
Greater than the Sum of its LUTs: Scaling Up LUT-based Neural
Networks with AmigoLUT

Olivia Weng
oweng@ucsd.edu

University of California San Diego
San Diego, CA, USA

Marta Andronic
Imperial College London

London, UK

Danial Zuberi
University of California San Diego

San Diego, CA, USA

Jiaqing Chen
Arizona State University

Tempe, AZ, USA

Caleb Geniesse
Lawrence Berkeley National

Laboratory
Berkeley, CA, USA

George A. Constantinides
Imperial College London

London, UK

Nhan Tran
Fermi National Accelerator

Laboratory
Batavia, IL, USA

Nicholas J. Fraser
AMD Research and Advanced

Development
Dublin, Ireland

Javier Mauricio Duarte
Ryan Kastner

University of California San Diego
San Diego, CA, USA

Abstract
Applications like high-energy physics and cybersecurity require
extremely high throughput and low latency neural network (NN)
inference. Lookup-table-based NNs address these constraints by
implementing NNs as lookup tables (LUTs), achieving inference
latency on the order of nanoseconds. Since LUTs are a fundamental
FPGA building block, LUT-based NNs efficiently map to FPGAs.
LogicNets (and its successors) form one class of LUT-based NNs
that target FPGAs, mapping neurons directly to LUTs to meet low
latency constraints with minimal resources. However, it is difficult
to build larger, more performant LUT-based NNs like LogicNets
because LUT usage increases exponentially with respect to neu-
ron fan-in (i.e., number of synapses × synapse bitwidth). A large
LUT-based NN quickly runs out of LUTs on an FPGA. Our work
AmigoLUT addresses this issue by creating ensembles of smaller
LUT-based NNs that scale linearly with respect to the number
of models. AmigoLUT improves the scalability of LUT-based NNs,
reaching higher throughput with up to an order of magnitude fewer
LUTs than the largest LUT-based NNs.

CCS Concepts
• Hardware → Reconfigurable logic and FPGAs; Hardware-
software codesign; • Computing methodologies→ Neural net-
works.

Keywords
Edge AI; FPGA; hardware-software codesign; neural networks
ACM Reference Format:
Olivia Weng, Marta Andronic, Danial Zuberi, Jiaqing Chen, Caleb Geniesse,
George A. Constantinides, Nhan Tran, Nicholas J. Fraser, Javier Mauricio

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1396-5/25/02
https://doi.org/10.1145/3706628.3708874

Duarte, and Ryan Kastner. 2025. Greater than the Sum of its LUTs: Scaling
Up LUT-based Neural Networks with AmigoLUT. In Proceedings of the 2025
ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA ’25), February 27–March 1, 2025, Monterey, CA, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3706628.3708874

1 Introduction
Machine learning has become increasingly prevalent in areas such
as high-energy physics, cybersecurity, and autonomous vehicles [10,
12, 18, 29, 31]. Many of these domains require extremely high
throughput and low latency. For example, at the CERNLargeHadron
Collider (LHC), the Compact Muon Solenoid experiment [8] runs
particle collision experiments that generate data rates of ∼40 TB/s,
which physicists need to compress in real time (≤25 ns) to lower
the data bandwidth to a level that their system can handle [10, 12].

Recently, lookup-table-based neural networks (NNs) such as Log-
icNets [29] and NeuraLUT [4] have sought to meet this demand
for ultra low-latency, high-throughput NNs. For instance, Logic-
Nets achieve efficient computation by carefully mapping neurons
to lookup tables (LUTs), a fundamental building block of field-
programmable gate arrays (FPGAs). This makes LUT-based NNs
efficient, yielding high throughput and low latency implementa-
tions while sacrificing some accuracy compared with dense NNs.

However, it is challenging to create more accurate LUT-based
NNs because LUT usage increases exponentially (Ω(2𝑛)) with re-
spect to neuron fan-in (i.e., 𝑛 = number of synapses × synapse
bitwidth). As such, LUT-based NNs must be heavily quantized and
very sparse to efficiently map to FPGA LUTs, which are 6 inputs or
less. LUT-based NNs have a fundamental tradeoff between input
size and LUT size because LUT size increases exponentially with
input size. The standard method of improving NN accuracy [1, 7] by
increasing NN depth, width, and neuron fan-in fails for LUT-based
NNs because they quickly run out of the available LUTs on an FPGA
due to exponential scaling. As a result, scaling up LogicNets by
increasing NN size and density presents a poor tradeoff because we
get minimal accuracy increase at the cost of exponential increases
in LUT usage as well as decreases in throughput.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3706628.3708874
https://doi.org/10.1145/3706628.3708874

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Olivia Weng et al.

Previously, researchers have increased model accuracy through
ensemble learning (ensembling) [11, 15, 24, 33, 35]. Ensembling
increases model accuracy by having multiple, weaker NNs work
together to make a decision. The idea behind ensembling is that
the whole is greater than the sum of its parts; by having multiple
NNs work together, we can achieve better performance than any
one model individually. Prior work [6, 14] often forms ensembles of
many small and weak models to promote diversity in the decision
each model makes (i.e., they must disagree with each other to an
extent [28]). Otherwise, if all the models always agree with each
other, then there is no benefit to combining them together. Through
this “diversity of thought,” the ensemble can make a better decision
as a group. Since LUT-based NNs are constrained by neuron fan-in,
they must be extremely sparse and quantized to avoid an explosion
in LUT usage, sacrificing some accuracy andmaking them relatively
weak NNs. As a result, LUT-based NNs are good candidates for
ensembling.

Our work AmigoLUT1 creates ensembles of smaller LUT-based
NNs to improve accuracy, scaling up performance linearly with
respect to the number of models rather than exponentially with
respect to neuron fan-in. Although AmigoLUT does not achieve
higher accuracy or lower LUT usage than recent state-of-the-art
work [5, 16], our results show that, for certain lower accuracy
benchmarks, AmigoLUT increases throughput and reduces LUT
usage by over an order of magnitude. Thus, the goal of our paper
is to demonstrate the great potential of scaling up LUT-based NNs
with ensembling.

How to apply ensembling to LUT-based NNs effectively presents
many challenges: (1) which ensembling method should we use
for LUT-based NNs? (2) how can we analyze their ensemble per-
formance? (3) how can we implement these ensembles on FPGAs
efficiently? Although many ensembling methods have been intro-
duced over the years [33, 35], it is not immediately clear which
one would work best on LUT-based NNs and why. Few ensembling
studies have been completed on NNs that are both extremely sparse
and quantized let alone LUT-based NNs [25, 32, 36]. Moreover,
how to map LUT-based NN ensembles to FPGAs while minimizing
the resource overhead needed to combine the ensemble members
together is non-trivial.

In our paper, we tackle these challenges by evaluating three fun-
damental ensemble learning methods: averaging [35], bagging [6],
and AdaBoost [14]. We study how LogicNets [29], PolyLUT [3]
and NeuraLUT [4] ensemble together on two high-energy physics
datasets [12] and the MNIST image classification dataset [34]. From
our results, we find that averaging performs the best. We then ana-
lyze our ensemble learning results using diversity and disagreement
metrics. We introduce a new diversity plot for visualizing ensemble
diversity to understand why averaging is the best. Finally, we intro-
duce an open-source tool AmigoLUT2, a hardware-friendly ensem-
ble learning framework for LogicNets, PolyLUTs, and NeuraLUTs
that minimizes ensemble resource overhead when implementing
ensembles on FPGAs.

