
Within-Camera Multilayer Perceptron DVS Denoising

A. Rios-Navarro, 2,1,†, S. Guo, 3,1†, G Abarajithan 4,†, K. Vijayakumar4,†, A.
Linares-Barranco, 2,*, T. Aarrestad, 4,*, R. Kastner, 4,1,*, and T. Delbruck, 1,*

1Sensors Group, Institute of Neuroinformatics, Univ. of Zurich and ETH Zurich, Switzerland — 2Robotic and Tech of Computers
group, SCORE lab, ETSI-EPS, Univ. of Seville (USE), Spain — 3College of Electronic Engineering, National University of Defense

Technology (NUDT), China — 4Inst. of Particle Physics and Astrophysics, ETH Zurich (ETH), Switzerland — 5Univ. of California,
San Diego (UCSD), USA — †These authors contributed equally — *Contact authors emails: tobi@ini.uzh.ch, arios@us.es,

alinares@atc.us.es, thea.aarrestad@cern.ch,

Noisy events Cleaned events

Noise

Signal
Host

processor

Interface to host processor

This paper: Hardware MLP denoising within camera

Time

log(ev/s)
Denoising OFF

Denoising ON
10MB/s
1k interrupts/s

100kB/s 10 interrupt/s

Total = Signal + Noise DVS events

Figure 1. Advantages of in-camera denoising: The MultiLayer Perceptron denoising Filter (MLPF) reduces the
background noise rate in this surveillance scene by a factor of more than 100X while only blocking about 25% of the true signal
events created by the moving people. The MLPF accurately and quickly discriminates signal and noise events. Building the
filter using a hardware-accelerated neural network implemented alongside the camera’s logic circuits dramatically reduces
the host processing requirements. In low-light scenes where event camera noise increases, the data rate is reduced from
10MB/s to 100kB/s. With a USB buffer size of 10k events, the host processor interrupt rate reduces from 1 kHz to less than
10 Hz, allowing the processor to mostly sleep during idle periods.

Abstract

In-camera event denoising reduces the data rate of
event cameras by filtering out noise at the source.
A lightweight multilayer perceptron denoising filter
(MLPF) provides state-of-the-art low-cost denoising
accuracy. It processes a small neighborhood of pixels
from the timestamp image around each event to dis-
criminate signal and noise events. This paper proposes
two digital logic implementations of the MLPF denoiser
and quantifies their resource cost, power, and latency.
The hardware MLPF quantizes the weights and hidden
unit activations to 4 bits and has about 1k weights with
about 40% sparsity. The Area-Under-Curve Receiver
Operating Characteristic accuracy is nearly indistin-
guishable from that of the floating point network. The
FPGA MLPF processes each event in 10 clock cycles.
In FPGA, it uses 3.5k flip flops and 11.5k LUTs. Our
ASIC implementation in 65nm digital technology for
a 346 × 260 pixel camera occupies an area of 4.3mm2

and consumes 4nJ of energy per event at event rates up
to 25MHz. The MLPF can be easily integrated into an
event camera using an FPGA or as an ASIC directly on
the camera chip or in the same package. This denoising
could dramatically reduce the energy consumed by the
communication and host processor and open new areas
of always-on event camera application under scavenged
and battery power.

Code: https://github.com/SensorsINI/dnd_hls

1. Introduction
Event cameras [1] based on the Dynamic Vision Sen-

sor (DVS)∗ pixel [2] are useful for vision problems that
require high dynamic range and face the fundamental
trade-off between latency and power in frame-based
cameras [3]. DVS pixels produce events that signal

∗The arxiv preprint version of this paper includes links and
uses PDF tooltip popups for acronyms that some PDF viewers
(Adobe and SumatraPDF version ≤3.00) can show.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3933

the change in brightness but also produce Background
Activity (BA) noise, particularly under low light con-
ditions, where noise rates can increase by a factor of
100 [4]–[7].

Denoising algorithms aim to filter out the noise with-
out removing any signal events. Denoising can be
performed on the host computer, but then the cam-
era must transmit all the raw signal and noise events,
consuming more power in the communication bus (e.g.
USB) and on the host processor, which must remain
awake all the time to remove the noise.

Fig. 1 shows how denoising within the camera can
dramatically reduce the energy consumed by the com-
munication and host processor. Without denoising, the
host processor must constantly remain awake and busy
even in the absence of any real signal events. Accu-
rate denoising within the camera preserves most signal
events but filters out nearly all the noise events. Thus
during quiescent periods where the raw camera output
is dominated by noise events, the host processor in-
terrupt rate can be reduced by 2 orders of magnitude,
allowing it to sleep most of the time and thus open
new areas of always-on event camera application under
scavenged and battery power.

We showed in [5] how a tiny MLPF denoises with
greater accuracy than prior handcrafted correlation-
based denoisers. Our MLPF runs in batch mode on
a desktop Graphics Processing Unit (GPU) with a
measured throughput of about 106ev/s2, but clearly
this loses its potential benefit of reducing system-level
power because it requires continuous activation of an
expensive and power-hungry GPU. Our work here to
realize the MLPF within the camera builds on the de-
velopments of ultra-quick classifiers from the particle
physics community, which require latencies more than
1,000 times quicker (i.e. ns to µs).

2. Novel Contributions
1. Our work reports the first use of ultra-quick la-

tency hardware neural networks developed for par-
ticle physics to enable event-by-event accurate
event camera denoising.

2. Sec. 5.1 shows how to train the MLPF so that
the signal-noise discrimination accuracy with 4-bit
weight and activation precision is nearly as good
as the floating point version reported in [5].

3. Sec. 5 describes the first Field Programmable Gate
Array (FPGA) and Application Specific Inte-
grated Circuit (ASIC) implementations of the
MLPF denoiser.

