Journal of Cryptographic Engineering
https://doi.org/10.1007/s13389-022-00306-w

REGULAR PAPER

®

Check for
updates

Isadora: automated information-flow property generation for

hardware security verification
Calvin Deutschbein’

Received: 19 June 2022 / Accepted: 21 October 2022

- Andres Meza? - Francesco Restuccia? - Ryan Kastner? - Cynthia Sturton?

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Isadora is a specification mining tool for creating information-flow properties for hardware. Isadora combines hardware
information-flow tracking and specification mining to produce properties that are suitable for the hardware security validation
and support a better understanding of the hardware’s security posture. Isadora is fully automated; the user provides only
a hardware specification and a testbench—they do not need to supply a threat model or security requirements. Isadora is
evaluated on a RISC-V processor, an SoC access control mechanism, and the OpenTitan hardware root of trust. Isadora
generates security properties that align with Common Weakness Enumerations (CWEs) and with properties written manually

by security experts.

Keywords Information-flow tracking - Specification mining - Hardware security validation

1 Introduction

Security validation is an important yet challenging part of
the hardware design process. A strong validation provides
assurance that the hardware is secure and trustworthy: it
will not be vulnerable to attack once deployed, and it will
reliably provide software and firmware with the advertised
security features. A security validation engineer is tasked
with defining the threat model, specifying the relevant secu-
rity properties, detecting any violations of those properties,
and assessing the consequences to system security.

Existing commercial design tools' Examples include Men-
tor Questa Secure Check, Cadence JasperGold Security Path
Verification, and Tortuga Logic Radix.can verify security
properties. But the validation is only as strong as the pro-
vided properties. Defining properties is a crucial part of the

! Examples include Mentor Questa Secure Check, Cadence JasperGold
Security Path Verification, and Tortuga Logic Radix.

B Calvin Deutschbein
ckdeutschbein @willamette.edu

Willamette University, University of North Carolina at Chapel
Hill, Chapel Hill, USA

University of California, San Diego, USA
3 University of North Carolina at Chapel Hill, Chapel Hill, USA

Published online: 11 November 2022

security validation process that currently involves a signifi-
cant manual undertaking.

Isadora is an automated methodology that combines
information-flow tracking with specification mining to cre-
ate a hardware security specification. The specification can
be used as a set of security properties suitable for use with
existing security validation tools, and it can also be studied
directly by the validation engineer to support their under-
standing of how information flows through the hardware and
to better understand potential security weaknesses.

Hardware information-flow tracking (IFT) is a powerful
security verification technique that monitors how informa-
tion moves through the hardware [24]. Hardware IFT was
introduced at the gate level [25,38] and has been optimized
toward RTL [2,42] and HLS [33]. Existing IFT verification
engines can be used to confirm whether a given information-
flow property holds. However, it is up to the designer to
specify the full set of desired flow behaviors.

Specification mining offers an automated alternative to
manually writing properties. The technique works by ana-
lyzing traces of execution to find patterns of behavior.
Specification mining can be applied to software [1] or hard-
ware [19], and has recently been applied to system on a chip
(SoC) designs [15,34]. Security specification mining focuses
on finding patterns of behavior that are critical to security
and has been shown valuable for the security analysis of
processors [11,12,43]. However, many important vulnerabil-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-022-00306-w&domain=pdf
http://orcid.org/0000-0003-1354-7200

Journal of Cryptographic Engineering

ities relate to how information flows, properties that are not
discoverable via trace analysis on traces of only functional
values.

The key insight behind Isadora is to mine traces that
consist of the functional values and their IFT labels. Min-
ing upon this IFT-enhanced trace enables the generation
of information-flow properties. The security labels encode
information related to noninterference, which transforms the
information-flow properties from the space of hyperproper-
ties [6]—where trace-based mining does not apply—to the
space of trace properties.

A naive application of trace-based mining to an IFT-
enhanced traces quickly runs into issues of complexity: the
traces are large and overwhelm the miner. Additionally, the
miner will discover properties over the security labels and
original hardware signals that are meaningless and cannot be
transformed back to the space of information-flow properties
in the original design. To handle these issues we separate the
process of identifying source—sink flow pairs in the design
from the process of mining for the conditions that govern
those flows. The first can be done by leveraging existing
information-flow tracking tools and the second makes use of
existing trace miners. The key to making the approach work
is to synchronize the two parts using clock-cycle time.

The methodology we present here can inform an auto-
mated analysis of a hardware design by identifying flow
relations between all design elements including conditional
flows along with their conditions, multi-source flows, and
multi-sink flows. The methodology requires no input from the
designer beyond the design and testbench. For larger designs
or for better performance, the designer may restrict the set
of source and sink signals to find information flows within
specific sub-spaces of the design.

To our knowledge, Isadora represents the first specifica-
tion miner capable of extracting information-flow security
properties from hardware designs. Isadora is a fully auto-
mated security specification miner for information-flow
properties. Isadora uses information-flow tracking (IFT)
technology from the simulation-based security verification
engine, Radix-S by Tortuga Logic [28], and is implemented
on top of Daikon [14], a popular invariant miner.

e Isadora characterizes the flow relations between all ele-
ments of a design.

e Isadora identifies important hardware security properties
without guidance from the designer.

e Isadora can be used to find undesirable flows of informa-
tion in the design.

e Isadora is applicable to SoCs and CPUs.

To measure our methodology and the usefulness of

Isadora’s mined specification, we evaluated Isadora over
an access control module, a RISC-V CPU design, and the

@ Springer

OpenTitan hardware root of trust. We evaluated the out-
put of Isadora versus expected information-flow policies of
the design and found information-flow specifications that, if
followed, protect designs from known and potential future
attack patterns.

2 Hardware security properties

Isadora generates different classes of information-flow prop-
erties. Information-flow restrictions indicate the lack of infor-
mation flow between two hardware components. Information-
flow conditions denote an information flow between two
hardware components, but only when the hardware is in a
certain state.

When considering properties, we can differentiate between
properties of the design and the properties that are discovered
from traces. In practice, a trace cannot explore all possible
design states so the properties found by specification miners,
including Isadora, may under-approximate design behavior.
On the other hand, any information flow described by Isadora
is a true flow of the given design. In this section, we discuss
the classes of information-flow properties that Isadora can
specify and provide a grammar for the properties. In Sect. 6,
we explore how these properties may differ from true prop-
erties of the design.

2.1 Tracking information flow

Hardware IFT can precisely measure all digital information
flows in the underlying hardware including implicit flows
through hardware-specific timing channels [24]. Isadora uses
register transfer level IFT [2] to track data flow between sig-
nals rather than considering individual bits, with ‘signals’
in this context referring to the Verilog notion of a register.
Isadora may additionally be configured to consider Verilog
wires, and this configuration was used on SoC designs. We
use the term signal to refer to any design element, be it a
register or wire in the Verilog sense.

Tracking proceeds as follows: for each signal s in the
hardware, a new signal sT, which acts as the IFT label, is
added along with the logic to track how the label propagates
through the design. The resulting security model provides
a logic that analyzes the security labels and system state,
and updates those labels on a cycle-by-cycle basis. This is as
documented in GLIFT [25] and RTL IFT [2]. Isadora uses
Tortuga Logic Radix-S to generate a security model.

The security model is initialized by setting the label of a
relevant information source signal (or multiple signals). All
other tracking labels are initialized to zero. As the hardware
executes, if information related to a source signal propa-
gates to a second signal, the second signal’s tracking label is



Journal of Cryptographic Engineering

updated from to be nonzero, i.e., the security model indicates
that there is a flow of information.

2.2 Information-flow restrictions

Using hardware IFT, we can express the property that infor-
mation from signal r; should never flow to signal r»: if r;
is the only signal whose tracking label rlT is initialized to
nonzero, then for all possible executions, r»’s tracking label
r2T should remain at zero:

Vi, riT7£0<—>i=1)—>(G<r2T=O>.

This style of information-flow restriction can be useful
for ensuring unprivileged users cannot influence sensitive
state or for ensuring that sensitive information cannot leak
to an unprotected memory space, unprotected I/O port, or
some other publicly viewable hardware state. However, it
cannot capture conditional properties, for example that reg-
ister updates are allowed after reset.

2.3 Information-flow conditions

We can express the property that information from a signal
r| may flow to another signal r; under some condition P: if
r is the only signal whose tracking label rlT is initialized to
nonzero then for all possible executions of the design, r>’s
tracking label r2T will only become nonzero if some predicate
P holds:

(Vrj, r] 0 i=1)— G(=P - (r} =0 X} =0)

This style of an information-flow condition can be used to
express that register updates are allowable only during certain
system states or that memory accesses requires successful
access control checks.

2.4 Grammar of properties

We produce information-flow properties using a restric-
tion operator =/=> that indicates the lack of information
movement between two hardware signals. This allows us
to succinctly express both information-flow restrictions and
information-flow conditions. More formally, the operator
=/=> indicates noninterference [18].