Our primary contributions are: (1) evaluating various ensemble
learning methods on LUT-based NNs such as LogicNets, PolyLUT,

1“Amigo” means “friend” in Spanish.
2https://github.com/KastnerRG/amigolut

and NeuraLUT (2) analyzing ensembles using novel diversity plots
and disagreement metrics to better understand their performance,
and (3) introducing AmigoLUT, an ensemble learning framework
that efficiently maps ensembles of LUT-based NNs to FPGAs.

2 Background & Related Work
This section reviews relevant background on ensembling and re-
lated work on LUT-based NNs.

2.1 Ensembling
Ensembling has been studied in the fields of statistics and machine
learning for decades, and it has shown notable improvements in per-
formance [6, 14, 15, 35]. While there are many ensembling methods
to choose from, we start with three seminal ensembling methods:
averaging [35], bagging [6], and AdaBoost [14]. The goal of each
method is to promote diversity among the ensemble members so
that together they can make a decision better than any one model
could individually.

Averaging involves taking the average of the outputs of all en-
semble members. Averaging introduces diversity by randomly ini-
tializing each ensemble member’s weights differently, training them
independently or dependently. In our work, we randomly initialize
each model’s weights differently and backpropagate the averaged
outputs of the ensemble through each model, training the models
dependently together as one.

Bagging, an abbreviation of bootstrap aggregating, involves ran-
domly sampling the training set with replacement to create a unique
training set per ensemble member, which is then each trained in-
dependently. These unique training sets introduce diversity into
the ensemble because each ensemble member trains on different
distributions of the data. The ensemble members’ outputs can be
combined in many ways, but in our work, we average the outputs.

AdaBoost is a subclass of boosting [35], which is an ensembling
method that trains each ensemble member sequentially, where each
model’s performance informs how the subsequent model will be
trained. AdaBoost, or adaptive boosting, achieves this by assigning
weights to each training sample, starting with equal weights. Ad-
aBoost uses these weights to randomly sample from the training
set. As each model trains, the weights of the training samples are
adjusted based on how the model performs on them. The samples
with poor performance are assigned higher weight so that they are
sampled more frequently when the next model trains. This way,
each subsequent model targets training samples that the previous
models performed poorly on, in an effort to “boost” each other’s per-
formance. To combine the ensemble’s outputs, AdaBoost weights
each model based on its performance, computing a weighted aver-
age of each model’s outputs to produce the final output.

Bagging and AdaBoost were first studied on decision trees, which
are relatively weak, increasing accuracy remarkably [6, 14]. Prior
work [35] has attributed this increase in accuracy to the combina-
tion of weak models along with their unique methods of promoting
diversity in training. Based on this observation, we hypothesize that
sparse, quantized LUT-based NNs should ensemble together well be-
cause they are weaker than their dense, full-precision counterparts.
Few works [13, 25] have evaluated ensembling NNs that are both

https://github.com/KastnerRG/amigolut

AmigoLUT FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

sparse and quantized. We evaluate our hypothesis on averaging,
bagging, and AdaBoost in Sec. 3.

2.2 LUT-based NNs
Many kinds of LUT-based NNs have been introduced in the litera-
ture.

LUTNet [30] uses LUTs as the fundamental inference operator to
implement NNs on FPGAs. LUTNet seeks to improve binary NNs’
reliance on XNOR operations by replacing them with more expres-
sive, learnable 𝐾-LUT Boolean operations. While LUTNet improves
NN resource efficiency on FPGAs, the number of parameters in
LUTNet scales exponentially with respect to the number of LUT
inputs, making it difficult to improve accuracy by increasing model
size through parameter count.

Weightless NNs (WNNs) are another class of LUT-based NNs [2,
19, 26, 27]. WNNs consist of neurons, but they do not use weights
to determine how they respond (i.e., they are weightless). WNN
neurons are made up of logical LUTs that represent Boolean func-
tions. WNNs suffer from exponential scaling with respect to the
number of LUT inputs as well as difficulty in generalizing to unseen
input data, as they primarily memorize patterns [26]. Recent work,
such as differentiable WNNs (DWNs) [5] improve WNN generaliza-
tion by making them differentiable so that they learn connections
between LUTs rather than using fixed random setups.

Ensembling WNNs has been done before [13, 25]. ULEEN [25]
ensembles WNNs by training many and selecting a few of the best
performing models to train together, summing their outputs in the
end to make decisions. Filho et al. [13] evaluate bagging and boost-
ing on their WNNs; however, they show minimal accuracy gains,
quickly hitting diminishing returns as ensemble size increases.

LogicNets [29] and NullaNet [20, 21] fully encapsulate a neu-
ron’s operation within a logical LUT. Given a trained quantized
NN, LogicNets feed all possible quantized inputs to a neuron and
captures the quantized outputs it computes, while NullaNet does so
in a lossy manner. These inputs and outputs are then enumerated
in a logical LUT and then implemented as physical LUTs by a logic
synthesis tool.

PolyLUT [3] and NeuraLUT [4] are successors of LogicNets.
Each method improves the accuracy of LogicNets by attempting to
capture more complex functions within the logical LUT. PolyLUT
learns a NN that is a piece-wise polynomial functionwhereas Neura-
LUT encapsulates an arbitrary NN within a logical LUT. PolyLUT-
Add [16] sums smaller PolyLUT logical LUTs together to build
larger, more complex LUTs. However, similar to LogicNets, all three
methods still scale exponentially with respect to LUT inputs. We
evaluate AmigoLUT on LogicNets, PolyLUT, and NeuraLUT, creat-
ing ensembles with them as base models. Although each base model
still suffers from exponential scaling with respect to LUT inputs,
AmigoLUT alleviates this by relying on weaker models that have
smaller LUT fan-in. As a result, AmigoLUT scales performance
linearly with respect to the number of models.

3 Ensembling LUT-based NNs
The first step in ensembling LUT-based NNs is determining which
ensembling method increases accuracy the most. We study three
fundamental ensembling methods: (1) averaging, (2), bagging, and

(3) AdaBoost. We seek to answer: (1) which ensembling method
performs the best, and (2) why does one ensembling method out-
perform another?

3.1 Ensembling results
To determine which of our three ensembling methods is the best,
we evaluate LogicNets models on three datasets: MNIST [34], high-
granularity endcap calorimeter (HGCal) compression [12], and jet
substructure classification (JSC) [12].

MNIST is a well-known dataset tasked with classifying hand-
written digits. The HGCal and JSC datasets are latency-critical tasks
that come from the LHC’s Compact Muon Solenoid experiment [8].
At the LHC, physicists run particle collision experiments that gener-
ate data rates of ∼40 TB/s. To reduce data rates, the physicists plan
to deploy tens of thousands NN encoders in the LHC to compress
particle collision data from the HGCal [9] sensor instrument into
a smaller format. This encoded data is then passed to a decoder
off-sensor for further processing in the trigger system. We evaluate
HGCal model performance using Earth mover’s distance (EMD),
a distance measure between two probability distributions [23]. In
our case, the EMD measures the distance between the encoder’s in-
put energy readings and the decoder’s outputs, respectively. Lower
EMD is better, and an EMD of 0 indicates the autoencoder is lossless.
The trigger system, to which the decoder outputs data, performs
many tasks, one of which is JSC. JSC involves classifying particle
collision data into five types of jets, which informs physicists about
potentially new physics. Of note, the HGCal encoder hardware
must accept new input data at 40MHz and complete inference in
25 ns. For each dataset, we ensemble NNs of different sizes.

