEdge Al Studio,
STM32Cube.Al) to deployment platforms for executing ML workloads on edge devices [7]. They systematically
analyze platform trade offs, including energy consumption, latency, memory footprint, and on-device accuracy,
while discussing core constraints such as limited compute resources, fragmented tool support, dataset handling
issues, and benchmarking challenges. The study concludes with recommendations for optimizing hardware
software co-design and standardizing evaluation protocols . [6] propose TinyChirp, a TinyML enabled bird song
classification system designed for low power acoustic sensors running on RIOT OS [6]. They evaluate multiple
neural architectures (CNN-Time, Transformer-Time, CNN-Mel, SqueezeNet-Time), compare spectrogram vs.
raw-audio inputs, and test quantization-based compression strategies. Their experiments measuring ROC curves,



accuracy, and F1 scores show that TinyChirp achieves precision above 0.98 while extending battery lifetime from
just two weeks to eight weeks on a single charge.

3 Technical Material
3.1 Data Description

For this project, we utilized the BUOWSET dataset provided by the San Diego Zoo and E4E. This dataset contains
human labeled acoustic data of burrowing owl vocalizations which is divided into the following 6 classes: Cluck,
Coocoo, Twitter, Alarm, Chick Begging, and no_buow (no burrowing owl detected). The first 5 classes are types of
burrowing owl sounds, and the sixth means that it is not a sound produced by a burrowing owl. 13021 3-second
segments are no_bouw, taken from the same WAV files as the labeled detections. They were randomly selected,
in equal number to the number of burrowing owl vocalizations in a given WAV file. There are 13022 human
labeled detection segments, at varied lengths.
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Fig. 1. Class-wise distribution for all the folds

3.2 Model Design

We have compared the performance of 3 models here. The MobileNetV2, ProxylessNAS, and our proposed
TinyOwlINet. Using Transfer learning on MobileNetV2, ProxylessNAS pre-trained on Imagenet, we have fine-
tuned them on the BUOWSET data. The TinyOwINet curated for this task is compact and simple, specifically
made for low-memory inference on the MCU. The audio segments from the BUOWSET are converted to mel
spectrogram representations, which are then given as input to the model. The input dimensions are 1x64x258.
The 64 Mel bands capture the frequency resolution, and the 258 frames are the temporal dimensions. This
preprocessing converts the waveforms into a two-dimensional format based on time and frequency.

The TinyOwINet model has three sequential convolutional layers that are each followed by a max pooling
layer and kernels of dimensions 3x3 throughout to extract the local patterns. The first convolutional layer applies
8 filters of size 3x3 with padding, then it is followed by batch normalization and ReLU activation functions to
introduce nonlinearities. After this, a max pooling with a 2x2 window size reduces the dimensions, and then



again the previous pattern is repeated with 16 filters in the second convolutional layer, and lastly followed by 32
filters. In conclusion, with an adaptive average pooling, we reduced it to a 1x1 feature map per channel, which is
passed to the final classification layer. The final resulting vector is of size 32, which is fed into a fully connected
linear layer to give the output of 6 class probabilities.

Conv2d Conv2d Conv2d
Input Batch Norm (8 x 32 x 120) Batch Norm (16 x 16 x 64) Batch Norm (32 x1x1) (321 Linear .
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Fig. 2. TinyOwINet Architecture Diagram

3.3 TinyML Methodology

In order to deploy our TinyOwlINet model to an embedded system for on-device audio classification, the following
methodology was carried out to ensure inference did not exceed memory constraints. In order to decrease the
memory required to store and pass inputs through the TinyOwlNet model, we quantize the model weights with
int8 quantization. We use STM’s proprietary inference runtime and code generation, X-Cube-Al to generate
optimized code, for our specific MCU, for passing inputs through the model on-device. In order to leverage this
code generation, we converted the model artifact, which was trained using PyTorch, into the TensorFlow Lite
format. In our case, we carried out both quantization and TensorFlow Lite conversion using a pipeline defined by
Google’s Al Edge Torch library, although in principle, any quantization and TensorFlow Lite conversion backend
should suffice. Once the code was generated, we validated predictions on the MCU against the model off the
MCU to ensure that inference was running as expected.

