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Human-following robots are increasingly vital in demanding fields such as construction, firefighting, search and rescue, and
maritime operations, where individuals often need to carry heavy equipment. Existing systems, however, typically lack the
capability to track users via wearable technology. To address this, we developed a wearable-controlled robot that combines
Bluetooth and computer vision (CV) for real-time user tracking. Initial exploration of Bluetooth-based following, using Angle
of Arrival (AoA) direction-finding, aimed to estimate the leader’s pose when out of the robot’s view. However, this method
proved unreliable due to significant data inaccuracies. As a more effective alternative, we implemented a vision-based tracking
system using a depth camera. YOLOv8 was used for person detection, with MediaPipe and OSNet providing robust feature
extraction and re-identification. Traditional CV techniques, including color-based tracking, further enhanced pose estimation
accuracy. We also successfully integrated smartwatch control, enabling intuitive user interaction with the robot. This hybrid
system allows the robot to follow the user reliably in complex environments. In conclusion, while Bluetooth tracking showed
limitations, computer vision provided a feasible and accurate solution for autonomous human-following, with smartwatch
control offering an added layer of usability. Future work will focus on refining sensor fusion and model performance.
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1 INTRODUCTION
Robots that are capable of following humans have the potential to significantly enhance various aspects of daily
life, professional work, and emergency response operations. The concept of deploying robots for tasks that are
dirty, dull, or dangerous—often referred to as the "3Ds" of robotics—is well-established and widely supported
within the robotics community [9]. From bomb disposal and hazardous material inspection to delivering first-aid
kits in search and rescue missions, the application of autonomous followers in high-risk environments is both
compelling and impactful.
To date, most research and commercial implementations of follower robots have focused on small-scale

platforms or drones. For example, systems like Skydio have demonstrated autonomous visual tracking in aerial
drones for tasks such as cinematography and inspection [19]. In the domain of ground robotics, follower behavior
has often been explored in structured environments like airports, where wheeled robots assist passengers [16].
However, few systems have explored the use robots for user-following in unstructured or disaster environments [8].
Current search and rescue robots are typically teleoperated, requiring human operators to focus on navigation and
control. This divided attention reduces the operator’s ability to concentrate on high-level tasks such as situational
assessment or victim identification. A robot capable of autonomously following a human operator—while equipped
with perception sensors and payload capacity—would greatly enhance mission efficiency by allowing the operator
to focus on complex, cognitively demanding tasks. Moreover, a legged robot offers mobility advantages in rough
terrain, where wheeled or tracked platforms struggle. By autonomously following a responder through such
environments, the robot can serve as both a mobile sensor platform and a load-carrying assistant, increasing the
effectiveness of field operations and reducing physical strain on human team members. Despite the growing
adoption of robotic technologies in industrial and service sectors, there remains a lack of user-following robots
designed for large-scale, legged platforms capable of operating in disaster response scenarios. In this paper,
we present a feasibility study of the FollowMe system—an approach that leverages both vision and Bluetooth
technologies to enable robust user-following capabilities in legged robots. Specifically, the system utilizes visual
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tracking when the human leader remains within the field of view of the onboard camera, and seamlessly
switches to Bluetooth-based localization when the leader moves out of the camera’s frame. This dual-modality
approach aims to enhance reliability and extend the operational range of the robot in complex and unstructured
environments.

1.1 Challenges
Like many development projects, ours faced a number of challenges during implementation. One of the first
was getting reliable communication between the smartwatch and the computer. This involved learning how
the connection protocols worked and properly configuring the XML file in the smartwatch app to send secure,
device-specific JSON commands. Another issue was getting an accurate BLuetooth position fix from just one
antenna. Ideally two or more spatially-seperated locators would let us triangulate the device’s position. Getting a
robot to follow a human leader reliably is itself a major challenge. The system has to track the correct person,
adapt to different lighting conditions, adjust its speed based on the leader’s movement, and most importantly,
navigate safely in real time without hitting obstacles or the person it’s following. Achieving this requires solving
problems across several areas—computer vision, real-time processing, motion control, and sensor integration.
Integrating the system into Spot’s autonomy framework also came with its own difficulties. We had to install
many dependencies while keeping the robot’s built-in functions working correctly. On top of that, we needed to
tune motion commands, adjust parameters in the proportional controller, and improve the vision system to get
more accurate detection and tracking.