From our experiments, we find that averaging works the best.
As seen in Fig. 1, we see that for the small (JSC-S), medium (JSC-
M), and large (JSC-L) models, averaging increases accuracy the
most. For instance, averaging JSC-S increases accuracy by 4.1%,
whereas bagging and AdaBoost increase accuracy by at most 1.8%
and 0.4%, respectively. Similarly for MNIST, the extra small model
(MNIST_XS) increases in accuracy by 4.4% at ensemble size 16,
whereas bagging and AdaBoost increase accuracy by 3.6% and 3.1%,
respectively (Fig. 2). For HGCal, averaging the encoders together
lowers EMD significantly, where lower is better. Our goal is to
hit ∼1.1 EMD, which is a dense, float32 NN’s performance. As
seen in Fig. 3, 32 small models (HGCal_S) decreases EMD by 28%,
whereas bagging and AdaBoost decrease EMD by 5% and 9%, re-
spectively. For the large HGCal model (HGCal_L), averaging 16
models decreases EMD the most, but the trend is nonlinear. This is
likely due to the difficulty involved with encoding and decoding
HGCal data, which has a larger margin of error than classifying
data into a few discrete classes. In particular, when performing a NN
architecture random search of ∼500 LogicNets to find a low-EMD
NN, we found that any NN larger than HGCal_L led to worse EMD.
Only by ensembling these models together can we significantly
lower EMD to get close to our goal of 1.1 EMD.

We also observe that smaller models benefit from ensembling
the most, increasing in performance significantly. In Fig. 2, we see
that averaging MNIST_XS improves accuracy by 4.9%, whereas the
large model (MNIST_L) only increases accuracy by 0.2%. Notably,
bagging performs the best, but only outperforms averaging by

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Olivia Weng et al.

0 10 20 30
Ensemble Size

70

71

72

73

74

75
Ac

cu
ra

cy
 (%

)

JSC-S

0 10 20 30
Ensemble Size

JSC-M

0 10 20 30
Ensemble Size

JSC-L

Averaging
Bagging
AdaBoost
LogicNet JSC-S
LogicNet JSC-M
LogicNet JSC-L

Figure 1: JSC Ensembling Comparison. Averaging is the best ensembling method for the JSC task, whereas bagging quickly hits
diminishing returns and AdaBoost decreases performance overall.

0 10 20 30
Ensemble Size

93

94

95

96

97

98

99

Ac
cu

ra
cy

 (%
)

MNIST_XS

0 10 20 30
Ensemble Size

MNIST_L

Averaging
Bagging
AdaBoost
LogicNet MNIST_XS
LogicNet MNIST_L

Figure 2: MNIST Ensembling Comparison. The extra small
model MNIST_XS ensembles better than MNIST_L because
as ensemble size increases it increases in accuracy more.

0 10 20 30
Ensemble Size

1.2

1.4

1.6

1.8

EM
D

HGCal_S

0 10 20 30
Ensemble Size

HGCal_L
Averaging
Bagging
AdaBoost
LogicNet HGCal_S
LogicNet HGCal_L

Figure 3: HGCal Ensembling Comparison. The small model
HGCal_S responds to averaging the best, decreasing EMD
(lower is better) by 28% whereas HGCal_L responds nonlin-
early, decreasing EMD by only 17%.

0.14%, with all ensembling methods quickly hitting diminishing
returns after two models. Similarly, in Fig. 3, ensembling HGCal_S
improves EMD by 28% whereas the large model (HGCal_L) only
improves by 17%.

3.2 Analyzing ensemble performance
We find averaging to perform the best, but we also want to un-
derstand why it does well whereas bagging and AdaBoost under-
perform. For instance, for JSC, AdaBoost decreases accuracy for

all three models. As previously stated in Sec. 1 and Sec. 2, ensem-
bling performs well because it promotes diversity, especially among
weaker models, so that they can make a better decision collec-
tively [35]. But, as we have seen, sometimes this is not the case. To
that end, we analyze ensemble performance via a diversity analysis.

Diversity analyses have been performed in the machine learning
community to better understand ensembling performance, primar-
ily on classification tasks [17, 28]. Previously, researchers have
quantified diversity by measuring disagreement among ensemble
members as a proxy for diversity. In particular, recent work [28]
argues that balancing disagreement with model error is important
for good ensemble performance. We conduct a similar diversity
analysis on our classification tasks, namely JSC and MNIST, to bet-
ter understand their ensemble performance. Our diversity analysis
can be used to analyze ensemble performance for not only other
LUT-based NNs but any NN.

We introduce a new way of visualizing the diversity of ensemble
member prediction, as seen in Fig. 4, Fig. 5, and Fig. 6, by showing
ensemble member voting across individual samples (using 𝑛 = 50).
Our diversity visualizations reveal the extent to which the members
of an ensemble agree with each other. We show diversity plots for
the different ensembling methods on the MNIST and JSC tasks in
Fig. 4 and Fig. 5, respectively. For the MNIST task, we show the
diversity plots for MNIST_XS and ensemble size 16. For the JSC
task, we show the diversity plots for JSC_S and ensemble size 32.
Note, the x-axis corresponds to the different classes, and the y-axis
corresponds to an input sample we pass through the ensemble
members individually. Each line represents a sample, and a peak
in class 𝑖 means an individual ensemble member predicted class 𝑖 .
Higher peaks mean that more ensemble members voted for that
class. The samples are ordered by target class, such that the first 𝑘
samples correspond to the first target (𝑦 = 0), the second 𝑘 samples
correspond to the second target (𝑦 = 1), and so on. The lines are
grouped by color based on the class the data sample belongs to.

Thus, for an ensemble with no diversity and zero error, we should
only see peaks along the diagonal. For the MNIST task where we
have ten classes, we use 𝑘 = 5 samples per class. For the JSC task
where we have five classes, we use 𝑘 = 10 samples per class. This
gives a total of 50 samples per plot. While we observe much lower
diversity for the MNIST task compared to the JSC task, we find

AmigoLUT FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

predicted class predicted classpredicted class

averaging bagging AdaBoost

ra
nd
om
 s
am
pl
e

da
ta
 s
am
pl
e

da
ta
 s
am
pl
e

da
ta
 s
am
pl
e

Figure 4: Diversity plots for MNIST_XS. Averaging exhibits
the most diversity, as seen in the small peaks off the diagonal
(which are the incorrect class predictions), meaning there is
some disagreement among the ensemble members. Diversity
has been shown to improve ensembling, confirming averag-
ing’s superior performance.

predicted class predicted classpredicted class

averaging bagging AdaBoost

ra
nd
om
 s
am

pl
e

da
ta
 s
am
pl

e

da
ta
 s
am
pl

e

da
ta
 s

am
pl
e

Figure 5: Diversity plots for JSC_S. While AdaBoost is very
diverse, the high peak density off the diagonal shows that
many ensemble members classify incorrectly. Averaging best
balances diversity with correctness.

predicted classpredicted class

MNIST_XS MNIST_L

ra
nd
om
 s
am

pl
e

da
ta
 s
am
pl
e

da
ta
 s
am
pl
e

Figure 6: Diversity plots for averaging MNIST_XS and
MNIST_L. MNIST_XS exhibits more diverse predictions than
MNIST_L, suggesting small, weaker models ensemble better.

that the averaging method is consistently more diverse compared
to the other ensembling methods, as seen in the small peaks off
the diagonal. Another interesting observation is that for the JSC
task, while AdaBoost appears to be more diverse than bagging,
there appears to be more density off the diagonal, suggesting more
incorrect predictions. Moreover, in Fig. 6, we observe more diversity
in averaging MNIST_XS than in MNIST_L. This corresponds to
the large increases in accuracy for MNIST_XS compared with the
diminishing returns of MNIST_L we observe in Fig. 2.