2In batches of 1000 events on NVIDIA RTX 2080 SUPER

4. Our ASIC implementation of an event camera de-
noiser is, to our knowledge, the first reported. Our
ASIC MLPF consumes only a fraction of the power
of recently reported event cameras.

3. Background and Related Work
Correlation-based Nearest Neighbor (NNb) denois-

ing algorithms, such as the Background Activity Filter
(BAF) [8] and the improved SpatioTemporal Correla-
tion Filter (STCF) [5] have accuracies that are com-
petitive with complex software algorithms and large
neural network denoisers [9]–[14]. These correlation de-
noisers require only a handful of operations per event
and have a memory cost about the same as the num-
ber of pixels. However, in [5], we showed that training
a tiny Multilayer Perceptron (MLP) to discriminate
signal versus noise results in a significant improvement
in discrimination accuracy, particularly at high noise
rates and for more challenging denoising, such as dri-
ving, where a moving camera creates a denser struc-
ture.

In [5], we constructed datasets of known signal and
noise events and measured the denoising accuracy using
a Receiver Operating Characteristic (ROC) curve and
computing the Area Under the Curve (AUC).

Fig. 2 compares the accuracy of the MLPF against
other low-cost fast denoisers. Fig. 2A shows that at
False Positive Rate (FPR)=0.1, the True Positive Rate
(TPR) of MLPF is approximately 25% better than
the next best STCF, and is 2X better than the pop-
ular BAF. Fig. 2B visually compares the MLPF with
the STCF on the driving dataset with identical TPR
settings of their thresholds. The differences are subtle,
but the inset shows how STCF allows noise to pass that
MLPF blocks. Fig. 2C shows that the MLPF maintains
AUC better than other denoisers as the noise rate in-
creases.

Previous implementations of hardware event cam-
era denoising are [15]–[20]3 The FPGA Order(N) Fil-
ter (ONF) [16] and HashHeat [18] require much less
memory than the number of pixels that are practi-
cal for cameras that only need to denoise scenes with
sparse activity regions; however, [5] showed that these
denoisers have poor accuracy for dense scenes where
the memory is overwritten too quickly (see, for exam-
ple, the DWF curve in Fig. 2). The FPGA BAF re-
ported in [17] — also implemented within some Iniva-
tion event cameras — is useful, but its accuracy and
resiliance to high noise rates are much worse than the
MLPF proposed here; see Fig. 2. The mixed-signal

3We exclude denoisers that build a binary image and denoise
it[21], [22] because they discard event timing and event count
information.

3934

10% FPR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MLP(2xI7H20),AUC=0.89

BAF, AUC=0.79
DWF, AUC=0.69

STCF, AUC=0.83

chance level

Incre
ased threshold

 for si
gnal

A: ROC curves for driving

MLPF

STCF

DWF
BAF

Clean events +
5Hz/pixel shot noise

STCF

MLPF

TPR/FPR
ROC

False Positive Rate (noise events incorrectly passed)

Tr
ue

 P
os

iti
ve

 R
at

e
(s

ig
na

l e
ve

nt
s

co
rre

ct
ly

 p
as

se
d)

FPR

TP
R

FPR

TP
R

B: Sample data

0 1 2 3 4 5 6 7 8 9 10
Shot Noise Rate (Hz/pixel)

0.6

0.7

0.8

0.9

1.0

AU
C

 v
al

ue

C: AUC vs. varying noise rate
hotel-bar driving

MLPF
STCF

BAF
DWF

MLPF
STCF

BAF

DWF

Ideal point

Figure 2. A: ROC curves for the proposed MLPF com-
pared with other denoisers STCF, BAF, and Double Win-
dow Filter (DWF) [5]. The signal vs. noise discrimination
threshold is swept to generate each curve. Evaluated on the
driving dataset from [5] from which this figure is adapted.
B: Sample data with closeup. C: Dependence of overall
accuracy metric AUC on noise rate.

subsampled BAF of [15] does not scale to advanced
digital processes. The IIR filter array of [19] severely
subsamples the pixel array onto its 2D memory, result-
ing in significant spatial artifacts. The Less Data Same
Information (LDSI) [20] is a two-layer retina-inspired
denoiser that likely has a high latency.

Table 1. Hardware MLPF specifications.

W × H DVS width×height 346 × 260a

s2
MLPF input patch 72px

NMLPF # hidden units 10
τ age window 64 msb

Quantization bits (weights/activations)c

Input units 4+1/4+1
Hidden units 4+1/4
Output unit 4+1/15+1

Threshold TMLPF 15+1
Accumulators 16.6d

Network
Num. weights+bias 1001

Sparsity 40%e

Accuracy (AUC) 0.87f

a The Timestamp+Polarity Image (TPI) memory has size W ×
H × 18 bits. The 18 bits are composed of a 16-bit ms times-
tamp and 2-bit polarity. The ms timestamp is obtaind by right-
shifting the µs timestamp by 10 bits. b The age window τ is
quantized power of 2 from 1 ms to 256 ms. c 4+1 means 4
fraction + 1 sign bit. 4 means unsigned 4-bit fraction.
d All neurons use default QKeras signed 16-bit accumulators
with 6-bit integer part. The neuron activation function quan-
tizes this activation to produce the output value. e Percent of
non-zero weights. f Evaluated on combined datasets from [5].

4. Event camera denoising
4.1. Denoising cost metrics

A practical physical implementation of denoising
must consider a quartet of Figure of Merits (FOM):
discrimination accuracy, silicon area, power, and la-
tency. These FOMs generally trade-off against each
other, requiring choosing a balance between them.
High accuracy is needed to remove noise but not sig-
nal. A small area is important to minimize cost. Low
latency is needed to discriminate an event before the
next one arrives. Low power is essential for power-
constrained applications and to minimize camera heat-
ing, which increases the photodiode’s dark current.