Our board of choice, the STM32H747I-DISCO board, has 2 cores, the Cortex M4 and Cortex M7. Due to the
time and scope constraints and being in the discovery phase of the project, we decided to produce the entire
pipeline using the M7 core, which has much higher-performance, instead of splitting the process between the
cores. Our pipeline can be later optimized using both cores. The M7 core only has access to the level 1 (D1)
cache, which is 512KB of RAM. Following int8 quantization and TensorFlow Lite conversion, the RAM required
for the TinyOwlINet model, based on X-Cube-AI’s code generation profile, was 260 KB, and as such could be
stored entirely in the D1 cache. This reduced the complexity of memory management with regards to inference.
Additionally, due to our single-core design, we allocated all of the available Flash memory to M7 core, which
totaled to 1.98 MB. This greatly exceeded the requirements for storing the model in Flash based on the code
generation profile, which allocated 200 KB of Flash memory for model storage. As such, we maintain a sufficiently
large overhead to store classification results for long-term deployments.

It should be noted, for the sake of reproducibility, that X-Cube-AI’s code generation using models quantized
and/or converted to TensorFlow Lite format with ONNX was error-prone. Similarly, code generation targeting
the TensorFlow Lite runtime, rather than the X-Cube-AI runtime, did not work in our case. Although X-Cube-Al
shows improvements over TensorFlow Lite’s runtime in terms of inference latency and memory constraints for
other models [12], TensorFlow Lite is open-source whereas X-Cube-AI is not.



3.4 Audio Capture

On our MCU, we have developed a seamless audio processing pipeline that can then be used with real-time
inference. The foundation of our system is built around the STM32H7471-DISCO development board, which we
chose specifically for its robust processing capabilities and integrated peripherals. One of the key advantages
of this board is its built-in MEMS MP34DT05-A microphone, which saves us from the complexity of external
microphone interfacing and associated analog front-end circuitry. Getting the audio capture working properly
required diving deep into the Board Support Package (BSP) documentation and understanding how to properly
configure the microphone interface. The BSP acts as our bridge between the hardware-specific microphone drivers
and our application code, handling the low-level details of the MEMS microphone communication protocols.

When we first capture audio from the microphone, the data comes in as a PDM data format stream, which
is a high-frequency digital representation where audio information is encoded in the density of pulses rather
than their amplitude. This audio is captured using a serial audio interface (SAI) and basic direct memory access
(BDMA). BDMA puts the PDM data at a specified address in memory as the buffer fills. Managing the PDM buffer
properly is crucial for maintaining real-time performance, especially since we are dealing with a continuous
audio stream and capture. We do this by using two halves of the PDM buffer. There is a half-transfer callback and
full-transfer callback initiated by BDMA, and in those functions we have to first invalidate the D1 cache by the
buffer address before we access the data. This is to ensure that we get the latest data directly from RAM, because
the data may be out of sync between the cache and RAM when the microphone data is being written directly to
memory. After invalidating the D1 cache, we can then properly read the updated PDM buffer, written to using
BDMA and SAL The half of the buffer (first or second) that we use is determined by whether we are in the half
transfer callback or full transfer callback. This ensures that we are not writing to and reading from the same part
of the buffer at the same time.

3.5 Mel Spectogram

We then have to convert this PDM data into the format our model expects. First, we must convert PDM data
into PCM format. The data must be converted into a PCM format because it is a more common and versatile
format for audio processing and is much easier to convert into a mel spectrogram. This is because PDM format
represents audio data as a high-density stream of 1-bit samples, while PCM uses a 16-bit representation for each
sample, making it easier to transform into a mel spectrogram. We use the same strategy for the PCM buffer as we
do for the PDM buffer and updated it accordingly, only writing to one half of the buffer at a time.

To convert the data, we apply a PDM2PCM filter from the PDM2PCM library to convert the PDM signal
into the PCM format. Once we have PCM data in the corresponding half of our buffer, we need to transform
it into a mel spectrogram, which is the input format our trained model expects. This transformation involves
several mathematical operations, starting with windowing the PCM samples, applying Fast Fourier Transforms to
convert to the frequency domain, and then mapping these frequencies to the Mel scale using pre-computed filter
banks. The Mel scale is particularly important because it mimics human auditory perception, emphasizing lower
frequencies where most speech information resides. The challenge here is that the Mel filter banks themselves
are quite large and computationally expensive to generate during runtime. We ended up pre-computing these
filters and storing them in SRAM, which means we had to carefully manage our memory budget to accommodate
both the filter coefficients and the working buffers needed for the spectral analysis. The entire Mel spectrogram
generation process needs to happen in real-time, so we spent significant time optimizing the mathematical
operations and ensuring our implementation could keep up with the incoming audio stream without introducing
latency that would affect the user experience.

