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High frequency trading is the method of buying and selling stocks/assets at a rapid rate according to the fluctuations in
a market exchange. In order to remain competitive in trading, lower latency is needed in order to respond to fluctuations
in the exchange quicker, and this demand for computational power is typically not accessible by non-enterprise traders.
This paper explores the performance gain of implementing a high frequency trading pipeline within an FPGA + SoC and
communicating exchange information via Ethernet using relatively inexpensive hardware. In doing so, we successfully port a
complex, enterprise-level design to an accessible development platform, fitting it within the board’s resource constraints
and achieving a final design with a 100 MHz system clock, though the data path is limited by the 𝑓 𝑎𝑠𝑡_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 IP at 57.16
MHz. Additionally, we demonstrate how this platform serves as an educational tool, for students to experiment with HFT
algorithms by modifying Vivado HLS C++ code and validating their implementations through real-time data processing
demonstrations on cost efficient hardware.
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1 Introduction
High-frequency trading (HFT) relies on sub-microsecond response to market events—yet the required hardware
is often cost-prohibitive. We present an open, low-cost HFT pipeline on the PYNQ-Z2 FPGA+SoC card, featuring
(1) a PS-driven Ethernet interface over UDP with FAST compression, (2) an AXI-DMA→ FIFO→ PL loopback
for low-latency data ingress/egress, and (3) HLS-based order-book and threshold logic optimized to fit within 280
BRAMs. We migrate and modernize a Kintex-UltraScale reference design to Vivado/Vitis 2024.2, reduce the HLS
order-book depth from 4096→16 entries, and remap metadata arrays to LUTRAM, yielding a design with a 100
MHz system clock, though the data path is limited by the 𝑓 𝑎𝑠𝑡_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 IP at 57.16 MHz. Post-optimization, Block
RAM usage falls to 81% and slice-logic utilization to 23% of device capacity. Our work demonstrates how hobbyist
or academic users can explore FPGA-accelerated HFT on accessible hardware.We make three key contributions:

• A PS-driven Ethernet→DMA→FIFO loopback interface on PYNQ-Z2 supporting FAST-UDP.
• HLS-based order-book & threshold cores scaled from 4 096→16 entries and mapped to LUTRAM to fit 280
BRAMs.
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• An educational workflow—Vivado HLS C++ through real-time loopback validation—for hands-on HFT
algorithm exploration.

High frequency trading optimizations can occur in two areas: the network processing and the trading strategy.
Firstly, given that Ethernet is being used and the connection is as close to the exchange as possible to reduce
network travel time, Ethernet packets processing can be accelerated based on the network protocols used, such as
FAST UDP, and hardware utilization. As for trading strategy, optimizations can be implemented by the choice of
trading strategy and clever resource utilization and management of the order book. An order book is important
in high frequency trading because it keeps a local copy/cache of the state of the market exchange. In doing so, the
trading strategy can make quicker and better informed decisions on whether to buy, sell, or hold stocks/assets.

Field programmable gate arrays, or FPGAs, have been a popular choice in implementing high frequency trading
pipelines due to its ability to achieve low latency by parallelization of programmable logic. Even though the
FPGAs can accelerate high frequency trading due to its parallelization, it is still extremely flexible to program and
therefore is a better choice than application specific integrated circuits (ASICs) which can accelerate software
to a great degree but lack the flexibility and ability to adapt. FPGAs remain a viable choice in high frequency
trading because it balances low latency with flexibility, in which flexibility is necessary due to the constantly
changing world of high frequency trading strategies and algorithms. Commercial FPGA-based trading platforms
often use a hybrid CPU-FPGA architecture, leveraging PCIe and DMA for high-speed data transfer, a model that
aligns with the architectural goals of this project [11].

However, FPGA hardware can be expensive. Our goal in this project is to provide an inexpensive approach to
high frequency trading by using the PYNQ-Z2 board, which contains an FPGA and a SoC. Additionally, we plan
to reduce latency more by using an Ethernet connection to reduce the overhead of the network connection. The
methodology is to feed exchange data into PYNQ-Z2 through Ethernet, process and apply trading strategies in
the on-board FPGA, then send data from the PYNQ-Z2 back to the exchange. Our project would also provide the
opportunity for educational benefits as both the high frequency trading space and FPGA development is limited.

