
OPEN-CFR: Open-source Co-design Framework for
Redundancy with DPR in COTS FPGA SoCs

Francesco Restuccia∗
University of California San Diego

La Jolla, CA, USA
frestuccia@ucsd.edu

Biruk Seyoum∗

Columbia University
New York, NY, USA

biruk@cs.columbia.edu

Alexander Redding
University of California San Diego

La Jolla, CA, USA
alredding@ucsd.edu

Zhenghua Ma
University of California San Diego

La Jolla, CA, USA
zhm007@ucsd.edu

Guy Eichler
Columbia University
New York, NY, USA

guyeichler@cs.columbia.edu

Luca Carloni
Columbia University
New York, NY, USA
luca@cs.columbia.edu

Ryan Kastner
University of California San Diego

La Jolla, CA, USA
kastner@ucsd.edu

Abstract—Commercial-off-the-shelf (COTS) Field
Programmable Gate Array (FPGA) systems-on-chip (SoCs)
are flexible platforms combining a Processing System (PS)
featuring high-performance embedded-class processors with a
configurable FPGA subsystem for the deployment of hardware
accelerators and ad-hoc custom peripherals. Flexibility combined
with demonstrated high performance and high energy efficiency
make COTS FPGA SoCs particularly attractive for space
applications. One of the main challenges in using COTS FPGA
SoCs in space applications is the susceptibility of the FPGA
technology to Single Event Upsets (SEU) caused by ionizing
particles. This paper presents OPEN-CFR, an Open-source
Co-design Framework for redundant execution of hardware
accelerators on COTS FPGA SoC platforms. From a high-level
description of the target system, OPEN-CFR provides: (i)
an automatically generated hardware shell supporting voting
and detection, specifically tailored for the interface of a target
hardware accelerator, (ii) a full Dynamic Partial Reconfiguration
flow for fast recovery after SEU, and (iii) a generated software
runtime executable for the setup and runtime management of
the full redundant system. OPEN-CFR automates the creation
of the full FPGA design, providing as output the bitstreams
and software executable for the target FPGA SoC platform. We
evaluate the performance of OPEN-CFR and compare it with
state-of-the-art solutions on realistic experimental scenarios
and on a use-case scenario deploying the HLS4ML framework
on popular COTS FPGA SoCs from the ZYNQ family from
AMD-Xilinx.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGA) are popular plat-
forms for the implementation of space applications [1], [2],
[3]. They are currently in use for enabling communications,
sensors, instruments, and systems in applications ranging from
low Earth orbit satellites to space missions and deep-space

*These authors contributed equally to this work

exploration [4], [5]. Multiple vendors provide space-grade
FPGA platforms that are typically based on anti-fuse or flash
technologies. However, traditional space-grade FPGA plat-
forms have significant limitations compared to commercial-
off-the-shelf (COTS) SRAM-based FPGA platforms. These
limitations include: (i) deployment in older technology nodes,
which leads to lower performance and worse energy efficiency;
(ii) being significantly expensive; (iii) the single program-
ming capability of anti-fuse-based FPGAs, which lacks the
flexibility of reprogrammable COTS FPGAs; (iv) flash-based
FPGAs generally not matching the performance levels of
COTS SRAM-based FPGAs.

Among the commercially available SRAM-based FPGA
platforms, FPGA systems-on-chip (SoCs) combine a pro-
grammable FPGA fabric with a Linux-capable processing
system, typically deploying multiple hard silicon ARM-based
processors and peripherals [6], [7]. FPGA SoC platforms
support a great level of flexibility, enabling the deployment of
fully-featured Linux-based applications, enriched with custom
functionalities deployed in the FPGA fabric as hardware accel-
erators or custom peripherals. The Dynamic Partial Reconfig-
uration (DPR) feature adds another level of flexibility to these
platforms, enabling the partial runtime reconfiguration of the
FPGA fabric while keeping the rest of the FPGA subsystem
running. The features enabled by FPGA SoCs are particularly
relevant in modern applications requiring hardware accelera-
tion, for instance, when complex deep neural network (DNN)
algorithms must be efficiently computed [8], [9], [10], [11].

Several research works have focused on the use of COTS
FPGA in space applications. However, the application of
COTS FPGAs in space applications comes with its own
set of challenges [12] – one of the major difficulties is



the susceptibility of SRAM-based COTS FPGA platforms
to Single-Event Upsets (SEUs) caused by space radiation.
SEUs are capable of corrupting the configuration memory
of an SRAM-based FPGA, thus altering the implemented
function. This can lead, in the worst-case scenario, to the
generation of incorrect results, which can potentially cause
fatal consequences. Clearly, this scenario should be avoided
by the majority of critical applications.

Redundant execution is a popular and effective approach
to improving the reliability of systems executing under the
effect of SEUs – it consists of deploying and synchronizing
the execution of multiple replicated instances of the same ac-
celerator. According to the required functionalities, redundant
execution can provide different features, ranging from single
error detection in dual modular redundancy (DMR), single
error detection and correction in triple modular redundancy
(TMR), and possibly more advanced features when deploying
more than three instances of the replicated module.

The research community widely investigated redundant
execution on FPGAs (Section II). On the commercial side,
multiple vendors provide commercial tools for the deploy-
ment of redundant designs [13], [14]. The industrial solutions
focus on generic RTL developments, lacking features for an
automated full-system generations for FPGA SoCs. Moreover,
most of the industrial solutions are closed-source, preventing
modifications and eventually improvements, thus limiting the
contributions that can be provided by the research community.
Finally, on the research community side, a holistic open-source
co-design framework that supports the automatic generation
of redundant designs along with the software runtime, and
a flexible Dynamic DPR flow targeting COTS FPGA SoC
platforms is not yet available.

