
IEEE TRANSACTIONS ON COMPUTERS 1

A Framework for Design, Verification, and
Management of SoC Access Control Systems

Francesco Restuccia, Andres Meza, Jason Oberg, and Ryan Kastner

Abstract—System-on-chip (SoC) architectures are a heterogeneous mix of microprocessors, custom accelerators, memories,
interfaces, peripherals, and other resources. These resources communicate using complex on-chip interconnect networks that attempt
to quickly and efficiently arbitrate memory transactions whose behaviors can vary drastically depending on the current mode of
operation and system operating state. Security- and safety-critical applications require access control policies that define how these
resources interact to ensure that malicious and unsafe behaviors do not occur. AKER is a design and verification framework for on-chip
access control. The core of AKER is the access control wrapper (ACW) – a high-performance yet efficient hardware module that
dynamically arbitrates on-chip communications. AKER distributes ACWs across the SoC and programs them to perform local access
control. AKER provides a firmware generation tool and a property-driven security verification methodology to ensure that the ACWs are
properly integrated and configured. AKER security verification confirms that the ACW behaves properly at IP level. It verifies the
hardware root of trust firmware configures the ACW correctly. And it evaluates system-level security threats due to interactions between
shared resources. AKER is experimentally validated on a Xilinx UltraScale+ programmable SoC. Additionally, an AKER access control
system is integrated into the OpenPULP multicore architecture that uses OpenTitan hardware root-of-trust for firmware configuration.

Index Terms—Access control systems, System-on-chip architectures, Security verification, Safety-critical, Security-critical.

✦

1 INTRODUCTION

Modern system-on-chip (SoC) architectures use complex in-
terconnect networks to provide low latency, high bandwidth
communication between microprocessors, hardware accel-
erators, memories, I/Os, and other on-chip resources. On-
chip communication protocols are often subject to safety and
security considerations given the increasing requirements
to provide mechanisms for safe and secure computation
and data storage. Safety considerations translate into tight
constraints on latency, throughput, and resource consump-
tion [1], [2]. Security considerations require guarantees on
the confidentiality and integrity of the data. The access
control policy defines the ability to access the shared on-
chip resources. The access control policy can be dynamic
as access control will change over the SoC lifecycle. It
also varies depending on the system operating mode. For
example, the access control policy can varies drastically
depending on whether the system is booting, performing
secure operations, operating in debug mode, or in return
merchandise authorization (RMA) mode. Access control
plays such a critical role in the safety and security of the
SoC. As evidence, 5 out of 12 of the 2021 CWE Most Im-
portant Hardware Weaknesses are related to access control
systems [3]. Such vulnerabilities are extremely dangerous
as they provide opportunity for low-level system access. If
properly exploited, they can endanger the confidentiality, in-
tegrity, and availability of the data and computation. More-
over, they can be challenging to patch – at best a firmware
rewrite can be sufficient; at worst, hardware features must
be disabled or a chip re-manufacturing is required.

Francesco Restuccia, Andres Meza, and Ryan Kastner are with the
University of California San Diego; Jason Oberg is with Cycuity.
E-mail: {frestuccia, anmeza, kastner}@ucsd.edu, jason@cycuity.com

AKER is a framework that aids in the design, verification,
and integration of SoC access control systems. AKER is
built upon a flexible access control wrapper (ACW) that
efficiently monitors on-chip communication requests at the
source. AKER provides techniques to automate the integra-
tion of the ACWs into an efficient distributed SoC access
control mechanism. AKER automatically generates firmware
to configure, monitor, and control the ACWs. AKER au-
tomates the mapping of SoC access control policies onto
the distributed ACWs. AKER provides an extensive security
verification methodology that assesses the SoC access con-
trol at the IP-, firmware-, and system-level. AKER’s major
contributions include:
Security Verification: AKER provides a property-driven se-
curity verification methodology [4] to provides assurance
about the secure operation of AKER-based access control
systems. The security verification is done at the IP level,
the firmware level, and the system level.
Secure firmware generation: AKER integrates with the Open-
Titan Hardware Root of Trust. Moreover, it provides a tool
for spotting ill-specified or incorrect access control policies
potentially causing illegal data leaks and for the automatic
generation of secure firmware for the management of an
AKER access control system.
Flexibility: AKER complies with the AXI standard and is
completely transparent to the system – no internal knowl-
edge or modifications are required to controllers, peripher-
als, and interconnect to integrate an AKER access control
system. AKER allows static or dynamic management of
the access control policy by the HWRoT, providing high
flexibility to cope with the complex life-cycle of modern
SoCs. The integration of an AKER access control system
has been experimentally demonstrated on an FPGA SoC
architecture and on the OpenPULP [5].