Disagreement (↑) Error (↓) DER (↑)
Averaging 0.460 0.302 1.522
Bagging 0.096 0.078 1.232
AdaBoost 0.099 0.082 1.208

Table 1: Diversity metrics for the MNIST task. Bagging and
AdaBoost both have low disagreement and error. Their en-
semble members agree with each other a lot, implying less
benefit from ensembling as compared with Averaging.

Disagreement (↑) Error (↓) DER (↑)
Averaging 0.704 0.620 1.137
Bagging 0.316 0.374 0.844
AdaBoost 0.752 0.693 1.085

Table 2: Diversitymetrics for the JSC task. Averaging balances
disagreement and error the best, achieving high DER.

To further verify our qualitative observations, we quantify model
disagreement and compute the disagreement error ratio (DER) [28].
DER is defined as

DER =
E𝑚𝑖 ,𝑚 𝑗∼𝜌 [Disagreement(𝑚𝑖 ,𝑚 𝑗)]

E𝑚𝑖∼𝜌 [Error(𝑚𝑖)]
(1)

provided that E𝑚𝑖∼𝜌 [Error(𝑚𝑖)] ≠ 0, and where 𝜌 is the distribu-
tion of members𝑚𝑖 in the ensemble, Disagreement(𝑚𝑖 ,𝑚 𝑗) is the
prediction disagreement between the two ensemble members𝑚𝑖

and𝑚 𝑗 , and Error(𝑚𝑖) is the prediction error for ensemble member
𝑚𝑖 . For a given data distribution D, the disagreement between any
two ensemble members is defined as

Disagreement(𝑚𝑖 ,𝑚 𝑗) = E𝑥∼D [1(𝑚𝑖 (𝑥) ≠𝑚 𝑗 (𝑥)] (2)

where 1(𝑚𝑖 (𝑥) ≠ 𝑚 𝑗 (𝑥)) is 1 if 𝑚𝑖 (𝑥) ≠ 𝑚 𝑗 (𝑥) else it is 0. The
prediction error for a single ensemble member is defined as

Error(𝑚𝑖) = E𝑥,𝑦∼D [1(𝑚𝑖 (𝑥) ≠ 𝑦)] (3)

where 1(𝑚𝑖 (𝑥) ≠ 𝑦) is 1 if𝑚𝑖 (𝑥) ≠ 𝑦 else it is 0. Importantly, DER
provides a measure of diversity that balances model disagreement
with prediction error, and a higher DER suggests that ensembling
should improve performance [28].

We report these metrics (based on 𝑛 = 680 samples) for the
MNIST and JSC tasks in Tab. 1 and Tab. 2, respectively. For the
MNIST task, we report the metrics for MNIST_XS and ensemble
size 16. For the JSC task, we report the metrics for JSC_S and en-
semble size 32. Notably, averaging had the highest DER across both
tasks. While bagging has the lowest prediction error, it also had the
lowest disagreement, implying low diversity. For the JSC task, while
AdaBoost had a slightly higher level of disagreement compared to
averaging, it also made more errors. Together these metrics reveal
differences in the diversity of ensemble members that are related to
model performance. We find that averaging balances disagreement
and error the best, leading to superior ensembling performance.

4 Quantization Architecture Tradeoffs
As seen in the previous section, averaging works the best among
the ensembling methods we study. Next, we want to implement

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Olivia Weng et al.

...... ...

+

+

+

...

+

+

+

...... ...

Figure 7: Mapping ensembles to FPGAs requires careful consideration of how to handle the different quantization schemes
exhibited by each ensemble member𝑀𝑖 ’s inputs and outputs (a.k.a. I/O). With unique I/O quantizers (left), we must implement
both input and output quantizers per 𝑀𝑖 . This becomes expensive when quantizing from say JSC’s 16-bit input data to the
2-bit precision each𝑀𝑖 expects. To combine outputs of different quantization schemes, we also need to perform a multiply-
accumulate (MAC) to scale the outputs based on their learned scaling factor so that they can be combined. Ideally, we would
share I/O quantizers (middle), however this decreases ensemble performance, especially for difficult tasks. AmigoLUT (right)
balances accuracy and resources by first quantizing the input data to low precision (i.e., 6 bits) with a single shared quantizer
(green) before sending the data to each 𝑀𝑖 to be uniquely quantized. Each𝑀𝑖 ’s input neuron can be quantized with only two
LUT6 to the lower 2-bit precision it expects. At the output, AmigoLUT implements an extra NN layer that quantizes each𝑀𝑖 ’s
output to the same quantization scheme so that they can be summed together efficiently.

this ensemble on an FPGA; however, this presents many challenges
in minimizing resource overhead while preserving ensemble per-
formance.

If we were to directly map the averaging ensembles in the last
section to an FPGA, we would need to map an ensemble that looks
like the design on the left in Fig. 7. As previously stated in Sec. 1
and Sec. 2, LogicNets are heavily quantized to minimize LUT utiliza-
tion. LogicNets are quantized using Brevitas [22], which quantizes
values to a given precision, say 6-bit integers. However, to improve
quantized NN performance, Brevitas learns a floating point scaling
factor. The Brevitas quantizer works by mapping activations to
a limited set of discrete integer levels based on the specified bit-
width (e.g., 2 bits). However, the output of the quantizer remains
in floating-point format because these integer levels are scaled
by a learned floating-point scale factor and shifted by a learned
zero-point (bias). This becomes an issue when we want to combine
ensemble outputs efficiently. When we naively train an ensemble of
LogicNets, Brevitas will learn different floating point scaling factors
for each ensemble member’s input and output quantizers—even
though the inputs and outputs are quantized to the same bitwidth.

As a result, in hardware, wewould have to implement a unique input
quantizer per model in the ensemble. This is resource-intensive. For
instance, the HGCal data is quantized to 8 bits and each LogicNet
model expects say 4-bit inputs, so we would have to implement 𝑁
8 → 4 bit input quantizers, which costs 𝑁× as many resources com-
pared with mapping a single LogicNet to an FPGA. Moreover, since
each model’s output also exhibits a different quantization scheme,
we would need to scale each model’s output by the floating point
scaling factor Brevitas learns. This requires multiplication using
either DSPs or LUTs, if we can manage to also quantize the floating
point scaling factors to integers. As seen in Fig. 7 (left), combining
all ensemble outputs requires implementing multiply-accumulate
(MAC) operations, costing extra resources.