4.2. Denoising accuracy metrics (ROC and AUC)

As discussed in [5], denoising event camera output
consists of making a binary discrimination between sig-
nal and noise for each event. Positive classification
means that the event is classified as a signal event. The
ROC measurement of discrimination trade-off plots the
TPR and FPR over all thresholds. Ideal denoising
achieves zero FPR (noise misclassified as signal) and
perfect TPR=1 (signal correctly classified as signal),
resulting in AUC=1. A higher AUC means a better
classifier. The optimum TPR and FPR depend on the
application: An always-on surveillance system might

3935

favor small FPR (large noise suppression), while a mo-
bile robot might favor high TPR (high signal reten-
tion). We adopt the metric AUC used in [5] to remove
bias by a particular choice of threshold. The AUC is a
scalar measure of the ROC curve.

4.3. The MLPF

The MLPF is a lightweight classifier trained on la-
beled data. It achieves good denoising accuracy by
detecting spatiotemporal structural cues that can be
helpful in discriminating signal versus noise events. For
example, it infers that an event is a likely signal event
because it is part of a moving edge or corner.

MLPF denoiser

tNNb

past event within τ
old nearest
neighbors (NNb)

classified eventτ
te

C

τ

ax,y(∆t)

tNNb–te

1

0
 ax,y

ag
e

a x,
y

po
la
rit
y

p x,
y

(sMLPF)
2

NNb TPI input

Hidden
layerEvent

Output

OFF
ON

1: signal

0: noise

ΤMLPF
threshold00

-1
+1

.5

1 N
M

LP
F

Figure 3. MLPF input and network.

Fig. 3 illustrates the MLPF. It drives a single hid-
den layer of NMLPF neurons from an input patch of
(sMLPF)2 pixels of the TPI from the neighborhood
around the event that is to be classified. The TPI is an
W × H pixel 2D memory that holds the latest times-
tamp (in ms) and the ON or OFF brightness change
event polarity corresponding to each DVS pixel. Ta-
ble 1 lists values used in this paper.

Recent events are important; older events are less
relevant, so the ax,y input channel encodes the age of
NNb events as a type of time surface [1]: ax,y is calcu-
lated from each TPI pixel by the function illustrated in
Fig. 3 where te is the timestamp of the event e that is
to be classified, and tNNb is the timestamp of the most
recent previous event stored in the TPI corresponding
to a NNb pixel. ax,y approaches 1 for recent events
and decays to 0 for older events. τ is the time window
parameter.

Polarities of past events are also informative because
a moving edge usually produces identical polarities, so
the the px,y input provides the signed NNb polarities,
using -1 for OFF, +1 for ON and 0 for events older than
τ . The px,y at the central pixel is from the classified
event to provide the necessary information to deter-
mine whether the classified event has the same polarity
as the past events in the NNb.

The MLPF with sMLPF = 7 pixels has 7×7×2 = 98
input units (polarity and age) and a single hidden

MLPmpl_data_vld

mlp_prediction

mlp_pred_vld

mlp_ready

Events
to

MLP
Input

(E2MLP)

Timestamp
+Polarity

Image
SRAM

Memory
(TPI)

read_addr
read_vld

read_data

wrte_addr
write_vld
write_data

Event OUT

Event OUT vld

MLPF
block

diagram

Threshold

Event Addr IN

Current TS

Event IN vld

TS vld

mlp_input_data

ΤMLPF

Figure 4. MLPF FPGA and ASIC block diagram.

layer of NMLPF = 10 neurons, and there are about 1k
weights. Hidden neurons use a Rectified Linear Unit
(ReLU) activation function, and the final output C
uses a sigmoid activation function. We threshold C
against TMLPF to form the final binary discrimination,
signaling that the event is signal or noise. TMLPF ad-
justs the TPR/FPR trade-off.

5. Implementation
Fig. 4 illustrates the three major components of the

MLPF hardware implementation: Events to MLP In-
put (E2MLP), MLP, and TPI. The E2MLP block re-
ceives the event generated by the DVS and its times-
tamp and produces the activation vector for the MLP.
To calculate this activation vector, the coordinates of
the current event are used to access the TPI memory
and read the timestamps and polarity of the events
in the 7 × 7 neighborhood of the current event. As
the readings are taken, the age of the neighborhood
event is calculated from the ax,y equation illustrated
in Fig. 3 [5]. The activation vector is composed of 98
elements, where the first 49 are the ages and the last 49
are the polarities of the neighborhood events. After the
activation vector is generated, the TPI memory is up-
dated with the current event’s timestamp and polarity
information.

5.1. Dataset, Training, and Network quantization

Our training dataset combined the hotel-bar and
driving noise datasets from [5]. These datasets were
chosen to cover the range of applications from sparse
surveillance to dense mobile robotics event camera out-
put. To these clean DVS recordings we add both sim-
ulated and pre-recorded DVS BA noise events. We
train the network to optimally discriminate signal and
noise events. Appendix F of the supplementary ma-

3936

terial of [5] details the floating point MLPF training
procedure (we removed the dropout layer here). We
used exactly the same dataset and training procedure
except for quantization-aware training as detailed next.

Applying model compression at training time is cru-
cial to minimize the area and maximize the accuracy
of the model. We rely on quantization-aware training
through the QKeras4 library. Through drop-in re-
placement of standard Keras layers, this library allows
users to create quantized versions of the Keras equiv-
alent. Doing so at training time optimizes accuracy
by allowing the network to adjust the model weights
according to the precision tailored for the hardware.