The grammar of Isadora properties is:

¢ = ri=/=> r3le—>1r1 =/=> 13
e=bAel|b
ref{x,y,z} |Ar1 + Bro+C=0|r1 #1r2|~r

prev(x).

The property r1 =/=> ry states that information flow
from rq to ry isrestricted. The propertye — r1 =/=> 1,
states that —e¢ must hold for information to flow from r; to
ro. The symbol r is a signal in the design, r € {x,y, z}
means that r may take on any one of the values in a set of
cardinality less than or equal to three, and prev(r) refers to
the value of r in the previous clock cycle.

3 Methodology

Isadora analyzes a design in four phases: generating traces,
identifying flows, mining for flow conditions, and postpro-
cessing. An overview of the workflow is presented in Fig. 1.

Isadora uses an information-flow security model to add
a security label to every hardware component and provide
logic that calculates how to update the labels as the hardware
executes. Isadora uses Tortuga Logic Radix-S to generate
the security model. Radix-S performs a functional simula-
tion using a user-supplied functional testbench. Radix-S uses
its security model to compute an IFT-enhanced trace that
specifies the value of every hardware signal along with its
corresponding IFT label for every clock cycle during simu-
lation. The labels act as additional metadata about how the
hardware behaves with respect to propagating information.
These IFT labels are crucial for Isadora to derive IFT security
properties.

Next, Isadora studies the trace set to find every flow that
occurred during the simulation of the design. This set of flows
is complete: if a flow occurred between any two signals,
it will be included. As the end of this phase, Isadora also
produces the complete set of restrictions: pairs of signals
between which no information flows.

Then, Isadora uses Daikon [14] to infer, for every flow, the
predicates that specify the conditions under which the flow
occurred.

The final phase removes redundant and irrelevant predi-
cates from the set and logically combines the predicates with
the information flows to produce the information-flow con-
ditions. These, along with the information-flow restrictions
from the second phase, form the information-flow specifica-
tion produced by Isadora.

3.1 Generating traces with information-flow
tracking

We use Tortuga Logic Radix-S to create the security model
and generate the trace set. The simulation is driven by a
functional testbench that is accompanied by the hardware
designs. The testbenches are not modified in any manner.
The testbench provides input values to the hardware to drive
its functional execution. Additionally, we provide Radix-S

@ Springer



Journal of Cryptographic Engineering

Fig.1 An overview of the
Isadora workflow

Design ~ 7
Mine
4 Flows — Flow — C'::no‘:s
VFT = /’ Cond's
Add | | .
and > Instrumented —» Aﬁ?:"'my {
Simulate Traces X
' No Post-
Flows processor
|
h 4
Information
Flow
Properties

the src signal to track, i.e., the security label of src will be
initially set (tainted).

Lettsyc = (00, 01, ..., 0,) bethe trace of adesign instru-
mented to track how information flows from one signal, src,
during execution of a testbench. The state o; of the design
at time i is defined by a list of triples describing the current
value of every design signal and corresponding tracking label
in the instrumented design:

o = [(515 U1, vtl)5 (S25 V2, Ué), cet (Sma Um s v:”l)]l .

In order to distinguish the source of an information flow,
each input signal must have a separate taint label. However,
tracking multiple labels is expensive [25]. Therefore, Isadora
takes a compositional approach. For each source signal, an
IFT-enhanced trace is generated to track the flow of informa-
tion from only a single input signal of the design, the src
signal. This process may be applied to each signal in a design,
or to a specified subset.

The end result is a set of traces for a hardware description
D and testbench T: Ipr = {Tsrc, Tsre/s Tsre”s - - -} Each
trace in this set describes how information can flow from a
single input signal to the rest of the signals. Taken together,
this set of traces describes how information flows during exe-
cution of the testbench T.

3.2 Identifying all flows
In the second phase, the set of traces is analyzed to identify:

(1) Every pair of signals between which a flow occurs, and
(2) The times within the trace at which each flow occurs.

Each trace 75, is searched to find every state in which a
tracking label goes from being set to O to being set to 1.
In other words, every signal—values triple (s, v, v’) that is

@ Springer

of the form (s, v, 0) in state 0;_; and (s, v, 1) in state o;
is found and the time i is noted. This is stored as the tuple
(src, s, {io, i1, ...}), which indicates that information from
src reached signal s atall timesi € {ig, i1, .. .}. We call this
the time-of-flow tuple. There can be multiple times-of-flow
for a given source signal to sink signal within a single trace
because the tracking label may be reset to zero by events such
as resets.

Once all traces have been analyzed, the time-of-flow tuples
(src, s, {io, i1, - - .}) are organized by time. For any given
set of times {ip, i, ...} there may be multiple discovered
flows. For all traces 75, generated by a testbench, the timing
of flows from source src can be compared to the timing of
flows from a second source src’; the value i will refer to the

same point in the testbench.

At the end of this phase, Isadora produces two outputs.
The first is a list of the unique sets of times present within
time-of-flow tuples and all the corresponding signal pairs for
which flow is discovered at precisely the times in the set:

SﬂOWS = [({107 117 . } :{(SrCl, Sl)7 (Src2a S2)7 . '}>7

({i(/), ii, ) id(srer’, s1), (sren’, s27), L )

The same src may flow to many sinks s € {sq, s5,...}
at the same times i € {ig,i1,...}, and the same sink
s may receive information from multiple sources src €
{srci, srcy, ...} at the same times i € {ig, i1,...}. The
second output from this phase is a list of source—sink pairs
between which information flow is restricted:

Sno—flow = {(src, s), (src, s'), .. .}.

This set comprises the information-flow restrictions of the
design and may be specified with the restriction operator as
src=/=>s



Journal of Cryptographic Engineering

3.3 Mining for flow conditions

In the third phase, Isadora finds information-flow conditions.
For example, if every time src flows to s, the signal r has
the value x, Isadora infers the information-flow condition:

—(r=x) > src =/=> s.

Isadora uses the technique of dynamic invariant detec-
tion [14] on traces to infer behaviors using pre-defined
patterns. In order to isolate the conditions for information
flow between two signals, Isadora uses Sqows to find all the
trace times i at which information flows from src to s dur-
ing execution of the testbench. The corresponding trace is
then decomposed to produce a set of trace slices that are two
clock cycles in length, one for each time i. Consider time-
of-flow tuple (src, s, [i, j, k, ...]), which as a notational
convenience here uses distinct letters to denote time points
rather than subscripts for clarity in the following expres-
sion. Given this tuple, Isadora will produce the trace slices
(0i-1,0i),{0j—1,0}), {0k—1, o). These trace slices include
only the functional signals from the hardware; the IFT labels
are removed. Invariant detection over these functional trace
slices, or trace windows of length two, allows generates pred-
icates specifying design state prior to and concurrent with an
information flow. Predicates match one of the four patterns
for expressions given by the grammar in Sect. 2.

3.4 Postprocessing

Finally, Isadora performs additional analysis to find invari-
ants that may hold over the entire trace set by running the
miner on the unsliced trace. Isadora eliminates any predi-
cate found to be a trace-set invariant. A trivial example is the
invariant c1k = {0, 1}.

The final output from postprocessing is the information-
flow restrictions. Isadora can express these as multi-source
to multi-sink flows, where all source—sink pairs are simi-
larly restricted. This produces comparatively few properties,
which in practice were approximately as many as the number
of unique source signals, and avoids redundant information.
These information-flow conditions and the information-flow
restrictions discovered in Phase 2 (Sect.3.2) make up the
set of information-flow properties produced by Isadora. Two
examples of properties are shown in Appendix 1.

4 Implementation

Isadora uses Tortuga Logic Radix-S to generate the security
model, the Questa Advanced Simulator to simulate the secu-
rity model and functional specification and generate traces,
and the Daikon [14] invariant miner to find flow conditions.

A Python script manages the workflow and implements flow
analysis and postprocessing.

4.1 Generating traces

An automated utility identifies every signal within a design
and configures Tortuga Radix-S to build the security model
separately for each of these signals, or accepts a set of input
signals. We run Tortuga in exploration mode, which omits
cone of influence analysis, and track flows to all design state
using the Sall_outputs variable. The resulting instru-
mented designs are simulated in QuestaSim over a testbench
(see Evaluation, Sect. 5) to produce a trace of execution.

4.2 Identifying flows

Flow identification is implemented as a Python tool that reads
in the traces generated by QuestaSim and produces the set
of information-flow restrictions and the time-of-flow tuples.
This phase combines the bit-level taint tracking by Radix-S
into signal-level tracking. Each n-bit signal in the original
design is then tracked by a 1-bit taint label, which will be set
to 1 at the first point in the trace that any of the component n
bits in the corresponding original design signal where tainted
from the specified source.