2 RELATED WORKS
Our research consists of four main parts. First, we developed a smartwatch-controlled robot to allow command
and control through wearable devices. Second, we studied the feasibility of using Bluetooth for a robot follower
system, focusing on communication range and stability. Third, we tested the use of a depth camera to enable the
robot to follow a target based on visual input. Finally, we designed and integrated a controller for the follower
robot to coordinate its movement with the leader robot using proportinal control.

2.1 Smartwatch-Based Control Interface
Recent advancements in wearable technology have led to numerous efforts to enable smartwatch-based control
of robots, particularly in human-robot interaction (HRI) contexts. Notably, systems such as iRoCo [22] utilize
motion-based control by estimating the user’s arm pose through Differentiable Ensemble Kalman Filters, enabling
robot teleoperation via smartwatch and smartphone fusion. While powerful, such systems require continuous
motion tracking, calibration, and substantial computational resources, limiting their accessibility and robustness in
noisy or constrained environments. Similarly, WearMoCap [21] supports multimodal motion tracking using smart
devices across various body placements. However, it suffers from sensor drift, sensitivity to device placement,
and potential user discomfort. Another related approach, presented in [23], uses machine learning to estimate
arm pose from smartwatch data alone, achieving good accuracy but at the cost of algorithmic complexity and
real-time constraints.

In contrast, our system simplifies the control interface by leveraging a button-based application on an Android
smartwatch, communicating discrete JSON-formatted commands via HTTP POST over Wi-Fi to a ROS 1-enabled
[11] robot. This method eliminates the need for motion tracking entirely, reducing system complexity and making
it inherently more stable and user-friendly. Our interface is also designed with accessibility in mind, incorporating
color-blind-friendly design elements to ensure inclusive. By focusing on reliable, repeatable commands through
tactile input, our approach addresses key limitations in prior work, complexity, sensitivity to sensor noise, and
accessibility, making it particularly suitable for educational, assistive, and field robotics applications.
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2.2 Bluetooth-based Follower
Bluetooth-based relative localization has gained traction as a lightweight and low-power alternative for human-
following robot systems, particularly in indoor environments were GPS is limited and not available. Prior studies
that rely on infrastructure-based localization using multiple synchronized receivers, such as Cominelli et al.
[2], our setup uses only one receiver to perform Angle of Arrival (AoA) estimation. This single-receiver design
simplifies deployment and avoids the need for fixed beacon infrastructure, making it suitable for mobile robots
operating in ad hoc environments. However, our experimental results reveal significant limitations in accuracy and
noise performance under real-world conditions. Despite the theoretical support for AoA and signal strength-based
localization, the estimated positions diverged substantially from ground truth, achieving only 5̃% accuracy in
controlled trials. These findings are consistent with other RSSI- and BLE-based systems such as those by Pradeep
et al. [10], who attempted to mitigate inaccuracies by combining RSSI with IMU data on smartphones. Similarly,
Satan and Toth [14] demonstrated proximity-based indoor localization using filtered RSSI and log-distance path
loss modeling, achieving reasonable room-level resolution but lacking angular precision. In contrast, more recent
systems like the UWB-based human-following smart stroller by Zhang et al. [25] offer centimeter-level accuracy
and robustness to interference but at the cost of greater power consumption and hardware complexity.

By focusing on a compact, infrastructure-free design, our system trades accuracy for portability and cost. We
decided not to continue spending time to optimize the Bluetooth based follower, and moving forward using
vision-based follower because of the limited time for this project for this class. However, these limitations motivate
future work toward integrating filtering algorithms, additional inertial sensing, or multi-receiver augmentation
to enhance tracking robustness in both indoor and semi-structured outdoor settings.

2.3 Camera-based Follower
Our approach to computer vision-based person tracking builds upon a variety of prior methodologies. The
primary reference for our work is a comprehensive survey [20]. A range of modalities were examined, including
RGB, depth, skeletal data, and infrared. Various methods for integrating these modalities were explored, and
their relative efficacy was evaluated. Based on these findings, a multimodal sensor fusion approach utilizing
RGB, depth, and skeleton tracking was selected. These approaches serve as a good foundation for person-specific
tracking. Naturally, their effectiveness is maximized when individuals within the frame exhibit distinctions across
the specified modalities [6].

