
FishSense - iOS Application

ANUSHRI ESWARAN, University of California San Diego, USA
ZIYUAN LIN, University of California San Diego, USA
TANISHQ RATHORE, University of California San Diego, USA
CHRISTOPHER CRUTCHFIELD, University of California San Diego, USA

Accurate fish measurement and species identification are vital for conservation and fisheries research, yet existing methods
are often invasive, inconsistent, or reliant on expert input. While existing alternatives use AI-driven photo analysis, they can
suffer from poor accuracy due to variable image conditions and lack of depth perception. FishSense addresses this challenge
by combining LiDAR-based spatial scanning with machine learning classification in a user-friendly iOS application. Using
mobile LiDAR, the app captures precise, fish length measurements, while a convolutional neural network identifies species
from images. These results establish a more robust and ethical method for catch-and-release practices and data collection.
By integrating spatial and visual data in a mobile, FishSense sets a new standard for scalable, non-invasive fish monitoring
tools, enabling broader participation in ecological research and improving the quality of citizen science data. Crucially,
FishSense operates entirely offline, running AI on the edge via optimized ONNX models on Apple Metal, ensuring fast, private,
and reliable performance without internet dependency. Evaluations demonstrate that FishSense achieves a median length
measurement error of approximately 7.5% on all devices, and a species classification accuracy of 70.69%.
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Environmental sciences; •Human-centered computing→ Mobile computing; • Software and its engineering→ Real-time
mobile systems; Concurrent programming languages.

Additional KeyWords and Phrases: LiDAR, depth sensing, machine learning, convolutional neural networks, mobile computing,
iOS app development, ecological monitoring, fish species identification, Rust programming

ACM Reference Format:
Anushri Eswaran, Ziyuan Lin, Tanishq Rathore, and Christopher Crutchfield. 2025. FishSense - iOS Application. UCSD CSE
145/237D 1, 1 (June 2025), 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Monitoring fish populations—knowing both who’s in the water and how big they are—is fundamental to sustain-
able fisheries management, conservation research, and recreational angling. Traditionally, scientists and anglers
alike have relied on manual tools such as calipers and measuring boards, combined with expert judgment for
species identification. These methods are time-consuming, labor-intensive, and can pose physical risks to fish
through excessive handling. In practice, issues such as measurement error, poor lighting, and observer fatigue
can introduce significant variability into collected data, undermining its reliability for long-term monitoring or
high-throughput surveys.
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Over the past decade, computer vision systems based solely on RGB imagery have begun to automate parts of
this workflow. Deep neural networks can now detect fish outlines and infer body length from a single photo.
While this represents a meaningful step forward, such systems are fundamentally limited by the absence of true
depth information. Their size estimates can vary significantly due to changes in camera angle, subject distance,
or background clutter. Deploying these models in real-world field conditions often requires careful calibration
and controlled setups—constraints that are difficult to satisfy on rivers, lakes, or small boats.
The emergence of consumer-grade LiDAR sensors on modern iOS devices presents a game-changing oppor-

tunity. These sensors allow handheld devices to capture synchronized RGB images and precise depth maps in
real time, enabling direct spatial measurement without the need for additional equipment. Motivated by this
capability, we developed FishSense: a fully on-device iOS application that fuses LiDAR-based geometry with
convolutional neural network (CNN) classification to enable rapid, non-invasive fish monitoring. By leveraging
AI on the edge—running optimized ONNX models on Apple Metal—FishSense performs all inference locally,
providing estimated length (in centimeters) and species predictions within seconds, without requiring cloud
connectivity or heavy infrastructure.

This edge compute approach not only enhances speed and privacy but also democratizes the science, making
advanced fish monitoring accessible to a broad range of users in diverse and dynamic field conditions. Our key
contributions are as follows:

• Integrated pipeline:We utilize Apple’s ARKit LiDAR framework for head-to-tail segmentation and length
computation, paired with an ONNX-converted CNN model for species classification. The entire system is
orchestrated within a Rust-backed engine for low-latency performance on-device.