The final step involves formatting the generated Mel spectrograms into the exact input format expected
by our inference engine. This might seem straightforward, but there are actually quite a few details to get



right. The tensor dimensions need to match exactly, the data types need to be correct, and we need to handle
any normalization or scaling that was applied during the original model training. Once everything is properly
formatted, the mel spectrogram data gets passed to our inference engine, where the trained model processes it to
generate predictions. The entire pipeline from microphone input to model output needs to operate within strict
timing constraints to maintain real-time performance, which meant we had to carefully profile each stage and
optimize bottlenecks throughout the implementation process.
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Fig. 3. On Board Processing Diagram



3.6 Results

We trained and evaluated three models: TinyOwlNet, MobileNetV2, and ProxylessNAS on the burrowing owl call
classification task. The models were compared based on training loss, validation metrics and confusion matrix.
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Fig. 6. Confusion Matrices for all models

The training loss curves are shown in Fig. 4. TinyOwlNet showed stable convergence where both train and
validation loss decreased smoothly across epochs. The gap between train and validation loss remained small which



indicates good generalization and low overfitting. For MobileNetV2, while the training loss kept decreasing, the
validation loss had higher fluctuations especially after 10 epochs. This shows some instability while generalizing
to validation data. ProxylessNAS showed similar trend but had slightly bigger spikes in validation loss after 10-12
epochs, which may point to model overfitting on few epochs.The validation metrics (accuracy, precision, recall,
F1) for all models are shown in Fig. 5. TinyOwINet had more consistent trends across the metrics where accuracy
and precision gradually improved across epochs. The recall and F1 score also improved in a smoother manner.
On other hand, MobileNetV2 and ProxylessNAS achieved higher peak accuracy (close to 98-99%) but showed
more fluctuation across epochs specially in recall and F1 scores. This showed more fluctuation across epochs
especially in recall and F1 scores.
The final confusion matrices are shown in Fig. 6 which give detailed class wise performance:

o TinyOwlNet: For class 5 there were 2526 samples that were classified correctly. Although performance in
most classes seems to be less than those in MobileNetV2 and ProxylessNAS.

e MobileNetV2: Showed higher correct predictions specially for class 5 (Chick Begging) where 2533 samples
were correctly classified. Some confusion still exists for Class 0 and Class 1,2.

e ProxylessNAS: Very similar to MobileNetV2, slightly better for minority classes. It classified 2539 samples
correctly for class 5 and handled class 2 and 3 marginally better.

’ Model | Accuracy | Precision [ Recall | F1 Score |
MobileNetV2 0.977 0.926 0.910 0.918
ProxylessNAS 0.973 0.904 0.938 | 0.919
TinyOwlINet 0.948 0.905 0.825 0.839

Table 1. Final Validation Metrics across Models

TinyOwINet achieved a final validation accuracy of 94.83%, with a precision of 90.48%, recall of 82.49% and F1
score of 83.94% as seen in 1. This model provided more stable learning curves and balanced performance, which
makes it suitable for resource limited deployment. MobileNetV2 achieved a higher validation accuracy of 97.70%
with precision of 92.61%, recall of 91.03%, and F1 score of 91.80%. ProxylessNAS also reached high performance
with 97.28% validation accuracy, 90.37% precision, 93.78% recall and 91.94% F1 score. While MobileNetV2 and
ProxylessNAS outperformed TinyOwINet in absolute metrics, they showed more fluctuations during training.
TinyOwlINet was more stable across epochs while still providing competitive performance.



We compare the model sizes before and after applying 8-bit weight quantization across the evaluated architectures.
As shown in Fig. 7, ProxylessNAS reduces from 11500 KB to 3100 KB, and MobileNetV2 shrinks from 9200 KB to
2500 KB after quantization. Our custom TinyOwlNet achieves a significantly smaller footprint, with only 33 KB
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in float32 and 11 KB after quantization, demonstrating its suitability for the STM32.