Ideally, we would want to implement the ensemble such that all
models share a single input quantizer and quantize the outputs us-
ing the same scaling factor, as seen in Fig. 7 (middle). By quantizing
the outputs using the same scaling factor, we would only need to
sum the ensemble member’s outputs to get the final result. This
would drastically reduce the resource overhead needed to quantize
the inputs and combine the outputs. However, quantizing all of the

AmigoLUT FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

10 20 30
Ensemble Size

95

96

97

98
Ac

cu
ra

cy
 (%

)
MNIST_XS

Unique I/O quantizers
Shared I/O quantizers
AmigoLUT

0 10 20 30
Ensemble Size

69

70

71

72

73

74

75

Ac
cu

ra
cy

 (%
)

JSC

JSC_S unique
 shared
AmigoLUT
JSC_L unique
 shared
AmigoLUT

0 10 20 30
Ensemble Size

1.2

1.4

1.6

1.8

EM
D

HGCal
HGCal_S unique
 shared
AmigoLUT

Figure 8: Unique quantizers vs. naively shared quantizers vs. AmigoLUT case study on LogicNets. The three graphs show the
accuracy or EMD (y-axis) vs. the ensemble size (x-axis) for three different tasks (MNIST, JSC, and HGCal). Each graph compares
the different input and output quantization methods as described in Fig. 7. The JSC application shows two base model—small
(S) and large (L). Lower EMD results (HGCal) indicate better model performance.

inputs and outputs in a similar manner leads to poor performance,
even undercutting the benefits of ensembling. In Fig. 8, we compare
the performance of using a unique input/output (I/O) quantizer per
ensemble member versus an I/O quantizer shared between all en-
semble members. While for MNIST sharing I/O quantizers does not
reduce accuracy by much (<1%), performance reduces drastically
for JSC and HGCal tasks. This is likely because MNIST is an easier
task than JSC and HGCal. When ensembling eight JSC_S models,
using unique quantizers improves accuracy by 2.1%, while using
shared I/O quantizers only improves accuracy by 0.8%, reducing
the benefit of ensembling. Similarly, for HGCal, sharing I/O quan-
tizers reduces HGCal_S’s EMD by 35% to 1.792, which is worse
than its single model EMD of 1.589, resulting in no benefit from
ensembling. As a result, we need a way to maintain ensemble per-
formance when mapping ensembles to FPGAs without significantly
increasing resource overhead.

5 AmigoLUT
To solve the challenges presented in the previous section, we intro-
duce AmigoLUT, a method for creating ensembles of LUT-based
NNs that map to FPGAs efficiently. The idea behind AmigoLUT is to
balance the performance gains from unique I/O quantizers with the
resource efficiency of shared I/O quantizers. AmigoLUT quantizes
the input data to low precision (i.e., 6 bits) with a single shared
quantizer before sending the data to each ensemble member. Then,
each ensemble member’s input neuron can be quantized uniquely
with a single LUT6 per bit to achieve the lower precision it expects.
At the output, AmigoLUT implements an extra NN layer that quan-
tizes each ensemble member’s outputs to the same precision so that
they can be summed together efficiently on an FPGA. Fig. 7 (right)
describes our design.

5.1 Training results
Fig. 8 shows the accuracy improvements that AmigoLUT achieves
with ensembling. We consider three tasks: MNIST, JSC, and HGCal;
each graph corresponds to one task. We only consider LogicNets
here and use averaging as it gives the best results. As before, we see
that the accuracy generally increases as we add additional ensemble

members until it typically plateaus. Note that a higher accuracy
percentage is better in the MNIST and JSC graphs, but in HGCal, a
lower EMD is better.

The graphs show three different methods of quantization: unique
I/O quantizers, shared I/O quantizers, and the hybrid quantization
scheme that we use in AmigoLUT (see Fig. 7). The general trend
is that the unique I/O quantizer gives the best results, which is
unsurprising given that it is unconstrained; each input and output
can be uniquely quantized, providing the most flexibility.

In general, AmigoLUT’s quantization scheme sits between the
unique I/O quantization scheme and the shared I/O quantization
scheme. In MNIST, AmigoLUT and shared quantization are very
similar. Both provided less than a 1% accuracy drop from the unique
I/O quantization. The JSC results show two models: small (S) and
large (L). The larger models perform better than the small models
across all ensemble sizes. Ensembling the small model achieves
the accuracy of the baseline large model (ensemble size 1). Amigo-
LUT ensembling has very similar accuracy compared to unique
I/O quantization. The shared I/O quantization method performs
poorly for JSC. In general, AmigoLUT reduces ensemble perfor-
mance by <1% compared with unique I/O quantizers for MNIST
and JSC. HGCal results show a similar trend. The EMD is lower
(better) for the unique and AmigoLUT quantization schemes, with
the shared scheme being noticeably worse. The AmigoLUT quan-
tization has the best results of all three quantization schemes for
some ensemble sizes. For example, when ensembling two models
together, AmigoLUT improves EMD by 9% compared with unique
I/O quantizers. In summary, AmigoLUT significantly improves en-
semble performance compared to the naive approach of shared I/O
quantizers.

Similar to Sec. 3.2, we visualize ensemble member prediction di-
versity by showing ensemble member voting across individual sam-
ples (using 𝑛 = 50). We compare the diversity of averaging models
with unique I/O quantizers to models ensembled with AmigoLUT
on the MNIST and JSC tasks in Fig. 10 and Fig. 11, respectively.
We observe similar diversity patterns, suggesting that the train-
ing with AmigoLUT preserves ensemble diversity in addition to
performance.

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Olivia Weng et al.

1 2 4 8
Ensemble Size

90

92

94

96

Ac
cu

ra
cy

 (%
)

MNIST

LogicNet
PolyLUT
NeuraLUT

1 2 4 8 16
Ensemble Size

66

68

70

72

74

Ac
cu

ra
cy

 (%
)

JSC

LogicNet-S
LogicNet-M
LogicNet-L
PolyLUT-XXS

PolyLUT-XS
NeuraLUT-XS
NeuraLUT-S

1 2 4 8 16
Ensemble Size

1.2

1.3

1.4

1.5

1.6

EM
D

HGCal
LogicNet-S
PolyLUT

Figure 9: AmigoLUT can ensemble different LUT-based NNs (LogicNet, PolyLUT, and NeuraLUT) with different sizes (XXS, XS,
S, M, L) to increase their accuracy. The accuracy improvements depend on the difficulty of learning the underlying task (MNIST,
JSC, HGCal). In general, ensembling has greater relative improvement with smaller models compared to larger models.

predicted classpredicted class

Unique I/O Quantizers AmigoLUT

ra
nd
om
 s
am

pl
e

da
ta
 s
am
pl

e

da
ta
 s
am
pl

e

Figure 10: Diversity plots for MNIST with unique I/O quan-
tizers versus AmigoLUT.

predicted classpredicted class

Unique I/O Quantizers AmigoLUT

ra
nd
om

 s
am
pl
e

da
ta
 s

am
pl
e

da
ta
 s

am
pl
e

Figure 11: Diversity plots for JSC with unique I/O quantizers
versus AmigoLUT.

5.2 Hardware results
We study the effect of ensembling different types of models in terms
of their neuron structure (LogicNet, PolyLUT, NeuraLUT) and size
(number of neurons/LUTs). Fig. 9 presents accuracy results across
three tasks (MNIST, JSC, and HGCal) with different NN model
architectures.