Efficient performance and resource usage: AKER filters illegal
transactions before entering the interconnect – illegal re-
quests are never allowed to reach the network. This avoids
any identification issues and prevents system-level inter-
ference generated by illegal transactions (e.g., DoS attacks,
see Section 5.1). AKER access control systems have a very
low impact on system performance (< 1% in the tested
scenarios). The resource usage of an AKER-based access
control system is minimal and is configurable to be tailored
to the SoC and use case.
Open-Source: The AKER framework is openly released [6].
This provides a solid base for design and security verifica-
tion extensions.

This article expands upon the initial work [7] to include
automated firmware generation and verification. Addition-
ally, it proposes system-level security verification techniques
to assess the safety and security of the system access policy.

2 SYSTEM-ON-CHIP ACCESS CONTROL

A System-on-Chip (SoC) architecture can be modeled as a
set of controller devices accessing one or multiple peripheral
devices.1 Examples of controllers are processors, hardware
accelerators, and other IP cores. Examples of peripherals
are DRAM memory controllers, ROM, GPIOs, IP core con-
trol and status registers (CSRs), and on-chip memories.
Controllers and peripherals communicate using memory-
mapped accesses as defined by AXI [8], TileLink [9] or
some other on-chip communication protocol, which pro-
vides asymmetric, flexible interfaces for targeting high-
performance communications. This enables autonomous
and concurrent communications with the shared peripheral
resources of the SoC. Controllers can have different rights in
accessing the shared resources – in security-critical systems,
an access control system manages and arbitrates the access
to the on-chip resources. The access control system plays a
critical role in maintaining the integrity, privacy, and avail-
ability of the SoC. The access control system uses an access
control policy that specifies which requests are allowable at
a given time. It is crucial that the access control system
properly enforce the access control policy while limiting its
impact on performance and area.

2.1 SoC Architecture

Figure 1 depicts a generic SoC architecture consisting of con-
trollers C and peripherals P . Each controller (C1, . . . , CN)
exports a manager (M) interface that accesses a shared on-
chip bus. The L peripherals P (P1, . . . , PL) each export
a subordinate (S) interface that service accesses from the
controllers. Controllers and peripherals are interconnected
via an interconnect I that arbitrates the accesses of the
controllers to the peripherals. A controller Ci performs a
transaction with peripheral Pj by issuing an address request
through its manager interface. The interconnect collects the
request and routes it to the destination peripheral Pj . Pj is
accessible via its peripheral address region, which is a unique

1. The terminology controller/peripheral is used in the paper to
describe the system-level interactions between the IP cores. When
specifically referring to the AXI standard, we use the terms manager
(M) and subordinate (S).

Fig. 1: The sample System-on-chip architecture deploying N controller modules
(C) and L peripheral modules (P).

set of contiguous addresses assigned to Pj . The transaction
is eventually served by Pj , which provides the requested
read data (in the case of a read transaction) or accepts
the provided write data and acknowledges with a write
response (in the case of a write transaction). AKER uses
the AMBA AXI on-chip interface specification to define
the manager and subordinate interfaces. The AXI standard
uses a multi-channel communication interface consisting of
five independent channels: AR channel (address read), AW
channel (address write), R channel (data read), W channel
(data write), and B channel (write response). We focus on
AXI in this work, but the proposed techniques can easily
be modified for other communication protocols including
TileLink and Open Core Protocol (OCP).