4  Milestones

4.1

High-Level Deliverables (Key Milestones)

Milestone Description Owner(s) Evidence Week
M1:Replicate Reproduce 3  MCUNet | Software Desktop inference + | Week 3
MCUNet results using TinyNAS & | Team profile report
TinyEngine for pretained
keyword detection model
M2:Pre-process | Train and quantize audio | Software Model  evaluation | Week 5
Owl Data and | classification model using | Team metrics compared
create baseline | owl dataset from the SD Zoo across quantization
Owl Model schemes + saved
Trained model
M3:STM32 Infer- | Deploy model and run infer- | Software On-device demo | Week 7
ence ence on STM32 board Hardware video with real-time
audio data from
microphone
M4:Sleep Mode | Trigger sleep/wake mode via | Software Log showing mode | Week 8
Added heuristics Hardware triggers
MS5:Final System | Full system test (record + in- | Full Team Final demo + report | Week 10
Test fer + sleep)

Table 2. High-Level Deliverables — Software Team

10




Milestone Description Owner(s) Evidence Week
M1:Hardware | STM32 Board Exploration & | Hardware STM32 Manual + | Week 2
Set-up Peripheral Scoping Team Github Repo
M1:Peripheral | initializing drivers for GPIO, | Hardware Timer + Interrupt on | Week 3
Configuration | DMA, and timer on the | Team Github Repo
on STM 32 STM32 Board
M2:Audio Pro-| Complete Audio Processing | Hardware Demonstarte Audio | Week 6
cessing on the on board MEMS mi- | Team

crophone
M3:STM32 In- | Final Integration & Deploy | Software  + | On-device demo | Week 7
ference model and run on STM32 | Hardware video

board
M4:Sleep Mode | Trigger sleep/wake mode via | Software  + | Log showing mode | Week 8
Added heuristics Hardware triggers
M5:Final Sys- | Full system test (record + in- | Full Team Final demo + report | Week 10
tem Test fer + sleep)

Table 3. High-Level Deliverables — Hardware Team

4.2 Weekly Milestones (Low-Level Schedule)

Week | Software Milestone Hardware Milestone

3 Replicate MCUNet baseline using Tiny- | Confirm STM32 development environ-
NAS; begin profiling inference ment; Begin configuring peripherals

4 Use TinyEngine to compile model to C for | Configure the audio peripheral and ensure
STM32 deployment; test forward pass of- | audio is being properly recorded
fline

5 Train and quantize owl model; test offline | Write embedded code for audio processing
accuracy and storage

6 Run inference on STM32; monitor perfor- | Align heuristics with audio activity levels
mance and latency

7 Compare quantized models; debug infer- | Implement sleep and wake mode, and re-
ence bottlenecks duce power as much as possible

8 Full model deployment with logging on | Profile power consumption under real in-
STM32 put

9 Analyze performance; test noise handling; | Support testing and bug fixes
final tuning

10 | Record final demo; finalize performance | Conduct final end-to-end test
metrics and documentation

Table 4. Weekly Schedule — Software & Hardware Teams

4.3 Hardware Milestones

4.3.1 STM32 Hardware Set-Up. For the hardware setup, we configured the old repository we were given to
work in our setup. The old repository was missing a lot of drivers and had a lot of drivers located in incorrect
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directories. We reconfigured this so that it works on the device that we are using. We have also set up all of the
STM32 IDE and CubeMX that we need to use to work with the STM32 device.

We had some problems setting up the hardware because we cannot get some of our macOS devices to recognize
the connected STM32 device. We spent many hours debugging trying to get this to work, but our efforts seemed
to be futile. This meant that we were unable to use different computers and only had one laptop working to run
the code we wrote. We decided to move on and focus our efforts on other parts of the project.

4.3.2 STM32 Peripheral Configuration. We set up the peripherals that were needed to use the on-board MEMS
micro- phone which is what we were trying to use. To use the mic, we needed the GPIO clocks to be set and
configured properly. We also need to have a way of storing the audio we receive from the buffer, so we created a
buffer management to do that. To actually receive the data, we need to use both Serial Audio Interface (SAI) and
Direct Memory Access (DMA). The SAI will get the audio data from the microphone in an analog format. DMA is
then needed to transfer the audio data to be stored in the buffers where we can access it. This meant that we
needed to connect one of the SAI instances to the DMA.

We ran into a lot of problems while setting up the peripherals. We had to set up SAI (Serial Audio Interface)
and DMA (Direct Memory Access) and we used SAI instance 1 to connect it. It took some troubleshooting but
we were finally able to connect SAI1 to DMA, but we found that when we tried to record audio, nothing was
being loaded into the audio buffer, 7 which meant we weren’t accessing the microphone properly. After doing a
more deep-dive and finding a schematic, we noticed that the MEMS microphone was not connected to SAI1 but
instead was only connected to SAI instance 4. We tried to make this switch, but because SAI4 doesn’t connect to
DMA, but instead only works with Basic Direct Memory Access (BDMA), so this was another change that we
had to implement.