Our project iterates and adapts from [1], which already designs a high frequency trading pipeline using high
level synthesis. We iterated on the prior work by updating and adapting the implementation to our modern
PYNQ-Z2 board, optimized the resource over-utilization of the order book, updated Python dependencies to
Python3 from Python2.

The architecture for our high frequency trading pipeline includes an Ethernet module, UDP encoder/decoder,
FAST UDP processor, and trading strategy with order book management. The goal is to offload as much computa-
tion and logic to the programmable logic (PL) instead of the processing system (PS) because the PS is inherently
slower due to the OS and multiple software abstractions that exist in using it that cause overhead.

We use FAST UDP, which builds on standard UDP, to compress packets and minimize bandwidth. This tradeoff
is advantageous for us because in high frequency trading with FPGAs we have a large amount of data coming in
which stresses bandwidth yet we have hardware acceleration so that we can afford to spend some time parsing
data.
Lastly, we also implemented our own Ethernet module we hope to integrate into our pipeline in the future.

The isolated Ethernet module is capable of connecting the PYNQ board to a PC and communicate via Ethernet.
Messages can be sent from the PC to the PYNQ board, and the PYNQ board uses a direct memory access (DMA)
module to move the data from the PS to the PL in an efficient way. Once the data from main memory is converted
to an AXI stream and fed into a FIFO, it would hypothetically feed into the rest of the high frequency trading
pipeline. Currently it just routes data back to the DMA untouched and echoes the data from the PS back to the
PC via Ethernet.
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2 Related Work

2.1 Order-Book Management
Prior FPGA-accelerated order-book designs include Top-of-Book (store only best bids/asks) and full Depth/Price-
Aggregated strategies. Zheng [5] compares memory-efficient Price-Depth heaps. Ramesh [9] presents a BRAM vs.
CMOS buffer study that informed our port to the PYNQ-Z2’s resource limits.

2.2 Network Acceleration
Leber et al. [2] achieve microsecond-scale UDP packet processing by offloading MAC and IP/UDP parsing to
the FPGA. Chen et al. [6] demonstrate a custom 10 GbE stack with sub-microsecond latency against a PS-based
approach.

2.3 Ethernet on Zynq SoC
Because the Zynq’s PHY is wired into the PS MIO, McCabe [4] shows how to build a PS-DMA→ PL loopback
using PYNQ’s Jupyter interface—a foundation for our Ethernet module.

2.4 High-Level Synthesis for HFT
Boutros et al. [1] outline an HLS pipeline for HFT; we ported and modernized their Vivado 2016 design to
Vivado/Vitis 2024.2. Bloomberg’s QuickFAST library [3] provided reference decode logic for FAST (FIX Adapted
for Streaming), a compact protocol optimized for low-latency market data decoding.

3 Technical Material

3.1 Ethernet Loop Back
Because of the limited resources on Ethernet interface implementations available, we used [4] to design and
implement our own Ethernet module using Vivado’s IP block designs. Upon further research, we discovered the
Ethernet PHY is directly wired to the PS on the PYNQ board, so it is impossible to interface with the Ethernet
directly from the PL and thus bypass the PS. As a result, we pivoted to using the PS to receive packets from a
client connect via Ethernet and then utilizing a DMA to move the data from the PS to the PL. We use Python
sockets on both the PC and PYNQ Jupyter notebook to handle Ethernet communication. Figure 1 describes the
pipeline flow from the client/computer to the PL:

Fig. 1. Pipeline from client→ PS → DMA → FIFO → PL.

Within the Ethernet module, the ZYNQ PS is connected to the DMA and drives it. The DMA then connects its
main memory to stream connection to a FIFO block which will interface with the trading strategy logic within
the FPGA. There also exists a FIFO block that will handle the output of the trading strategy. As of the current
iteration of our project, the input FIFO block’s output is directly connected to the output FIFO block’s input in
order to create a loop back to test functionality of the Ethernet interface design.
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Fig. 2. The final implemented block design for the HFT accelerator pipeline.

4 Milestones

4.1 Original Milestones
At the beginning of the quarter, we established a comprehensive set of milestones aimed at building a high-
frequency trading (HFT) pipeline on the PYNQ-Z2 board. These milestones were structured around three
primary phases: literature review and toolchain setup, architecture and RTL implementation, and evaluation and
optimization.