4.3 Mining flow conditions

The mining phase is built on top of the Daikon invariant gen-
eration tool [14], which was developed for use with software
programs. Daikon generates invariants over state variables
for each point in a program. We built a Daikon front-end
in Python (approximately 800 LoC) that converts the trace
data to be Daikon readable, treating the state of the design
at each clock cycle as a point in a program. The front-end
also removes any unused or redundant signals and outputs
relevant two-clock-cycle slices as described in Sect. 3.3.

4.4 Mining flow conditions

When identifying the flows in the design, Isadora must pro-
cess a number source—sink pairs equal to n * (n — 1) where
n is the number of signals in the original design. This corre-
sponds to n signals each acting as a potential source for all of
the other n — 1 signals in the design. Of course the tool may
be configured to consider only specified sources or specified
sinks, and this technique is demonstrated in Sect. 5.5 for an
SoC evaluation.

The resulting flow conditions describe the information-
flow relationship between these pairs of signals. In the case
of signals that must interact, and therefore have some flow
relation, but should do so under only certain restricted cir-
cumstances, this mining technique can automatically and

@ Springer



Journal of Cryptographic Engineering

precisely determine the circumstances under which the flow
occurs in practice. Or, in the case of two signals that were
not expected to have any flow relation, this technique can
provide a precise description of the error state.

5 Evaluation

We assess the following questions to evaluate Isadora:

(1) CanIsadoraindependently mine security properties man-
ually developed by hardware designers?

(2) Can Isadora automatically generate properties describing
Common Weakness Enumerations (CWEs) [31] over a
design?

(3) Does Isadora scale well for larger designs, such as CPUs
or SoCs?

5.1 Designs

We assessed Isadora on three designs, the Access Control
Wrapper (ACW) [36] the PicoRV32 RISC-V CPU, and an
OpenTitan Hardware Root of Trust.

An ACW wraps an AXI controller and enforces on it a
local access control policy, which is setup and maintained
by a trusted entity. The ACW checks the validity of read
and write requests issued by the wrapped AXI controller and
rejects those that violate the local access control policy. We
study a single-controller access control system. The input
signals of the ACWs are dictated by the testbench, which
initializes them with the access control policies and acts as
the trusted entity. The design is shown in Fig.2. The secure
operation of the ACW and Aker-based access control systems
has been verified through a property-based security valida-
tion process by the designers. We evaluate how Isadora’s
properties compare to the manually developed security spec-
ification.

PicoRV32 CPU is a CPU core that implements the RISC-
V RV32IMC Instruction Set, an open standard instruction
set architecture based on established reduced instruction set
computer principles. We use the PicoRV32 CPU to evaluate
how well Isadora automatically generates properties describ-
ing CWEs and to evaluate how well Isadora scales on a CPU
design.

The OpenTitan SoC is an open source silicon hardware
root of trust (RoT). Our analysis focuses on the one-time
programmable memory (otp) module (u_otp_ctrl). The OTP
holds important information like encryption keys and per-
forms scrambling and other cryptographic operations when
distributing keys across the OpenTitan SoC. For example, the
OTP provides keys to the FLASH and SRAM that they use
for encryption and authentication. We use the OpenTitan SoC

@ Springer

to evaluate how well Isadora may be applied to large-scale
designs using larger amounts of trace data.

5.2 Isadora runtime

There are two major parts of the Isadora framework. The
first part generates the IFT-enhanced traces. The second part
mines those traces using Daikon. Trace generation domi-
nated the overall runtime, scaling at a pace slightly worse
than linear with number of unique signals in a design. Trace
generation is parallelizable and parallelization will be nec-
essary on larger designs.

Trace generation involves several steps. A security model
is generated separately for each source signal using Radix-S.
Thus in order to analyze all hardware signals (as was done
with the ACW and PicoRV32), Isadora generates a separate
security model for each signal. Once the security model is
generated, Isadora uses QuestaSim to simulate the security
model and the functional (System Verilog) model using a pro-
vided functional testbench. The simulation generates a trace
of hardware signals over time that includes both the signals’
IFT labels and their functional values.

The design sizes are given in Table 1. For the ACW, trace
generation took 9h33m. For the PicoRV32 CPU, trace gener-
ation took 8h35m. For the OpenTitan, trace generation took
multiple days. The SoC evaluation mining time differs in a
number of ways from the ACW and CPU times. Firstly, it
was performed on a different, faster system. Secondly, it has
many fewer sources and much greater trace length. Lastly,
the initial unoptimized run over the SoC crashed on the 18th
of 22 properties after a few hours, and the 2:50 time comes
from removing all clock signals. Clock signals remained in
consideration for the ACW and CPU.

|l Trusted | |—| Untrusted| I ISig Groups||

[ ]
nl

Config & Control Mechanism

Fig.2 Block diagram of the ACW design, with labeled signal groups



Journal of Cryptographic Engineering

Table 1 Various size measures of the designs and trace evaluations

Design Source signals Total signals LoC (verilog) Trace cycles Trace GBs Daikon traces Isadora props Mining time (mins.)
Aker ACW 229 229 1940 598 0.7 252 303 29:51

PicoRV32 CPU 181 181 3140 1099 0.6 955 153 15:09

OpenTitan SoC 5 365 1.8M 3.6B 140 24117 22 2:50

5.2.1 Theoretical performance gains

When parallelizing all trace generation and all case mining,
Isadora could theoretically evaluate the ACW in less than five
minutes. Parallelizing the first phase requires a Radix-S and
QuestaSim instance for each source signal, and each trace is
generated in approximately 100s. Further, the trace gener-
ation time is dominated by write-to-disk, and performance
engineering techniques could likely reduce it significantly,
such as by changing trace encoding or piping directly to later
phases. Parallelizing the second phase requires only a Python
instance for each source signal, and takes between 1 and
2 s per trace. Parallelizing the third phase requires a Daikon
instance for each flow case, usually roughly the same num-
ber as unique sources, and takes between 10 and 30s per
flow case. Maximally parallelized, this gives a design-to-
specification time of under four minutes for the Aker ACW
and for similarly sized designs, including the PicoRV32 CPU.

Parallelization supports scaling up to SoC designs. Our
evaluation suggests that mining time increases logarithmi-
cally with respect to trace length, and that by decomposing
large designs into modules and submodules the mining stage
can be applied to trace sets that stay under the threshold for
which unique signals begin to dominate mining costs, usually
around 2000-4000 signals, while recomposing system-wide
properties in postprocessing. We also found that in the SoC
design there were frequently signals across multiple mod-
ules that always held the same value, and in such a case many
more signals may be considered before the internal inference
engine within the miner is overwhelmed.

5.3 Designer-specified security properties

For the ACW, we compared Isadora’s output against secu-
rity assertions developed by the Aker [36] designers using the
Common Weakness Enumerations (CWE) database [31] as a
guide. These assertions, the CWEs described, and the results
of Isadora on the ACW are shown in Table 2. For each asser-
tion, Isadora mined either a property containing the assertion
or found both a violation and the violating conditions for each
assertion.

We reported the observed violations to the designers who
determined that the design was secure and the error was in
the manually developed specifications: an information-flow

condition had been incorrectly specified as an information-
flow restriction. Isadora found the correct information-flow
condition.

Only 9 Isadora properties, out of 303 total Isadora proper-
ties generated, were required to cover the designer-provided
assertions, including conditions specifying violations. The
Isadora output properties may contain many source or sink
signals that flow concurrently and their corresponding con-
ditions, whereas the designers’ assertions each considered a
single source and sink. For example, on the ACW nine dis-
tinct read channel registers always flow to a corresponding
read channel output wire at the same time, so Isadora outputs
a single property for this design state. This state included the
reset signal and a configuration signal both set to nonzero val-
ues, which were captured as flow conditions, demonstrating
correct design implementation. This single Isadora property
captured 18 low-level assertions related to multiple CWEs.

5.4 Automatic property generation

For the two designs with full trace sets, the ACW and
PicoRV32 CPU, Isadora generates a specification describ-
ing all information flows and their conditions with hundreds
of properties. To assess whether these properties are security
properties, for each design we randomly selected 10 of the
303 or 153 total properties (using Python random.randint)
and assessed their relevance to security.

We use CWEs as a metric to evaluate the security relevance
of Isadora output properties. To do so, for each design, we
first determine which CWEs apply to the design. For both the
Aker ACW and PicoRV32 CPU, we used the Radix Cover-
age for Hardware Common Weakness Enumeration (CWE)
Guide [28] to provide a list of CWEs that specifically apply
to hardware. We considered each documented CWE for both
designs. CWEs, while design agnostic, may refer to design
features not present in the ACW or PicoRV32CPU or may not
refer to information flows. High-level descriptions in multi-
ple CWEs may correspond to the same low-level behavior
for a design and we consider these CWEs together.