• Rigorous evaluation:We curated and annotated a diverse dataset encompassing multiple species, lighting
conditions, and aquatic environments. Using this dataset, we demonstrate a median length error of 7.5%
and a species classification accuracy of 70.69%, outperforming prior mobile-only methods.

• Field-ready usability: FishSense requires no internet connectivity and leverages only built-in hardware,
reducing handling time and stress on fish. This aligns with best practices for catch-and-release fishing and
enables citizen scientists to contribute high-quality ecological data from virtually any location.

The remainder of this paper is structured as follows: Section 2 reviews related work. Section 3.1 outlines our
system architecture and algorithms. Section 3.2 describes our dataset collection and annotation methodology.
Sections 3.2.7 and 4.5 present experimental results. Section 6 discusses key technical challenges and our milestone
work. Finally, Section 7 concludes with directions for future improvement.

2 Related Work

2.1 Image-Based Fish Length Estimation
Numerous non-invasive techniques have been developed to estimate fish length using image-based analysis.
Monkman et al. [10] proposed a computer vision pipeline that uses region-based convolutional neural networks
(R-CNNs) to estimate the length of European sea bass from single images, automating a traditionally manual
process and reducing measurement error significantly. Álvarez-Ellacuría et al. [16] expanded this direction by
applying instance segmentation (Mask R-CNN) to detect fish contours in commercial landings, enabling accurate
length prediction with only a few centimeters of error. In aquaculture environments, Tonachella et al. [14]
developed a vision-based pipeline that achieved length measurement accuracy within 3% for gilthead seabream
by integrating CNN models with depth cues.
Commercial solutions like FishTechy [6] combine AI with a proprietary “Proof Ball” reference object to let

anglers measure not only length but also girth and weight in seconds via their mobile app. Unlike FishSense,
which relies solely on built-in LiDAR and on-device inference to achieve sub-centimeter length accuracy without
extra hardware, FishTechy requires users to carry and properly position their calibrated Proof Ball for any capture.
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FishTechy has recently added a LiDAR system to their app, but the app requires Wi-Fi or data to function—a
limitation that FishSense overcomes.
In more controlled environments, Almansa et al. [2] demonstrated that 3D laser scanners could reliably

estimate fish biomass and size in tanks, providing a contactless alternative to calipers or boards. A related system,
FishSense by Tueller et al. [15], integrated an Intel RealSense RGB-D sensor underwater to autonomously detect
and measure fish. The device reported a mean error of just 0.3 cm and proved the viability of real-time 3D length
estimation for ecological monitoring.

Building upon these advances, Cao et al. [4] proposed a customizable dimension measurement method based on
an improved YOLOv5-keypoint framework enhanced with multi-attention mechanisms. Their method introduces
flexible landmark configurations for fish dimension extraction, achieving high precision and real-time speed
suitable for large-scale aquaculture applications. The approach is implemented as an online platform, MrRuler,
enabling users to utilize preset models or upload custom training datasets for diverse aquaculture species.

2.2 Fish Species Identification Using CNNs
Fish species recognition has also seen substantial improvement with deep learning models. Allken et al. [1]
trained CNNs to identify multiple pelagic species from underwater trawl camera images, using synthetic data
to mitigate dataset limitations. Their approach performed well even under varying oceanic lighting conditions.
Similarly, Hussain et al. [7] developed a 32-layer CNN architecture and achieved high classification accuracy on
benchmark fish datasets, outperforming earlier shallow models. Jareño et al. [9] introduced a two-step strategy
fine-tuning pretrained CNNs followed by traditional classifiers which boosted accuracy across 19 seafood species
in market images.
Importantly, lightweight architectures such as MobileNet-V1 have proven effective for real-time, on-device

inference. Suharto et al. [12] showed that MobileNet could achieve over 90% accuracy in freshwater fish clas-
sification, making it well-suited for mobile deployments like FishSense where computational resources are
limited.