Fig. 5 lists the network code. The quantization
function quantized bits takes as input the number
of bits to quantize to, the number of integer bits, as
well as an optional parameter alpha, which is used to
change the absolute scale of the weights while keep-
ing them quantized within the same bit width. In
our case, we quantize the kernel and bias to a bit
width of 4 with zero integer bits and set alpha to
1 (meaning that no scaling is applied). The inputs,
weights, activations, and output are quantized to a
fixed point decimal ranging from -1 to 15. Note that the
function quantized bits behaves differently from the
fixed point numbers used in Vivado High Level Synthe-
sis (HLS). For quantized bits(bitwidth, integer
bits), the HLS equivalent is ap fixed(bitwidth,
integer bits+1). The experimental results in Fig. 6
show that the use of quantified weights and activations
has almost no effect on the AUC value, except for 2
bits. Due to the limited diversity of the MLPF output
caused by the 2-bit input and weights of the last dense
layer, sweeping thresholds barely affect the ROC curve
and the AUC.

For our implementation, we chose 4-bit weight and
activation quantization. For simplicity of design, the
input of the network is quantized to 4 bits for age a
and polarity p channels. The age is computed by right
shifting the ∆t time difference by some number of bits
according to the desired τ . The polarity is represented
as 0 or ±1. The final output is quantized to 16 bits
for a fine discrimination threshold. The chosen model
(Fig. 5) achieves AUC of 0.87 on the driving dataset,
close to the floating point AUC of 0.88 (Fig. 6).

5.2. Firmware implementation with hls4ml

We use the hls4ml library [23] to generate an
FPGA implementation of the MLP. hls4ml converts
a given Deep Neural Network (DNN) into HLS code,

4https://github.com/google/qkeras.
5Actually to the closest possible value to 1, e.g. 0.875 for

4-bit signed-value quantization

Figure 5. QKeras code for the network.

inputs = Input(shape =[98 ,], name=’input ’)
x = QActivation (" quantized_bits (4,0, alpha =1)",

name=" qact0")(inputs)
x = QDense (10, input_shape =(98 ,),

kernel_quantizer = quantized_bits (4,0, alpha
=1) ,bias_quantizer = quantized_bits (4,0, alpha
=1) ,name="fc1")(x)

x = QActivation (" quantized_relu (4 ,0)", name="
relu1")(x)

x = QDense (1, kernel_quantizer = quantized_bits
(4,0, alpha =1) ,bias_quantizer = quantized_bits
(4,0, alpha =1) ,name="fc2")(x)

x = Activation (" sigmoid ", name=" doutput ")(x)
model = Model(inputs , x)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

Tr
ue

 P
os

iti
ve

 R
at

e

IdealPoint Driving

2bits, AUC=0.75
3bits, AUC=0.86
4bits, AUC=0.87
8bits, AUC=0.86
32bits, AUC=0.88

32bits

4bits

8bits

3bits

2bits

Figure 6. ROC curves for quantized MLPFs compared with
floating point 32bits network. Evaluated on the more chal-
lenging driving dataset from [5].

which uses a C-like syntax decorated with hardware-
specific optimizations such as pipelining and custom
data types. The HLS compiler then translates the HLS
code into the FPGA firmware. In contrast to conven-
tional Register Transfer Logic (RTL) logic design, HLS
lies at a higher level of abstraction, making it faster to
specify and generate custom FPGA architectures, since
it is a subset of C coding and thus allows greater pro-
ductivity, but it has limitations for designs that require
complex interconnected circuits.

The hls4ml library interfaces to QKeras [24] to
provide a translation of the quantized weights of the
MLPF model using quantization-aware training into
the correct fixed-point equivalent values on the FPGA
implementation. A developer can compile the HLS
code for the network in a few seconds from the trained
QKeras model.

hls4ml was developed for low-latency and high-

3937

throughput applications. Thus, hls4ml generates a
custom implementation for each layer and the entire
network is spatially instantiated on the FPGA logic.
Our MLPF is implemented in a fully parallel manner;
all multiplications are performed in parallel. The out-
put neuron activation is computed as a combinational
logic weighted sum of the hidden units, which them-
selves are computed as combinational logic weighted
sums of input unit activations. The weights are frozen
into the connections, and the network must be resyn-
thesized when they need to be changed. Zero weights
do not use hardware resources.

The Vivado HLS compiler limits arrays to 1024 el-
ements, which is less than what the hidden layer of
the 98I-20H-1O MLPF in [5] would require to be fully
unrolled6. Therefore, to reach the lowest possible la-
tency, we trained an MLPF with NMLPF = 10 hidden
units. Using 10 hidden units instead of 20 and the cho-
sen quantization (Table 1) reduces the AUC from the
floating point 0.89 to 0.87. The low precision of the
weights allows all multiplications in the network to be
computed by LookUp Tables (LUT) rather than the
more power-hungry hardware multiplier units.

Since we do not depend on having an output be-
tween zero and one (this is only necessary at training
time), we removed this final sigmoid activation func-
tion and instead placed a threshold on the activation
of the output unit. This saves one clock cycle.

5.3. FPGA realization

Fig. 7 shows our setup to implement MLPF using
a DAVIS346 prototype camera [25], [26] connected by
Address Event Protocol (AER) cable to a custom Xi-
linx xc7z100 FPGA development board [27].

Our first implementation of the E2MLP module
used dual read port Block RAM (BRAM) to read
the 49 TPI pixels in 25 clock cycles. By adopting a
memory organized as in Liu’s EDFLOW camera [28],
the columns are read in parallel, in only 7 clock cycles.
The key to making this scheme work was the correct
use of the Vivado HLS pragma array partition as in
[28]. This pragma partitions the array into smaller ar-
rays; in this case, a separate BRAM is for each sensor
column. The resulting RTL has multiple smaller mem-
ories instead of one large memory. This pragma effec-
tively increases the amount of read and write ports for
storage. The resulting BRAM usage increases because
it requires more memory instances and registers.