Contribution: This paper proposes OPEN-CFR: an Open-
source Co-design Framework for Redundancy utilizing the
DPR capability in COTS FPGA SoCs. OPEN-CFR is a co-
design framework supporting the integration, development,
and execution of redundant hardware-accelerated applications
on commercial FPGA SoC platforms. OPEN-CFR is based
on: (i) a configurable hardware shell composed of two IPs
supporting the synchronization, voting, detection, and correc-
tion of runtime execution faults on TMR; (ii) a full DPR flow
for the deployment and placement of the multiple instances of
the target accelerator in multiple reconfigurable slots to enable
fast recovery; (iii) a software runtime for the configuration,
runtime management, and recovery (triggering DPR of the
slots when a fault is detected by the hardware shell); and (iv) a
set of scripts to automate the generation and integration of the
hardware shell, the full RTL of the design (including different
IPs), the DPR flow, and the software runtime. OPEN-CFR
takes as inputs a configuration file (a high-level description
of the system), the target accelerator source files in IP-
XACT format (without requiring the RTL, in order to support
third-party accelerator IPs), and software code to execute on
the processors in the processing system (PS). OPEN-CFR
generates the static bitstream, the dynamic (partial) bitstreams,
and the software runtime executable for the configuration and

management of the whole system. We experimentally evaluate
the performance and area impact of OPEN-CFR on realistic
designs and on the HLS4ML flow for the acceleration of DNN
algorithms on COTS FPGA SoCs, comparing the measured
results with a state-of-the-art commercial tool for the Xilinx-
AMD FPGA SoC platforms.

Open-CFR is open-source [15]. This baseline solution can
be leveraged by the broad research community – we hope with
that to stimulate further research contribution on the topic. We
discuss this fundamental matter in more detail in Section V.

II. RELATED WORKS

Several previous works have focused on redundant execu-
tion to increase the reliability of a system executing in harsh
environments, such as outer space.

Le et al. [12] recently described the features and challenges
in designing space systems based on FPGA technologies. Su
et al. [16] proposed a methodology aimed at leveraging the
programmable logic in FPGA SoC platforms for supporting
the redundant execution of the Cortex A53 cores integrated
in the PS of Xilinx-AMD Zynq Ultrascale+ platforms. Doran
et al. [17] proposed a methodology for supporting synchro-
nization in lockstep execution of cores/processors, putting
forward the concept of post-processing resource release to
facilitate the implementation of redundant core/processor ar-
rays. Kastensmidt et al. [18] investigated how to place the
voter’s logic into a redundant design, showcasing how the
reliability of the system depends on the placement of voters
in the design. Lazaro et al. [19] proposed a methodology to
support redundant communication in low-speed peripherals.
Such a solution is limited to the RTL design and on AXI-lite
communication interfaces.

Osterloh et al. [20] provided an extensive survey of the DPR
features available in space-grade FPGAs. Pilotto et al. [21],
Heiner at al. [22], Bolchini et al. [23], and Straka et al. [24]
investigated methodologies for leveraging dynamic partial
reconfiguration to recover from SEU in redundant designs.

Barbirotta et al. [25] presented a methodology leverag-
ing open-source RISC-V architectures to support replicated
thread execution. Sarraseca et al. [26] proposed an open-
source implementation and SoC integration of a RISC-V
lockstep core based on Gaisler’s NOEL-V core for space
domain [27]. Barbirotta et al. [28] investigated the integration
of co-processors in a fault-tolerant RISC-V core, evaluating
advantages and weaknesses. Wilson et al. [29] investigated
the SEU sensitivity in popular RISC-V open-source processors
through an automatic fault injection setup leveraging DPR.

The research community also spent considerable efforts
in providing frameworks supporting various functionalities.
Jacobs et al. [30] proposed a reconfigurable fault-tolerance
framework for FPGAs, enabling the dynamic adjustment of
system redundancy and fault mitigation from the radiation
incurred at different orbital positions. Lee et al. [31] extended
LegUp [32], proposing a framework for generating TMR
designs for FPGA platforms from C programs. Xin et al. [33]
presented multiple methodologies aimed at implementing



Redundancy Generation

Generated
Verilog RTL

Generate IP
Interface

Multiply
Interfaces for
Redundancy

Generate
Voting and
Detection

Logic

YAML File Static Block
Design

Integration

DART

Host Software

IP XACT

Static
Bitstream

Dynamic
Bitstreams

ELF file

Inputs Outputs

Pyverilog

Fig. 1. The internals of the OPEN-CFR framework building flow.

TMR designs in FPGA platforms. Nema et al [34] proposed a
framework, based on RTL simulations, for finding vulnerable
components in hardware designs through fault injection and
fault propagation tracking. Shreejith et al. [35] proposed
an approach to redundancy specifically focused on safety-
critical automotive systems, leveraging DPR and a custom bus
controller.

On the industry side, AMD-Xilinx provides the TMR Tool, a
collection of IPs for the deployment of redundant applications
on most of their commercial FPGA platforms. Synopsys pro-
vides the Synplify tool for the development and implementa-
tion of high-reliability designs for FPGA platforms, including
the option of generating redundant execution. While effective,
these tools do not provide support for DPR integration, a
software runtime, nor an automatic tool for the generation
of redundant designs. Moreover, since the IPs provided by
the TMR tool are closed-source, they prevent any direct
modification, enrichment, or improvement.

A co-design open-source framework for supporting the
implementation of redundant applications on COTS FPGA
SoCs, integrated with a full DPR flow for fast recovery is
still missing.

III. THE OPEN-CFR FRAMEWORK

This section describes the OPEN-CFR framework and is
organized as follows: Section III-A describes the framework
flow and its internals, from the provisioning of the input
files to the generation of the bitstreams and software runtime.
Section III-B provides an overview of the hardware and
software architecture of a system deployed with OPEN-CFR.
Section III-C describes the system runtime functionalities –
we provide a discussion on potentially interesting extensions
and future work in Section V.

We assume a typical hardware acceleration flow in FPGA
SoCs, where the hardware accelerators or custom IPs are
deployed into the FPGA fabric, enriching the execution of
the high-performance embedded processors deployed in the
PS of the FPGA SoC. For maximum flexibility, we take as

reference one of the most popular standard interfaces used for
hardware accelerators in modern FPGA SoCs, composed of
(see Figure 2): (i) a data AXI-full manager port (M) [36].
This port is leveraged by the accelerator to autonomously
fetch data and write results to/from the main DRAM memory
subsystem in the PS; (ii) a configuration AXI-lite subordinate
port (S) [36]. This port is accessed by the processors in PS
for the configuration of the accelerator and triggering the
start of the execution. In simple low-performance hardware
accelerators lacking a data port, the configuration port can also
be leveraged by the processors for feeding the accelerator with
the data to execute on and to read its produced results; (iii) an
interrupt signal, notifying the processors when the execution
of the accelerator is done, thus the availability of fresh results
produced by the accelerator. It is worth mentioning that in
addition to the native interfaces we described above, OPEN-
CFR can be easily extended to support the integration of ac-
celerators using other standard interfaces or custom interfaces.