2.3 Mobile LiDAR and Depth Sensing in Ecology
Recent advancements in smartphone LiDAR technology have opened up new opportunities in ecological mea-
surement. Tatsumi et al. [13] introduced ForestScanner, an iPhone-based LiDAR application that allows users to
measure tree diameters in the field. The app demonstrated strong agreement with traditional methods (𝑅2 ≈ 0.96)
while requiring only 25% of the field time. Stitt et al. [11] further explored smartphone-based depth sensing
by measuring nest cavity dimensions with a laser rangefinder, achieving sub-centimeter accuracy; similarly, a
recent study demonstrated that the Spike handheld LIDAR device, which pairs with smartphones and tablets, can
accurately and noninvasively measure woodpecker cavity entrance dimensions from distances up to 30 m, with
average errors of less than 1 cm.
These examples show that mobile devices can now serve as precise spatial measurement tools. Applied to

aquatic contexts, this means LiDAR-equipped smartphones can support accurate fish length estimation, especially
when traditional tools are impractical. FishSense’s use of iPhone LiDAR to capture depth-enhanced images offers
a promising new direction for citizen-led fish monitoring.

2.4 On-Device Inference for Field Applications
Running machine learning inference directly on mobile devices offers numerous advantages for ecological
tools: low latency, offline functionality, and data privacy. However, this approach presents challenges, including
limited compute power and energy constraints. Frameworks such as TensorFlow Lite and Core ML have made
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it possible to deploy compact models (e.g., MobileNet, EfficientNet-lite) by optimizing for edge performance
through quantization and pruning [5].

FishSense is designed to operate offline, relying on an efficient CNN architectures and Apple’s neural engines
to process fish measurements and species predictions in real-time. This allows users in remote aquatic settings to
access core app functions without internet access—critical for field researchers and conservationists.

2.5 Citizen Science and Image-Based Monitoring
Computer vision has played a central role in scaling up biodiversity monitoring through citizen science. iNatu-
ralist’s mobile and web platforms allow users to upload organism images for automatic identification via deep
learning models trained on tens of thousands of taxa [8]. Its companion app, Seek, runs entirely on-device, giving
users immediate, offline species suggestions as they explore.
Wildbook [3] takes this further by identifying individual animals using computer vision on crowdsourced

images. Projects like Wildbook for Whale Sharks have cataloged thousands of individuals using tourist photos
and spot pattern recognition, enabling large-scale mark-recapture studies.

These platforms illustrate the power of combining user engagement with AI tools for ecological data collection.
FishSense builds on this model by enabling non-experts to contribute high-quality length and species data via
mobile devices, ultimately supporting large-scale fish population studies.

3 Technical Work

3.1 System Overview
FishSense operates through a streamlined multi-stage pipeline, beginning with image capture. A user initiates the
process on an iOS device equipped with LiDAR sensors, typically available in the “Pro” models. On capture, the
application collects both an RGB image and a depth map. This input is then passed to our Rust backend, which
handles preprocessing. By default, the pipeline triggered post-capture is for fish length measurement. It utilizes
the RGB data, depth map, and a head-tail detection algorithm based on fish geometry to calculate and return the
fish’s length.

Fig. 1. System architecture of FishSense. The pipeline includes RGB image capture, depth sensing via LiDAR, confidence
mapping, and CNN-based species classification.

If the user clicks the Detect Species button, the captured RGB image is preprocessed and fed into a model
(running in ONNX Runtime) for species classification. This model identifies the species by comparing the image
to known fish species it has been trained on. All captured data is stored locally on the device and can be pushed
to the cloud at the user’s discretion with a single tap.

The choice to build this as a mobile app is intentional: conventional fish length measurement methods are often
invasive, time-consuming, and require specialized expertise. By leveraging the on-device processing capabilities
of iOS, FishSense offers a smarter, safer, and more scalable solution. It enables real-time fish length detection
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and species classification directly on the device, minimizing handling and streamlining the monitoring process.
FishSense is currently a mobile-only application, designed exclusively for iPhone/iPad Pro models due to the
hardware requirements (LiDAR sensors) and chosen algorithms.

