
Making AIE Development Easier: Documentation and Examples for
Programming on AMD AI Engine

GRAM KOSKI, University of California - San Diego, USA
FRANCISO GUTIERREZ, University of California - San Diego, USA

Recent advances in computer accelerators for machine learning have increased the need for programmers to effectively
utilize emerging hardware platforms. AMD AI Engine (AIE) is a novel memory-mapped, network-on-chip architecture for
processing custom AI workloads. As a unique architecture, programmers have difficulty implementing optimized designs and
fully utilizing its capabilities. We find the existing documentation to be lacking in examples and clear methods of overcoming
common programming challenges. We research the space of programming on an AIE and seek to make AIE development
easier by creating open-source documentation with examples, guides, and explanations for future AIE programmers.

1 Introduction
Modern machine learning workloads present high compute demands, and have motivated the development
of specialty accelerators, mainly GPUs and NPUs, but also FPGAs and ASICs. The AI Engine architecture is
optimized for deterministic, low-latency machine learning workloads, especially in embedded and real-time
systems. Unlike GPUs, which rely on massive parallelism and dynamic scheduling, the AIE family can issue
deterministic instructions for computation and data movement. This fine control in the hardware makes them
ideal for edge inference tasks where latency, power efficiency, and tight coupling with pre/post-processing logic,
like FPGA fabric, are critical. While AIEs won’t replace GPUs for general-purpose deep learning because of the
massive parallelism required for such training and the mature development space surrounding ML for GPUs,
AIEs can still perform well in embedded ML pipelines requiring tight time constraints and low power.

The AI Engine is built around a scalable, two-dimensional array of highly optimized processor tiles, each
integrating a dedicated AI Engine core, local memory, and a programmable interconnect module. This architecture
enables significant parallelism at multiple levels, including single-instruction multiple-data (SIMD) operations,
very long instruction word (VLIW) execution, and multicore computation across the array. Local memory
modules are shared between neighboring tiles, supporting efficient data exchange and minimizing external
memory bottlenecks. The programmable AXI4-Stream crossbar switch in each tile facilitates low-latency data
streaming, supporting both circuit and packet-switched communication. This tightly coupled network-on-chip
design, combined with the deterministic data flow graph programming model, allows the AIE to achieve many
different types of parallelism at once. Programmers are given a challenge to effectively exploit this parallelism by
navigating around the difficulties and complexity of programming on AIE.

Programming on the AI Engine introduces two central challenges that shape the way developers must approach
performance optimization and design.

(1) Limited Streaming Bandwidth and Tile Placement: Limited streaming bandwidth between tiles makes
the physical placement of kernels a critical factor. Since the architecture is designed around a network
of interconnected tiles, data transfers between non-adjacent tiles can quickly become bottlenecked by
network congestion and the relatively small AXI4 stream width of 32 bits. As a result, programmers are
compelled to carefully co-locate tightly coupled kernels in neighboring tiles and minimize the distance
that data must travel often done through AIE Vitis Constraints. This often requires thoughtful partitioning
of algorithms and a strategic approach to mapping workloads, ensuring that the most communication-
intensive operations occur between adjacent tiles to maximize throughput.

Authors’ Contact Information: Gram Koski, University of California - San Diego, USA; Franciso Gutierrez, University of California - San
Diego, USA.



2 • Gram Koski and Franciso Gutierrez

(2) Local Memory Constraints: Second, the severe memory constraints on each local tile further complicate
efficient programming. With only a small amount of dedicated memory per tile (32KB), developers must fit
code, data, and input/output buffers into a very limited space. Programmers are often forced to break large
datasets into smaller blocks, carefully schedule memory usage, or offloading strategies to external memory
to avoid stalls and under-utilization of compute resources. These challenges demand an understanding of
the AIE’s architectural nuances and a deliberate placement of buffers data sharing between neighboring
kernels.

In the Making AIE Development Easier documentation, we seek to address these two challenges and provide
practical examples which satisfy those programmers who are beginners in programming the AIE. Specifically,
our documentation includes a Github repo [11] and a ReadtheDocs page [12] with code examples, architectural
explanations, and ways to tackle common AIE challenges. We start with the most basic examples for the new AIE
programmer. Our code suite and explanations are separated into modules. While we will not discuss in depth every
module in our documentation in the following report, because we choose to focus only on interesting attributes of
certain modules which address challenges 1 and 2 detailed above. The full module list and specification of our final
documentation can be found in Section 4: Milestones and Section 5: Conclusion. In this report, we discuss the cen-
tral two challenges of programming on the AIE. In order to do this, we give a technical deep-dive into the following:

• AI Engine Architecture: Introduce architectural concepts in-depth from a programmer’s perspective.
• Data Movement

– Using Constraints: Details how to explicitly map AIE kernels for considering data movement. Since
data movement is one of the major challenges, we believe it should be introduced early.