Information-flow CWEs for hardware describe source sig-
nals, sink signals, and possibly conditions. CWEs provide
high-level descriptions, but Isadora targets an RTL defini-
tion. To apply these high-level descriptions to RTL, we first
group signals for a design by inspecting Verilog files and,

@ Springer



Journal of Cryptographic Engineering

Table 2 Isadora performance

. Source Sink Predicate Aker Isadora CWEs Found?

versus Aker assertions, on the . . ..

signal signal condition props props
ACW

M PORT M INT GLOB 19 2,40 1258, 1266, 1270 4

INT M PORT 19 43,53 1271, 1272 1280

M PORT MINT C PORT 19 54,204 1258, 1270

M INT M PORT 19 214 1272 1280

S PORT CNFG - 4 2,6 1269, 1272, 1280 X
Table 3 The 14 CWEs considered for the ACW & 14 25 63 31 59 5
CWE(s) Description N ”

é\ 18 16 96 40 6 8
1220 Read/write channel separation \\\\
1221-1259-1271 Correct initialization, reset, defaults e ‘{59 6 23 20 10 27 15 17 60
O
1258-1266-1270-1272 Access controls use operating modes g & 9 9 27 3% 35 VY
1274-1283 Anomaly registers log transactions = Q\QO i — 40
1280 Control checks precede access @ OQ'.\ 2 2 12 5 4 1 10
. . Q
- - S (9]
1267-1269-1282 Configuration/user port separation & 2 10 0 0 6 0 0 s
o
& g 2 12 4 7 5 10
g -0
. . . . . A A &
if available, designer notes. With the groups established, we G,OQ’ & o‘{‘\ & g" 2 é@’
o (,Q @q G S

label every property by which group-to-group flows they con-
tain. We also determine which source—sink flows could be
described in CWEs, which often correspond to, or even match
exactly, a signal group. We use these groups to find CWE-
relevant, low-level signals as sources, sinks, and conditions in
an Isadora property. We also use these groups to characterize
the relative frequency of conditional flows between differ-
ent groups, which we present as heatmaps in the following
subsections.

5.4.1 ACW information-flow conditions

Over the ACW we assess fourteen CWEs which we map to
five plain-language descriptions of the design features, as
shown in Table 3.

For the ACW signal groups, all signals were helpfully
placed into groups by the designer and labeled within the
design. The design contained seven distinct labeled groups:

e ‘GLOB’—Global ports
e ‘S PORT’—AXI secondary (S) interface ports of the

ACW
e ‘C PORT’—Connections to non-AXI ports of the con-
troller
e ‘M PORT’—AXI main (M) interface ports of the ACW
e ‘CNFG’—Configuration signals
e ‘M INT’—AXI M interface ports of the controller
e ‘CTRL—Control logic signals

@ Springer

Source Group

Fig.3 Group-to-group conditional flow heatmap for the ACW

GLOB signals are clock, reset, and interrupt lines. S PORT
represents the signals that the trusted entity 7" uses to con-
figure the ACW. C PORT represents the signals which are
used to configure the controller C to generate traffic for test-
ing. M PORT carries traffic between the peripheral P and
the ACW’s control mechanism. CNFG represents the design
elements which manage and store the configuration of the
ACW. M INT carries the traffic between the ACW’s control
mechanism and the controller. If it is legal according to the
ACW?’s configuration, the control mechanism will send M
INT traffic to M PORT and vice versa. CTRL represents the
design elements of the aforementioned control mechanism.

First consider the heatmap view of the ACW in Fig.3. In
this view, all of the Aker properties fall into just 3 of the 49
categories; these are outlined in red. Further, all of the vio-
lations were found with S PORT to CNFG flows, while all
satisfied assertions were flows between M INT and M PORT.
Another interesting result visible in the heatmap is the infre-
quent flows into S PORT, which is used by the trusted entity
to program the ACW. Most of the design features should not
be able to reprogram the access control policy, so finding no
flows along these cases provides a visual representation of
secure design implementation with respect to these features.

For the ACW, all ten sampled properties encode CWE-
defined behavior to prevent common weaknesses, as shown



Journal of Cryptographic Engineering

Table4 Sampled Isadora

properties on the ACW # Description 1220 1221+ 1258+ 1274+ 1280
3 Control check for first read request after reset v v v
10 Secure power-on v
37 Anomalies and memory control set after reset v v v v
96 T via S PORT configures ACW v v v
106 Interrupts respect channel separation v
154 Base address not visible to P during reset v
163 Write transaction legality flows to P v
227 Write channel anomaly register updates v v
239 Write validity respects channel separation, reset v v
252 Read validity respects channel separation, reset v v

Table5 The 18 CWEs considered for PicoRV32 CPU
CWE(s)

Description

276-1221-1271
440-1234-1280-1299
1190 Memory isolated before reset
1191-1243-1244...
-1258-1295-1313
1245 Hardware state machine correctness
1252-1254-1264

Correct initialization, reset, defaults

Memory accesses pass validity checks

Debug signals do not interfere with

...any other signals

Data and control separation

in Table 4. In this table, the columns labeled by a CWE num-
ber and a ‘+’ refer to all the CWESs given in a row of Table 3.
Eight out of the ten properties provide separation between
read and write channels, which constitutes the main func-
tionality of the ACW module. CWEs 1267, 1269, and 1282
describe information-flow restrictions, so they are not present
within the samples drawn from the numbered information-
flow restrictions, but we were able to verify they are included
in Isadora’s set of information-flow restrictions.

5.4.2 CPU information-flow conditions

Over the PicoRV32 CPU, we assess eighteen CWEs which
we map to seven plain-language descriptions of the design
features, as shown in Table 5.

The PicoRV32 CPU had no designer-specified signal
groups so we used comments in the code, signal names, and
code inspection to group all signals.

‘out’—Output registers
‘int’—Internal registers
‘mem’—Memory interface
‘ins’—Instruction registers
‘dec’—Decoder

‘dbg’—Debug signals and state
‘msm’—Main state machine

The memory interface and the main state machine were indi-
cated by comments in the code. The instruction registers,
the decoder, and debug all appeared under one dispropor-
tionately large section described as the instruction decoder.
Debug was grouped by name after manual analysis found reg-
isters in this region prefixed with ‘dbg_’, ‘q_’, or ‘cached_’
to interact with and only with one another. Instruction regis-
ters prefixed ‘instr_’ all operate similarly to each other and
differently than the remaining decoder signals, which were
placed in the main decoder group. Internal signals were the
remaining unlabeled signals that appeared early within the
design, such as program and cycle counters and interrupt
signals, and the output registers were all signals declared as
output registers.

First consider the heatmap view of the PicoRV32 CPU
in Fig.4. An interesting result visible in the heatmap is the
flow isolation from debug signals to the rest of the design.
Many exploits, both known and anticipated, target debug
information leakage, and the heatmap shows this entire class
of weakness is absent.

For the PicoRV32 CPU we find eight of ten sampled
properties encode CWE-defined behavior to prevent com-
mon weaknesses. We present these results in Table 6. The
columns labeled by a CWE number and a ‘+’ refer to all the
CWE:s given in a row of Table 5. The remaining properties
were single source or single sink properties representing a
logical combination inside the decoder, and captured only
functional correctness.

5.5 SoC evaluation

When extending Isadora to work on the larger OpenTitan
design, we learned a number of lessons on scalability and on
information flow in SoC designs. For performance, we can
decompose SoC designs module-wise, and evaluate mod-
ules with their immediate submodules to generate properties
across module hierarchies. Fortunately, Isadora experiences
minimal time costs from considering much longer traces

@ Springer



Journal of Cryptographic Engineering

50
s B« IR
&
&8
40
» O 13 12 [ECREN 5 17
6 8 10 [ 0 12
g & 30
2
6 o 2 4 7 13 18 0 i
& -20
2 o BB 12 12 0 15
2
@
& |4 s 0 16 _10
& B 13 14 0 15
-0
o& & 6@@ A b"‘"(' 600" 6{—}0

Source Group

Fig.4 Group-to-group conditional flow heatmap for PicoRV32 CPU

associated with full systems engaging in more advanced com-
putations. In SoC designs with microarchitectural state, we
may want to study many additional signals (Verilog wires)
within a module, and by exploring designs module-wise we
have the efficiency to do so. For SoC designs, it is especially
helpful to specify fixed sources, either by signal or by a sig-
nal with a Verilog condition. SoC traces contain common
patterns that can be considered separately when preparing
trace for specification mining and removed to improve per-
formance, such as clock ticks or other timing updates, to
partition the design space. Omitting clock signals from con-
sideration improved performance from routinely crashing
the data miner after hours, to completing all data mining
in under 3 min. Together, these techniques scale Isadora to
SoC designs.

For the SoC, we generated full design traces for five pre-
selected sources known to be of security interest. We selected
two key registers:

(1) RndCnstKey—Random constant used as scrambling key

(2) UserKeys—Secret keys stored in OTP memory

and three seed registers used by the OTP’s Key Derivation
Interface to derive keys for various applications:

(1) sram_data_key_seed—For use in the SRAM Controller
(2) flash_data_key_seed—For use in the Flash Controller
(3) flash_addr_key_seed—For use in the Flash Controller

All sources were located in the u_otp_ctrl module, Open-
Titan’s one-time-programmable (OTP) memory controller,
which served as the focus of our exploration. The flow sinks
included signals in u_otp_ctrl as well as its first level submod-
ules. We present the in-module signals and other modules in
Table 7.