We were confronted with the challenge of integrating features derived frommultiple modalities of an individual
to determine if they matched a target subject. Two primary fusion methods were considered: feature-level
fusion and score-level fusion, each with inherent advantages and disadvantages [4]. Feature-level fusion entails
concatenating feature vectors from each modality into a unified vector, which is subsequently used to compute a
similarity score against the target using machine learning. This necessitates training a model to map the combined
feature vector to a score. In contrast, score-level fusion involves extracting feature vectors for each modality and
calculating individual modality-specific scores. A weighted average of these modality scores is then computed to
produce the final score. We employed score-level fusion due to its greater flexibility for manual optimization and
its avoidance of training a machine learning model, a process that would have required extensive labeled data
and time, which were limited.

We used four main features: RGB, depth, skeleton information, and forearm color. For RGB and depth, we used
OSNet because it maintains accuracy while still being very fast [26]. For skeleton tracking, we used MediaPipe to
find the landmarks on each person and extract features from them that give us information about their pose [7].
To characterize the color of the user’s forearm, we computed a color histogram from the segmented forearm
region. This feature was developed for our application as we did not identify a similar method in the existing
literature.
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Furthermore, the widely employed Kalman Filter has been integrated into this program. This filter is frequently
utilized in person re-identification algorithms [3]. Directional movement of the target person is continuously
monitored, and subsequent location is predicted. This prediction is utilized to restrict the search area for potential
targets. Specifically, given the current position and direction of movement, the target will only be sought within
the predicted region in the subsequent frame. This methodology enhances target tracking efficacy during instances
of temporary occlusion. The Kalman filter remains a robust recovery mechanism for tracking, demonstrating
consistent algorithmic improvement in recent years [24].

Alternative approaches that were explored but ultimately discarded should be mentioned. Initially, person re-
identification was approached using YOLOv8 and DeepSort for the detection and tracking of multiple individuals
[27]. While we did still use YOLOv8, we did not continue to use DeepSort. The person re-identification in
the examined system demonstrated adequate performance but exhibited limitations in handling occlusions
and instances where the target exited the frame. Furthermore, the system frequently reassigned identifiers to
individuals or generated new identifiers upon their reappearance within the frame. These deficiencies rendered
the system unsuitable for our purposes, leading to the decision to develop a proprietary re-identification system
instead of adopting the existing solution. Similar shortcomings were observed in evaluations of alternative
models, such as MobileNetV2 [13]. These models exhibit substantial computational latency, and the current
robotic platform lacks a GPU. Consequently, while potential enhancements to the DeepSort algorithm might
have been feasible for our specific application, integrating additional functionalities would be difficult due to the
performance overhead already imposed by the DeepSort implementation.

3 SYSTEM ARCHITECTURE

3.1 Hardware Architecture and System Components
In the FollowMe project as shown in the figure 1 , we employed a range of hardware components to enable robust
and versatile human-following capabilities for a Spot [1] legged robot platform. The primary robotic platform
used is the Boston Dynamics Spot, a quadruped robot known for its mobility and stability across varied terrain.
To facilitate human-robot interaction and control, we used the Samsung Galaxy Watch Ultra, which allowed the
user to issue commands and control the robot’s behavior remotely. For visual tracking, we integrated an Intel
RealSense D455 depth camera [5], enabling the robot to perform computer vision-based following by detecting
and tracking the user in 3D space. To implement Bluetooth-based following, we utilized the BG22 Bluetooth Dual
Polarized Antenna Array Pro Kit from Simplicity Studio [17], in combination with the EFR32BG22 Thunderboard
Kit [18]. In this configuration, the user carries the Thunderboard, while the BG22 system is mounted on the robot.
This setup enables the robot to estimate the relative distance and orientation of the user via Bluetooth signal
analysis. All onboard computation is handled by an Intel NUC Mini-PC featuring an Intel Ultra 9 CPU with 22
cores (no GPU). This computer is mounted on the robot and processes all sensor inputs and follower algorithms
in real time, transmitting commands directly to Spot’s motion control interface. The computer is connected via
WiFi to the same hotspot that the smartwatch is connected to. To enhance the reliability of the vision-based
follower, we also used a pair of arm sleeve protectors in red and blue colors. These served as easily detectable
visual markers to improve person tracking performance in varying lighting conditions.