Tab. 3 shows the base model architecture parameters considered
throughout the experiments. These models were selected by per-
forming a model architecture search to find high-quality models
that provided tradeoffs between model complexity/size and accu-
racy. The base models are replicated for each ensemble member;
the structure of the models of an ensemble are identical though
their weights will differ.

Dataset Model
Neurons
per layer

Input
bit width

Input
fan-in

Layer
bit width

Layer
fan-in

JSC

AmigoLUT-LogicNet-S 64, 32, 32, 32, 5 2 3 2, 2, 2, 2, 2 3, 3, 3, 3, 3
AmigoLUT-NeuraLUT-XS
(width = 16) 64, 5 2 3 2, 2 3, 3

AmigoLUT-NeuraLUT-S
(width = 16) 64, 5 4 3 2, 2 3, 3

AmigoLUT-PolyLUT-XXS
(degree = 3) 64, 5 2 3 2, 2 3, 3

AmigoLUT-PolyLUT-XS
(degree = 3) 64, 5 2 3 2, 2 3, 3

MNIST

AmigoLUT-LogicNet-XS 1024, 1024, 128, 10 1 8 1, 1, 1, 4 8, 8, 8, 8
AmigoLUT-NeuraLUT
(width = 16) 600, 300, 300, 10 2 4 2, 2, 2, 2 4, 4, 4, 4

AmigoLUT-PolyLUT
(degree = 3) 600, 300, 300, 10 2 4 2, 2, 2, 2 4, 4, 4, 4

HGCal
AmigoLUT-LogicNet-S 128, 256, 128, 128, 16 4 2 2, 2, 2, 6, 6 6, 5, 4, 2, 6
AmigoLUT-PolyLUT
(degree = 2) 512, 512, 64, 16 6 2 3, 3, 4, 5 4, 5, 3, 3

Table 3: Base model architecture used for AmigoLUT en-
sembling, (i.e., the parameters of each ensemble member).
“Width” and “degree” are NeuraLUT and PolyLUT parame-
ters, respectively.

The general trend is that ensembling increases the accuracy
regardless of the underlying NN model. However, the rate of im-
provement from ensembling depends upon the task being learned
by the NN and the base ensemble model size (S, M, L, etc.). Ensem-
bling generally sees its greatest relative gains with smaller ensemble
members. For example, MNIST sees a several percentage point in-
crease when going from one ensemble member (baseline) to two
ensembles in Fig. 9, which is true across all of the different types of
models (LogicNet, PolyLUT, NeuraLUT). Increasing the ensemble
size from two to four members increases the accuracy further but
not as dramatically. The returns of increasing the ensemble size
generally continue to diminish with more ensemble members.

The JSC task considers more than one model for LogicNet, Poly-
LUT, and NeuraLUT; denoted by the appended relative sizes (XXS,
XS, S, M, L) from smallest to largest w.r.t. the number of LUTs.
Consider LogicNet models with ensemble size 1. LogicNet-S has
the lowest accuracy, LogicNet-M is approximately 2% more accu-
rate, and LogicNet-L is the most accurate. As we ensemble each of
these models, they all get more accurate at relatively the same rate,
with the rate of change in accuracy being higher at lower ensemble
members and relatively unchanged at ensemble sizes 8 and 16. The
PolyLUT-XXS and PolyLUT-XS models follow a similar trend.

The HGCal task is likely the most challenging of the three tasks.
First, as an autoencoder, the output result is much more continuous
than the rather small, discrete number of output results for MNIST

AmigoLUT FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

Figure 12: Jet Substructure Pareto Front. The results compare
accuracy, LUTs, and latency. The solid lines are the Amigo-
LUT models with labels indicating the number of ensemble
members. The dotted lines are the standalone versions of the
LUT-based NNs we ensemble. AmigoLUT with NeuraLUT as
its ensembling model gives small, accurate, and low latency
results. The latency only increases slightly as ensemble size
increases until we hit large ensembles (i.e., 64 models).

and JSC, 10 and 5 classes, respectively. Regardless, we see that
ensembling HGCal encoders yields better EMD. The EMD reduces
as the ensemble members increase, meaning the error is lower; an
EMD = 0 is the most accurate result.

Our next series of experiments focuses on comparing the best
models across LUT-based NNs and model sizes. We compare our
AmigoLUT results for ensembling against the standalone models
that we ensemble, showing howAmigoLUT improves the scalability
of LogicNets and NeuraLUT. We also compare with the published
related work. We synthesize and place-and-route our ensembles
with Vivado 2020.2, targeting part xcvu9p-flgb2104-2-i, a Xilinx
Virtex UltraScale+ FPGA. We compile the projects using Vivado’s
Flow_PerfOptimized_high setting and execute synthesis in
Out-of-Context mode.

We note that prior work assumes that the inputs are quantized
and this quantization is done offline, (i.e., there is no quantization
hardware on the inputs). This is a reasonable assumption, but the
reality is that this quantization must be performed somewhere. To
make a fair comparison, we assume that the AmigoLUT inputs
are similarly quantized to 6 bits offline; however, we do add the
hardware required to quantize those 6 bits into say unique 2 bit
inputs for each ensemble member (see Fig. 7).

Tab. 4 shows a selection of ensembling models developed in this
work and results presented in previous works across the three tasks.
The table provides precise numbers for all the relevant metrics (ac-
curacy, LUTs, FFs, latency, FMax, and area delay product) typically
discussed in related work. Note that the high FMax numbers are
a direct result from synthesizing in Out-of-Context mode. Most
FPGA devices do not provide a 1 GHz clock, so in a real system
we would be limited by the global clock network, which is around
∼800 MHz for the VU9P device we target. In Tab. 4, we see that
DWN and PolyLUT-Add provide superior performance for some
benchmarks compared with AmigoLUT; however, we demonstrate
AmigoLUT’s potential for improving these works’ state-of-the-art
performance in the following figures and discussion. In particular,
we show how AmigoLUT significantly reduces LUT utilization for
the models we ensemble, specifically LogicNet and NeuraLUT.

Figure 13: MNIST Pareto Front comparing accuracy, LUTs,
and latency. Solid lines are different ensemble sizes (noted
by the labels) generated from the same base model. The re-
maining point is a standalone NeuraLUT.

Figure 14: HGCal Pareto Front comparing accuracy, LUTs,
and latency. The labels on the solid lines indicate the number
of ensemblemembers.We only achieved better EMD through
ensembling. We did not find a larger LogicNet model that
provided better EMD with a reasonable number of LUTs.

Fig. 12 shows different models’ accuracy versus latency and LUTs.
The models include our AmigoLUT ensembling results (solid lines)
and their standalone versions (dotted lines). The labels indicate
the number of ensemble members. The different models in the
standalone LUT-based NNs architectures are generated by changing
the model architecture, (e.g., the number of layers, the number of
neurons per layer, the layer bit width, and the layer fan-in). Our
results show that selecting the best model architecture parameters
is challenging; it requires extensive tuning and trial and error.

Fig. 12 shows that adding more ensemble members increases the
accuracy, resulting in a linear increase in LUTs. We also see over
an order of magnitude drop in LUT utilization when comparing
a standalone LogicNet versus AmigoLUT-LogicNet at 72% accu-
racy. Except for large ensembles (i.e., ensemble size 64), the latency
stays relatively the same as ensemble size increases. Note that the
latency for larger non-ensembled models increases substantially;
thus, there is a clear benefit for increasing model size/accuracy us-
ing AmigoLUT compared to the more traditional NN architecture
search strategy done in previous work (modifying the layers, neu-
rons per layer, etc.). This is seen in the drastic increase in latency
for the higher accuracy dotted line results.