– Vector Addition: Vector addition on a single tile is the first computational example and is used to
discuss in more depth the difference between buffers and streams for data movement.

• Memory Limitations
– Simple Multi-Tile Matrix Multiplication: Implementation of simple multi-tile matrix multiplica-

tion using the built-in API function. This is the first truly multi-tiled program our documentation
discusses.

– Adder-Tree Matrix Multiplication: We explain a more efficient multi-tiled matrix multiplication
program which serves to show how good parallel algorithms work around the constraints of the AIE.

Our code suite targets the Versal VCK190 board which has 400 processors in its AIE array. This is on the upper
end in terms of AIE compute power, but we believe our examples are sufficiently general to give insight for
programmers targeting alternative architectures. We use the AMD Vitis tool flow and compiler, because its the
most popular tool flow for programming on the AIE with a larger community and robust software.

2 Related Works
There exists numerous sources which give information about programming on the AI Engine. There is the official
guide Graph and Programming Guides published by AMD and Xilinx [8][4], and specialty documents which
provide information about intrinsic programming [3] and the AIE API [1]. While these documents provide a
useful source of raw, accurate information, they do not include many easy examples or provide a useful place
for programmers to start. We relied on the Versal architecture documentation [6] to target our specific Versal
VCK190 board, and the AMD Vitis Tool Flow documentation [2] for working with the Vitis compiler and software
platform.
Other documents provide examples and educational material for programming on the AI Engine. The Xilinx

University Program published a sequence of tutorials for programming on the AI Engine [10] (now AMD University



Making AIE Development Easier: Documentation and Examples for Programming on AMD AI Engine • 3

Fig. 1. AIE Tile [7]

Program AI Engine Tutorial), but it uses Vitis 2021 outdated software and outdated programmatic functions/classes.
AMD published Vitis Tutorials: AI Engine Development [9] which includes many examples but jumps very quickly
to complex applications, with limited basic examples.

We also took inspiration from the last section of Parallel Programming for FPGAs: Projects and Labs [16] which
walks through an implementation of multi-tile matrix multiplication. This tutorial uses the MLIR-AIE tool flow,
while we use the Vitis tool flow. We sought to structure our documents somewhat similar to the projects and labs
detailed in Prof. Kastner’s CSE160 - Introduction to Parallel Computing [13]. While the course focused on GPU
programming not AIE, we wanted to replicated the educational manner in which the material is presented. The
user is introduced to ever more complex examples as they read the document and develop familiarity with the
material.
Lastly, for our matrix multiplication programming examples, we take inspiration from MaxEva [17] for

educational purposes, using an addition tree design to enable better scaling across tiles. Additionally, there exist
numerous other documents we encountered which the authors seek to optimize matrix multiplication on the AI
Engine, which we use slightly different designs, mostly targeting the AIE-ML architecture. [18][15][14]

3 Technical Material

3.1 AI Engine Architecture
The AI Engine is composed of two primary components: memory and processing cores, both integrated within
an AIE tile. Each tile serves as a fundamental unit of the AI Engine, capable of independently executing kernels.
What sets the AI Engine apart is its distinctive tiled architecture. Developers have the flexibility to assign multiple
kernels to a single tile or to create sequential execution by passing data from one tile to the next. This architectural
design supports both parallel execution and efficient data sharing, making it well-suited for high-performance,
parallel applications.

To leverage these architectural features, developers utilize the Vitis or AMDAI Engine toolchains, which include
compilers and placement tools to determine how kernels and data paths are synthesized onto the hardware.
This tool-driven workflow is deterministic, enabling the Vitis IDE to emulate hardware behavior and offer



4 • Gram Koski and Franciso Gutierrez

comprehensive debugging capabilities. While these tools provide helpful abstractions, optimal placement and
data movement may require manual intervention. Developers seeking greater performance may need to exert
finer control over the synthesized design by adjusting data types, applying explicit constraints, or modifying the
graph code to better suit the application’s requirements.