OPEN-CFR does not rely on the RTL of the integrated
accelerators – we assume that the RTL might not be available
(as it can happen, for instance, when integrating third-party
IPs). This feature ensures seamless support for a wide range
of IPs, including those internally developed, sourced from
open-source repositories, or obtained from third-party vendors
with encrypted RTL. OPEN-CFR leverages the interface of the
accelerator IP to detect when a fault hits one of the replicated
instances of the accelerator, by monitoring and detecting at
runtime any mismatch in the results produced by the replicated
instances of the accelerator.

A. The OPEN-CFR Framework Flow

Figure 1 shows a schematic representation of the OPEN-
CFR co-design flow. OPEN-CFR takes as input: (i) the OPEN-
CFR YAML configuration file, (ii) the IP-XACT representa-
tion of the hardware accelerator, and (iii) the C/C++ software
configuration code for the accelerator and provides as outputs:
(i) the static bitstream to be deployed on the FPGA static
part, including the reconfiguration logic, the redundancy logic,



Open-CFR
HW Shell

Data side

Open-CFR
HW Shell

Configuration
Side

M

M

M

S

S

S

S

M

HWS M
INT

HWS M
INT

HWS M
INT

INT

INT

INT

INT

FPGA

Fault 0
Fault 1
Fault 2

Replicated HW

Application
Processor

Interconnect

Interrupt
Controller

DRAM
Controller

Processing System

FPGA
—
PS

Interface

Config TMR Data TMR

Fig. 2. The OPEN-CFR sample hardware architecture on a commercial FPGA
SoC.

and the system interconnect, (ii) the partial bitstreams, to
be deployed in the DPR reconfigurable slots, and (iii) the
executable software runtime, running in the processors in the
PS and in charge of setting up and manage the whole system.

The first step of the OPEN-CFR flow is generating a
representation of the accelerator interface, as described by the
YAML configuration file, in a Verilog Abstract Syntax Tree
(VAST) using Pyverilog [37]. The second step is multiplying
the VAST accelerator interface to obtain triple modular re-
dundancy. The third step combines voting and detection logic
that is generated for the interface signals on the redundant
accelerators as a VAST module – the hardware shell is
generated, which allows the processor to access the redundant
replicas of the hardware accelerator as a single unit. The fourth
step is to convert the generated VAST logic to Verilog RTL
using the Pyverilog code generation tool. In the final step, the
generated hardware shell is provided as an input to DART [38],
an open-source tool integrated with OPEN-CFR to automate
the DPR design flow on AMD-Xilinx FPGA SoCs.

While DART provides the capability to generate the full
and partial bitstreams of a traditional DPR design along with
runtime support for baremetal and Linux applications, we
augmented it to support redundancy. Our modifications in-
clude: (i) a seamless duplication of the runtime reconfigurable
accelerator IPs, (ii) the automatic insertion of the hardware
shell into the design and automation of the connection with
the accelerators, (iii) automatic generation of the configuration
address-map and device tree for a transparent execution from
software, and (iv) finally, the generation of the full and partial
bitstreams of the system in a single push-button flow.

B. The Architecture of An OPEN-CFR-Generated System

1) Hardware architecture: Figure 2 shows a simplified
representation of the hardware architecture of a OPEN-CFR-
generated system on a COTS FPGA SoC platform. The left
side of Figure 2 shows the FPGA subsystem, while the right
side represents the PS. As depicted in the figure, OPEN-CFR
creates three identical instances of the target accelerator HW ,
named HW1, HW2, and HW3. The DART tool [38] for
DPR allocates a reconfigurable slot for each replica of the
accelerator. Each replica is deployed on a DART slot. On
the left, the configuration ports of the replicated accelerators

Open-CFR Hardware Shell

Application

Accelerator 
Driver

DPR Driver

Redundancy Management Layer (RML)

DPR Unit
Flash Memory

Flash Memory Driver

Specialized 
Accelerator

Specialized 
Accelerator

Specialized 
Accelerator

Partial Bitstreams

Memory-Mapped Registers

Load bitstream to main memory

Interrupt

Fig. 3. The software architecture of the OPEN-CFR framework.

are connected to the configuration side of the OPEN-CFR-
generated hardware shell for redundant execution, each to a
manager AXI-lite port. In turn, configuration side of the shell
exports a subordinate interface directly connected to the PS
and used by the software runtime for the configuration of the
replica accelerators. In addition to configuring the system, the
configuration side of the hardware shell enforces synchronous
execution of the replicas, votes their provided handshakes, and
provides fault detection functionalities during configuration
using interrupts to the PS, enabling a prompt response of the
system in case of fault during configuration.

The data ports of the accelerator replicas are connected
to the data side of the OPEN-CFR-generated hardware shell
for redundancy, each to an AXI-full subordinate interface.
In turn, the data side of the shell exports a manager AXI-
full interface, connected to the FPGA-PS interface to provide
access to the the main DRAM memory subsystem. The data
side of the hardware shell implements voting on the data
results produced by the replica accelerators and handshakes–
the majority voting of the results is eventually written to
DRAM memory. Besides the voting logic, the detection logic
is also deployed on this side of the shell – any mismatch in
the data produced by the accelerator replicas or handshake
is detected and signaled with an interrupt to the OPEN-CFR
software runtime running in the PS.

The OPEN-CFR hardware shell deploys an interrupt line
for each deployed DPR slot, each signaling a fault detected in
the specific slot to the software runtime running in the PS. As
TMR is deployed, three interrupt lines are exported to the PS.