As a practical matter for evaluation, the size of an SoC
made generating the hundreds of traces used for the ACW and
CPU prohibitively costly for a single instance of an under-
optimized research version of the tool. The resulting traces
still contained over a hundred times more trace data than the
CPU SoC sets over just these five sources. For each source,
we only considered ‘near’ flows within the source module
and its immediate submodules, with the understanding that
information flow could then be tracked through the entire
design using these intermediate signals.

Excluding flows to clock signals and flows at only time
zero, there are 16 distinct flow cases on the SoC that are pre-
sented in Table 8. We present the number of clock cycles
from the beginning of the trace at which the flow occurred,
how many distinct times a flow occurred on the trace, the
number of conditions discovered by Daikon, and the source
and sink signals. For the SoC design, we did not proceed
with the full postprocessing stage to avoid running Daikon
over the entire SoC trace, so the number of Daikon condi-
tions is presented as a proxy for the number of clauses of
a postprocessed information-flow condition. These proper-
ties holistically provide interest insight into how information
flows through the design.

Table 6 Sampled Isadora

properties on PicoRV32 CPU # Description 276+ 440+ 1190 1191+ 1245 1252+
1 No decoder leakage via debug v
16 Instructions update state machine v v
30 Decoder updates state machine v
47 No state machine leakage via debug v
52 SLT updates state machine v
66 Handling of jump and load v v v
79 Loads update state machine v
113 Decoder internal update
130 Write validity respects reset v
144 Decoder internal update

@ Springer



Journal of Cryptographic Engineering

sureyo ueos paje[aI-( 10J [eusIs o[qeuy

I9[[ONUO0d J1O 03 [euSTS JsaI ATeWLI

1o3euewt romod woay Surwod 3senbar uonezifenuy

Q0BJIUI 9JTASP SNq T -UI'TO[LL

onpow (,SV) doj 1osuas 3o[eue 0) I[[0NU0D J 1O Y} Wolj [euTIs AI[IqeAIdsqO

d1O 10J 938)[0A [RUIIXH

(urewop DDA) LSV woiy Jurwod speusdis urouanbos romod

Jnpouwt (I,SV) doj 10suas Fo[eue 0) I[[0NU0D J 1O Y} WOIJ S)I9[e SUIALIRD S[eUSIS

901A9p Surquierds NN N9.LO wolj sysanbar uonearop A9y

porordwios sey uonerado uore[noed JSAJIP J0 PUBIIWIOD SSIIIB 1011 B Sunedrpur ydnirojuy
JI9[[ONU0D J1O Y} Ul PALINO0 Sey Jo1Id ue Sunesrpur ydnireiug

UONBALISP Ay [eIowaydo pue Surpaasal YT 10J jromiau uonnquisip Adonua ayy 0) 3sanbar Adonuyg

Q0BJISIUT AJTAdP SNQ TN -UIT[LL

T U9 uedsS

T )sI

T djo amd

o wnd

o0~ sqo” djo

or { a3ejjoAT)xo djo
1y basTimdise"djo
o e~ djo

1 Aoy djo uqio

o ouop uonerado—djo nur
o 10119~ djo"nur

o up?

0 1 2100

uondrosag

S[eusIs JuIg

Klowowr 1O 03 90BJIUI PI[QRU-[ONUOI-SSAIL U ‘([V(]) QBJINU] SS0Y 10

uoneALIdp A9y [erowaydo pue Surpassal 10j romiau uonnqrysip Adonuoe saoejrajug

Kiowowr 1O [ed1sAyq

SwISIuRYOoW JUI[qUIBIOS UT 9sn J0J SAY [erowoyda/one)s SUIALIOp J0J ([(3]) 99BJIAU] UOTBALId( A9

rep 1o dijoTn
bor ups~wndn
djo™n

Y 1o dion

uondrosaq

J[npow yur§

suondrIosap Jorq Yim ‘SyuIs 193s15a1 pue o[npouwr Hog ueiipuado 7/ a|qel

pringer

As



Journal of Cryptographic Engineering

Table 8 OpenTitan SoC Properties. Times given are approximations for brevity. Starred (*) times diverged after the 7th co-occurrence. Double
starred (**) sinks also included rst_ni, rst_edn_ni, intr_otp_operation_done_o, intr_otp_error_o

Index Flow time(s) No. of occurrences No. of conditions Conditional flow relation(s)

01 0 2295 127 total flows

02 0 A 1396538900 2 2198 src[1-5] =?=> edn_o

03 0 A 1396940500 + 33132001 14 92712 src[1-5] =?=> prim_tl_o

04 0 A 1398647300 4 17068000 52 111833 src[3-5] =?=> core_tl_o

05 0 A 1398647300 4 17068000 52 111822 src[1] =?=> core_tl_o

06 0 A 1398647300 4 17068001 52 111811 src[2] =?=> core_tl_o

07 0 A 1408285700 2 2083 src[2] =?=> otbn_otp_key_i+**

08 0 A 1408787700 + 3313200n 70 114379 src[1-5] =?=> otp_ast_pwr_seq_h_i
09 0 A 1409892100 2 2084 src[1] =?=> otbn_otp_key_i+**

10 0 A 1412100900 + 33132001 69 113763 src[1-5] =2=> pwr_otp_i

11 0 A 1426056500 A 1446538100 3 2096 src[1-5] =?2=> otp_obs_o

12 0 A 1459891300 + 9939600n 12 9517 src[1-5] =?2=> data_copy

13 0 A 1463706500 2 2085 src[3-5] =?=> rst_ni

14 0 A 1479870900 + 33132001 5 2040 src[1-5] =?2=> data_load

15 1396840100 1 2290 src[1-5] =?2=> otp_alert_o

16 1636093300 1 2239 src[1-5] =?=> otp_ext_voltage_h_io
17 1636193700 1 2295 src[1-5] =?=> scan_en_i

For example, property 06 specifies a flow from the secret
key stored in the OTP to the core_tl_o register, a TileLink-UL
bus device interface first occurred at time zero, then approx-
imately 1.4 billion picoseconds after the trace latter, then
approximately regularly every 1.7 million picoseconds for
total of 52 total occurrences. Isadora found 111811 predi-
cate expressions that held at each of these 52 time points.

We find that generally for flows that occurred multiple
times, they reoccurred some fixed number of cycles from the
previous occurrence and appear roughly periodic. Of the 16
flow cases, 14 flow into a single signal. 13 include a flow at
time zero, showing that there is an initial flow during sys-
tem initialization before the design successfully completes
reset. Ten are co-occurring flows from all sources to a sin-
gle sink. Seven occur more than ten times. The three seed
signals always flow concurrently to the same sink. The key
signals do flow into the same signals but at different times.
These 16 properties capture a total of 68 distinct source—sink
pairs. Two signals, core_tl_o and rst_ni, are a sink for all
five sources but do not receive flows at the same time, being
reached at separate time points by the seed signals and each
key signal.

The time zero only flows are distinct between key and seed
signals, though the same within keys and within seeds, and
contain many overlapping signals such as core_tl_i. At time
zero there are 127 unique flows, suggesting that informa-
tion flow is less restricted in the design prior to successfully
completing reset.

@ Springer

We tracked flows to unique signals by name, yet many of
these signals existed across multiple of the considered sub-
modules, so they constitute multiple flows to corresponding
signals in different modules. For example, core_tl_o only
exists as a single register signal in the u_otp_ctrl module that
served as the top module for our analysis, while the edn_o
signal corresponded to a wire in both the u_otp_ctrl and its
u_prim_edn_req module. In the full design, there are a total
of 17 edn_o wires traversing a nested module structure for
which this tracked flow is applicable.

The specificity of flow conditions was also strongly
bimodal, with all flows either having between 2000 and 2300
Daikon conditions or between 90000 and 115000 Daikon
conditions. Any time there were 5 or fewer flows was in the
former group and all others were in the latter group.

As with the ACW and CPU, we generate a heatmap of
the conditional flows, two of which are shown in Figs. 5 and
6. The first is a signal-to-module view. Rather than rely on
developing families for signals from manual code inspection,
we track flows across module boundaries. That is, we log
each flow from the five designated sources within the top-
level u_otp_ctrl module, and track how many flows reach
each of its immediate submodules. The second is signal-to-
signal view within a single module.