The application works fully offline, without requiring Wi-Fi or network connectivity (except for the optional
cloud sync feature). Users can capture data in the field and later sync it to the cloud when connected to Wi-Fi.
This mobile-first approach enhances efficiency, reduces reliance on trained personnel, and supports immediate,
in-field data collection that can be saved and uploaded for further analysis.

3.2 Fish Length Measurement
Fish length estimation begins with precise head-tail detection, using a geometry-based algorithm that analyzes
fish contours from both RGB images and depth maps. Accurate localization of the head (snout) and tail (fork) is
essential, as even minor deviations can lead to significant errors in the computed length.

3.2.1 Data Labeling Pipeline. To evaluate and refine our detection algorithm, we implemented a structured
data pipeline. During image capture, relevant information—including the RGB image, depth map, and predicted
length—is stored locally and can be synced to an S3 bucket. This enables seamless integration with a custom
labeling tool for annotation.
Each image is manually annotated with the following attributes:
• Head (snout) and tail (fork) positions
• Environmental conditions (e.g., indoor vs. outdoor, static vs. moving capture)
• Subject identity (e.g., George or Barry—our cat toy test subjects)
• Pose details (e.g., whether the fish/toy was lying flat or angled)

We will be mainly using head and tail positions that has been annotated for our analysis.

(a) Label Studio interface for fish length annotation (b) Label Studio interface for other analysis

Fig. 2. Screenshots of the Label Studio tool used for annotating fish images in our dataset.

3.2.2 Importance of the Labeling Workflow. This annotation pipeline plays a critical role in evaluating model
performance and guiding improvements. By comparing predicted key points to labeled ground truth, we can
identify systematic errors. These insights drive iterative enhancements to both the detection algorithm and the
data capture process, ultimately improving overall model robustness.

3.2.3 Accuracy Analysis. Approximately 80% of the measurements fall within a reasonable 0–10% error range,
indicating that the algorithm performs reliably in most cases. The violin plot shows a median error of around
7.5%, reinforcing the overall stability of the system.
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Fig. 3. Violin Plot showing percent error of fish length measurement of the all data collected collected.

Fig. 4. Histogram plot if percent error in the fish length measurements.

The error distribution reveals two distinct clusters: a high-accuracy group within the 1–5% error range, and
a moderate-accuracy group between 6–12%. This separation suggests variation in measurement conditions or
device performance. Notably, cluster 1 highlights the algorithm’s ability to deliver highly precise results under
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optimal conditions. Meanwhile, cluster 2 shows that even under less-than-ideal scenarios, the algorithmmaintains
acceptable accuracy.
These distinct patterns point to predictable behavior rather than random error, which raises an important

question: can we identify or anticipate the conditions under which accuracy degrades? More specifically, is there
a correlation between higher error rates and factors such as device type, image quality, or confidence map?
Answering this could help flag unreliable measurements in real time and guide further optimization efforts.

3.2.4 Confidence Map. One of the key challenges lies in the quality and reliability of depth maps. Factors such
as ambient lighting, reflective surfaces (like wet fish), and capture angle can introduce noise and affect accuracy.
To address this, we analyze a confidence map that indicates the reliability of the depth data. This map assigns an
ARConfidenceLevel value to each component in the depth map, reflecting the confidence in the scene’s depth
measurement.
The confidence levels are as follows:
• 0: Low confidence (less confident)
• 1: Moderate confidence (moderately confident)
• 2: High confidence (fairly confident)

Fig. 5. Example image, depth map and its corresponding confidence map

The violin plot reveals a clear inverse relationship between confidence levels and measurement error. Low
confidence measurements (level 0) show the widest error distribution, ranging from approximately –25% to +110%,
with the majority of errors concentrated between 10–40%. This wide spread indicates significant uncertainty in
measurements when depth data reliability is compromised.
Moderate confidence measurements (level 1) demonstrate substantially improved performance, with errors

tightly clustered around 5–15% and a much narrower distribution range. High confidence measurements (level 2)
show the best performance, with most errors concentrated in the 5–12% range and minimal outliers.