2) Software architecture: Figure 3 shows the software ar-
chitecture of the OPEN-CFR framework. At the top, a software
application that runs on a resource constrained device requires
the assistance of a specialized hardware accelerator in order
to complete the execution of a task with a higher throughput
and better energy efficiency. The software application allocates
the memory for the input and the output of the task, and sets
the input values. The application aggregates any additional
task-specific information that is needed in order to execute the
task. For instance, the execution of a 2D convolution requires
an array for the input, an array for the output, dimensions
and weights for the kernels, padding information, pooling
information, etc.



From the software application layer, the information is
passed to the Redundancy Management Layer (RML). The
information must be organized by the application in a software
data struct named RML t which includes a string with
the name of the requested task, a pointer to the input array,
the dimensions of the input, a pointer to the output array,
the dimensions of the output, and a pointer to an array that
includes additional task-specific arguments. The RML captures
the RML t and instantiates a couple of device drivers.

The first driver is the DPR driver. This driver is pre-
configured by DART at design time to hold a data struct

named bit t that contains the names and sizes of the available
partial bitstreams. Each partial bitstream includes a specialized
accelerator for a specific task. The partial bitstreams are pre-
loaded at design time into a flash memory that can be accessed
on the FPGA board via a designated device driver. The DPR
driver reads the name of the task from RML t, matches it to
an entry in bit t and requests the specific bitstream file from
the flash memory driver. The flash memory driver fetches the
partial bitstream and stores it in the main memory of the device
to make it available for the DPR driver. Then, the bitstream
is passed to the DPR unit from DART, which re-configures
the available slots in the programmable logic with the partial
bitstream.

The second driver is the one that instantiates the specialized
accelerator. This driver receives all the information to invoke
one instance of the accelerator and successfully executes the
task including the information inside RML t. The driver
writes the information into memory-mapped registers which
correspond with the OPEN-CFR hardware shell. The shell
configures all of the redundant copies of the accelerator with
the same configuration. When the device driver initiates an
accelerator invocation through the memory-mapped registers,
the shell invokes all the underlying accelerators in parallel (see
Section III-C1).

An interrupt mechanism between the OPEN-CFR hardware
shell and the RML allows the shell to request a reconfig-
uration in a specific accelerator slot. When an interrupt is
generated, the RML triggers a reconfiguration in the specific
slot indicated by the shell and the partial bitstream is loaded
by the DPR unit. At the end of the execution, the output of
the task is stored inside the output array that was allocated
by the application. The OPEN-CFR hardware shell writes the
output into the main memory according to the address that
was previously provided within RML t by the application.

C. Runtime functionalities description

This section describes the runtime functionalities of OPEN-
CFR, involving configuration and synchronization, voting and
error detection, and recovery with the DART DPR flow.

1) Configuration and synchronization of the replicas: As
mentioned at the beginning of Section III, modern hardware
accelerators are typically configured with software running in
the processors embedded in the PS. Thus, when a OPEN-CFR-
based design is deployed in the system, the first two steps
operated after the overall setup of the platform are: (i) the

first configuration of the replicas of the hardware accelerator,
and (ii) the execution synchronization. In some scenarios,
reconfiguration can also be required at runtime, for instance,
for changing parameters in the function implemented by the
accelerator or updating the memory reference pointers in the
accelerator for fetching data or writing the results.

OPEN-CFR aims at full user software transparency – the
synchronization of the multiple replicas of the accelerator is
directly managed and abstracted by the OPEN-CFR hardware
shell. The software sees a unique address space associated with
the multiple accelerator replicas rather than a separate address
space for each replica, meaning that the standard user software
code for the interaction with a single accelerator, which is one
of the inputs of OPEN-CFR, can be seamlessly deployed with
no user modifications required.

The processor running software triggers a configuration
by accessing the secondary interface of the OPEN-CFR-
generated hardware shell. The hardware shell replicates the
configuration for each replica, presenting the same data to
all of the replicas at the same clock cycle. Providing the
same configuration with exactly the same timing to all of
the replicas, the OPEN-CFR hardware shell guarantees not
only an identical configuration of the cores but also enforces
execution synchronization among them, ensuring that all of
the replicas: (i) share the same configuration, and (ii) start
execution synchronously. Thus, the replicas run in lockstep.

The previous case described a modern accelerator exporting
a configuration port, in which the start of the accelerator
computation is typically triggered by setting an internal reg-
ister. In the case in which the integrated accelerator does
not support/require a software configuration, OPEN-CFR can
support the lockstep synchronization of the replicas leverag-
ing a ”start execution” signal, typically featured in simpler
accelerators. OPEN-CFR also supports scenarios in which
the accelerator does not export a data port for autonomously
accessing the DRAM memory in the PS. In these cases, the
interface of the hardware accelerator is simplified and limited
to its configuration port and the interrupt signal (as described at
the beginning of Section III). In this last scenario, the hardware
shell also takes care of feeding the replicas with the same data
provided by the processors at the same cycle.

2) Voting and Error detection: Besides configuration and
synchronization, the OPEN-CFR-generated hardware shell is
also in charge of voting on the data produced by the multiple
replicas and of detecting faults during execution. As from the
previous section, the hardware shell guarantees that the cores
are configured with the same data and run in lockstep. This
means that any mismatch in the data produced by the replica
accelerators or any interface handshake inconsistency indicates
a fault in one of the replicas.

The OPEN-CFR hardware shell operates fault detection and
majority voting of the outputs. The capacity of error detection
and correction depends on the deployed redundant architecture
– the architecture under analysis deploying TMR support error
correction of one faulty replica and error detection. When a
fault is detected, the OPEN-CFR hardware shell triggers the



interrupt corresponding to the DPR slot deploying the detected
faulty replica. At this point, the OPEN-CFR software runtime
will take care of triggering a DPR recovery of the signaled
slot, as discussed next.

3) Recovery with Dynamic Partial Reconfiguration: Upon
detecting a fault, an interrupt is triggered to notify the software
runtime. The hardware shell exports an individual interrupt
line for each DPR slot. Depending on the recovery policy, the
software framework sends a command to the reconfiguration
controller inside the FPGA fabric to perform partial reconfig-
uration of the faulty accelerator. The configuration controller
fetches the bitstreams from the flash memory and configures
the FPGA via the ICAP interface [7].