The AmigoLUT architectures scale well regardless of the base-
line architecture model characteristics, though tuning the baseline
architecture does affect the overall quality. A better baseline model
will generally ensemble better than a lower quality baseline model.

Fig. 13 shows results for MNIST, which are relatively similar
to JSC. Ensembling has a linear relationship between ensemble

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Olivia Weng et al.

Dataset Model Accuracy
/EMD LUT FF DSP BRAM Latency

(ns)
FMax
(MHz)

Area × Delay
(LUT × ns)

MNIST

AmigoLUT-LogicNet-XS (2 models) 94.7 9 711 9 047 0 0 12.3 569 119 445
AmigoLUT-NeuraLUT (4 models) 95.5 16 081 13 292 0 0 7.6 925 122 216
PolyLUT [3] 96 70 673 4 681 0 0 16 378 1 130 768
NeuraLUT [4] 96 54 798 3 757 0 0 12 431 657 576
PolyLUT-Add [16] 96 14 810 2 609 0 0 10 625 148 100
DWN [5] 97.8 2 092 1 757 0 0 9.2 873 19 246

JSC

AmigoLUT-NeuraLUT-XS (4 models) 71.1 320 482 0 0 3.5 1 445 1 120
AmigoLUT-NeuraLUT-XS (16 models) 72.9 1 243 1 240 0 0 5.0 1 008 6 215
AmigoLUT-NeuraLUT-S (32 models) 74.4 42 742 4 717 0 0 9.6 520 410 323
LogicNet-L 73.1 36 415 2 790 0 0 6 390 218 490
PolyLUT 72 12 436 773 0 0 5 646 62 180
PolyLUT 75 236 541 2 775 0 0 21 235 4 967 361
NeuraLUT 72 4 684 341 0 0 3 727 14 052
NeuraLUT 75 92 357 4 885 0 0 14 368 1 292 998
PolyLUT-Add 75 36 484 1 209 0 0 16 315 583 744
PolyLUT-Add 72 895 1 649 0 0 4 750 3 580
DWN 73.7 134 106 0 0 3.7 1 361 496
DWN 76.3 6 302 4 128 0 0 14.4 695 90 749

HGCal
AmigoLUT-LogicNet-S (2 models) 1.386 26 400 4 049 0 0 15.6 512 411 840
AmigoLUT-LogicNet-S (16 models) 1.270 195 724 23 515 0 0 24.0 334 4 697 376
LogicNet-L 1.407 32 529 2 340 0 0 12.2 323 396 854

Table 4: Comparing model resource utilization and performance metrics across the three datasets/tasks with prior work.

members and LUTs. The latency increases as more ensemble mem-
bers are added, but generally, ensembling provides a good tradeoff
between accuracy, LUTs, and latency.

The HGCal dataset was not considered in previous LUT-based
NN publications. We feel this is a good benchmark for LUT-based
NNs because it has become a canonical task in the FastML commu-
nity. It has very high constraints on latency and throughput and
thus is a task well-matched for LUT-based NNs. Furthermore, it has
a more continuous output space as it is trying to compress data.

We generated the LogicNets results by performing a NN archi-
tecture search that modified the number of layers, the number of
neurons per layer, the input size, etc. We performed a design space
exploration to find architectures that would train well and provide
good tradeoffs between accuracy and size. We could not find a
larger LogicNets architecture that provided better accuracy with a
reasonable number of LUTs. We considered nearly 500 models in
this search exploration, which highlights the challenges of scaling
up LUT-based NN architecture. As our results show in Fig. 14, we
used ensembling to generate larger models with better EMD.

6 Conclusion
We address the challenges of implementing large, high-performance
NNs for tasks that require high throughput and low latency. Amigo-
LUT creates ensembles of smaller LUT-based NNs that map effi-
ciently to FPGAs. AmigoLUT provides a straightforward methodol-
ogy to increasemodel accuracywhile maintaining a linear scaling in
LUTs, minimally increasing latency, and creating a high-frequency
design. We evaluate three ensemble methods (averaging, bagging,
and AdaBoost) and show that averaging outperforms the other
methods. We analyze the ensemble’s performance using novel di-
versity plots and disagreement metrics, which help explain why

averaging is effective, and provide tools to evaluate the general qual-
ity of ensembling LUT-based NNs and NNs in general. We describe
architecture tradeoffs for efficiently implementing the ensembles,
developing a quantization architecture that allows for effective
ensemble scaling to increase accuracy while minimizing resource
usage. We perform a comprehensive study on three tasks, showing
that AmigoLUT can effectively ensemble existing LUT-based NN
models, demonstrating the potential that ensembling has to scale
up state-of-the-art and future LUT-based NNs.

Acknowledgments
The authors thank the anonymous referees and our shepherd Kia
Bazargan for their valuable comments and helpful suggestions.
Thank you to Abarajithan Gnaneswaran, ZhenghuaMa, and Andres
Meza for helpful consultation. Thanks to Ryan Theisen for helpful
discussions about how to visualize ensemble diversity. CG and JC
were supported by the U.S. Department of Energy (DOE), Office
of Science, Advanced Scientific Computing Research (ASCR) pro-
gram under Contract Number DE-AC02-05CH11231 to Lawrence
Berkeley National Laboratory and Award Number DE-SC0023328 to
Arizona State University (“Visualizing High-dimensional Functions
in Scientific Machine Learning”). JD is supported by DOE ASCR un-
der the “Real-time Data Reduction Codesign at the Extreme Edge for
Science” Project (DE-FOA-0002501) and the National Science Foun-
dation (NSF) under Cooperative Agreement OAC-2117997 (A3D3).
This material is based upon work supported by the NSF Graduate
Research Fellowship Program under Grant No. DGE-2038238. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the NSF.

AmigoLUT FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Igor Aleksander, WV Thomas, and PA Bowden. 1984. WISARD· a radical step
forward in image recognition. Sensor review 4, 3 (1984), 120–124.

[3] Marta Andronic and George A Constantinides. 2023. PolyLUT: Learning Piece-
wise Polynomials for Ultra-Low Latency FPGA LUT-based Inference. In 2023
International Conference on Field Programmable Technology (ICFPT). IEEE, 60–68.

[4] Marta Andronic and George A Constantinides. 2024. NeuraLUT: Hiding Neural
Network Density in Boolean Synthesizable Functions. In 2024 34th International
Conference on Field-Programmable Logic and Applications (FPL). IEEE, 140–148.

[5] Alan Tendler Leibel Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eugene
John, Lizy Kurian John, Priscila Machado Vieira Lima, and Felipe MG França.
2024. Differentiable Weightless Neural Networks. In Forty-first International
Conference on Machine Learning.

[6] Leo Breiman. 1996. Bagging predictors. Machine learning 24 (1996), 123–140.
[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[8] S Chatrchyan, G Hmayakyan, V Khachatryan, AM Sirunyan, W Adam, T Bauer,
T Bergauer, H Bergauer, M Dragicevic, J Eroe, et al. 2008. The CMS experiment
at the CERN LHC. Journal of instrumentation 3 (2008).