The confidence map serves as an effective predictor of measurement reliability. The extreme reduction in error
variance as confidence increases from 0 to 2 validates the utility of confidence-based quality assessment. This
relationship suggests that implementing confidence thresholds will significantly improve overall system accuracy
by filtering or flagging low-confidence measurements for re-capturing.

3.2.5 Device (iPhone vs iPad). We compared measurement performance across iPhone [12 Pro and 15 Pro] and
iPad devices to evaluate consistency. All devices use the same pipeline and rely on the built-in LiDAR sensor, but
differences in camera alignment, processing speed, chip or physical handling could affect outcomes.
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Fig. 6. Violin plot of percent error with respect to confidence score

We collected approximately 165 data points across three devices: iPhone 12 Pro, iPhone 15 Pro, and iPad Pro
11-inch (M4).

Table 1. Details of Devices Used for Data Collection

Device OS Version Screen Size Processor Data Points
iPhone 12 Pro iOS 18.2 6.1 inch A14 Bionic 54
iPhone 15 Pro iOS 18.5 6.1 inch A17 Pro 55
iPad Pro 11-inch (M4) iPadOS 18.5 11 inch M4 54

The iPad Pro (M4) showed the lowest percent error and smallest variance in fish length measurements,
indicating superior consistency and accuracy. The iPhone 15 Pro outperformed the iPhone 12 Pro, with a lower
median error and tighter error distribution. The iPhone 12 Pro exhibited the highest variability and largest percent
errors, likely due to its older processor and camera system. These results are based on a small dataset, so while
likely true for larger samples, some variability should be expected.

3.2.6 Head-Tail Detection Algorithm. Head and tail are initially distinguished by a heuristic comparing their
position relative to the fish’s convex hull. The tail point is refined by searching for the most concave point on the
fish’s polygon near the temporary tail.The head point is corrected using the principal eigenvector to find the hull
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Fig. 7. Violinplot of percent error for each device

point furthest from a perpendicular line, aligned with the tail-to-head direction. This work was done by Shaurya
Raswan.

3.2.7 Comparison with SOTA. Compared to FishTechy, our limited evaluation shows FishSense consistently
outperforms in length accuracy, largely due to the integration of LiDAR-based depth sensing for precise geometric
measurement.

Table 2. Fish Length Comparison: SOTA vs. FishSense

Sample SOTA (cm) FishSense (cm) Original (cm) SOTA Δ(cm) FishSense Δ (cm)

1 31.24 31.3 33 -1.76 -1.7
2 35.52 32.0 33 +2.52 -1.0
3 29.44 31.0 33 -3.56 -2.0
4 0.00 32.2 33 -33.00 -0.8
5 27.67 25.4 26 +1.67 -0.6
6 31.96 25.6 26 +5.96 -0.4
7 28.73 24.9 26 +2.73 -1.1
8 31.67 26.2 26 +5.67 +0.2
9 29.22 26.4 26 +3.22 +0.4
10 31.7 27.1 26 +5.70 +1.1

UCSD CSE 145/237D, Vol. 1, No. 1, Article . Publication date: June 2025.



10 • Anushri Eswaran, Ziyuan Lin, Tanishq Rathore, and Christopher Crutchfield

4 Fish Species Classification

4.1 Model Conversion and Architecture
FishSense incorporates an offline species classification feature powered by a deep learning model adapted from the
Fishial open-source classifier. The original Fishial model was trained for fish species recognition using large-scale
image datasets, and we converted this model into the ONNX (Open Neural Network Exchange) format to ensure
compatibility with mobile deployment on iOS. This conversion enables efficient, on-device inference using the
ONNX Runtime without relying on cloud resources or an internet connection.