4.3.3 Audio Recording. We had found that using the MEMS microphone was becoming increasingly difficult,
because we had tried many methods and built off of our mentor’s work but were not able to communicate with
it. After meeting with our mentor, we decided to switch to using an external mic that we connected to the
input audio port on the device. We ended up using BSP (Board Support Package) to get the external microphone
recording audio into the PDM Buffer. We found that the linker script for the old repo we were using had the
wrong RAM Address (Random Access Memory). After finding this, we thought would help with using the MEMS
microphone so we switched back to using that. This was because the incorrect RAM address/definition didn’t
affect DMA, which is why DMA with SAI1 was working, but it affected BDMA, which meant communicating
with the microphone was impossible. After changing that file, we were finally able to record audio input using
the on- board MEMs Microphone. We then changed the PDM buffer to a PCM buffer with a PDM to PCM filter
library function, and we were able to hear audio record and play back in real time with the MEMs microphone.

We started this project trying to connect to the MEMS microphone had to completely change the microphone
we were using because we had run out of strategies to communicate with it. So we switched tactics and decided
to use the input port. As a temporary solution until we order a microphone, we are using regular wired earbuds
that we connected to the audio port. We also ran into a problem when configuring the clocks and power. We
accidentally set the power incorrectly which put the board into shut down mode and we were unable to connect to
it. We fixed this by completely erasing the board to reset it. We also found that the reason the MEMs microphone
isn’t working is because the linker file had the wrong RAM address. After changing that then we got out audio to
finally record and be stored

4.3.4  Inference. We successfully implemented and integrated the complete DSP pipeline on the STM32 platform
to convert 16-bit PCM audio into Mel spectrograms suitable for on-device inference. This work builds directly on
our previous pipeline tested on desktop, now adapted for embedded constraints. The embedded pipeline was
validated using PCM buffers generated from owl audio .wav files and included the following steps: applying
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a Hanning window, performing an FFT using the CMSIS DSP library [1], computing the power spectrum,
applying a Mel filterbank, applying a logarithmic compression, and finally normalizing the spectrogram. Despite
encountering memory limitations while storing Mel filter coefficients in SRAM, we optimized memory usage and
filterbank storage to ensure stable performance. Once generated, the spectrogram was logged and visualized on
the host to confirm that the embedded output matched expectations. Following validation, we integrated the
Mel spectrogram output pipeline with the quantized CNN inference model on the STM32 board by sending the
produced spectrogram into the TinyOwlINet classifier. This produced correct predictions for the owl audio sample
used, confirming that the entire pipeline (signal acquisition, pre-processing, and inference) was functional and
accurate on the device.

Our primary challenge stemmed from SRAM constraints, particularly with storing large Mel filter coefficients,
which required aggressive memory optimization and reorganization. Additionally, because microphone capture
was still under development and testing, we used a .wav-based PCM input as a stand-in for real-time audio.

4.3.5 Sleep mode. Initially, we planned on exploring implementing sleep mode heuristics along with power
consumption profiling after implementing on-device inference for the end-to-end pipeline. Due to unexpected
challenges and delays in completing the end-to-end pipeline, this quickly became slated as a "nice to have" feature
rather than a necessary feature for the MVP. As expected, due to time constraints, we were unable to implement
any sleep mode heuristics or power consumption profiling methods. However, it is worth mentioning that the
time we spent generating code using X-Cube-Al pays off in this regard, as code generated using the platform
allows for power consumption profiling bundled with the rest of the inference runtime’s libraries. As such, the
task of power consumption profiling should be made somewhat more trivial with X-Cube-AL

4.3.6 Final system test. Because we were unable to implement power consumption profiling, and had just barely
completed our end-to-end pipeline comprising the MVP by the end of the quarter, we had little time to carry
out final system tests. We were, however, able to verify the model output from some inputs in our test dataset
between on-device and desktop-ran audio classification using the full end-to-end pipeline. To this end, we were
successfully able to test the record and infer steps of the process which we initially targeted, however without
any sleep mode features. Implementing more robust analysis methods for power consumption and memory usage
would be a great task for future work on this project, which we hope could be completed during this summer’s
REU program with Engineers for Exploration.