IV. EXPERIMENTAL VALIDATION

This section describes the experiments we conducted to
validate OPEN-CFR on COTS FPGA SoCs and compare it
with a state-of-the-art solution. We first evaluated OPEN-CFR
on synthetic tests, leveraging a commercial, closed-source
DMA [39] as the integrated accelerator, and evaluating the
performance impact in terms of overall execution performance
(Section IV-B) and resource consumption (Section IV-C) of
a OPEN-CFR-generated system, compared with a system
deployed using the IPs of the TMRTool [13] provided by
AMD-Xilinx. In these tests, the DMA represent the behavior
of a generic hardware accelerator. Then, we evaluated our
solution on a real use case scenario, implementing redundancy
on the HLS4ML framework for the acceleration of DNN
algorithms on FPGAs (Section IV-Es). The section starts with
a description of the experimental setup.

A. Experimental setup

We developed and deployed realistic architectures on an
AMD-Xilinx Zynq Ultrascale+ ZCU104 FPGA SoC platform.
The architecture under analysis in Section IV-B and Sec-
tion IV-C integrates an AMD-Xilinx DMA as a hardware
accelerator [39]. The DMA is replicated in three instances by
OPEN-CFR– the hardware architecture mirrors the architec-
ture reported in Figure 2; the configuration interfaces and the
data port are connected to the OPEN-CFR hardware shell. The
configuration port of the hardware shell is in turn connected
to the PS-FPGA interface for software configuration. The data
port is connected to the FPGA-PS interface, and in turn, to the
central DRAM memory controller. Thanks to the transparency
of OPEN-CFR from the software perspective, we leveraged the
standard bare-metal software code provided by the vendor for
the DMA with no modification. For comparison, we deployed
a redundant application based on the same replicated DMA
leveraging the hardware IPs provided in the TMRTool [13].

In Section IV-E, we evaluate OPEN-CFR on a real use-
case scenario, implementing redundancy with our framework
on the HLS4ML hardware-accelerated system for DNN algo-
rithms [40].

We leverage the standard AMD-Xilinx Vivado flow for
the synthesis and implementation of the designs. We kept
the default 100 MHz clock configuration for the FPGA. To

64B 4KB 8KB

10

20

Tr
an

sf
er

la
te

nc
y

in
µ
s

Performance comparison for DMA data transfers

Without redundancy Xilinx TMR tools OPEN-CFR

Fig. 4. Performance evaluation at the firmware level of a OPEN-CFR-
generated redundant design compared with the AMD-Xilinx TMR-tool and
the design without redundancy. Results are reported on a linear scale. The
measured results are comparable in all of the scenarios (average reported).

measure execution time performance, we leverage the AMD-
Xilinx Vitis baremetal workflow under debug mode.

B. Execution time performance evaluation

This experiment compares the performance of a reference
design deploying a single DMA with: (i) a redundant TMR
design developed using the IPs of the Xilinx-AMD TMR
Tool, and (ii) a OPEN-CFR-generated redundant system. We
configured the DMAs through its configuration port to move
different amounts of data from the central DRAM memory in
PS (64 Bytes, 4 KBytes, and 8KBytes) through its data port
(see Figure 2). We measure the overall completion time, from
the start of the configuration to the interrupt raised by the
DMA signaling the completion of the data move. We made
1000 runs for each of the designs under evaluation, measuring
their respective completion times. Figure 4 reports the average
measured performance, as a function of the different amounts
of data moved. As expected, the results are comparable for all
of the tested scenarios: the redundancy logic is fully combi-
natorial, thus it introduces no cycle delays. This experiment
confirms that a OPEN-CFR-generated redundant architecture
offers a performance that is comparable with the state-of-the-
art solution for the target FPGA SoC platform.

C. Resource consumption

In this second experiment, we evaluate the hardware re-
source consumption of an OPEN-CFR-generated design, com-
paring the resource cost in Lookup Tables (LUTs) (Figure 5)
and Flip-Flops (FFs) (Figure 6) of a reference design deploy-
ing a non-redundant DMA with: (i) a redundant TMR design
developed using the IPs of the Xilinx-AMD TMRtool, and
(ii) a OPEN-CFR-generated redundant system. We report on
the chart the cost of the overall hardware design (total) and
the cost of the voting logic. The resource consumption of
a single DMA and the interconnect deployed in the design
are also reported for comparison purposes. The reported data
are collected from the AMD-Xilinx Vivado tool used for
the synthesis and implementation of the designs. For a fair
comparison with the AMD-Xilinx TMR Tool, the reported
resources do not include the logic for DPR.



Total Voting logic DMA INTC
100

102

104

L
U

T
s

LUTs Resource consumption on ZCU104

Without redundancy Xilinx TMR tools OPEN-CFR

Fig. 5. LUTs resource consumption of a OPEN-CFR-generate design com-
pared with the AMD-Xilinx TRM tool. Resource consumption for a single
DMA and the Interconnect (INTC) are reported for comparison purposes.
Results are reported on a logarithmic scale.

Total Voting logic DMA INTC
100

102

104

FF
s

Flip-Flops resource consumption on ZCU104

Without redundancy Xilinx TMR tools OPEN-CFR

Fig. 6. Flip-Flops resource consumption of a OPEN-CFR-generate design
compared with the AMD-Xilinx TRM tool. Resource consumption for a single
DMA and the Interconnect (INTC) are reported for comparison purposes.
Results are reported on a logarithmic scale.

Figure 5 and Figure 6 demonstrate that the impact on
hardware resources, in terms of total resource consumption, of
a OPEN-CFR-generated redundant system is comparable with
designs deployed using the IPs from the AMD-Xilinx TMR-
tool. Solely considering the voting logic, Figure 5 showcases
how the OPEN-CFR-generated voting logic has lower LUT
consumption concerning the IPs of the AMD-Xilinx TMR
Tool. Since the redundancy logic is fully combinational, The
implementation of the voting logic does not require any flip-
flop, as shown in Figure 6. The experiments confirm that a
redundant application generated with the OPEN-CFR flow has
comparable resource consumption concerning a commercial
solution.