3.2 Software Architecture and System Integration
The software framework as shown in the figure for the FollowMe project integrates multiple platforms to enable
seamless interaction between sensing modules, user interfaces, and robotic control. The core of the system is
built upon the Robot Operating System (ROS) Noetic running on Ubuntu 20.04, which facilitates communication
between the robot, sensors, and high-level software modules. ROS was used to handle sensor data acquisition,
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Fig. 1. Hardware system

message passing, and actuation commands via the cmd_vel interface, a standard velocity command topic in
mobile robotics.
For the development of the user interface and control layer, we used Android Studio to create a custom

Android-based smartwatch application, which allows users to issue motion commands and initiate tracking
modes remotely. The smartwatch communicates with the robot via a wireless channel, providing a portable and
intuitive method for human-robot interaction.
To support Bluetooth-based localization, we utilized Simplicity Studio from Silicon Labs to program the

EFR32BG22 Bluetooth Direction Finding Kit. This platform was essential for implementing the Bluetooth Angle
of Arrival (AoA) positioning algorithm, enabling the robot to estimate the relative position of the user based on
direction-finding capabilities.
Our system design builds upon prior work such as the Autonomous Exploration and Mapping Payload Inte-

grated on a Quadruped Robot [12], which implemented full Simultaneous Localization and Mapping (SLAM),
autonomous exploration, and navigation on a legged platform. While our architecture leverages similar founda-
tional components—such as the use of ROS and real-time localization pipelines—the FollowMe system is modular
and designed to be independent of any specific robot platform. It can be deployed on any robot compatible with
ROS1 Noetic, provided it supports the necessary hardware interfaces and accepts standard velocity command
messages.

This modularity ensures that the FollowMe system can be readily adapted for a variety of use cases in human-
robot interaction, search and rescue, or field robotics, without being constrained to a single robotic architecture.
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Fig. 2. System Architecture

4 METHODOLOGY

4.1 Interface Design
The smartwatch application features a user interface designed to prioritize intuitive flow, accessibility for color-
blind users, and human decision-making. It was developed and built on Wear OS from Android Studio.

4.2 Layout
When the application is launched on a smartwatch device, the user is directed to the Welcome page to power
on and claim the robot. From there, the user can be navigated to the Commands page, which offers basic and
advanced commands. Basic commands include sit, stand, dock, and undock. Advanced commands include teleop
mode and follow mode. In teleop mode, the user is sent to a new page that allows them to manually control the
robot’s movement in any direction and rotation. In follow mode, the user is sent to a new page that allows them
to select QR Follower, which enables the robot to track a QR code, or CV Follower, which enables the robot to
track the user via a computer vision based tracking algorithm. Two additional follow modes, Sensor Follower and
Fusion Follower, are displayed and planned but have not been implemented.

An Emergency (E-Stop) option is available when the robot is claimed. It appears as a button and can be activated
by the user at any time in the event of an emergency. The robot will automatically freeze and dismiss the previous
action the user specified it to be in. Additionally, a Back option is avaliable once the robot has started. The user
has the ability to press back button in the case of any different decisions.

4.3 Implementation
The user interacts with the robot via a interface on the smartwatch device that sends commands in JSON format
using an HTTP POST request. The server, running on a designated IP address, receives the message and either
calls a ROS service or publishes to specific ROS topics. The available services include: sit, stand, dock, undock,
and acquisition. The topics that control robot motion include: up, down, right, left, and any rotation. When the
"follow" service is triggered, the FollowMe engine begins listening to both the computer vision (CV) node and
the Bluetooth node. It determines the target’s position based on the selected following mode. Although only the
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Vision mode is currently implemented, the system includes a pipeline for Bluetooth-based following, which is set
up but not yet deployed. Once the target’s position is identified, a lightweight proportional controller drives the
robot toward the leader’s position with the desired heading and speed. The robot continues to follow the user
as long as the user remains in view and the camera can reliably detect them. Our design emphasizes keeping a
human-in-the-loop approach to enhance safety and prioritize human judgment over autonomous decisions.