The activations generated by the E2MLP module
are used by the MLP module to perform inference
on these data and generate a prediction. To decide

6The array would have to be partitioned into 98*20=1,960
elements, which is more than the tool allows.

Figure 7. The DAVIS camera connected to the Zynq
XC7Z100 FPGA development board that holds the MLPF.

whether the current event is considered to signal or
noise, a threshold is applied to the calculated predic-
tion.

For the FPGA implementations, the E2MLP, MLP
and TPI blocks are written in Vivado HLS 2020.1.
We synthesized our solution for two different FPGAs,
a decade-old midrange Xilinx Zynq XC7Z100 and an
entry-level Zynq Ultrascale+ ZU3CG.

Both of these System on Chip (SoC) FPGAs are
attractive candidates for building an event camera be-
cause their processors can run a simplified Linux kernel
and thus the camera could form a discrete smart cam-
era node in a robot.

5.4. ASIC realization

We wrote an RTL (SystemVerilog) implementation
of the MLP and E2MLP blocks in Fig. 4 to circumvent
current Vivado HLS limitations in generating ASIC
compatible RTL. We target a conventional 65nm digi-
tal process technology from TSMC, since it is econom-
ical, widely available, and because we had access to it
for this project. We used Cadence Genus for the syn-
thesis and Cadence Innovus for the place and route.
Fig. 8 shows the layout of the circuit without mem-
ory. It was obtained using the low power library, ap-
plying the clock-gating technique (for 43% of inferred
flip-flops) and reducing the power ring size to minimize
its area. Our MLP architecture also allows us to reuse
the multipliers, adders, and registers, minimizing the
chip area and power consumption. We use data gat-

3938

Figure 8. ASIC MLPF E2MLP+MLP layout in 65nm digi-
tal technology. The ruler units are microns. The logic area
is 0.022mm2 (67% density). The bonding pads are not in-
cluded since this block would normally be placed adjacent
to the sensor core. In our current version, the SRAM blocks
are not included.

ing to prevent the gates and flip-flops from switching
on clock cycles without new data. We measured an
improvement of 20% in power consumption with the
use of clock gating. Our RTL design and scripts are
released as open source under a GPL license.

Our ASIC architecture differs from the FPGA im-
plementation to address the following trade-offs. The
FPGA implementation uses one BRAM per column
of the image, to be able to read any arbitrary 7 × 7
neighborhood within 7 clock cycles. This is possible
since these Static RAMs (SRAM) are synthesized as
groups of much smaller BRAMs already available on
the FPGA. Since SRAMs are custom generated on sili-
con, similar ASIC implementation with one SRAM per
column would result in a much higher area and con-
sume more power due to the duplication of control cir-
cuitry for each SRAM.

Therefore, in our ASIC design, we utilize two 1W1R
SRAMs7. We can read two pixels of the TPI per cycle,
compared to seven per cycle in our FPGA design. As
a result, the latency of the ASIC implementation is 33
clock cycles, compared to 10 clock cycles in FPGA.
Since our ASIC implementation has a much higher
clock frequency, it is faster with a smaller latency (40
ns) compared to the FPGA (43 ns).

6. Results
Table 2 lists the main FOMs of the FPGA and ASIC

implementations of the MLPF in terms of maximum
7Our memory compiler could not generate dual-read-port

SRAM, so we used two single port SRAMs

clock frequency, latency in clock cycles and nanosec-
onds, resources used, power, and energy per event.
FPGA resources consist of LookUp Tables (LUT),
Flip-Flops (FF), and Block RAMs (BRAM). A LUT
is a programmable memory element (at synthesis time)
that implements combinational logic. A FF is a single
bit memory element. ASIC resources are measured by
area. We did not measure FPGA power consumption
because it is completely dominated by standby power.
The Table 2 notes provide details for many of the spec-
ifications.

The MLP inference latency is only 3 cycles, giving
a total FPGA latency of 10 cycles. In our FPGA im-
plementations, synthesis generated the TPI as multiple
dual port BRAM memories and needs 400 BRAM 18K.
This memory has 89960 words (W × H pixels) with
18-bit word size, where 16 bits are used to store the
timestamp and 2 bits for the event polarity.

Our ASIC implementation area is dominated by
SRAM. We estimated a standby power of about
35 mW, consisting mostly of SRAM leakage. The en-
ergy per event is 4 nJ, so a noise event rate of 1 MHz
would burn another 4 mW.

7. Conclusion
This paper proposes two logic circuit implementa-

tions of a multilayer perceptron event camera denoiser.
The FPGA implementation discriminates each event

in 10 clock cycles or 100 ns with the clock frequency
of 100 MHz, allowing the denoising to occur at event
rates of 10 MHz. For higher noise rates, the denoiser
can bypass or block events that arrive while it is busy.

We showed two implementations mapped to SoC
FPGAs that would be practical for integrating MLPF
denoising within an embedded DVS camera. Using an
individual BRAM for each column of the pixel array,
we showed how the MLP input can be formed for each
event in only 7 clock cycles, enabling 10-cycle discrim-
ination. The ASIC block, which could be integrated
into future DVS chips, has a longer latency in clock
cycles, but since the block runs at a much higher clock
frequency, it can classify each event in 40 ns, enabling
event-by-event denoising up to rates of 25 MHz. This
ASIC block power consumption is estimated to be on
the order of 40 mW, which is a fraction of the power of
recently reported event cameras.8 At low noise rates,
the power consumption drops to essentially the SRAM
leakage. Our current design uses standard SRAM; by
exchanging this memory for lower leakage low power
memory, we believe it would be possible to reduce the
standby power by an order of magnitude.