D. Use-case scenario: the HLS4ML framework

FPGAs are increasingly used in particle physics research
because they can provide extremely high-throughput and low-
latency data inference for many experiments. Scientists have
developed a number of neural network architectures for par-
ticle classification, including the jet-tagger [41]. However,
implementing a neural network in hardware logic from scratch
is difficult and tedious. Fortunately, HLS4ML[42] enables
scientists to do fast and easy prototyping of neural networks on
FPGAs. HLS4ML is an an end-to-end toolchain that converts

64B 2KB 1MB

102

104

E
xe

cu
tio

n
tim

e
in

µ
s

Performance evaluation on the tested HLS4ML accelerator

Without redundancy Xilinx TMR tools OPEN-CFR

Fig. 7. Performance evaluation at the firmware level of a OPEN-CFR-
generated redundant design compared with the AMD-Xilinx TMR-tool and
the design without redundancy. Results are reported in logarithmic scale. The
measured results are comparable in all of the scenarios (average reported).

a neural network defined using popular ML frameworks (e.g.,
PyTorch, TensorFlow, and Keras) to an RTL accelerator.

We leveraged the OPEN-CFR framework for implementing
a redundant system featuring of a jet-tagger accelerator gen-
erated with HLS4ML workflow. Similarly to section IV-B, we
compare the results for the OPEN-CFR-generated system with
the TMR tool and the reference design without redundancy.
Also in this case, we collected data for 1000 runs.

Figure 7 reports the average measured results, as a function
of the amount of data processed by the jet-tagger accelera-
tor. Also in this case, the performance of the OPEN-CFR-
generated system is comparable with the design generated by
the state-of-the-art tool. This confirms the applicability of our
solution to real-world use case scenarios.

E. Recovery-time

The last set of our experiments focuses on the runtime
recovery time after fault detection for a case-study system de-
veloped using OPEN-CFR. The recovery time is defined as the
total time it takes to configure the configuration controller (pre-
config), load the bistream on the FPGA (partial/full config),
and finally configure and invoke the accelerators (post-config)
after a fault interrupt is received. We utilized the sum vec
and mul vec accelerators from the DART IP repository [38].
In each invocation, the accelerators fetch 1024 64-bit width
vectors and perform addition and multiplication respectively.
We implemented the system using the two accelerators in
a TMR configuration in OPEN-CFR and generated a total
of seven bitstreams (six partial bitstreams for each of the
accelerator and one full bitstream) targeting a 100 MHz clock.
Table II provides a summary of the resource consumption of
each accelerator as well as the sizes of the bitstreams. Note
that, the sizes of the partial bitstreams varies widely even
for similar types of accelerators. This is due to the differing
floorplan sizes of the reconfigurable regions of the fabric that
are automatically generated using DART [43].

For this experiment, we triggered fault by intentionally mis-
configuring one of the accelerators with the wrong value at
runtime. Figure 8 provides the results of the comparison of
fault recovery for both accelerators under full reconfiguration



TABLE I
FEATURES COMPARISON BETWEEN OPEN-CFR AND THE AMD-XILINX TMR TOOL.

Resource consumption Performance Software Co-design Full DPR Flow Automatic Design Generation Open Source
TMRTool Comparable Comparable No No No No

OPEN-CFR Comparable Comparable Yes Yes Yes Yes

TABLE II
SUMMARY OF THE FPGA RESOURCE UTILIZATION AND BITSTREAM SIZES

OF THE CASE-STUDY APPLICATION.

LUTs BRAM DSPs bitstream size (KB)

Sum Vec 1219 5 0
817
624
737

Mult Vec 3162 0 8
922
872
877

Static 13817 45 0 4045

sum vec mul vec

102

103

104

Fa
ul

t
re

co
ve

ry
tim

e
in

(µ
s)
;

Total fault recovery time of the case-study design

full-config
pre-config

partial-config
post-config

Fig. 8. Comparison of total fault recovery using a partial-reconfiguration vs
full-reconfiguration approaches.

mode as well as partial reconfiguration. As expected, the full
configuration time is much longer than the partial one (3.8x
for sum vec and 2.96x mul vec). Thanks to OPEN-CFR, the
reduction in recovery time allows us to build a system that is
able to recover faster from SEUs.

Overall, our experiments demonstrate that OPEN-CFR de-
livers performance and resource consumption that are com-
parable to a commercial solution. It does so by using a
fully open-source co-design flow that supports the automatic
generation of the whole software/hardware system targeting
commercial FPGA SoCs.

V. DISCUSSION AND FUTURE WORKS

This work advances the state-of-the-art by proposing a
baseline co-design framework for the generation of redundant
applications on COTS FPGA SoCs. Our framework features a
configurable, generated, RTL hardware shell for redundancy,
supporting an integration with a mature DPR flow for recovery

after fault detection, and providing a flexible software runtime.
A summary of feature comparison between OPEN-CFR and
the AMD-Xilinx commercial tool is reported in Table I.

We believe that the open-hardware nature of the framework
can introduce interesting research directions – we hope to
stimulate further research developments in the deployment of
COTS FPGA SoCs in space applications. Next, we discuss
some interesting avenues for future research that can be
pursued leveraging OPEN-CFR.

1) N-modular redundancy: As the hardware shell for re-
dundancy of OPEN-CFR is fully open source and generated
by the framework, OPEN-CFR can be easily extended to
support hardware N-modular redundancy by making slight
modifications to the Pyverilog generation script. N-modular
redundancy, combined with the DART DPR flow already inte-
grated into OPEN-CFR, enables the exploration of advanced
mechanisms for keeping the system operational and capable
of solving fault(s) during the recovery phase of a replica and
methodologies for synchronization of a recovered replica with
the rest of the system at runtime. Given the closed-source
nature of commercial tools, these explorations are generally
prevented in commercial tools. This direction is interesting
for strictly critical systems, in which the system must be
kept operational during a recovery phase, and also enables
the exploration of the functionalities/resource consumption
tradeoffs and the scalability of N-modular redundancy systems
in real COTS FPGA SoCs.

2) Integration with OS kernels for real multi-tasking:
Another interesting direction is the integration of OPEN-CFR
with an operative system, e.g. FreeRTOS [44] or the AMD-
Xilinx Petalinux [45] distribution provided by AMD-Xilinx
for their FPGA SoC platforms. This direction enables the
integration of the configuration and user software associated
with each redundant accelerator in software tasks, which can
be, in turn, scheduled by the OS scheduler for supporting
execution priorities and scheduling methodologies.