4.4 Software Milestones

4.4.1 Reproduce MCUNet results. The initial goal of this milestone was to replicate some of the results from
the MCUNet paper in order to understand what we could re-purpose for our TinyML audio classification model.
In particular, we wanted to replicate the test accuracy of some of the MCUNet baseline models as well as their
latency, SRAM, and Flash usage using their inference runtime, TinyEngine. Towards this end, we were able to
load MCUNet’s baseline models and replicate their test accuracies, however we quickly realized that profiling the
latency, SRAM, and Flash usage with TinyEngine would require us to load the models onto our STM32 board.
Because the hardware team was not ready for us to load any models onto the board, we moved on to exploring
model training using MCUNet’s powerful TinyNAS pruning method. Towards model training, we were expecting
to find training scripts or at the very least some scripts leveraging TinyNAS in order to perform a search of the
network, as this is a major contribution of the MCUNet paper. We found, however, that the Han Lab did not
share any such scripts, and as such there are a variety of unanswered GitHub Issues asking our same question,
"how can we train a custom model using TinyNAS?". This led us to train alternatives to MCUNet, specifically
looking at TinyML frameworks the MCUNet team compared their results to. We targeted the MobileNetV2 and
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ProxylessNAS model architectures as baselines to explore, as they are more widely documented, for the most
part, as compared to MCUNet.

4.4.2  Pre-process owl data and train baseline model. After identifying baseline models of interest, the Prox-
ylessNAS and MobileNetV2 models were trained using the BUOWSET dataset that contains human-labeled
acoustic data of burrowing owl vocalizations which is divided into 6 classes that are Cluck, Coocoo, Twitter, Alarm,
Chick Begging, and no_buow. The BUOWSET metadata was parsed to extract the labels, segment durations and
after this did fold assignments for each audio clip for train , test and validation. We loaded all the .wav files
using torchaudio and resampled them to a uniform sampling rate of 44.1 kHz. In terms of pre-processing we
applied a two step check for clipping and zero-padding each clip to a fixed 3-second duration in order to maintain
uniformity, after which we which we transformed waveforms into mel spectrograms with 64 mel bands, hop
length of 512, FFT size of 1024 in order to capture the audio features. From here, we performed per-sample
z-score normalization on mel spectrograms to standardize input distributions which would be better for model
inputs and applied a 5-fold stratified split based on the data, ensuring clips from the same source file do not leak
across folds. From these 5 folds on data we used the 3 folds for training the data , 1 fold for validation and 1
for testing. In terms of training, we trained both models for 20 epochs each, using a batch size of 16 and Adam
optimizer. These are lightweight models and hence were chosen for our task. During trainingm, we performed
metric analysis to record loss, accuracy, precision, recall, and F1-score across all epochs. Notably, ProxylessNAS
showed am improved macro F1-score over MobileNetV2 (0.92 vs. 0.89), with the most significant gain observed in
the minority class Chick Begging, improving F1 from 0.67 to 0.77. We found that our validation loss was a bit
high across both models but it is in range with what we expected based on results from the paper that the model
is based on. There appeared to be overfitting from our training loss graph, which led us to consider training a
smaller model.

4.4.3 Quantize PyTorch models and convert to TF-Lite format. This milestone was separated from the initial
high-level milestones near the mid-point of the quarter, as we realized that this task required some decision-
making to ensure that our choice of quantization and conversion backend would be supported by whichever
inference runtime we targeted for deployment. Because there were, at the time, three choices for inference
runtime, between TF-Lite Micro, X-Cube-Al and TinyEngine, we spent a long time attempting to resolve issues
regarding deprecated TF-Lite conversion backends and quantization methods. In the end, we developed two
pipelines for quantization and TF-Lite conversion, one of which leveraged Google’s AI Edge Torch library, and
one of which leveraged the ONNX library, such that the PyTorch model was converted to ONNX, which was
then quantized and converted to TF-Lite format. Both of these methods successfully allowed us to quantize the
baseline models with int8 quantization, resulting in a roughly 3X decrease in on-disk model size, thereby making
the models more readily deployable to a device with limited Flash memory. We also successfully verified that
the test accuracy of the baseline models after quantization only decreased by 5%, and were able to successfully
generate C header files from the models for use with TF-Lite Micro.