• Weeks 1–2: Literature review, toolchain setup (Vivado 2024.2, Vitis, PYNQ).
• Weeks 3–5: Ethernet + UDP module design, PS → PL DMA integration.
• Weeks 6–8: FAST decoder, order-book HLS cores, threshold logic.
• Weeks 9–10: Full pipeline integration, board-level testing.
• Week 11: Performance benchmarking, resource optimization.

4.2 Revised Plan
Midway through the quarter, we encountered substantial challenges—especially with Ethernet integration—which
caused delays in early module testing. As a result, we revised our milestones as follows:

• Module-by-Module Verification: isolate test UDP parser and FIFO loopback.
• FAST Encoder Prototype: implement copy/delta operators byte-aligned output.
• Simulation-First Evaluation: defer board-level tests to focus on RTL correctness.
• MVP Scope Reduction: reclassify optimizations profit simulations as future work.
• Met: UDP loopback test, HLS order-book port, Vivado 2024.2 migration.
• Deferred: Board-level full-pipeline test, end-to-end latency benchmarking.

4.3 Achievements and Outcomes
We successfully met the following revised goals:

• Integrated and validated the full HLS pipeline on the PYNQ-Z2 hardware loopback interface.
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• Built and validated individual modules including a UDP parser and an isolated Ethernet loopback test
module.

• Maintained and ported an existing FAST data processing repository from Vivado 2015/2016 to Vivado
2024.2, resolving outdated syntax and restoring missing project components.

• Developed custom RTL glue logic to connect various IPs and streamlined build complexity by removing
unnecessary overhead.

• Initiated work on a modular FAST encoder design, targeting compliance with the binary FAST specification.

4.4 Unmet Milestones and Justifications
• Full PYNQDeployment:While originally a core milestone, we deprioritized board deployment after realizing
the complexity of integrating all modules in time. We chose instead to focus on simulation and architectural
validation.

• Optimization: Because the full pipeline was not integrated by the end of the quarter, optimization was
deemed premature. We planned to revisit this after establishing correct functional behavior and baseline
performance.

• Profit Simulation: We were not able to simulate profits on recorded/live data, as this depended on full
module integration and a complete trading loop.

5 Final Implementation and Optimization
The primary challenge of this project was porting a large, resource-intensive design intended for a Xilinx Kintex
UltraScale FPGA onto a significantly smaller and more resource-constrained Zynq-7020 SoC on the PYNQ-Z2
board. This required a multi-stage process of architectural modification, logic optimization, and systematic
debugging.

5.1 Architectural Adaptation for PYNQ-Z2
The original design from [1] utilized a 10G Ethernet MAC directly in the programmable logic. On the PYNQ-Z2,
the Ethernet PHY is connected to the Processing System (PS) via MIO pins, necessitating a different approach.
Our architecture leverages the PS for Ethernet packet handling and an AXI Direct Memory Access (DMA) engine
to transfer data between the PS and the PL.

A significant issue was encountered with the AXI4-Stream Switch IP, which was used to merge multiple data
streams into the DMA. The IP incorrectly inferred the width of its physical ports, leading to persistent build
errors. The final, working architecture replaces the AXI4-Stream Switch with an AXI4-Stream Combiner, followed
by an AXI4-Stream Width Converter to correctly merge the streams and match the DMA’s data width. Figure 3
illustrates this PS-driven DMA → input/output FIFO loopback pipeline.

5.2 HLS Core and Resource Optimization
The most significant barrier to implementation was resource over-utilization. The original design, intended
for a large UltraScale device with over 4,000 BRAMs, far exceeded the 280 BRAMs available on the PYNQ-Z2’s
Zynq-7020. The primary consumer of BRAMs was the order_book HLS core.

(1) Order Book Capacity Reduction: We progressively reduced the depth of the order book within the HLS
source code (specifically, the CAPACITY define in priority_queue.hpp) from its original size of 4096 down
to a final size of 16.