4.2 Preprocessing Pipeline
Prior to classification, the captured RGB image undergoes a preprocessing pipeline designed to improve model
performance and maintain consistency with training conditions. The main preprocessing steps include cropping,
scaling and normalization.

4.3 Classification Pipeline
Once preprocessing is complete, the image is passed into the ONNX classifier. The model performs feature
extraction followed by a similarity-based matching process. Rather than returning hardcoded species labels, the
classifier compares extracted features against known fish species in its training set and ranks the most similar
matches. The highest-confidence prediction is then returned as the classified species.
This architecture allows the model to generalize better across fish poses and lighting conditions, leveraging

feature similarity rather than overfitting to specific visual templates.

4.4 Integration into the Mobile App
The species classification runs entirely on-device, following a user-initiated tap on the “Detect Species” button.
At this point, the RGB image is preprocessed and passed to the ONNX runtime environment embedded within
the app. Predictions are rendered in real time and displayed to the user alongside the image.
All captured images and predictions are stored locally and can optionally be synced to the cloud for later

validation and analysis.

4.5 Accuracy and Evaluation
While real-world classification accuracy is influenced by factors such as image quality, environmental conditions,
and species similarity, initial results on a curated validation set are promising. We evaluated the model on a
set of 60 images collected during field deployments in collaboration with the California Collaborative Fisheries
Research Program and FishSense during the summer of 2024. On this dataset, the model achieved an accuracy of
70.69%. The following confusion matrix illustrates the performance across different species and highlights areas
where misclassification occurred, particularly among visually similar fish types. Overall, the model performs
well on species it has been trained on, making it a strong baseline for practical use. However, to expand its
applicability to a broader, more global range of species, the model will require fine-tuning with additional species
data or retraining on a more diverse dataset.

5 Session Management
FishSense is designed with robust session management to support both real-time and offline use cases in field
environments. All captured data, including RGB images, depth maps, predicted lengths, species classifications,
and associated metadata, is first stored locally on the device. This ensures that the application remains fully
functional even in remote areas without internet access.
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Fig. 8. Confusion Matrix of the Species Detecion model on curated CCFRP dataset

When a network connection becomes available, the user can click the "Upload Data" button and sync stored
sessions to the cloud. This is accomplished via a POST request to an AWS Lambda function behind an API Gateway.
The Lambda endpoint handles authentication, data validation, and formatting before pushing the session data
into structured cloud storage. This architecture supports asynchronous data collection while maintaining data
integrity and consistency.
The local-first approach guarantees uninterrupted workflow and reliability in the field, while the optional

sync mechanism enables seamless backup and centralized access for further processing, analysis, or model
improvement.

6 Milestones and Project Development

6.1 Original and Refined Milestones
Original Milestone Plan:

• Week 2–Week 3: Code reading and analysis, Swift and Rust learning.
• Week 4: Bug fixing, CCFRP dataset cleaning, fish head and tail algorithm understanding, and identification
of dataset for training fish classification and health detection module.

• Week 5: Refine existing ML model, search/build models for fish classification and health detection.
• Week 6:Model fine-tuning, app development, and mid-quarter report.
• Week 7: Investigate methods to improve length detection and build a model to test classification results.
• Week 8–Week 9: Local and remote database implementation, and UI improvement.
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• Week 10: Final presentation and report.

Refined Milestone Plan:

• Week 2–Week 3: Code reading and analysis, Swift and Rust learning.
• Week 4: Bug fixing, CCFRP dataset cleaning, fish head and tail algorithm understanding, and identification
of dataset for training fish classification and health detection module.

• Week 5: LiDAR and depth map investigation and problem identification.
• Week 6: FishSense UI development and implementation of a new head and tail detection algorithm.
• Week 7: Confidence map implementation, classification module deployment, and depth map rebuilding.
• Week 8–Week 9: Local and remote database implementation, and UI improvement.
• Week 10: Final presentation and report.