2.2 SoC Access Control Policy
The SoC access control policy specifies the allowable trans-
actions between controller and peripheral resources. This
is derived from an access control list that articulates the
permissions of the controllers to access the peripherals.
For example, an access control list would state that con-
troller C1 has read-only permission to peripheral P2, C2 has
read/write access to peripheral P1, and C2 has read-only
permission to P2. We assume that a memory map is pro-
vided describing how the memory space is divided between
the peripherals. This allows to map the local access control
list to contiguous address ranges that can be checked using
an execution monitor [10]. The goal is to create a separation
kernel – “an environment which is indistinguishable from
that provided by a physically distributed system” [11].

2.3 Threat Model
One or more controllers attempt to perform illegal transac-
tions, i.e., they violate the SoC access control policy that is
provided by the system designer. The illegal requests may
be done maliciously. Or they could be unintentional, e.g.,
due to a poorly programmed or misconfigured controller IP
core. The security threats are related to integrity (e.g., an
untrusted controller can modify the control or status regis-
ters of a peripheral), confidentiality (e.g., keys are leaked to
non-secure memory space), and system availability (e.g., a
denial-of-service attack). It is assumed that the functionali-
ties of IAXI and of the P are trustworthy and implemented
correctly. The MITRE consortium defines a set of common
hardware weaknesses (CWEs) [12]. Many hardware CWEs
are related to SoC access control. It is assumed that the
attacker has full knowledge of these types of weaknesses.
We formally specify the vulnerabilities that we consider

2

as properties during our security verification process (see
Section 3.3, Section 4.1, and Section 4.3). We map these
vulnerabilities to MITRE CWEs. We verify the properties
using a property-driven hardware security methodology [4].

2.4 SoC Access Control System
Now that we have defined the SoC architecture, access con-
trol policy, and the threat model, we address the implemen-
tation of the access control system. An important question
is where to implement the access control mechanisms. The
primary alternatives include access control enforcement at
the peripherals, in the interconnect, or at the controllers
(leveraging a centralized specialized resource). We discuss
the tradeoffs between each of these options, which also
serves as motivation for the AKER access control system.

2.4.1 Access Control in the Interconnect
An access control policy can be enforced in the interconnect
by implementing only selected physical connections within
the crossbar. The configuration of the AXI interconnect is
statically configured at design time only with the physical
connections allowed by the policy between controllers and
peripherals. This completely removes the ability to commu-
nicate between controllers and peripherals.

Limitations: A hard-coded access control policy pro-
hibits any sort of dynamic access control policy. This limits
the viability of this architecture. Modern SoCs have com-
plex lifecycles and access control policies change over their
lifetimes – moving from manufacturing, to test, to system
integration, and ultimately put into use. Each phase has dif-
ferent policies with respect to accessing on-chip resources.
Additionally, safety- and security-critical systems operate
in different modes (e.g., secure and non-secure) and those
have different access control policies. A static access control
policy would not work in these scenarios.

2.4.2 Access Control at the Peripherals
The access control policy can be enforced at the peripherals.
Such an access control mechanism analyzes read and write
address requests that arrive at a peripheral and rejects those
requests that violate the access control policy. SPE [13] and
SECA [14] are two examples that perform access control at
the peripheral. The access control policy is enforced in a
decentralized manner using logic local to each peripheral
that analyzes the validity of the requests. The local access
control policy can be programmable to provide the flexibil-
ity to handle dynamic policies. In such cases, the local access
control policy requires a secure configuration stage.

Limitations: Performing access control at the peripheral
requires that the transactions are securely authenticated and
attributable to the requesting controller. Unfortunately, the
AXI standard [8] does not provide built-in support for such
authentication. A common workaround leverages the AXI
ID signals for source identification [15]. However, the IDs
were designed to facilitate parallel requests by allowing a
manager to issue parallel address requests using multiple
ID values. Moreover, the AXI standard does not specify
a mechanism to address the integrity of the ID [8]. Thus,
ID manipulation is possible during request propagation,
adding uncertainty about the source of the address requests.