By viewing the signal-to-module heatmap, we can also
see additional relationships between the signals. Flows over-
whelming occur within the u_otp_ctrl top-level module, with
an only a few irregular flows being directed to submod-
ules. Some modules are reached much more often than



Journal of Cryptographic Engineering

= RndCnstKey 2 2 2 2 2 2 7 9 2 2 2
©
5 Userkeys 2 2 2 2 2 2 /Ol 2 2 2
® sam_data keyseed 2 2 2 2 2 2 oMM 2 2 2
o
::;! flash_data_key seed 2 2 2 2 2 2 FGIEEHE 2 2 2
? fash addr key seed 2 2 2 2 2 2 o MHM 2 2 2
£ 5§ 5§ & € ¢ % &£ § 2 §
E d o8 5 8 2 3 o408
7 £§ 8 % g J % =5 8 O ¢
E 3 2 § © ¢ 9 J & ®
S 3 £ = =) 1 & C = 3
73 | © 2 o > 8 73
2 3 s I o T
) S 8 2 ) © © o
| 3 o  E c
g ol £ (I
= e = g > o
A 32 5
=l e = 8 E
E o B8
'E.I E i 5
3 5 £
3 o

u_|

F

100

RndCnstKey [ 1 2 1 2
80

T UserKeys <) 1 2 1 2

c

@ 60

o Sram_data_key_seed [NEE) 1 2 1 2.

o

3 - 40

& flash_data_key_seed [c) 1 2 1 2
-20

flash_addr_key_seed [NGE) 1 1 2

) o I ) ) o o

o g (I | |

5 < § F &8 T oD @8

Jow o O © £ o S

2 g e g B 8 D

a 8 o " e o c

3 5 : ° S

L | ©

3 £ 3 2

[

g g g

O,

=

E

Sink Signal in u_otp_ctrl

Fig.6 Signal-to-signal conditional flow heatmap for an OpenTitan SoC
module

others, especially u_otp, followed by u_otp_ctrl_kdi and

u_prim_edn_req. Of the remaining modules, only u_otp_ctrl_dai

receives more than 2 flows from any source, and all other sub-
modules receive exactly two from each source. Additionally,
we note that every immediate submodule is captured in this
heatmap, so there are no submodules that receive no infor-
mation flows. Given that many conditional flows occurred
from all five sources simultaneously, it is not necessarily sur-
prising to see the common case of all but two submodules
being reached from each of the five sources the same num-
ber of times, with a single difference of one instance (6 vs
7) between seed and key signals for the u_otp_ctrl_kdi and
u_prim_edn_req modules.

By viewing the signal-to-signal heatmap show that while
flows from the various source to sinks do not necessarily
occur at the same time, they occur very close to the same num-
ber of times, and exactly the same number of times within
the u_otp_ctrl module, though at different points in time.

N NN NN

u_otp_ctrl_scrmbl

g.5 Signal-to-module conditional flow heatmap for OpenTitan SoC

2 2 2 2 2 2 7 3 2 2 2 2 2 2 8
2 2 2 2 2 2 7 3 2 2 2 2 2 2
2 2 2 2 2 2 6 3 2 2 2 2 2 2 o
2 2 2 2 2 2 6 3 2 2 2 2 2 2 -4
2 2 2 2 2 2 6 3 2 2 2 2 2 2 )
£ x c ‘S = =] o k=] 19} = 2 £ K]
AR Y
Jo08 L - T s B - L )
g 2 ¥ g E 2 8 9 2 E & 3 05
e 5§ 5 5 T £ £ g 5 g o5 3 g
o o kel | L e °| Q = = | °
@ | o) S | a. - n S} 151 S 3I
Zc e B g o g
= il e S 3
[ S il < [
- § s o 3 e
® 2 A
O [ -
o % g
1 2' =
o
5 £ 5
= =
£ =
S
:,I
Sink Module

This suggests that at least with u_otp_ctrl, whatever events
are driving information flow from the designated source sig-
nals, the events have the same intramodule effect except in
terms of timing. One interesting result with regard to tim-
ing perhaps is the few signals reached only at time zero by
seed signals may be reached after reset is completed by the
key signals, such as intr_otp_operation_done_o. Further, this
signal-to-signal mapping also highlights a few signals to be
considered especially carefully in security validation efforts,
namely the core_tl_o, pwr_otp_i, and otp_ast_pwr_seq_h_i
signals, which together account for approximately half of
total times information flowed from any of the five sources.

6 Discussion

In this section, we discuss the some limitations and further
work.

False positives may be introduced by insufficient trace
coverage, by limitations of information-flow tracking, or
by incorrectly classifying functional properties as security
properties. Sampling output properties found a 10% false
positivity rate with respect to misclassification. This rate is
discussed in greater detail in Sect.6.2.

With regard to false negatives, they fall into two cases:
known and unknown. Isadora captured all known assertions
for the ACW (Sect.5.3). For ACW and CPU properties
(Sect.5.4), the sampled properties partially addressed all
CWESs manually determined to be relevant, but no CWE was
completely covered within the sampled properties. A manual
inspection is needed to rule out the possibility of false neg-
atives with respect to CWEs. Unknown false negatives can
arise from limitations in trace coverage or in logical speci-
ficity.

@ Springer



Journal of Cryptographic Engineering

6.1 Trace reliance

As a specification miner, Isadora relies on traces. The second
stage relies on traces with sufficient case coverage to drive
information flow through all channels present in the design.
The third stage relies on traces to infer flow predicates. Over
buggy hardware, these predicates may form a specification
describing buggy behavior. Traces may not cover all cases
that can be reached by a design or even occur during normal
design operation.

Traces may not precisely describe some design features.
For example, when considering property number 154 on the
ACW, one of the sampled properties, Isadora found predi-
cates that ARLEN_wire and AWLEN_wire are both set to
be exactly 8 for any flow to occur. This property is shown in
full in Appendix 2.

The AXLEN_wire signals set transaction burst size for
reads and writes. For transactions in write channels, the
ARLEN_wire value should be irrelevant, and this clause
within the broader property constitutes a likely false posi-
tive.

The AWLEN_wire is a different case. In a properly config-
ured write channel supporting transactions, this signal would
necessarily be nonzero, and for wrapping bursts must be a
power of two, but manual inspection of the code provides no
indication the value must be precisely 8.

While Isadora is testbench reliant, testbench generation
is an active area of research, and is more fully explored in
related works such as Meng et al. [29], which studies concolic
testing for RTL.

6.2 Functional properties

When using CWE-relevance as the metric, Isadora does
include functional properties in its output, as shown in
Table 6. Sampling output properties found a 10% false pos-
itivity rate with respect to misclassification for the sampled
properties from both designs, with 0 of 10 properties found
to be false positives over the ACW, and 2 of 10 properties
found to be false positives over the PicoRV32 RISC-V CPU.

We attribute finding functional properties solely on CPU
primarily to differences in design and testbench. The ACW
studied was the target of validation efforts related to infor-
mation flow, and the testbench we used was developed as
part of those efforts. Further, as an access control module, by
nature much of its functionality was relevant to secure access
control.

With RISC-V, a minimal testbench was used that was
intended only to run the design in an environment without
access to the full RISC-V toolchain (such as our simula-
tion environment for IFT-enhanced trace generation), and
much of the design was devoted to behavior for which CWEs
did not apply, such as logical updates during instruction

@ Springer

decoding. One example of an Isadora property classified as
functional is shown in Appendix 3.

6.3 Initialization flows

Manual examination of output properties suggests patterns
of information flow during initialization, which is the first 4
cycles for the ACW, first 80 for RISC-V, and first cycle for the
SoC, are highly dissimilar to later flows. During initializa-
tion, Isadora discovers flow conditions referencing signals
with unknown states. Isadora also finds concurrent flows
between elements for which no concurrent flows occur after
reset. Because conditions are inferred from comingled trace
slices from during and after initialization, the output proper-
ties may be insufficiently precise to capture secure behavior
related to this boundary.

6.4 Scalability

Isadora encounters a few challenges when scaling to SoC
designs. First, as a practical matter, we restricted our evalua-
tion over the SoC to only 5 sources, while we used hundreds
each for the ACW and CPU. Any time sources are being
restricted, especially by specifying them manually, we most
be cognizant that some flow between two signals could seem
relevant while neither signal may independently seem rel-
evant for any number of reasons. Future work on Isadora
can address this challenge in part by supporting paralleliza-
tion and by using less memory intensive storage for traces to
improve performance.

Second, Isadora relied on using modules with the OpenTi-
tan SoC to divide the large state space of the design. However,
it is not necessarily the case that in every design modules
are well suited to this task, or that a sophisticated adversary
may not target the specific challenge of infer flow conditions
across multiple module boundaries.

There are also ways to approach scalability as a research
question rather than an engineering task. For example, while
the Verilog notion of a module is helpful as a starting point,
further work could address the task of how to partition the
design to reduce mining and trace generation costs, such as by
extracting control signals as is done in the Astarte miner [13].
Astarte tackled scaling up to CISC designs by using a two-
stage mining processor over design signals (in contrast to the
two-stage Isadora mining processor that considered design
signals only in the second stage). Astarte examined candi-
date control bits, each individual bit within a known control
register, to evaluate whether bits encoding behavior modify-
ing state for the design. In the first stage, Astarte examined
all registers and individual bits within registers (in practice
the n-bit subfields did not appear to correspond to meaning-
ful properties, but the functionality was maintained) to find
families of bits which changed under the same circumstances



Journal of Cryptographic Engineering

(that is, at the same time points). In the second stage, trace
properties were generated for the subset of the trace points
where bits were to either zero or to one. For many bits, the
trace properties across these two subsets of the trace points
were identical to the trace properties found across the trace
as a whole, but for a few bits, the design had demonstrably
different behavior.