4.4.4 STM32 on-device inference and TinyOwl(Net training. After quantizing the models successfully, we came
to the most time-consuming and most challenging milestone of the project. As mentioned prior, there were 3
inference runtimes of interest, each of which came with its own slew of benefits and drawbacks. TinyEngine
promised the lowest latency and most optimized memory management, however its code generation was largely
deprecated and poorly documented. The code generation expected some metadata wrapped around the quantized
model that suggested the developers intended for a user to quantize their model with a specific backend and
TF-Lite conversion method, however this was not well specified. These issues led us to explore X-Cube-AL STM’s
proprietary, close-sourced inference runtime, which had code generation support and is optimized for STM
boards. The option for code generation made this runtime very appealing, however we were bottlenecked by
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our model size. The runtime’s code generation includes a profiling step in which the model uploaded during
code generation is profiled for the necessary Flash and RAM required to store and run inference on the model.
We realized that, in order to fit a model onto our board, it would need to be about 10X smaller than what we
currently had. This led us to design and train our TinyOwlNet model, and prolonged this milestone greatly
due to the unforeseen challenges with inference runtimes. We were able to design TinyOwlNet based on the
CNN encoder-type architecture present in MobileNetV2 and ProxylessNAS, but with roughly 10x fewer layers.
After quantizing the TinyOwINet model, we were able to successfully generate code for the X-Cube-AI runtime,
which we were able to validate on dummy inputs and pass off to the hardware team for integration with the
full end-to-end pipeline. It should be noted that we did not end up working with the inference runtime we were
considering, TF-Lite Micro, which is notably well-documented compared to the other two runtimes, but has little
to no code generation support, and as such we were worried about the possible time sink in writing the model
architecture code by hand.

4.4.5 Sleep mode. This milestone was not completed for the same reason that the hardware team could not
complete their sleep mode milestone. Sleep mode heuristics and power consumption profiling were slated as
outside the scope of the MVP nearing the mid-point of the quarter. Due to unexpected challenges and delays
with generating code for on-device inference, we were unable to complete the sleep mode milestone.

4.4.6 Final system test. This milestone was also not fully completed for the same reason that the hardware team
could not fully complete final system tests regarding power consumption and memory usage analysis with sleep
mode. We believe our final systems test, however, regarding the recording and inference pipeline meet our MVP
goals, and we would like to reiterate that gathering the aforementioned metrics would be a great target for the
REU students this summer!

5 Conclusion

This project successfully demonstrates the deployment of TinyML for real-time, long-term, and low-power
acoustic monitoring of animals on resource-constrained microcontrollers. The significance of this is that it is an
unobtrusive way to accurately monitor wildlife in its natural environment for a significant amount of time. The
benefit of using TinyML and not just recording audio is the classification element of the model. Storing all audio
would require enormous amounts of post-processing, whereas this approach allows for intelligently classifying
audio directly on-device, and only storing/recording significant noises, significantly reducing labor overhead and
allowing for longer deployment.

Our primary contributions include the complete end-to-end pipeline for acoustic classification of barn owls
on the STM32H7471-DISCO board. This encompasses real-time audio capture from the on-board microphone,
eliminating the need for an external microphone, real time mel spectrogram generation using optimized DSP
routines, and on-device neural network inference. We successfully designed and trained TinyOwINet, a custom
lightweight CNN architecture specifically optimized for microcontroller constraints, achieving 94.8% validation
accuracy while fitting within the 512KB D1 cache limitation. Our quantized TinyOwINet model requires only
260KB of RAM and 200KB of Flash memory, well within the constraints of typical microcontrollers, while
maintaining real-time performance for continuous acoustic monitoring.

We have created a successful foundational MVP for future work to be built upon. Although we have implemented
the full pipeline, there are many optimizations that should be done to fully take advantage of the microcontroller’s
capabilities. Sleep mode implementation as well as monitoring heuristics would significantly extend battery life
for longer field deployment periods. Multi-core optimization utilizing both the Cortex-M4 and Cortex-M7 would
allow for better processing efficiency as well as more complex models.
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This work represents a significant step towards utilizing TinyML in wildlife monitoring and allow researchers
with limited resources to study wildlife for long periods of time without disturbing their natural habitat, as well
as having to analyze large continuous audio datasets. By showing how TinyML can run efficiently on low-cost,
low-power microcontrollers, we open up new possibilities for scalable, distributed monitoring networks for
conservation research of endangered species.
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