(2) BRAM→LUTRAMMapping:We identified several small, non-performance-critical arrays within the
order_book core used for tracking empty slots. We used the #pragma HLS RESOURCE directive to explicitly
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Fig. 3. High-frequency trading pipeline on the PYNQ-Z2, showing the PS driving an AXI-DMA into an input FIFO, the
loopback into the output FIFO for testing, and the connection to PL trading logic.

map these arrays to distributed RAM (LUTRAM) instead of Block RAM, freeing the limited BRAM blocks
for the main heap storage.

Fig. 4. Finalized High-frequency trading block design: synthesized, implemented and successfully generated bitstream

5.3 Build Process and Debugging
The porting process uncovered several tool-related issues that required systematic debugging. A complete, clean
build of the project from scratch was automated using a master Tcl script (rebuild_hft_project_final.tcl).
This script handled project creation, IP repository setup, HLS core synthesis, block design creation, and the final
implementation flow.
Key debugging challenges that were overcome included:
• Vivado IP Cache Inconsistency: Vivado frequently used stale, cached versions of our HLS IPs instead of
newly synthesized ones. This was resolved by deleting the HLS project directories before each synthesis
run and using the upgrade_ip [get_ips] command in the main Vivado build script to force the tool to
use the latest IP versions.
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• HDL Generation Bug: An apparent bug in the Vivado 2024.2 block design HDL generator produced a
VHDL syntax error related to LED concatenation logic. This was bypassed by removing the logic from
the block design and creating a separate, manually-coded VHDL module (led_driver.vhd) which was
instantiated in the top-level wrapper.

• Interface Naming Discrepancies: Interface names for HLS IP cores changed between the Vivado 2016.3
version used in the original project and our target version of 2024.2. This was diagnosed by creating debug
Tcl scripts to print all available interface names, allowing us to use the correct names for all AXI-Lite and
AXI-Stream connections.

6 Educational Platform for HFT Algorithm Development
Beyond the technical implementation, our project serves as a comprehensive educational platform for students
to experiment with high-frequency trading algorithms. This platform bridges the gap between theoretical HFT
concepts and practical FPGA implementation, providing hands-on experience with real hardware acceleration.

6.1 Student-Friendly Algorithm Development Workflow
Our platform enables students to develop and validate HFT algorithms through a straightforward workflow:
(1) Algorithm Design in Vivado HLS: Students can modify the C++ source code for the simple_threshold

HLS core, implementing their own trading strategies. The modular design allows for easy modification of
threshold values, decision logic, and order book interaction patterns.

(2) Automated Build Process: Using our provided Tcl scripts, students can synthesize their modified algo-
rithms into hardware IP cores without needing deep knowledge of RTL design or FPGA architecture.

(3) Real-Time Validation: The working_hft_demo.py script provides immediate feedback on algorithm
performance by processing live data streams and displaying real-time metrics including data processing
rates, throughput, and system stability.

6.2 Algorithm Validation and Testing Framework
The platform includes a comprehensive testing framework that allows students to validate their HFT algorithms:

• Real-Time Data Processing: The system processes multiple data types (MARKET_DATA, ORDER_DATA,
PRICE_UPDATE, TRADING_DATA) in real-time, providing realistic testing conditions for algorithm
development.

• System Stability Monitoring: Students can observe their algorithms’ impact on overall system stability,
including DMA operations, memory usage, and processing pipeline efficiency.

• Performance Metrics: The demo provides quantitative feedback including data processing rates, packet
counts, and system resource utilization, enabling students to optimize their algorithms.

6.3 Educational Benefits and Learning Outcomes
This platform addresses several key educational challenges in HFT and FPGA development:

• Accessibility: By using the affordable PYNQ-Z2 board, students can experiment with FPGA-accelerated
HFT without requiring expensive enterprise hardware.

• Practical Experience: Students gain hands-on experience with real FPGA hardware, Vivado HLS develop-
ment, and high-frequency trading concepts.

• Algorithm Validation: The immediate feedback loop allows students to iterate on their trading strategies
and see the impact of their modifications in real-time.

• Industry-Relevant Skills: Students develop skills in modern FPGA development tools, HLS programming,
and financial algorithm implementation.
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6.4 Example Student Workflow
A typical student workflow using our platform might involve:

(1) Modifying the threshold values in the simple_threshold HLS core to implement a new trading strategy
(2) Rebuilding the project using the provided Tcl scripts
(3) Loading the new bitstream onto the PYNQ-Z2 board
(4) Running working_hft_demo.py to validate the algorithm’s performance
(5) Analyzing the real-time output to understand the algorithm’s behavior
(6) Iterating on the design based on observed performance
This workflow provides students with a complete understanding of the HFT development process, from

algorithm design to hardware implementation and validation.