3.2 Data Movement Patterns:
3.2.1 Using Constraints. The AI Engine offers multiple layers of programmability, enabling developers to tailor
their designs to specific application needs. At the graph level, the Graph API allows programmers to select
data types that are best suited for synthesis, while the Streaming API provides control over kernel streaming
behavior and data access patterns. One of the most powerful features is the use of Adaptive Data Flow Graph
(ADF) constraints, which enable precise specification of spatial relationships and resource allocation within the
architecture [7]. With these specialized capabilities, developers can modify aspects such as buffer types, kernel
placement, tile assignment, memory bank selection, and memory allocation directly within the graph code. While
higher-level APIs offer broad control over the dataflow graph, these options provide granular, low-level control,
allowing programmers to directly observe and influence the configuration and layout of the AI Engine’s tile array.

In our examples we make use of these feature. We use single_buffer() to use less memory,
location<buffer>()=bank() to specify location of a buffer within a bank,location<stack>() to modify the
location of the kernel’s stack, and location<kernel>()=tile() to affix our kernels to specific tiles.

Fig. 2. Constraints Comparison for an adder. Note how the compiler-automated kernel placement (unconstrained) on the left
side appears less organized than the constrained version on the right. This can become an issue in highly complex programs.
Courtesy of [2]

These constraints are inevitable to achieve the best occupancy and throughput in more complicated multi-tiled
programs. For example, the AXI4 streaming network is capable of enabling direct communication between any



Making AIE Development Easier: Documentation and Examples for Programming on AMD AI Engine • 5

tiles in the AIE array. This is a key feature of the AI Engine, but the streaming network is actually better off
avoided if programmer a wants to achieve maximum throughput. The stream has a low bit-width of only around
64 bits, and network overcrowding can result in a tangled mess of locks and stalls. Instead, it is ideal to place
kernels that frequently exchange data into adjacent tiles so they can directly read and write to neighboring tile’s
memory. This makes the bandwidth practically infinite between those tiles. The challenge is that it can get rather
complicated when there are multiple tiles all communicating with each other. It is often the programmer’s job to
find an ideal kernel placement.

This can be seen in ourMatrix Multiplication with Adder-Tree module where the multiplication tiles sit adjacent
to the addition tile so that the kernels can write the partial computations directly into the next layer of the tree
without having to use the stream. More details of the Addition Tree are discussed in Section 3.3.3.

In the MaxEva [17] implementation, they similarly make use of this feature of intentional tile placement and
the assigned kernels for each tile, minimizing the need for streaming and maximizing the throughput of their
kernels while giving sequential kernels no starvation.

3.2.2 Buffer vs. Stream.
The Vector Addition module includes two different implementations of single-tile vector add. The first uses
aie::stream and the second example uses aie::buffer. Each AI Engine tile has two 64 bit PLIO streams and
using both at the same time gives the stream a width of 128 bits. A kernel can therefore receive four int32 from
PLIO at a time. Each instance the kernel receives a new packet of data from PLIO, it performs the computation,
adding the four int32 values in parallel then writing to the output. Therefore, we must run the kernel 256 times
to process an entire addition of two int32 vectors of length 1024. Since the output is written every iteration of the
kernel, we can expect a lower latency using stream because the output is constantly being written.
When using aie::buffer, the kernel is suspended until the entire input buffer is full before initiating its

computation. In this case, we are free to use a large SIMD vector iterator of 512 bits to iterate and compute the
addition of two vectors, 16 elements at a time. The kernel is run just once and processes the entire input sequence
before writing to output. Therefore, buffer gives slightly lower overall runtime in most applications due to kernel
function call overhead and more efficient SIMD calculations. At the same time, it has higher latency than stream.

In our Vector Addition module, we use Vitis Hardware Emulation to compare the implementations. The stream
implementation has very low latency (∼200ps), while the buffer’s latency is over 50% over the total runtime at
∼4430ns of ∼7000ns. The buffer was slightly faster by about ∼1000ns. The tradeoff is summarized:

Table 1. Comparison of Buffer and Stream

Metric Buffer Stream

Latency Higher (wait for buffer fill) Lower (immediate processing)
Throughput Higher (More efficient use of SIMD) Lower (128 bits per kernel iteration)
Best Use Case Large datasets, random access Real-time, low-latency apps

3.3 Matrix Multiplication and Memory Limitations:
The matrix multiplication code suite and accompanying documentation is presented in the following pattern in
our ReadtheDocs. Each module is addressed to solve a challenge introduced in the last module. We believe this is
a good structure for learning increasingly complex programs.