3) Property-based verification: The open-hardware nature
of OPEN-CFR enables customization and analysis of the RTL
of the redundant hardware shell. Thus, the correct functional-
ities of OPEN-CFR can be supported with the definition of a
property-based verification [46], which can be used in complex
scenarios to ensure that the implemented functionalities behave
as expected and without weaknesses or bugs. This direction
can provide an important additional level of assurance in
strictly critical systems [47], [48].

4) Worst-case mathematical timing analysis: Strict timing
requirements are typically mandated in hard real-time critical
systems. Again, the full open-source nature of OPEN-CFR
makes it possible to provide systematic timing analysis of



the whole stack of the system, from hardware to software.
An interesting direction is the combination of the traditional
techniques for supporting software timing guarantees with
the most recent mathematical approaches for fine-grained
hardware timing analysis [49], [50]. This direction enables the
combination of redundant execution with strong upper-bound
timing guarantees for the execution, recovery, and synchro-
nization of the system in hard real-time critical applications
deployed in COTS FPGA SoCs.

VI. CONCLUSION

This paper presents OPEN-CFR, an open-source co-design
framework for redundancy with DPR support for fast and
flexible recovery on COTS FPGA SoCs. We described the
OPEN-CFR framework flow and internals and experimentally
compared the features, performance, and resource consump-
tion with a state-of-the-art tool providing IPs for imple-
menting redundant execution on AMD-Xilinx platforms [13].
We believe that an open-hardware co-design framework for
deploying redundant applications can open interesting research
directions. In particular, we hope with this project to further
stimulate the research in the use of COTS FPGA SoC plat-
forms in space applications.

ACKNOWLEDGMENTS

This work was partially supported by the Department of
Energy (A#: DE-SC0024458) and by the National Science
Foundation (A#: 1764000).

REFERENCES

[1] M. Wirthlin, “High-reliability fpga-based systems: Space, high-energy
physics, and beyond,” Proceedings of the IEEE, vol. 103, no. 3, pp.
379–389, 2015.

[2] N. Montealegre, D. Merodio, A. Fernandez, and P. Armbruster, “In-
flight reconfigurable fpga-based space systems,” in 2015 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS). IEEE, 2015,
pp. 1–8.

[3] L. Rockett, D. Patel, S. Danziger, B. Cronquist, and J. Wang, “Radi-
ation hardened fpga technology for space applications,” in 2007 IEEE
Aerospace Conference. IEEE, 2007, pp. 1–7.

[4] K. Varnavas, W. H. Sims, and J. Casas, “The use of field programmable
gate arrays (fpga) in small satellite communication systems,” in Interna-
tional Conference on Advances in Satellite and Space Communications
(SPACOMM 2015), no. M15-4394, 2015.

[5] A. S. Dawood, S. J. Visser, and J. A. Williams, “Reconfigurable fpgas
for real time image processing in space,” in 2002 14th International
Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat.
No. 02TH8628), vol. 2. IEEE, 2002, pp. 845–848.

[6] Zynq-7000 All Programmable SoC - Reference Manual, Xilinx, 9 2016,
uG585.

[7] Zynq UltraScale+ Device - Reference Manual, Xilinx, 12 2017, uG1085.
[8] The Vitis AI official webpage, AMD-Xilinx,

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html.
[9] B. Seyoum, M. Pagani, A. Biondi, S. Balleri, and G. Buttazzo, “Spatio-

temporal optimization of deep neural networks for reconfigurable fpga
socs,” IEEE Transactions on Computers, vol. 70, no. 11, pp. 1988–2000,
2020.

[10] F. Restuccia and A. Biondi, “Time-predictable acceleration of deep
neural networks on fpga soc platforms,” in 2021 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2021, pp. 441–454.

[11] G. Eichler, B. Seyoum, K.-L. Chiu, and L. P. Carloni, “Mindcrypt:
The brain as a random number generator for soc-based brain-computer
interfaces,” in 2023 IEEE 41st International Conference on Computer
Design (ICCD). IEEE, 2023, pp. 70–77.

[12] C. H. Le and L. R. Miles, “Challenges in fpga design for complex,
high performance space applications,” in 2023 IEEE Space Computing
Conference (SCC). IEEE, 2023, pp. 45–50.

[13] MicroBlaze Triple Modular Redundancy (TMR) Subsystem v1.0, Xilinx-
AMD, 2022, pG268.

[14] The Synopsys Synplify official webpage, Synopsys,
https://www.synopsys.com/implementation-and-signoff/fpga-based-
design/synplify.html.

[15] The Open-CFR official repo, https://github.com/alexredd99/open-cfr.
[16] H. Su, T. Lu, C. Feng, and L. Chen, “Triple module redundancy relia-

bility framework design based on heterogeneous multi-core processor,”
Procedia Computer Science, vol. 183, pp. 504–511, 2021.

[17] H. D. Doran and T. Lang, “Dynamic lockstep processors for applications
with functional safety relevance,” in 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2021, pp. 1–4.

[18] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda, “On the
optimal design of triple modular redundancy logic for sram-based fpgas,”
in Design, Automation and Test in Europe. IEEE, 2005, pp. 1290–1295.

[19] J. Lázaro, A. Astarloa, A. Zuloaga, J. Á. Araujo, and J. Jiménez, “Axi
lite redundant on-chip bus interconnect for high reliability systems,”
IEEE Transactions on Reliability, 2023.

[20] B. Osterloh, H. Michalik, S. A. Habinc, and B. Fiethe, “Dynamic partial
reconfiguration in space applications,” in 2009 NASA/ESA Conference
on Adaptive Hardware and Systems, 2009, pp. 336–343.

[21] C. Pilotto, J. R. Azambuja, and F. L. Kastensmidt, “Synchronizing triple
modular redundant designs in dynamic partial reconfiguration appli-
cations,” in Proceedings of the 21st annual symposium on Integrated
circuits and system design, 2008, pp. 199–204.

[22] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “Fpga partial reconfigu-
ration via configuration scrubbing,” in 2009 International Conference on
Field Programmable Logic and Applications. IEEE, 2009, pp. 99–104.