7 Results and Evaluation

7.1 Resource Utilization
After extensive optimization, the final design successfully fits within the resource constraints of the PYNQ-Z2’s
Zynq-7020 device. As shown in Table 1, BRAM utilization dropped from 283 to 227 blocks (19.8%).

Table 1. Resource Utilization Before vs. After Optimization

Resource Before After Improvement

Slice LUTs 77,159 17,926 76.8%
Slice Registers 26,620 25,866 2.8%
Block RAM (18K) 283 227 19.8%
DSPs 118 118 0.0%

7.2 Educational Platform Validation
Our platform successfully demonstrates its educational value through comprehensive testing and validation.
The system processes multiple data types including market data, order data, price updates, and trading data,
providing students with realistic testing environments for their HFT algorithms.
The real-time demonstration capabilities show:
• Stable Data Processing: The system maintains stable operation over extended periods without crashes,
demonstrating reliability for educational use.

• Multiple Data Types: Students can test their algorithms against different market scenarios including
market data packets, order updates, and price changes.

• Immediate Feedback: The platform provides real-time metrics including packet counts, data processing
rates, and system stability indicators.

• Iterative Development: Students can modify their algorithms, rebuild the system, and immediately test
the changes, creating an effective learning loop.

7.3 Performance
The final design achieves a 100 MHz system clock, though the data path is limited by the 𝑓 𝑎𝑠𝑡_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 IP
operating at 57.16 MHz. While a full round-trip latency benchmark on physical hardware is pending, the
individual HLS core performance metrics provide insight into the system’s potential. Table 2 reports each core’s
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Fig. 5. Resource utilization percentage comparison. The "Before Opt" state represents the first build attempt that passed
synthesis but failed implementation due to BRAM over-utilization. The "After Opt" state shows the final, successful imple-
mentation.

maximum frequency and clock period. The 𝑓 𝑎𝑠𝑡_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 IP operates at a lower maximum frequency, which
establishes the effective clock speed for the entire data path.

Table 2. HLS Core Performance Metrics (Post-Synthesis)

IP Core 𝐹max (MHz) Period (ns)

fast_protocol 57.16 17.50
order_book 137.19 7.29
simple_threshold 137.81 7.26
microblaze_to_switch 285.76 3.50
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8 Conclusion
This project demonstrates a cost-effective and educational approach to building a high-frequency trading (HFT)
subsystem using the PYNQ-Z2 board. By adapting and maintaining an existing FPGA-based HFT repository, we
successfully ported a previously enterprise-level architecture to an affordable, accessible development board.
Our updated implementation is compatible with Vivado 2024.2 and Vitis 2024.2, addressing outdated syntax and
missing project components while preserving the core low-latency functionality of the original design.

Through this work, we achieved a working FAST market data parser over UDP, integrated with a modular
architecture using AXI streams. Our design enables timestamping of outgoing orders for latency profiling, laying
groundwork for further in-FPGA trading algorithm development. We also developed and validated an Ethernet
loopback module, setting the stage for a complete end-to-end pipeline with real-time market data ingestion and
order transmission.

Most importantly, our platform serves as a comprehensive educational tool for students to experiment with
HFT algorithms. By providing a complete workflow from Vivado HLS C++ development to real-time validation
on FPGA hardware, we bridge the gap between theoretical HFT concepts and practical implementation. Stu-
dents can modify trading algorithms, synthesize them to hardware, and immediately validate their performance
through real-time data processing demonstrations. This educational aspect makes FPGA-accelerated HFT acces-
sible to a broader audience, enabling hands-on learning in both FPGA development and financial algorithm design.

In a domain where low latency often comes at a high cost, our project showcases how academics and hobbyist
developers can explore HFT systems without sacrificing performance or flexibility. This effort not only bridges a
technical gap between FPGA projects and modern tools, but also opens up opportunities for deeper exploration
of trading strategies, networking protocols, and system-level optimization in high-frequency trading, while
providing valuable educational resources for the next generation of HFT developers.
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