Single Tile Matrix Multiplication
Duplicate Kernel
−−−−−−−−−−−−→ Multi-tile Matrix Multiplication

Optimize Memory
−−−−−−−−−−−−−→ Addition Tree



6 • Gram Koski and Franciso Gutierrez

3.3.1 Single Tile Matrix Multiplication: The AIE API [1] is a C++ library which provides a convenient set of
functions and classes for programming kernels. In our documentation, we implement a matrix multiplication
kernel to demonstrate a use-case of the API. This program is explained in the Single-Tile Matrix Multiplication
section of our Readthedocs. We use the int16 datatype and the built-in AIE API class aie::mmul<M, K, N,
int16, int16> [5]. The class is declared with the size of the multiplication (MxKxN) and a data type. The
mmul::mat() function writes the result of A*B where A is MxK and B is KxN to an accumulator register. You
can optionally declare a desired accumulator precision. The default precision can be found in the docs by
TypeAxTypeB multiplication.

This built-in class is convenient, but larger values of M, K, and N are not offered because it is limited by the
number of lanes in the accumulator register. With 4x4x4 int16 matrix multiplication, we must store 16 int48
values in the accumulator (if we are using the default int48 precision). This means we are using the entire 768 bit
width of the accumulator, so we cannot make the output matrix dimensions (MxN) any larger.

The solution to this problem is to do matrix multiplication in blocks and accumulate partial results. The
second kernel included in the Single Tile Matrix Multiplication module is the matmul_4x16x4 kernel. This kernel
calculates 𝐴𝐵 = C where A is 4x16, B = 16x4, and C = 4x4 for the int16 datatype. The program expects the input
matrices to be vectorized in a very specific format. The matrices are split into 4x4 blocks so that the aie::mmul
library may be utilized. Within a 4x4 block, both A and B matrices are stored in row-major format. At the block
level, the A matrix is stored in block-wise row major format and the B matrix is stored in block-wise column
major format.
We loop through the sub-blocks of the matrices to compute 𝐴𝐵. In the first iteration, we use aie::mac()

to initialize the accumulator with the correct values of 𝐴0𝐵0. On subsequent iterations we use aie::mul() to
compute 𝑎𝑐𝑐 → 𝑎𝑐𝑐 + 𝐴𝑖𝐵𝑖 where acc is the running sum of the partial results of the matrix multiplication
computations.

3.3.2 Simple Multi-Tile Matrix Multiplication: We use our mmul_4x16x4 kernel in our Simple Multi-Tile Matrix
Multiplication module. In this module, we demonstrate the computation of 16x16x16 matrix multiplication for
int16 datatype across 16 tiles of the AI Engine array.
Each tile calculates a 4x4 section of the output matrix by working off of one block-wise row of A and one

block-wise column of B. The kernel uses an aie::port<> scalar parameter to calculate which section of A and B
in local memory it should be processing. For example the upper left 4x4 corner of the output matrix C, called 𝐶00
is calculated by doing mmul_4x16x4 on the first block-wise row of A (𝐴00 → 𝐴03) and one block-wise column of
B (𝐵00 → 𝐵30)

The Simple Multi-Tile Matrix Multiplicationmodule serves as the user’s introduction to multi-tiled computation
on the AI Engine. As such, the data movement and program complexity is relatively low. The A and B matrices
are duplicated 16 times in the local memory of each tile involved, that way the tiles can do each computation
separately. The kernels are placed onto a 4x4 grid in the AI Array. This arrangement is ideal for illustrating the
simple example, and also because the 4x4 configuration is used in the AIE Ryzen devices so our example program
is generalizable to many different AIE hardware versions.

One problem with this approach is clear. Duplicating the data 16 times is a highly inefficient use of the scarce
local tile memory. Since there is only 32KB of RAM in each tile, we must be very careful about how we store the
matrices in memory when we scale up the size of our computations. Recall that limited local tile memory is the
second central challenge of programming on the AI Engine. While, we can technically increase the efficiency of
our current implementation, it is still necessary for us to move the entire row of A and column of B into a tile’s
locally memory. The most efficient way we could configure the memory would still result in 4 times duplication,
because we need to examine each row/column 4 times by nature of our 4x4 tiling. Therefore we demonstrate a



Making AIE Development Easier: Documentation and Examples for Programming on AMD AI Engine • 7

(a) A Matrix (b) B Matrix

Fig. 3. The tiling scheme for the A and B matrices for Simple Multi-Tile Matrix Multiplication module.

different approach for multi-tiled matrix multiplication which is not subject to the same memory bottleneck in
the Matrix Multiplication with Adder-Tree module.