Fig. 3. Welcome Interface

Fig. 4. Command Interface

Fig. 5. Advanced Command Interface
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4.4 Bluetooth Follower
4.4.1 System Concept. A single locator—the Silicon Labs BG22 Bluetooth Dual Polarized Antenna Array Pro Kit
(BRD4191A)—is equipped with a 4 × 4 dual-polarised uniform rectangular antenna (URA). It tracks one or more
BLE tags whose target form factor is the Samsung Galaxy Watch Ultra or a similar device that uses its native
Bluetooth radio; during development we emulated these Bluetooth tags with EFR32BG22 Thunderboard Kits
(BRD4184A) because they offered easier firmware access while exhibiting comparable over-the-air behavior. The
tag periodically appends a Constant-Tone Extension (CTE) to its advertising packets. Each CTE providfes a burst
of phase-coherent IQ samples from which the locator estimates the tag’s three-dimentional position at up to
50 Hz. These positions are relayed to the robot that executes a real-time "follow-me" behavior as discussed in
Section 4.6.

4.4.2 Angle-of-Arrival (AoA) Measurement. The IQ samples form a spatial snapshot across the URA. After carrier-
frequency compensation, the locator feeds this snapshot into a super-resolutionMUSIC estimator. MUSIC searches
for peaks in the spatial-spectrum function, yielding azimuth 𝜃 and elevation 𝜙 with sub-degree resolution [15]. A
lightweight first-order IIR filter

𝛼𝑘 = (1 − 𝛽)𝛼𝑘−1 + 𝛽𝛼𝑘 , 𝛽 = 0.6 (1)
suppresses single-shot outliers.

4.4.3 Range Estimation from RSSI. Simultaneously, the locator measures the received signal strength indicator
(RSSI) during the CTE. Averaging across all antenna elements suppresses small-scale fading. The range is obtained
from the empirical log-distance model

𝜌 = 10𝐴 − 𝑟

10𝜂 (2)

where 𝑟 is the smoothed RSSI (dBm), 𝐴 the reference loss at 1 m, and 𝜂 the enviroment-specific path-loss
exponent. Outlier rejection rules ignore RSSI jumps greater than 8 dB to preserve robustness in multipath
conditions.

4.4.4 Position Synthesis. The AoA pair (𝜃, 𝜙) and range 𝜌 define a spherical coordinate in the locator frame. This
is converted to Cartesian coordinates via

𝑥 = 𝜌 sin𝜙 cos𝜃, (3)
𝑦 = 𝜌 sin𝜙 sin𝜃, (4)

𝑧 = 𝜌 cos𝜙. (5)
This position data is what is given to the motion controller discussed in Section 4.6.

4.5 Vision-based Follower
Our system is designed for the specific application of tracking a single, designated individual within a robot’s
field of view. This focused approach provides a key advantage over generalized multi-person re-identification
(Re-ID) systems, which must simultaneously track and differentiate all individuals in a scene. By concentrating
on a single target, we can implement a proactive data acquisition stage to build a robust and discriminative
feature profile of the person of interest before they are potentially obscured or confused with other individuals.
The core of this single-subject focus is the Acquisition Stage, an initial phase dedicated to enrolling the target
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person. Upon initiation, the system captures data for a predefined duration, typically 10-15 seconds, while the
target moves naturally within the frame. For each video frame processed, the system first uses a YOLOv8n object
detector to ensure only one person is present. If more than one individual is detected, the frame is discarded to
prevent ambiguous data collection. For the verified single person, a suite of feature extractors is then employed
to generate high-dimensional embeddings for each active modality. This process is repeated for every valid frame,
resulting in a rich, multi-modal dataset of feature samples, denoted as a set S, which forms the ground truth
against which all future candidates are compared.