Additional complications arise due to the fact that AXI
requires that any illegal request received by a peripheral
to be properly terminated with an AXI-compliant error. It
is used to avoid network locks. Thus, illegal requests will
occupy on-chip bandwidth on the initial transaction and
due to the corresponding error message from the peripheral.
This causes interference with legitimate transactions and
could potentially lead to a denial-of-service attack.

2.4.3 Access Control at the Controllers
Access control systems can be also deployed at controllers.
As controllers are considered untrusted entities, the con-
troller cannot be trusted in enforcing an access control policy
on its own issued transactions. For such a reason, some
solutions have been proposed based on wrapping each con-
troller with a smart wrapper module, which interfaces with
a centralized access control central policy engine deployed in
the system. The smart wrappers communicate with the cen-
tral engine any time a transaction is issued by a controller.
The central engine is responsible for authenticating any ad-
dress request issued in the system. E-IIPS [16] and RSPE [17]
are two examples of such centralized access control systems.
Such solutions cut off any illegal transaction at the source,
with clear benefits on system performance and security.

Limitations: Every decision is made by the central secu-
rity policy engine, which requires that all of the transactions
from every controller are routed to the central policy engine.
The engine must address all of the requests in low latency
and high-throughput manner so that it does not induce
a performance bottleneck in the on-chip communications.
This can be challenging in high-performance or latency-
critical applications.

In the following section, we introduce AKER access
control systems. Our solution enforces the access control
system at the controllers and overcome the limitations of
the previously proposed solutions.

3 AKER ACCESS CONTROL WRAPPER

AKER is a design and verification framework for developing
high-performance, flexible, and verifiably secure SoC access
control systems. An AKER access control system consists of
a distributed set of ACWs that locally monitor the memory
transactions from the controllers. It includes efficient logic
for checking the validity of the controller’s transactions
with a local access control policy. The ACW decouples
a controller on any illegal request. The controller can be
readmitted to the SoC interconnect by the trusted entity. The
local access control policies are configurable by the trusted
entity using firmware automatically generated by AKER.
AKER includes security verification techniques to ensure its
correct integration, configuration, and functionality. AKER
provides security property templates matching the CWEs
related to access control systems. These properties are cru-
cial for property-driven hardware security verification [4].
The properties cover a range of confidentiality and integrity
vulnerabilities at the IP, firmware, and system levels. It is
worth noting that our framework for security verification is
conceived to be extendable with any other security property
required to be verified in the system under analysis. AKER
builds on three pillars: (i) the Access Control Wrapper

3

(ACW) – a high-performance, programmable module mon-
itoring the requests issued from a controller (Section 3.1);
(ii) the automated firmware generation tool for securely
programming the ACWs (Section 4.2) and (iii) the IP-level
(Section 3.3), Firmware-level (Section 4.1), and System-level
(Section 4.3) property-driven security verification.

3.1 Internals of the Access Control Wrapper
The Access Control Wrapper (ACW) is a configurable hard-
ware module designed to transparently monitor an AXI-
compliant controller. An ACW filters memory transactions
from a controller, rejecting those that violate the access
control policy while allowing legal transactions to pass
through. Figure 2 shows an example of an AKER-based
access control system. An access control wrapper ACWi

is situated between the controller Ci’s M interface and the
interconnect IAXI. The ACW monitors the transactions from
its controller immediately stopping any transaction that
violates the access control policy. The ACW stores a local
access control policy describing that controller’s allowable
memory address requests. The ACW exposes an S interface
that is used to interact with ACW, e.g., to program its
local access control policy and query its control and status
registers. This S interface is connected to a trusted entity (TE)
through a separate secure bus – this ensures exclusive access
to the ACWs from the TE and avoids misconfiguration of
the ACWs as long as the TE is not compromised. AKER uses
the OpenTitan hardware root of trust as its trusted entity
though this could be changed to another root of trust with
necessary modifications. The ACW has an interrupt line to
indicate any illegal accesses. This is connected to the TE.