3.3.3 Matrix Multiplication with Adder-Tree: The module demonstrates how to decompose a large summation
into a sequence of pairwise additions performed across multiple tiles. Each tile is responsible for summing a subset
of the input data, and the partial results are then forwarded to subsequent addition tiles for further accumulation.
It enables us to split the columns of A and rows of B onto different tiles. This split is what allows us to not have
to duplicate memory.

Our Making AIE Development Easier documentation explains in depth a 4x128x128 matrix multiplication using
4 tiles similar to the schema in Figure 4 except the sub-matrices are 4x32 rectangles not perfect squares. In
our source code, we also include a larger 4x784x128 example. It can be seen in Section 3.2: Data Movement and
Patterns that within the addition tree, the placement of kernels and the routing of data streams are carefully
orchestrated to maximize throughput. This pattern highlights the importance of thoughtful kernel placement
and data movement strategies in order overcome the challenges of limited memory on the AI Engine.

The addition tree is used again in the MNIST Multi-Layer Perceptron (MLP) module to perform the dense layer
computations. The MLP uses quantized int16 weights with an input dimension of 784, 3 hidden layers, and output
dimension of 10. The inference batch size is 4, and the activations are simple RELU. The final activation is argmax.
The MLP module is the final, most complex example in our documentation and remains unoptimized. Perhaps a
direction for future work.

4 Milestones

4.1 Start of Quarter
At the onset of the quarter, we listed milestones for each week. In hindsight, some of the milestones were not
ideal, because they included some subjective criteria such as "Think about data flow through NN for the future."
We list the more objective milestones in order to illustrate how our project goals and timeline has changed.



8 • Gram Koski and Franciso Gutierrez

Fig. 4. Illustration of the addition tree structure for parallel summation across AI Engine tiles. Note that our documentation
includes a 4x128x128 matrix multiplication which is almost identical to the figure except that the sub matrices 𝐴𝑥𝑦, 𝐵𝑥𝑦 are
not perfect squares but rather rectangles.

Milestone Original Intended Completion Actual Completion
Basic vector addition kernel written and tested Week 3 Week 4
Matrix multiplication implemented and bench-
marked

Week 4 Week 5

Skinny matrix multiplication and sparse matrix
multiplication completed

Week 5 Week 7

Convolution module and initial neural network
implementation

Week 6 Week 9

Neural network implementation completed Week 7 Week 10
Table 2. Comparison of Project Milestone Timeline: Intended vs. Actual Completion

As you can see, we generally lagged behind our intended completion date by two weeks on average due
to various challenges and setbacks. Also, note that we removed convolution as a necessary milestone at the
mid-quarter update, but we were still able to complete it thanks to Shreeyash Pacharne.

4.2 Mid-Quarter Changes
(1) New Module: Comparisons to GPU Programming. One major piece of feedback across the student

reviews of our milestone update was some confusion on the specific novelty of the AIE architecture. Some
students suggested that we provide a comparison with GPUs to foster understanding by relating AIE to
familiar architecture, and others expressed confusion about the motivations of developing on an NPU. In
response to this, we added a module comparing AIE programming to GPU programming. This module is
titled AIE vs Other Accelerators in our Readthedocs.

(2) De-emphasis on Convolution Operations. The convolution module is removed from our core reference
guide, as AIE does not natively support this operation. Our focus will remain on matrix multiplication
and MLP examples. A convolution module may be added if time permits.



Making AIE Development Easier: Documentation and Examples for Programming on AMD AI Engine • 9

(3) MLP Neural Network. At the beginning of the quarter we said we’d do a full CNN. Instead of a CNN,
decided to implement an MLP for MNIST using our skinny matrix multiplications for dense layers (adder-
tree design) and ReLU activations. This decision was made to simplify our code suite and enabled us to
use the matrix multiplication design from our addition tree module.

In the mid-quarter update, we decided to give a one-to-one correspondence between our milestones and visible
MVP features. These MVP features are code and accompanying documentation that is featured on our Github
and ReadTheDocs.