8Recent event camera chips [29]–[31] report sensor power
consumption from 60 mW to 525 mW.

3939

Table 2. FOMs of the hardware MLPFs for Table 1 parameters.

Xlinx Zynq XC7Z100 Xlinx Zynq U+ ZU3CG 65nm ASIC. Vdd=1.08V
Max. Clock Freq. 100 MHz 236 MHz 833 MHz

Latency cycles ns cycles ns cycles ns
E2MLP 7 70 7 ∼30 30 36

MLP 3 30 3 ∼13 3 3.6
Total 10 100 10 ∼43 33 40

Xlinx Zynq xc7z100 Xlinx Zynq U+ ZU3CG 65nm ASIC
LUT FF BRAM LUT FF BRAM Logic area SRAM area

Resources 18.4k 3.9k 400a 24.6k 3.8k 400a 0.022mm2 4.3bmm2

Resource % 6% 0.72% 26% 34% 2% 92% – –
Power Not relevant 40mWc

Energy/event Not relevant 4nJd

a Used for TPI. b Our two SRAMs each run at 1 GHz with 1.0V supply. They have 18 bit word width and
2048 words per bank. Maximum possible is 2048 per bank using multiple banks to store the TPI. The entire
design requires W × H/2048 ≈ 44 such SRAM banks. c Assumes 1 MHz event rate and 4 nJ per event (1.2 nJ
MLP + 2.4 nJ SRAM +0.4 nJ E2MLP), plus 35 mW SRAM leakage. d Assumes one MLP inference and 50
SRAM accesses. The energy per event is computed by E = P × T × N , where P is the power consumption of
the block, T is the period of the clock and N is the required number of clock cycles per event.

Table 3 compares the hardware MLPF with other
FPGA hardware denoisers in terms of accuracy, mem-
ory cost, and throughput (there is no other ASIC im-
plementation to compare with). As discussed in Sec. 3,
except for the BAF in [17], other denoisers seek to min-
imize memory, which in general leads to poor discrimi-
nation accuracy at high noise rates. The MLPF has by
far the best AUC accuracy on the sparse hotel-bar and
dense driving datasets of [5]. Although MLPF is not
the fastest, its maximum denoising rate of ≈ 25 MHz
is suitable for recent event cameras.

Recent industrial event camera chips [29]–[31] fea-
ture event pixels that are less than 5 µm and are built
in stacked technologies with an optical top part us-
ing 90nm technology and a digital bottom part using
feature sizes down to 22nm technology. The digital
layer area is several times larger than the sensor area.
For this paper, we designed the MLPF ASIC block for
65nm technology; In 22nm technology, the logic area
would be smaller, but the SRAM required to hold TPI
would need to be several Mpx. The dominant TPI
SRAM would occupy an area of about 1 mm2/Mpx9.
It would likely be possible to use subsampling onto a
smaller-resolution TPI [15] too much loss of denoising
accuracy. The MLPF would comprise only a small part
of these designs. However, since these recent event
camera chips use some form of sampled, frame-like
sparse readout of the brightness change events, it is
unclear to what extent they can use fine event timing
for denoising like MLPF.

9Based on 6T cell with area 130F 2, where F = 22nm is the
feature size. The total SRAM area would be 130 × (22e-9m)2 ×
1e6px × 18bits × 1e6mm2/m2 = 1mm2.

Table 3. Comparison with other hardware DVS denoisers.

Denoiser hotel-bar
AUCa

driving
AUCa Mem(#)b

Max. Event
Ratec

MHz

MLPF FPGA 0.96 0.87 W × H 23
MLPF ASIC ” ” W × H 25
BAF [17] 0.89 0.79 W × H 3.6
ONF [16] 0.01e 0.01e 2 × (W + H) 3
HashHeat [18] 0.67 0.56f 128 100
IIRs [19] NA NA W × Hg 385
LDSI [20] NA NA W × H 3?d

a Evaluated at shot noise rate of 5 Hz/pixel using method in [5].
b Memory cells for W × H pixel DVS assuming cells each have on
the order of 18-36 bits and that no subsampling as in [8], [15], [19]
is used to reduce memory at the cost of reduced denoising accuracy.
c Maximum event rate for denoising all events. d The LDSI was
measured at 50 MHz clock and reported to run at up to 177 MHz
clock frequency. The throughput was not reported except to state
it could run up to the maximum event rate of [2] which is 1 MHz.
e The ONF AUC is very low because it cannot achieve large TPR
and FPR even with very low threshold. f The HashHeat AUC is
derived from sweeping its threshold compared with the heat values
stored in a 128-element vector.
g The IIRs denoiser actually subsampled the array to 20x20 pixel
memory, causing significant artifacts.

Acknowledgements

This work was supported by the Swiss SNF projects
SCIDVS (2O0O21 185069/1), VIPS (2082-l 181010/1), and
PZ00P2 201594, and by the Spanish grant MINDROB
(PID2019-105556GB-C33/AEI/10.13039/501100011033). We
thank Dr. Min Liu and Prof. Shih-Chii Liu (INI), Prof. Mingu
Kang (UCSD), and anonymous reviewers for their suggestions to
improve the paper.

3940

References
[1] G. Gallego, T. Delbruck, G. M. Orchard, et al., “Event-

based vision: A survey,” en, IEEE Trans. Pattern Anal.
Mach. Intell., vol. PP, Jul. 2020, issn: 0162-8828. doi:
10.1109/TPAMI.2020.3008413 (cit. on pp. 1, 4).

[2] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128
120 dB 15 us latency asynchronous temporal contrast vi-
sion sensor,” IEEE J. Solid-State Circuits, vol. 43, no. 2,
pp. 566–576, Feb. 2008, issn: 0018-9200, 1558-173X. doi:
10.1109/jssc.2007.914337 (cit. on pp. 1, 8).