Once a target is enrolled, the system transitions to the Tracking Stage. In this phase, the primary objective is
to consistently re-identify the target in every new frame. The process begins with candidate detection, where the
YOLOv8n model identifies all individuals in the current frame. Each detected person is then processed by the
same suite of feature extractors used during acquisition to generate a query feature set. Specifically, for RGB
appearance features, we utilize the OSNet model to produce a 512-dimensional vector from the person’s visual
appearance. To capture 3D shape, the corresponding depth map is normalized and fed into the same OSNet model,
yielding another 512-dimensional vector. For skeletal pose features, we use MediaPipe Pose to detect 2D body
landmarks, which we use to calculate proportions of the person’s body and put into a 61-dimensional vector.
Finally, for forearm color features, MediaPipe landmarks are used to isolate the forearms, from which normalized
30-bin color histograms are computed and concatenated into a 60-dimensional vector.
After feature extraction, spatiotemporal filtering and scoring are performed. A Kalman filter, initialized on

the target’s last known position, predicts the target’s bounding box to spatially constrain the search space. Only
detected persons with a significant Intersection over Union (IoU) with the predicted box are considered primary
candidates. Each of these candidates then undergoes a scoring process to determine their similarity to the enrolled
target. A fused score is computed as a weighted average of individual modality scores, where the score for a
single modality is determined by finding the maximum cosine similarity between the candidate’s feature vector
and all enrolled samples for that modality. This process is formally expressed by the following equation for a
query person Q:

Score(𝑄, 𝑆) = 1
𝑙𝑒𝑛𝑔𝑡ℎ(𝑀)

∑︁
𝑚∈𝑀

𝑤𝑚 ·
(
max
𝑠𝑚∈𝑆𝑚

cosine_similarity(𝑓𝑚,𝑄 , 𝑓𝑚,𝑠 )
)

In this equation, M is the set of all active modalities, 𝑤𝑚 is the predefined weight for modality m, 𝑆𝑚 is the
set of all enrolled feature samples for modality m, 𝑓𝑚,𝑄 is the feature vector of the query person Q for modality
m, and 𝑓𝑚,𝑠 is an enrolled feature vector from the sample set 𝑆𝑚 . The candidate with the highest score that also
surpasses a dynamically calculated re-identification threshold is designated as the target. This threshold is set as
a percentile of the scores computed during the acquisition phase. The score of each sample during the acquisition
phase is computed using the above equation, but with that specific sample left out. Once a person is identified
as the target, the system then updates the Kalman filter with this new position and publishes the person’s 3D
coordinates to the robot’s navigation topic.

Upon successful re-identification of the target, the system translates the 2D image coordinates into a 3D pose
in the robot’s reference frame. This is achieved through a deprojection calculation that utilizes the camera’s
intrinsic parameters about the ratio of pixels to meters. The target’s 2D position is taken from the center of its
bounding box, while its distance (Z coordinate) is determined by taking the median depth value from the aligned
depth map within that same box. These values are used to calculate the target’s real-world X and Y coordinates
in meters relative to the camera. The final 3D point (X, Y, Z) is then encapsulated in a PoseStamped ROS message
and published to a dedicated topic, providing the robot with the necessary coordinates to physically follow the
target.
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Fig. 6. Feature-extraction process

Fig. 7. Vision-based follower during the acquiring phase (indoor with good light conditions)

Fig. 8. Vision-based follower during the tracking phase (indoor with good light conditions)
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4.6 Motion Control Follower
In the FollowMe system, high-level commands are transmitted from the user interface as JSON-formattedmessages
via HTTP POST requests. These messages are received by a server-side component implemented in Flask, running
on a designated IP address within a ROS (Robot Operating System) environment. Upon reception, the server
either invokes a ROS service or publishes the command to relevant ROS topics. The system currently supports
a set of discrete services—such as sit, stand, dock, undock, and acquisition—and motion commands, including
forward, backward, left, right, rotate_left, and rotate_right. When the follow service is activated, the FollowMe
engine initiates data acquisition from both the computer vision (CV) node and the Bluetooth localization node.
The target’s position is estimated according to the selected tracking mode. At present, only the Vision-based
follower is operational, although the infrastructure for Bluetooth-based tracking has been developed and is ready
for future deployment.