[9] CMS collaboration et al. 2017. The phase-2 upgrade of the CMS endcap calorime-
ter. CMS Technical Design Report CERN-LHCC-2017-023. CMS-TDR-019, CERN
(2017).

[10] Giuseppe Di Guglielmo, Farah Fahim, Christian Herwig, Manuel Blanco Valentin,
Javier Duarte, Cristian Gingu, Philip Harris, James Hirschauer, Martin Kwok,
Vladimir Loncar, et al. 2021. A reconfigurable neural network ASIC for detector
front-end data compression at the HL-LHC. IEEE Transactions on Nuclear Science
68, 8 (2021), 2179–2186.

[11] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. 2020. A survey
on ensemble learning. Frontiers of Computer Science 14 (2020), 241–258.

[12] Javier Duarte, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi, Shvetank
Prakash, and Vijay Janapa Reddi. 2022. FastML Science Benchmarks: Accelerating
Real-Time Scientific Edge Machine Learning. arXiv preprint arXiv:2207.07958
(2022).

[13] Leopoldo Lusquino Filho, FelipeMGFrança, and PriscilaMVLima. 2023. WiSARD-
based Ensemble Learning. (2023).

[14] Yoav Freund, Robert E Schapire, et al. 1996. Experiments with a new boosting
algorithm. In icml, Vol. 96. Citeseer, 148–156.

[15] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. 2009. Multi-class adaboost.
Statistics and its Interface 2, 3 (2009), 349–360.

[16] Binglei Lou, Richard Rademacher, David Boland, and Philip HW Leong. 2024.
PolyLUT-Add: FPGA-based LUT Inference with Wide Inputs. arXiv preprint
arXiv:2406.04910 (2024).

[17] Haiquan Lu, Xiaotian Liu, Yefan Zhou, Qunli Li, Kurt Keutzer, Michael W. Ma-
honey, Yujun Yan, Huanrui Yang, and Yaoqing Yang. 2024. Sharpness-diversity
tradeoff: improving flat ensembles with SharpBalance. arXiv:2407.12996 [stat.ML]
https://arxiv.org/abs/2407.12996

[18] Yifang Ma, Zhenyu Wang, Hong Yang, and Lin Yang. 2020. Artificial intelligence
applications in the development of autonomous vehicles: A survey. IEEE/CAA
Journal of Automatica Sinica 7, 2 (2020), 315–329.

[19] Igor DS Miranda, Aman Arora, Zachary Susskind, Luis AQ Villon, Rafael F
Katopodis, Diego LC Dutra, Leandro S De Araújo, Priscila MV Lima, Felipe MG
França, Lizy K John, et al. 2022. Logicwisard: Memoryless synthesis of weightless

neural networks. In 2022 IEEE 33rd International conference on application-specific
systems, architectures and processors (ASAP). IEEE, 19–26.

[20] Mahdi Nazemi, Arash Fayyazi, Amirhossein Esmaili, Atharva Khare, Soheil Nazar
Shahsavani, and Massoud Pedram. 2021. NullaNet Tiny: Ultra-low-latency DNN
inference through fixed-function combinational logic. In 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 266–267.

[21] Mahdi Nazemi, Ghasem Pasandi, and Massoud Pedram. 2018. Nullanet: Training
deep neural networks for reduced-memory-access inference. arXiv preprint
arXiv:1807.08716 (2018).

[22] Alessandro Pappalardo. 2023. Xilinx/brevitas. https://doi.org/10.5281/zenodo.
3333552

[23] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The Earth Mover’s
Distance as a Metric for Image Retrieval. Int. J. Comput. Vis. 40 (2000), 99.
https://doi.org/10.1023/A:1026543900054

[24] Omer Sagi and Lior Rokach. 2018. Ensemble learning: A survey. Wiley interdisci-
plinary reviews: data mining and knowledge discovery 8, 4 (2018), e1249.

[25] Zachary Susskind, Aman Arora, Igor DS Miranda, Alan TL Bacellar, Luis AQ
Villon, Rafael F Katopodis, Leandro S de Araújo, Diego LC Dutra, Priscila MV
Lima, Felipe MG França, et al. 2023. ULEEN: A Novel Architecture for Ultra-
low-energy Edge Neural Networks. ACM Transactions on Architecture and Code
Optimization 20, 4 (2023), 1–24.

[26] Zachary Susskind, Aman Arora, Igor DS Miranda, Luis AQ Villon, Rafael F
Katopodis, Leandro S De Araújo, Diego LC Dutra, Priscila MV Lima, Felipe MG
França, Mauricio Breternitz Jr, et al. 2022. Weightless neural networks for effi-
cient edge inference. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques. 279–290.

[27] Zachary Susskind, Alan TL Bacellar, Aman Arora, Luis AQ Villon, Renan Men-
danha, Leandro Santiago de Araújo, Diego Leonel Cadette Dutra, Priscila MV
Lima, Felipe MG França, Igor DS Miranda, et al. 2022. Pruning weightless neural
networks. ESANN 2022 proceedings (2022).

[28] Ryan Theisen, Hyunsuk Kim, Yaoqing Yang, Liam Hodgkinson, and Michael W
Mahoney. 2024. When are ensembles really effective? Advances in Neural
Information Processing Systems 36 (2024).

[29] Yaman Umuroglu, Yash Akhauri, Nicholas James Fraser, and Michaela Blott. 2020.
LogicNets: Co-designed neural networks and circuits for extreme-throughput
applications. In 2020 30th International Conference on Field-Programmable Logic
and Applications (FPL). IEEE, 291–297.

[30] Erwei Wang, James J Davis, Peter YK Cheung, and George A Constantinides.
2019. LUTNet: Rethinking inference in FPGA soft logic. In 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 26–34.

[31] Olivia Weng, Alexander Redding, Nhan Tran, Javier Mauricio Duarte, and Ryan
Kastner. 2024. Architectural implications of neural network inference for high
data-rate, low-latency scientific applications. arXiv preprint arXiv:2403.08980
(2024).

[32] Tim Whitaker and Darrell Whitley. 2022. Prune and tune ensembles: low-cost
ensemble learning with sparse independent subnetworks. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 36. 8638–8646.

[33] Yongquan Yang, Haijun Lv, and Ning Chen. 2023. A survey on ensemble learning
under the era of deep learning. Artificial Intelligence Review 56, 6 (2023), 5545–
5589.

[34] Corinna Cortes Yann LeCun and Chris Burges. [n. d.]. MNIST handwritten digit
database. https://yann.lecun.com/exdb/mnist/

[35] Zhi-Hua Zhou. 2012. Ensemble methods: foundations and algorithms. CRC press.
[36] Shilin Zhu, Xin Dong, and Hao Su. 2019. Binary ensemble neural network:

More bits per network or more networks per bit?. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 4923–4932.

https://arxiv.org/abs/2407.12996
https://arxiv.org/abs/2407.12996
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.1023/A:1026543900054
https://yann.lecun.com/exdb/mnist/

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Ensembling
	2.2 LUT-based NNs

	3 Ensembling LUT-based NNs
	3.1 Ensembling results
	3.2 Analyzing ensemble performance

	4 Quantization Architecture Tradeoffs
	5 AmigoLUT
	5.1 Training results
	5.2 Hardware results

	6 Conclusion
	Acknowledgments
	References