6.2 Revisions and Rationale
During Week 5, we identified a critical issue with the depth map: it was incorrectly clipped at a 1-meter range,
which significantly impaired the accuracy of length detection. Consequently, we shifted our focus to investigate
and resolve this problem.
In Week 4, we had discovered an existing fish classification model (Fishial) that was suitable for integration

into our application. This allowed us to postpone developing a custom classification model until Week 7.
By Week 6, with support from Shaurya Raswan, we successfully deployed a new head and tail detection

algorithm, which prompted us to revise our project milestones.
In Week 7, we prioritized analyzing our algorithm, leveraging confidence map and rebuilding the depth map

storage system. This decision was based on our evaluation that accurate length detection and reliable depth maps
are more critical to the system’s long-term success. Fish health detection was de-prioritized due both to these
shifting priorities and the extensive data requirements needed for each species.

6.3 Problems Encountered and Solutions
• Depth Map Clipping: Some depth maps (from the CCFRP Summer 2024 dataset) appeared to max out
at a value of 255, suggesting the LiDAR failed to detect objects beyond 1 meter. We investigated the code
and discovered that the PNG transformation process clipped values beyond 1 meter. We resolved this by
analyzing and updating the depth map generation pipeline to preserve the full depth information and
creating our own dataset to do analysis on.

• ONNX Model Conversion: We faced difficulties converting our classification model to ONNX format due
to unsupported operations and version mismatches. After identifying the incompatible layers and updating
the model and export parameters accordingly, we were able to successfully convert it.

• Remote Database Setup: Initially, we were unsure which remote database to use or how to connect
the local database to a remote one. After researching, we selected Amazon AWS due to its popularity
and documentation. We implemented a solution using AWS Gateway to trigger a Lambda function that
transmits local data to the remote database.

• Classification Model Output Error: Although the classification pipeline was correctly implemented, the
model failed to predict species accurately. With Chris’s help, we discovered that the issue stemmed from a
mismatch between BGR and RGB color modes. Correcting the color format resolved the prediction errors.
It’s a good reminder that sometimes all you need is a fresh pair of eyes on code you’ve been staring at for
hours.
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6.4 Milestone Completion Summary
All of the milestones mentioned in the milestone report were completed. The milestone report reflected a re-
prioritization of data analysis and storage over fish health detection due to time constraints, in alignment with the
rationale provided in the initial project proposal. This shift allowed us to focus on more foundational components
such as depth map accuracy and system performance analysis, which are critical for the future scalability of the
project.

7 Conclusion
FishSense is an iOS application initially developed for automatic fish length detection. In this project, we extended
its functionality to include fish species classification, data collection, and remote data sharing. A key technical
advancement was the improvement of the length detection algorithm, accomplished with the help of an external
contributor, which significantly enhanced detection accuracy.
Beyond the app, we evaluated the viability of the previously used CCFRP dataset and determined that it was

not sufficient for our needs. As a result, we created a new dataset tailored to our updated models and objectives.
We also investigated the performance of the depth map and confidence map, both of which are critical for
reliable fish measurement and result verification. Additionally, we developed a robust local-to-remote database
system, empowering everyday users, to participate in data collection and contribute to marine science. These
contributions establish a strong foundation for future development and research.
Potential directions include using the confidence map to prompt real-time photo recapture and estimate

the reliability of predictions, supporting Android and non-LiDAR devices via stereo vision, and incorporating
video-based input to increase classification and measurement accuracy. Quantizing the classification model for
faster inference is also a promising optimization.

Looking ahead, deploying these improved algorithms during this year’s CCFRP summer data collection would
be a valuable opportunity to evaluate system performance in the field. It would offer critical insights into where
we stand and how well the current pipeline supports real-world scientific data gathering—bringing FishSense
one step closer to becoming a practical tool for collaborative marine research.
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