Upon localization of the target, the robot is driven by a lightweight proportional controller, which adjusts its
heading and speed to align with the user’s position. The system continuously updates control signals based on live
sensory input, allowing the robot to dynamically follow the user as long as they remain within the field of view.
To ensure safety and user oversight, an emergency stop (E-Stop) function is available at all times. This feature
reflects the system’s commitment to a human-in-the-loop design paradigm, prioritizing human supervision and
intervention in real-time robot behavior.

𝑣 = 𝑘𝑑 · 𝑒𝑑 (6)
𝜔 = 𝑘𝜃 · 𝑒𝜃 (7)

The robot uses a proportional controller where the linear velocity 𝑣 = 𝑘𝑑 · 𝑒𝑑 and angular velocity 𝜔 = 𝑘𝜃 · 𝑒𝜃 .
Here, 𝑒𝑑 is the distance error, 𝑒𝜃 is the heading error, and 𝑘𝑑 , 𝑘𝜃 are proportional gain constants for distance and
heading, respectively.

5 RESULTS
In this section, we present the evaluation of the vision-based follower, which served as the primary method
for enabling the robot to autonomously track and follow a human leader. All experiments were conducted
using a single front-facing RGB-D depth camera mounted on the robot, and the follower was triggered via a
smartwatch interface. Experiments were performed both indoors and outdoors. Indoor tests were conducted
under three different lighting conditions: (1) sufficient lighting, (2) low lighting, and (3) no lighting (pitch black).
Four participants were involved in the evaluation.
Each trial began with the leader initiating a 15-second image acquisition phase using the smartwatch app,

ensuring that they were the only subject within the robot’s camera field of view. Following acquisition, the
leader triggered the vision-based tracking module, and the robot began following the leader using visual features
captured during the initial phase. We conducted 10 trials per condition and recorded the success rate of following.

To enhance robustness, we evaluated four scenarios under each lighting condition:
(1) Leader only in the camera frame
(2) Leader with other people present
(3) Leader wearing armbands (color-based feature aid)
(4) Leader without armbands
The results are summarized in Table 1.
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Table 1. Performance of Vision-Based Follower Across Conditions

Condition One Person (%) 2+ People (%) With Armbands (%) Without Armbands (%)
Indoor (Good Light) 100 90 90 90
Indoor (Low Light) 100 92 95 87
Indoor (No Light) 0 0 0 0
Outdoor (Daylight) 100 95 95 90

6 Observations and Limitations
We observed that when the image acquisition phase occurred in high lighting but tracking continued under lower
lighting, tracking performance degraded significantly. The vision-based system completely failed to function in
total darkness, due to the camera’s inability to capture meaningful features without illumination.

Our current system uses only a single RGB camera, which limits field of view and depth perception. In certain
cases, the leader had to step back or forward to re-enter the detectable range. The minimum effective distance for
the camera was found to be approximately 0.9 meters, and the maximum effective tracking distance was around
9 meters.

These findings highlight the promise and current limitations of monocular vision-based following, particularly
under challenging lighting and environmental conditions.

7 Conclusion
In conclusion, the FollowMe project successfully demonstrated the feasibility of enabling a robot to autonomously
follow or be controlled by a user through multiple human-robot interaction modalities. Our experiments showed
that smartwatch-based control is not only technically viable but also highly convenient, offering an intuitive
interface for teleoperation. Although initial tests revealed that Bluetooth signal-based localization is inherently
noisy, we believe that further research—particularly in filtering techniques and sensor fusion—could significantly
improve tracking performance. Importantly, Bluetooth does not require continuous visual contact with the user,
offering a distinct advantage over vision-based systems in cluttered or occluded environments.
In the vision-based tracking approach, we demonstrated the capability to dynamically capture and follow a

target user with approximately 90% accuracy in crowded scenarios. However, this method remains sensitive to
lighting conditions, limiting its robustness in poorly lit or rapidly changing environments. The integration of these
control strategies—smartwatch input, Bluetooth-based tracking with proportional control, and vision-based user
recognition—shows promise for developing intelligent follower robots capable of operating in GPS-denied, uneven,
or complex terrains. Such autonomous systems could be invaluable in disaster response, remote inspection, and
other “dull, dirty, and dangerous” applications where reliable human-following behavior is critical.
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