4.3 MVP Feature Status and Milestones
Note that each feature is a code suite (featured on Github) and accompanying documentation (featured on
ReadtheDocs). A checkmark means that both of these features are complete.

Feature Mid-Quarter Status End of Quarter

Introduction and Architecture ✓ ✓
Comparisons to GPU Programming — ✓
Vector Addition: Stream ✓ ✓
Vector Addition: Buffer ✓ ✓
Matrix Multiplication: Single-tile ✓ ✓
Matrix Multiplication: Multi-tile ✓ ✓
Matrix Multiplication: Skinny (adder-tree) — ✓
MLP Neural Network: PyTorch Model Training ✓ ✓
MLP Neural Network: Dense Layers — ✓
MLP Neural Network: Input/Output Formatting × —

4.4 End of Quarter Changes and Challenges
We didn’t change much about our milestones or timeline from the mid-quarter update to the end of the quarter.
That being said we did make a few changes the precise specifications of the milestones. We renamed the
Comparison between GPU and AIE module to AIE vs Other Accelerators to reflect a more general architectural
perspective. In this module, we compare GPUs, AIE, and other NPUs. Also, despite de-prioritizing convolution,
we included a simple convolution module although the documentation for it remains sparse.

The largest challenge which set back our timeline in the beginning of the quarter was gaining general aptitude
with the Vitis Software Platform. We had trouble compiling our programs and there were a few particular issues
that set the team back for a week or two. For example, there was a naming conflict between our kernel name
and an internal Vitis API function in our vector addition code that we were not able to catch for longer than it
otherwise should have.
The last challenge we’ve encountered is with formatting the MLP inference program. There is an error in

converting the int48 default vector types back to int16 in the case where the int48 values exceed the int16 range.
We do not get the behavior we expect. Right now, it rounds these values back to zero, affecting the correctness
of the MLP inference. The MLP module remains with sparse documentation due to the ongoing work. The
convolution module also includes sparse documentation due to its deprioritization at the mid-quarter update.

5 Conclusion
In Summary, we complete code suites and accompanying documentation for the following:



10 • Gram Koski and Franciso Gutierrez

• AIE vs Other Accelerators:We introduce the popular architectures for machine learning workloads and
compare them to the AI Engine. This section may be particularly useful for those programmers familiar
with GPUs.

• Setup and Architecture Explanation: Discussion of the history of the AI Engine, devices with AIE
technology, and the important difference between AIE, AIE-ML, and AIE-MLv2.

• Using Constraints: Serves as a first example for mapping AIE kernels and considering data movement.
Since data movement is one of the major challenges, we believe it should be introduced early.

• Vector Addition: The application of vector addition on a single tile is the first computational example
and used to talk more in depth about the difference between buffers and streams for data movement.

• Single Tile Convolution: Implementation of simple 2D convolution as a programmatic reference.
• Single Tile Matrix Multiplication: Implementation of simple matrix multiplication using the built-in
API function.

• Simple Multi-tile Matrix Multiplication: The first truly multi-tiled program the tutorial discusses. We
use the kernel built from the previous example and also discuss its inefficient use of local tile memory.

• Matrix Multiplication with Addition Tree: A second, more efficient multi-tiled matrix multiplication
program. Serves as a good way of showing the user how good parallel algorithms work around the
constraints of the AIE. The addition tree enable the matrices to be split up so that duplication of data is
no longer an issue.

• Simple MLP on MNIST: Lastly, using the addition tree multiplication, we provide an implementation
of a basic neural network. It is used to demonstrate techniques like graph embeddings (graphs within
graphs) for building more complex programs.

This work provides open-source documentation and practical examples to address central challenges in
programming the AMD AI Engine, mainly managing data movement and local memory constraints, ultimately
lowering the barrier for new users and enabling more efficient development of AI workloads on this novel
architecture. Our contributions include modular code suites, architectural explanations, and comparative guides
that fill gaps left by existing resources. Future work could focus on optimizing the implementation and accuracy
of our MLP module, expanding coverage to additional AI Engine hardware variants, or simply cleaning and
writing better documentation for our existing code.

Acknowledgments
We thank Zhenghua Ma, Aba Gnaneswaran, Ryan Kastner, and the UC San Diego Kastner Lab for their support
throughout the development of this project.