[3] S.-C. Liu, B. Rueckauer, E. Ceolini, A. Huber, and T.
Delbruck, “Event-Driven sensing for efficient perception:
Vision and audition algorithms,” IEEE Signal Process.
Mag., vol. 36, no. 6, pp. 29–37, Nov. 2019, issn: 1558-
0792. doi: 10.1109/MSP.2019.2928127 (cit. on p. 1).

[4] Y. Hu, S.-C. Liu, and T. Delbruck, “V2e: From video
frames to realistic DVS events,” in 2021 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Jun. 2021, pp. 1312–1321. doi:
10.1109/CVPRW53098.2021.00144 (cit. on p. 2).

[5] S. Guo and T. Delbruck, “Low cost and latency event
camera background activity denoising,” en, IEEE Trans.
Pattern Anal. Mach. Intell., vol. PP, Feb. 2022, issn:
0162-8828. doi: 10.1109/TPAMI.2022.3152999 (cit. on
pp. 2–6, 8).

[6] T. Finateu, A. Niwa, D. Matolin, et al., “5.10 a 1280x720
back-illuminated stacked temporal contrast event-based
vision sensor with 4.86um pixels, 1.066GEPS read-
out, programmable event-rate controller and compressive
data-formatting pipeline,” in 2020 IEEE International
Solid- State Circuits Conference - (ISSCC), San Fran-
cisco, CA, USA: IEEE, Feb. 2020, pp. 112–114, isbn:
9781728132051. doi: 10.1109/isscc19947.2020.9063149
(cit. on p. 2).

[7] R. Graca and T. Delbruck, “Unravelling the paradox of
intensity-dependent DVS noise,” in 2021 International
Image Sensors Workshop (IISW 2021), online, 2021, (ac-
cepted). [Online]. Available: https://imagesensors.org/
Past % 20Workshops / 2021 % 20Workshop / 2021 % 20Papers /
R25.pdf (cit. on p. 2).

[8] T. Delbruck, “Frame-free dynamic digital vision,” in Pro-
ceedings of Intl. Symp. on Secure-Life Electronics, Ad-
vanced Electronics for Quality Life and Society, vol. 1,
Tokyo, Japan: University of Tokyo, 2008, pp. 21–26. [On-
line]. Available: https : / / citeseerx . ist . psu . edu /
viewdoc/download?doi=10.1.1.192.2794&rep=rep1&
type=pdf (cit. on pp. 2, 8).

[9] J. Wu, C. Ma, L. Li, W. Dong, and G. Shi, “Probabilis-
tic undirected graph based denoising method for dynamic
vision sensor,” IEEE Trans. Multimedia, pp. 1–1, 2020,
issn: 1941-0077. doi: 10.1109/TMM.2020.2993957 (cit. on
p. 2).

[10] Y. Alkendi, R. Azzam, A. Ayyad, S. Javed, L. Senevi-
ratne, and Y. Zweiri, “Neuromorphic camera denoising us-
ing graph neural network-driven transformers,” Dec. 2021.
arXiv: 2112.09685 [cs.CV]. [Online]. Available: http://
arxiv.org/abs/2112.09685 (cit. on p. 2).

[11] R. W. Baldwin, M. Almatrafi, V. Asari, and K. Hirakawa,
“Event probability mask (EPM) and event denoising con-
volutional neural network (EDnCNN) for neuromorphic
cameras,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA,
USA: IEEE, Jun. 2020, isbn: 9781728171685. doi: 10 .
1109/cvpr42600.2020.00177 (cit. on p. 2).

[12] Z. Zhang, J. Suo, and Q. Dai, “Denoising of event-based
sensors with deep neural networks,” en, in Optoelectronic
Imaging and Multimedia Technology VIII, vol. 11897,
SPIE, Oct. 2021, pp. 203–209. doi: 10.1117/12.2602742
(cit. on p. 2).

[13] P. Duan, Z. W. Wang, X. Zhou, Y. Ma, and B. Shi,
“EventZoom: Learning to denoise and super resolve neu-
romorphic events,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2021. [Online]. Available: http://ci.idm.pku.
edu.cn/CVPR21a.pdf (cit. on p. 2).

[14] H. Fang, J. Wu, L. Li, J. Hou, W. Dong, and G. Shi,
“AEDNet: Asynchronous event denoising with Spatial-
Temporal correlation among irregular data,” in Proceed-
ings of the 30th ACM International Conference on Mul-
timedia, ser. MM ’22, Lisboa, Portugal: Association for
Computing Machinery, Oct. 2022, pp. 1427–1435, isbn:
9781450392037. doi: 10.1145/3503161.3548048 (cit. on
p. 2).

[15] H. Liu, C. Brandli, C. Li, S. Liu, and T. Delbruck, “De-
sign of a spatiotemporal correlation filter for event-based
sensors,” in 2015 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), May 2015, pp. 722–725. doi:
10.1109/ISCAS.2015.7168735 (cit. on pp. 2, 3, 8).

[16] A. Khodamoradi and R. Kastner, “O(N)-Space spa-
tiotemporal filter for reducing noise in neuromorphic vi-
sion sensors,” IEEE Transactions on Emerging Topics in
Computing, vol. PP, no. 99, pp. 1–1, 2018. doi: 10.1109/
TETC.2017.2788865 (cit. on pp. 2, 8).

[17] A. Linares-Barranco, F. Perez-Pena, D. P. Moeys, et al.,
“Low latency Event-Based filtering and feature extraction
for dynamic vision sensors in Real-Time FPGA applica-
tions,” IEEE Access, vol. 7, pp. 134 926–134 942, 2019,
issn: 2169-3536. doi: 10.1109/ACCESS.2019.2941282 (cit.
on pp. 2, 8).