[23] C. Bolchini, A. Miele, and M. D. Santambrogio, “Tmr and partial
dynamic reconfiguration to mitigate seu faults in fpgas,” in 22nd IEEE
International Symposium on Defect and Fault-Tolerance in VLSI Systems
(DFT 2007). IEEE, 2007, pp. 87–95.

[24] M. Straka, J. Kastil, and Z. Kotasek, “Modern fault tolerant architectures
based on partial dynamic reconfiguration in fpgas,” in 13th IEEE Sym-
posium on Design and Diagnostics of Electronic Circuits and Systems.
IEEE, 2010, pp. 173–176.

[25] M. Barbirotta, A. Cheikh, A. Mastrandrea, F. Menichelli, M. Ottavi,
and M. Olivieri, “Evaluation of dynamic triple modular redundancy
in an interleaved-multi-threading risc-v core,” Journal of Low Power
Electronics and Applications, vol. 13, no. 1, p. 2, 2022.

[26] M. Sarraseca, S. Alcaide, F. Fuentes, J. C. Rodriguez, F. Chang,
I. Lasfar, R. Canal, F. J. Cazorla, and J. Abella, “Safels: An open source
implementation of a lockstep noel-v risc-v core,” in 2023 IEEE 29th
International Symposium on On-Line Testing and Robust System Design
(IOLTS). IEEE, 2023, pp. 1–7.

[27] The NOEL-V Official Webpage, Gaisler,
https://www.gaisler.com/index.php/products/processors/noel-v.

[28] M. Barbirotta, A. Cheikh, A. Mastrandrea, F. Menichelli, M. Angioli,
S. Jamili, and M. Olivieri, “Fault-tolerant hardware acceleration for high-
performance edge-computing nodes,” Electronics, vol. 12, no. 17, p.
3574, 2023.

[29] A. E. Wilson and M. Wirthlin, “Fault injection of tmr open source risc-v
processors using dynamic partial reconfiguration on sram-based fpgas,”
in 2021 IEEE Space Computing Conference (SCC). IEEE, 2021, pp.
1–8.

[30] A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ross, and
H. Lam, “Reconfigurable fault tolerance: A comprehensive framework
for reliable and adaptive fpga-based space computing,” ACM Trans.
Reconfigurable Technol. Syst., vol. 5, no. 4, dec 2012. [Online].
Available: https://doi.org/10.1145/2392616.2392619

[31] G. Lee, D. Agiakatsikas, T. Wu, E. Cetin, and O. Diessel, “Tlegup: A tmr
code generation tool for sram-based fpga applications using hls,” in 2017
IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 2017, pp. 129–132.

[32] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “Legup: An open-source high-
level synthesis tool for fpga-based processor/accelerator systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 2,
pp. 1–27, 2013.



[33] W. Xin, “Partitioning triple modular redundancy for single event upset
mitigation in fpga,” in 2010 International Conference on E-Product E-
Service and E-Entertainment. IEEE, 2010, pp. 1–4.

[34] S. Nema, J. Kirschner, D. Adak, S. Agarwal, B. Feinberg, A. F.
Rodrigues, M. J. Marinella, and A. Awad, “Eris: Fault injection and
tracking framework for reliability analysis of open-source hardware,”
in 2022 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2022, pp. 210–220.

[35] S. Shreejith, K. Vipin, S. A. Fahmy, and M. Lukasiewycz, “An approach
for redundancy in flexray networks using fpga partial reconfiguration,”
in 2013 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2013, pp. 721–724.

[36] AMBA® AXI™ and ACE™ Protocol Specification, ARM, IHI 0022D.
[37] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware design

processing toolkit for verilog hdl,” in Applied Reconfigurable Comput-
ing, ser. Lecture Notes in Computer Science, vol. 9040. Springer
International Publishing, Apr 2015, pp. 451–460.

[38] B. Seyoum, M. Pagani, A. Biondi, and G. Buttazzo, “Automating the
design flow under dynamic partial reconfiguration for hardware-software
co-design in FPGA SoC,” in Proceedings of the ACM Symposium on
Applied Computing (SAC), 2021, pp. 481–490.

[39] AXI CDMA, LogiCORE IP Product Guide, Document number PG034,
AMD-Xilinx.

[40] The HLS4ML official documentation, Fast Machine Learning Lab,
https://fastmachinelearning.org/hls4ml/.

[41] M. Pierini, J. M. Duarte, N. Tran, and M. Freytsis, “Hls4ml
lhc jet dataset (150 particles),” Jan. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3602260

[42] F. Fahim, B. Hawks, C. Herwig, J. Hirschauer, S. Jindariani, N. Tran,
L. P. Carloni, G. Di Guglielmo, P. Harris, J. Krupa et al., “hls4ml:
An open-source codesign workflow to empower scientific low-power
machine learning devices,” arXiv preprint arXiv:2103.05579, 2021.

[43] B. B. Seyoum, A. Biondi, and G. C. Buttazzo, “Flora: Floorplan
optimizer for reconfigurable areas in fpgas,” ACM Trans. Embed.
Comput. Syst., vol. 18, no. 5s, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3358202

[44] The FreeRTOS official webpage, FreeRTOS,
https://www.freertos.org/index.html.

[45] PetaLinux Tools Documentation Reference Guide, AMD-Xilinx,
uG1144.

[46] W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang, and R. Kastner,
“Property specific information flow analysis for hardware security ver-
ification,” in 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[47] F. Restuccia, A. Meza, R. Kastner, and J. Oberg, “A framework for
design, verification, and management of soc access control systems,”
IEEE Transactions on Computers, vol. 72, no. 2, pp. 386–400, 2022.

[48] A. Meza, F. Restuccia, and R. Kastner, “Safety verification of third-party
hardware modules via information flow tracking,” in 1st Real-time And
intelliGent Edge computing workshop (RAGE) co-located with the 2022
59th Design Automation Conference (DAC).

[49] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Bounding memory access times in multi-accelerator architectures on
fpga socs,” IEEE Transactions on Computers, vol. 72, no. 1, pp. 154–
167, 2022.

[50] L. Valente, F. Restuccia, D. Rossi, R. Kastner, and L. Benini, “Top:
Towards open & predictable heterogeneous socs,” arXiv preprint
arXiv:2401.15639, 2024.