References
[1] AMD. 2024. AI Engine API User Guide (AIE-API) 2024.2. Advanced Micro Devices, Inc. Retrieved 2025-06-12 from https://download.amd.

com/docnav/aiengine/xilinx2024_2/aiengine_api/aie_api/doc/index.html Version 2024.2.
[2] AMD. 2024. AI Engine Environment User Guide (UG1076). Advanced Micro Devices, Inc. Retrieved 2025-06-12 from https://docs.amd.

com/r/en-US/ug1076-ai-engine-environment/Overview Document Number: UG1076, Version 2024.2.
[3] AMD. 2024. AI Engine Intrinsics User Guide (UG1078) v2024.2. Advanced Micro Devices, Inc. Retrieved 2025-06-12 from https:

//download.amd.com/docnav/aiengine/xilinx2024_2/aiengine_intrinsics/intrinsics/index.html Version 2024.2.
[4] AMD. 2024. AI Engine-ML Kernel and Graph Programming Guide (UG1603). Advanced Micro Devices, Inc. Retrieved 2025-06-12 from

https://docs.amd.com/r/en-US/ug1603-ai-engine-ml-kernel-graph/Overview?tocId=U3UXOInouDrMPWWdkItJdg Overview section,
Document Number: UG1603, Version 2024.2.

[5] AMD. 2024. AI Engine ML Kernel mmul Class (UG1603). Advanced Micro Devices, Inc. Retrieved 2025-06-12 from https://docs.amd.com/
r/en-US/ug1603-ai-engine-ml-kernel-graph/Matrix-Multiplications-mmul Document Number: UG1603, Section: Matrix Multiplications
(mmul).

[6] AMD. 2024. Versal Adaptive SoC AI Engine Architecture Manual (AM009). Advanced Micro Devices, Inc. Retrieved 2025-06-12 from
https://docs.amd.com/r/en-US/am009-versal-ai-engine/ Document Number: AM009, Version 2024.2.

https://download.amd.com/docnav/aiengine/xilinx2024_2/aiengine_api/aie_api/doc/index.html
https://download.amd.com/docnav/aiengine/xilinx2024_2/aiengine_api/aie_api/doc/index.html
https://docs.amd.com/r/en-US/ug1076-ai-engine-environment/Overview
https://docs.amd.com/r/en-US/ug1076-ai-engine-environment/Overview
https://download.amd.com/docnav/aiengine/xilinx2024_2/aiengine_intrinsics/intrinsics/index.html
https://download.amd.com/docnav/aiengine/xilinx2024_2/aiengine_intrinsics/intrinsics/index.html
https://docs.amd.com/r/en-US/ug1603-ai-engine-ml-kernel-graph/Overview?tocId=U3UXOInouDrMPWWdkItJdg
https://docs.amd.com/r/en-US/ug1603-ai-engine-ml-kernel-graph/Matrix-Multiplications-mmul
https://docs.amd.com/r/en-US/ug1603-ai-engine-ml-kernel-graph/Matrix-Multiplications-mmul
https://docs.amd.com/r/en-US/am009-versal-ai-engine/


Making AIE Development Easier: Documentation and Examples for Programming on AMD AI Engine • 11

[7] AMD. 2025. AI Engine Kernel Coding (UG1079). Advanced Micro Devices, Inc. Retrieved 2025-06-9 from https://making-aie-dev-easier-
readthedocs.readthedocs.io/en/latest/vs_cpu_gpu.html#ug1079 AI-Engine-Architecture-Overview.

[8] AMD. 2025. AI Engine Kernel Coding User Guide. Advanced Micro Devices, Inc. Retrieved 2025-06-12 from https://docs.amd.com/r/en-
US/ug1079-ai-engine-kernel-coding/Overview?tocId=_gsmjbSrB9YCl4WkKcFCww UG1079, Version 2025.1.

[9] AMD. 2025. Vitis Tutorials: AI Engine Development (XD100). Advanced Micro Devices, Inc. Retrieved 2025-06-12 from https:
//docs.amd.com/r/en-US/Vitis-Tutorials-AI-Engine-Development/Vitis-Tutorials-AI-Engine-Development-XD100 Version 2025.1.

[10] AMD University Program. 2023. AUP Vitis-based AI Engine Tutorial. Advanced Micro Devices, Inc. Retrieved 2025-06-12 from
https://xilinx.github.io/xup_aie_training/index.html Version targeting Vitis 2022.2, XRT 2.14.354.