[18] S. Guo, Z. Kang, L. Wang, S. Li, and W. Xu, “HashHeat:
An O(C) complexity hashing-based filter for dynamic vi-
sion sensor,” in 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), ieeexplore.ieee.org,
Jan. 2020, pp. 452–457. doi: 10 . 1109 / ASP - DAC47756 .
2020.9045268 (cit. on pp. 2, 8).

[19] M. Kowalczyk and T. Kryjak, “Hardware architecture for
high throughput event visual data filtering with matrix of
IIR filters algorithm,” in 2022 25th Euromicro Conference
on Digital System Design (DSD), Aug. 2022, pp. 284–291.
doi: 10.1109/DSD57027.2022.00046 (cit. on pp. 2, 3, 8).

[20] J. Barrios-Aviles, A. Rosado-Munoz, L. D. Medus, M.
Bataller-Mompean, and J. F. Guerrero-Martinez, “Less
data same information for Event-Based sensors: A bioin-
spired filtering and data reduction algorithm,” en, Sen-
sors, vol. 18, no. 12, Nov. 2018, issn: 1424-8220. doi:
10.3390/s18124122 (cit. on pp. 2, 3, 8).

[21] S. K. Bose, D. Singla, and A. Basu, “A 51.3 TOPS/W,
134.4 GOPS in-memory binary image filtering in 65nm
CMOS,” Jul. 2021. arXiv: 2107.11723 [eess.IV]. [On-
line]. Available: http://arxiv.org/abs/2107.11723 (cit.
on p. 2).

3941

[22] X. Cheng, H. Zhu, J. Liu, M. Wang, and X. Zeng, “An ef-
ficient Markov random field based denoising approach for
dynamic vision sensor,” in 2021 IEEE 14th International
Conference on ASIC (ASICON), ieeexplore.ieee.org, Oct.
2021, pp. 1–4. doi: 10.1109/ASICON52560.2021.9620426
(cit. on p. 2).

[23] J. Duarte et al., “Fast inference of deep neural networks in
FPGAs for particle physics,” J. Instrum., vol. 13, no. 07,
P07027, 2018. doi: 10.1088/1748- 0221/13/07/P07027
(cit. on p. 5).

[24] C. N. Coelho, A. Kuusela, S. Li, et al., “Automatic het-
erogeneous quantization of deep neural networks for low-
latency inference on the edge for particle detectors,” en,
Nature Machine Intelligence, pp. 1–12, Jun. 2021, issn:
2522-5839, 2522-5839. doi: 10.1038/s42256-021-00356-5
(cit. on p. 5).

[25] C. Brandli, R. Berner, M. Yang, S. Liu, and T. Delbruck,
“A 240x180 130 dB 3 us latency global shutter spatiotem-
poral vision sensor,” IEEE J. Solid-State Circuits, vol. 49,
no. 10, pp. 2333–2341, Oct. 2014, issn: 0018-9200, 1558-
173X. doi: 10.1109/JSSC.2014.2342715 (cit. on p. 6).

[26] G. Taverni, D. Paul Moeys, C. Li, et al., “Front and
back illuminated dynamic and active pixel vision sensors
comparison,” IEEE Trans. Circuits Syst. Express Briefs,
vol. 65, no. 5, pp. 677–681, May 2018, issn: 1558-3791.
doi: 10.1109/TCSII.2018.2824899 (cit. on p. 6).

[27] A. Linares-Barranco, A. Rios-Navarro, S. Canas-Moreno,
E. Pinero-Fuentes, R. Tapiador-Morales, and T. Delbruck,
“Dynamic vision sensor integration on fpga-based cnn
accelerators for high-speed visual classification,” in In-
ternational Conference on Neuromorphic Systems 2021,
ser. ICONS 2021, Knoxville, TN, USA: Association for
Computing Machinery, 2021, isbn: 9781450386913. doi:
10.1145/3477145.3477167 (cit. on p. 6).

[28] M. Liu and T. Delbruck, “EDFLOW: Event driven optical
flow camera with keypoint detection and adaptive block
matching,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 32, no. 9, pp. 5776–5789, Sep. 2022, issn: 1558-2205,
1558-2205. doi: 10.1109/TCSVT.2022.3156653 (cit. on
p. 6).

[29] M. Guo, S. Chen, Z. Gao, et al., “A 3-Wafer-Stacked hy-
brid 15MPixel CIS + 1 MPixel EVS with 4.6GEvent/s
readout, In-Pixel TDC and On-Chip ISP and ESP func-
tion,” in 2023 IEEE International Solid- State Circuits
Conference (ISSCC), San Francisco, CA, USA: IEEE,
Feb. 2023, pp. 90–92. doi: 10.1109/isscc42615.2023.
10067476 (cit. on pp. 7, 8).

[30] K. Kodama, Y. Sato, Y. Yorikado, et al., “1.22um
35.6mpixel RGB hybrid Event-Based vision sensor with
4.88um-Pitch event pixels and up to 10K event frame
rate by adaptive control on event sparsity,” in 2023 IEEE
International Solid- State Circuits Conference (ISSCC),
Feb. 2023, pp. 92–94. doi: 10.1109/ISSCC42615.2023.
10067520 (cit. on pp. 7, 8).

[31] A. Niwa, F. Mochizuki, R. Berner, et al., “A 2.97um-
Pitch Event-Based vision sensor with shared pixel Front-
End circuitry and Low-Noise intensity readout mode,”
in 2023 IEEE International Solid- State Circuits Con-
ference (ISSCC), Feb. 2023, pp. 4–6. doi: 10 . 1109 /
ISSCC42615.2023.10067566 (cit. on pp. 7, 8).

3942