For Isadora, we can use this control bit (or register or n-
bit register subfield) oriented technique both with respect to
individual control bits within the design signals but also with
respect to individual tracking labels. While this may gener-
ate many possible candidate inputs to the invariant detection
stage of our mining process, each run of this stage is indi-
vidually inexpensive and does not require redoing the trace
generation stage that overwhelmingly dominated our time
and memory costs.

7 Related work
7.1 Properties of hardware designs

Automatic extraction of security-critical assertions from
hardware designs enables assertion-based verification with-
out first manually defining properties [23]. IODINE looks for
possible instances of known design patterns, such as one-hot
encoding or mutual exclusion between signals. [20]. More
recent papers use data mining of simulation traces to extract
more detailed assertions [5,21] or temporal properties [26].
Recent work has focused on mining temporal properties
from execution traces [7-9,26]. A combination of static and
dynamic analysis extracts word-level properties [27].

The first security properties developed for hardware
designs were manually crafted [3,4,22]. SCIFinder semi-
automatically generates security-critical properties for a
RISC processor design [43] and Astarte generates security-
critical properties for x86 [13]. Recent hackathons have
revealed the types of properties needed to find exploitable
bugs for RISC SoCs [10].

7.2 Mining specifications for software

The foundational work in specification mining comes from
the software domain [1] in which execution traces are exam-
ined to infer temporal specifications as regular expressions.
Subsequent work used both static and dynamic traces to filter
candidate specifications [39]. More recent work has tackled
imperfect execution traces [41], and the complexity of the
search space [16,17,35]. Daikon, which produces invariants
rather than temporal properties, learns properties that express
desired semantics of a program [14].

In the software domain, a number of papers have devel-
oped security-specific specification mining tools. These

tools use human specified rules [37], observe instances of
deviant behavior [14,30,32], or identify instances of known
bugs [40].

8 Conclusion

We implemented and presented Isadora, a specification miner
for creating information-flow specifications of hardware
designs. By combining information-flow tracking and spec-
ification mining, we are able to produce security relevant
information-flow properties of a design without prior knowl-
edge of security agreements or specifications.

We show that Isadora characterizes the flow relations
between all elements of a design and identifies important
information-flow security properties of an ACW and a CPU
according to Common Weakness Enumerations and that it
scales to accommodate full SoC designs.

Acknowledgements We thank our reviewers for their insightful com-
ments and suggestions. This material is based upon work supported by
the National Science Foundation under Grant Nos. CNS-1816637 and
1718586, by the Semiconductor Research Corporation, and by Intel.
Any opinions, findings, conclusions, and recommendations expressed
in this paper are solely those of the authors.

A Sample properties

In this section, we show examples of Isadora output.

A1 Case 154: ACW security property

case 154: 2_121_250_379_543

_src_ in {w_base_addr_wire, M_AXI_AWREADY_wire,
AW_CH_DIS, w_max_outs_wire, AW_ILLEGAL_REQ,
w_num_trans_wire, AW_STATE, AW_CH_EN}

=/=>

_snk_ in {M_AXI_WDATA}

unless

@ != _inv_ in {ADDR_LSB, ARESETN, M_AXI_ARBURST_wire,
M_AXI_ARCACHE_wire, M_AXI_ARLEN_wire, M_AXI_ARREADY,
M_AXI_ARSIZE_wire, M_AXI_AWBURST_wire,
M_AXI_AWCACHE_wire, M_AXI_AWLEN_wire, M_AXI_AWREADY,
M_AXI_AWSIZE_wire, M_AXI_BREADY, M_AXI_BREADY_wire,
M_AXI_WREADY, M_AXI_WREADY_wire, M_AXI_WSTRB_wire,
OPT_MEM_ADDR_BITS, S_AXI_CTRL_BREADY,
S_AXI_CTRL_RREADY, data_val_wire, r_burst_len_wire,
r_displ_wire, r_max_outs_wire, r_num_trans_wire,
r_phase_wire, w_burst_len_wire, w_displ_wire,
w_max_outs_wire, w_num_trans_wire, w_phase_wire}

Fig. 7 An example of an Isadora property, Case 154, over the Aker
ACW

@ Springer



Journal of Cryptographic Engineering

To consider the output properties of Isadora, Fig. 7 shows
an example of Isadora output, Case 154 of the 303 output
properties over the ACW module. This a case that was sam-
pled during evaluation. Here the condition predicates shown
are signal equality testing versus zero. Other predicates are
captured within the workflow but not propagated to individ-
ual properties formatted for output.

A visible difference between an Isadora output property
and the property grammar of Sect.?2 is that at output stage
Isadora properties may specify multiple source signals, may
consider multiple sink signals though do not do so in this
case, and may contain multiple invariants as conditions.

Case 154 includes an example of a flow condition between
internal and peripheral visible signals in addition to specify-
ing other aspects of design behavior. This is similar to the
example of write readiness from Sect. 2, but in Case 154, the
flow is from the internal signal to the peripheral, though the
power state predicate is identical. Of note, as in the case of
write readiness, this flow occurs exclusively within the write
channel, as denoted by the ‘W’ present in ready wire and the
data register.

AWREADY_int =/=> WDATA unless (ARESETN ## 0).
A2 Case 144: ACW functional property

One example of an Isadora property classified as functional,
with truncated flow conditions, is presented in Fig.8, and
captures a logical update to an internal decoder signal. This
additionally shows an example of a property over multiple
sinks, a single source, and for which there are predicates
capturing both equality and inequality to zero.

case 144: 128

_src_ in {instr_lw}

=/=>

_snk_ in {is_slti_blt_slt, is_sltiu_bltu_sltu}
unless

@ == _r_ in {alu_eq, alu_shl, alu_shr, ... }

@ != _r_ in {alu_add_sub, alu_lts, alu_ltu, ... }

Fig.8 An example of an Isadora property, Case 144, over RISC-V

References

1. Ammons, G., Bodik, R., and Larus, J.R.: Mining specifications.
In 29th Symposium on Principles of Programming Languages
(POPL). ACM, 4-16. (2002) https://doi.org/10.1145/503272.
503275

2. Ardeshiricham, A., Hu, W., Marxen, J., Kastner, R.: Register trans-
fer level information flow tracking for provably secure hardware
design. In Design. Automation Test in Europe Conference Exhibi-
tion (DATE) 2017, 1691-1696 (2017)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Bilzor, M., Huffmire, T., Irvine, C., Levin, T.: Security checkers:

Detecting processor malicious inclusions at runtime. In Inter-
national Symposium on Hardware-Oriented Security and Trust
(HOST). IEEE, 34-39 (2011)

. Brown, M.: Cross-validation processor specifications. Master’s

thesis, University of North Carolina at Chapel Hill (2017)

. Chang, P-H., Wang, L.C.: Automatic assertion extraction via

sequential data mining of simulation traces. In 15th Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE, 607-
612 (2010)

. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput.

Secur. 186, 1157-1210. (2010). http://dl.acm.org/citation.cfm?
id=1891823.1891830

. Danese, A., Ghasempouri, T., Pravadelli, G.: Automatic extrac-

tion of assertions from execution traces of behavioural models.
In Design, Automation Test in Europe Conference Exhibition
(DATE), 67-72 (2015)

. Danese, A., Pravadelli, G., Zandona, I.: Automatic generation of

power state machines through dynamic mining of temporal asser-
tions. In Design, Automation Test in Europe Conference Exhibition
(DATE), 606611 (2016)

. Danese, A., Riva, N.D., Pravadelli, G.: A-TEAM: Automatic

template-based assertion miner. In 54th Design Automation Con-
ference (DAC). ACM/EDAC/IEEE, 1-6 (2017)

Dessouky, G., Gens, D., Haney, P., Persyn, G., Kanuparthi, A.,
Khattri, H., Fung, J.M., Sadeghi, A.-R., Rajendran, J.: Hardfails:
Insights into software-exploitable hardware bugs. In 28th USENIX
Security Symposium. USENIX Association, 213-230 (2019)
Deutschbein, C., Sturton, C.: Mining security critical linear tempo-
ral logic specifications for processors. In International Workshop
on Microprocessor and SoC Test, Security, and Verification (MTV).
IEEE (2018)

Deutschbein, C., Sturton, C.: Evaluating security specification min-
ing for a cisc architecture. In 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), 164—-175 (2020)
Deutschbein, C., Sturton, C.: Evaluating security specification min-
ing for a CISC architecture. In Symposium on Hardware Oriented
Security and Trust (HOST). IEEE (2020)

Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C.,
Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection
of likely invariants. Sci. Comput. Program. 69(1-3), 3545 (2007).
https://doi.org/10.1016/j.scic0.2007.01.015

Farzana, N., Rahman, F., Tehranipoor, M., Farahmandi, F.: Soc
security verification using property checking. In 2019 IEEE Inter-
national Test Conference (ITC), 1-10 (2019)

Gabel, M., Su, Z.: Javert: Fully automatic mining of general
temporal properties from dynamic traces. In 16th International
Symposium on Foundations of Software Engineering (FSE). ACM,
339-349. (2008a). https://doi.org/10.1145/1453101.1453150
Gabel, M., Su, Z.: Symbolic mining of temporal specifications. In
30th International Conference on Software Engineering (ICSE).
ACM, 51-60. (2008Db). https://doi.org/10.1145/1368088.1368096
Goguen, J.A., Meseguer, J.: Security policies and security models.
In 1982 IEEE Symposium on Security and Privacy, 11-11 (1982)
Hangal, S., Chandra, N., Narayanan, S., Chakravorty, S.: [IODINE:
a tool to automatically infer dynamic invariants for hardware
designs. In 42nd annual Design Automation Conference. ACM,
775-778 (2005a)

Hangal, S., Narayanan, S., Chandra, N., Chakravorty, S.: IODINE:
A tool to automatically infer dynamic invariants for hardware
designs. In 42nd Design Automation Conference (DAC). IEEE
(2005b)

Hertz, S., Sheridan, D., Vasudevan, S.: Mining hardware assertions
with guidance from static analysis. Trans Comput-Aided Design
Integr Circuits Syst 32(6), 952-965 (2013)


https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
http://dl.acm.org/citation.cfm?id=1891823.1891830
http://dl.acm.org/citation.cfm?id=1891823.1891830
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/1453101.1453150
https://doi.org/10.1145/1368088.1368096

Journal of Cryptographic Engineering

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.
32.

33.

34.

Hicks, M., Sturton, C., King, S.T., Smith, J.M.: SPECS: A
lightweight runtime mechanism for protecting software from
security-critical processor bugs. In Twentieth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 517-529 (2015) https://doi.
org/10.1145/2694344.2694366

Hu, W., Althoff, A., Ardeshiricham, A., Kastner, R.: Towards prop-
erty driven hardware security. In 2016 17th International Workshop
on Microprocessor and SOC Test and Verification (MTV). IEEE,
51-56 (2016)

Hu, W., Ardeshiricham, A., Kastner, R.: Hardware information flow
tracking. ACM Comput. Surv. 54, 4 (2021)

Hu, W.,Mu, D., Oberg, J., Mao, B., Tiwari, M., Sherwood, T., Kast-
ner, R.: Gate-level information flow tracking for security lattices.
ACM Trans. Des. Autom. Electron. Syst. 20, 1 (2014). https://doi.
org/10.1145/2676548

Li, W., Forin, A., Seshia, S.A.: Scalable specification mining for
verification and diagnosis. In 47th Design Automation Conference
(DAC). ACM, 755-760 (2010). https://doi.org/10.1145/1837274.
1837466

Liu, L., Lin, C., Vasudevan, S.: Word level feature discovery to
enhance quality of assertion mining. In International Conference on
Computer-Aided Design (ICCAD). IEEE/ACM, 210-217 (2012)

Logic, T.: Radix Coverage for Hardware Common Weakness Enu-
meration (CWE) Guide

Meng, X., Kundu, S., Kanuparthi, A.K., Basu, K.: Rtl-contest:
Concolic testing on rtl for detecting security vulnerabilities. [IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 1 (2021)

Min, C., Kashyap, S., Lee, B., Song, C., Kim, T.: Cross-checking
semantic correctness: The case of finding file system bugs. In 25th
Symposium on Operating Systems Principles (SOSP). ACM, 361-
377. (2015). https://doi.org/10.1145/2815400.2815422

MITRE. The Common Weakness Enumeration Official Webpage

Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J.,
Carbin, M., Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan,
G., Wong, W.-F,, Zibin, Y., Ernst, M.D., Rinard, M.: Automati-
cally patching errors in deployed software. In 22nd Symposium
on Operating Systems Principles (SOSP). ACM, 87-102 (2009).
https://doi.org/10.1145/1629575.1629585

Pilato, C., Wu, K., Garg, S., Karri, R., Regazzoni, F.: Tainthls:
High-level synthesis for dynamic information flow tracking. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 38(5), 798-808
(2019)

Rawat, M., Muduli, S.K., Subramanyan, P.: Mining hyperproper-
ties from behavioral traces. In 2020 IFIP/IEEE 28th International
Conference on Very Large Scale Integration (VLSI-SOC), 88-93
(2020)

35.

36.

37.

38.

39.

40.

41.

42.

43.

Reger, G., Barringer, H., Rydeheard, D.: A pattern-based approach
to parametric specification mining. In 28th International Confer-
ence on Automated Software Engineering (ASE). IEEE/ACM,
658-663 (2013)

Restuccia, F., Meza, A., Kastner, R.: KER: A design and verifi-
cation framework for safe and secure soc access control. CoRR
arxiv:2106.13263 (2021)

Tan, L., Zhang, X., Ma, X., Xiong, W., Zhou, Y.: AutoISES: Auto-
matically inferring security specifications and detecting violations.
In 17th USENIX Security Symposium. USENIX Association, 379—
394 (2008). http://dl.acm.org/citation.cfm?id=1496711.1496737
Tiwari, M., Wassel, H.M., Mazloom, B., Mysore, S., Chong, ET.,
and Sherwood, T.: Complete information flow tracking from the
gates up. In Proceedings of the 14th international conference on
Architectural support for programming languages and operating
systems, 109-120 (2009)

Weimer, W., Necula, G.C.: Mining temporal specifications for error
detection. In 11th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS).
Springer-Verlag, 461-476 (2005). https://doi.org/10.1007/978-3-
540-31980-1_30

Yamaguchi, F., Lindner, F., Rieck, K.: Vulnerability extrapolation:
Assisted discovery of vulnerabilities using machine learning. In
5th USENIX Conference on Offensive Technologies (WOOT).
USENIX Association, 13 (2011). http://dl.acm.org/citation.cfm?
1d=2028052.2028065

Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perra-
cotta: mining temporal API rules from imperfect traces. In 28th
International Conference on Software Engineering (ICSE). ACM,
282-291 (2006). https://doi.org/10.1145/1134285.1134325
Zhang, D., Wang, Y., Suh, G.E., Myers, A.C.: A hardware design
language for timing-sensitive information-flow security. Acm Sig-
plan Notices 50(4), 503-516 (2015)

Zhang, R., Stanley, N., Griggs, C., Chi, A., Sturton, C.: Identifying
security critical properties for the dynamic verification of a proces-
sor. In Architectural Support for Prog. Lang. and Operating Sys.
(ASPLOS). ACM (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer


https://doi.org/10.1145/2694344.2694366
https://doi.org/10.1145/2694344.2694366
https://doi.org/10.1145/2676548
https://doi.org/10.1145/2676548
https://doi.org/10.1145/1837274.1837466
https://doi.org/10.1145/1837274.1837466
https://doi.org/10.1145/2815400.2815422
https://doi.org/10.1145/1629575.1629585
http://arxiv.org/abs/2106.13263
http://dl.acm.org/citation.cfm?id=1496711.1496737
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1007/978-3-540-31980-1_30
http://dl.acm.org/citation.cfm?id=2028052.2028065
http://dl.acm.org/citation.cfm?id=2028052.2028065
https://doi.org/10.1145/1134285.1134325

	Isadora: automated information-flow property generation for hardware security verification
	Abstract
	1 Introduction
	2 Hardware security properties
	2.1 Tracking information flow
	2.2 Information-flow restrictions
	2.3 Information-flow conditions
	2.4 Grammar of properties

	3 Methodology
	3.1 Generating traces with information-flow tracking
	3.2 Identifying all flows
	3.3 Mining for flow conditions
	3.4 Postprocessing

	4 Implementation
	4.1 Generating traces
	4.2 Identifying flows
	4.3 Mining flow conditions
	4.4 Mining flow conditions

	5 Evaluation
	5.1 Designs
	5.2 Isadora runtime
	5.2.1 Theoretical performance gains

	5.3 Designer-specified security properties
	5.4 Automatic property generation
	5.4.1 ACW information-flow conditions
	5.4.2 CPU information-flow conditions

	5.5 SoC evaluation

	6 Discussion
	6.1 Trace reliance
	6.2 Functional properties
	6.3 Initialization flows
	6.4 Scalability

	7 Related work
	7.1 Properties of hardware designs
	7.2 Mining specifications for software

	8 Conclusion
	Acknowledgements
	A Sample properties
	A1 Case 154: ACW security property
	A2 Case 144: ACW functional property

	References