[11] Francsco Gutierrez Gram Koski and Zhenghua Ma. 2025. aie4ml_project1. GitHub repository. https://github.com/zhenghuama/aie4ml_
project1/tree/master Accessed: 2025-06-14.

[12] Francisco Gutierrez and Gram Koski. 2025. Making AI Engine Development Easier. https://making-aie-dev-easier-readthedocs.
readthedocs.io/en/latest/index.html Accessed: 2025-06-14.

[13] Kastner CSE160 Course Staff. 2025. Programming Assignment 1 - Device Query. University of California, San Diego. Retrieved 2025-06-12
from https://docs-cse160.readthedocs.io/en/latest/PA1.html CSE160 Parallel Computing, UC San Diego, latest revision.

[14] Tristan Laan and Tiziano De Matteis. 2024. Developing a BLAS library for the AMD AI Engine. arXiv:2410.00825 [cs.DC] https:
//arxiv.org/abs/2410.00825

[15] Kaustubh Mhatre, Endri Taka, and Aman Arora. 2025. GAMA: High-Performance GEMM Acceleration on AMD Versal ML-Optimized
AI Engines. arXiv:2504.09688 [cs.AR] https://arxiv.org/abs/2504.09688

[16] Ryan Kastner and Kastner Lab. 2025. Project: AMD AI-Engine (AIE) Accelerator. University of California, San Diego. Retrieved 2025-06-12
from https://pp4fpgas.readthedocs.io/en/latest/project_aie.html pp4fpgas documentation, latest revision.

[17] Endri Taka, Aman Arora, Kai-Chiang Wu, and Diana Marculescu. 2023. MaxEVA: Maximizing the Efficiency of Matrix Multiplication on
Versal AI Engine. arXiv:2311.04980 [cs.AR] https://arxiv.org/abs/2311.04980

[18] Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Yubo Du, Jack Lo, Kristof Denolf, Stephen Neuendorffer, Alex Jones, Jingtong
Hu, Deming Chen, Jason Cong, and Peipei Zhou. 2023. CHARM: Composing Heterogeneous Accelerators for Matrix Multiply on Versal
ACAP Architecture. arXiv:2301.02359 [cs.AR] https://arxiv.org/abs/2301.02359

https://making-aie-dev-easier-readthedocs.readthedocs.io/en/latest/vs_cpu_gpu.html#ug1079
https://making-aie-dev-easier-readthedocs.readthedocs.io/en/latest/vs_cpu_gpu.html#ug1079
https://docs.amd.com/r/en-US/ug1079-ai-engine-kernel-coding/Overview?tocId=_gsmjbSrB9YCl4WkKcFCww
https://docs.amd.com/r/en-US/ug1079-ai-engine-kernel-coding/Overview?tocId=_gsmjbSrB9YCl4WkKcFCww
https://docs.amd.com/r/en-US/Vitis-Tutorials-AI-Engine-Development/Vitis-Tutorials-AI-Engine-Development-XD100
https://docs.amd.com/r/en-US/Vitis-Tutorials-AI-Engine-Development/Vitis-Tutorials-AI-Engine-Development-XD100
https://xilinx.github.io/xup_aie_training/index.html
https://github.com/zhenghuama/aie4ml_project1/tree/master
https://github.com/zhenghuama/aie4ml_project1/tree/master
https://making-aie-dev-easier-readthedocs.readthedocs.io/en/latest/index.html
https://making-aie-dev-easier-readthedocs.readthedocs.io/en/latest/index.html
https://docs-cse160.readthedocs.io/en/latest/PA1.html
https://arxiv.org/abs/2410.00825
https://arxiv.org/abs/2410.00825
https://arxiv.org/abs/2410.00825
https://arxiv.org/abs/2504.09688
https://arxiv.org/abs/2504.09688
https://pp4fpgas.readthedocs.io/en/latest/project_aie.html
https://arxiv.org/abs/2311.04980
https://arxiv.org/abs/2311.04980
https://arxiv.org/abs/2301.02359
https://arxiv.org/abs/2301.02359

	Abstract
	1 Introduction
	2 Related Works
	3 Technical Material
	3.1 AI Engine Architecture
	3.2 Data Movement Patterns:
	3.3 Matrix Multiplication and Memory Limitations:

	4 Milestones
	4.1 Start of Quarter
	4.2 Mid-Quarter Changes
	4.3 MVP Feature Status and Milestones
	4.4 End of Quarter Changes and Challenges

	5 Conclusion
	Acknowledgments
	References