Fig. 2: A multi-controller, multi-peripheral SoC communication architecture using
an AKER access control system. Legal controller transactions are transmitted to
the interconnect while the illegal ones are blocked at the source by the ACW.

Each ACWi holds a local access control policy LACPi,
which is configured and maintained by TE. The LACPi

describes the address regions that can be accessed by Ci

– it defines nr regions for read operations and nw regions
for write operation. Each address request issued by Ci is
checked against the configuration of the LACPi; if the
request is fully contained in one of the LACPi’s address
regions, the request is considered legal and propagated to
IAXI. nr and nw impact the resource consumption of the
ACW module. The ACW design is developed to allow easy
customization to match the requirements of the SoC. To
maximize the performance, a request is checked in parallel
with all of the regions. This means that the latency intro-
duced by each ACW is independent of nr and nw and
constant. The ACW has three operating modes:

1) Reset Mode: The initial state for ACWi while it awaits
a valid LACPi configuration. Any request issued by Ci is
blocked in reset mode. Once LACPi is configured, ACWi

moves to supervising mode.
2) Supervising Mode: The normal operating mode of the

ACWi. Transactions issued by Ci are compared against the
configured LACPi – legal transactions are propagated to
IAXI; illegal transactions are blocked and not propagated to
IAXI. An illegal transaction moves ACWi into Decouple Mode.

3) Decouple Mode: All transactions from Ci are blocked
from the interconnect. The ACW goes in this mode when Ci

attempts an illegal transaction. The ACWi saves diagnostic
information about the illegal request into its anomalies
registers and notifies the TE by raising an interrupt.

Readmission Policy: An ACWi relies on the TE for
readmission. This ensures that TE can take appropriate
actions on Ci before safely readmitting the module in the
system. The TE can retrieve and analyze the diagnostic
information saved by ACWi via the ACW S interface. It
can perform recovery operations on Ci (such as resetting,
reconfiguring, or even reprogramming Ci) before switching
back to Supervising Mode and thereby readmitting Ci to
communicate with peripherals. If the TE determines that
the illegal request is the result of a permanent fault, it can
keep the ACWi in Decouple Mode, thus permanently discon-
necting Ci from the system. These steps are performed by
the HWRoT leveraging the functionalities provided by the
AKER SFG tool described in Section 4.2. Figure 3 depicts the

Fig. 3: The architecture of ACWi: Ci is the controller module. Regs are the
configuration registers holding the LACPi. The AXI S interface is managed by
the HWRoT.

internals of ACWi. The ACW is compatible with any AXI-
compliant IP core. The ACW interfaces directly to the five
AXI channels (AW , W , B, AR, and R) from the controller.
The ACW inspects all memory transactions with the local
access policy stored in ACW control registers (Regs). A
legal transaction will pass through to the AXI Interconnect
as normal. An illegal request is blocked, and the ACW
decouples the controller’s AXI M interface from the SoC AXI
Interconnect. When Ci issues a read request AR through its
M interface, ACWi performs the following behaviors:

• Address Check: AR is checked against the LACPi.
The address of AR is compared against each of the
allowable read regions.

• Legal Request: When AR is fully included in at least
one of the allowed read regions of LACPi, it is
propagated to IAXI.

• Illegal Request: If AR is not fully included in any
of the read regions stored in LACPi, AR is denied

4

to reach IAXI. ACWi saves internally information
regarding the illegal request AR. ACWi sends an
AXI-compliant error to Ci, notifies the TE about the
illegal transaction, and switches into Decouple Mode.

• Previous outstanding transactions: any legal out-
standing transaction initiated before an illegal trans-
action are completed normally.

When Ci issues a write request AW , the ACWi behaves
similarly as the read request, but uses AW instead of AR,
and checks the address request with the LACPi write
regions instead of the read regions. The AXI standard states
that transactions cannot be aborted, thus Ci expects to
provide its write data after it issues an illegal request. The
write data is stored internally in an ACWi status register
and not transmitted to IAXI. This can be inspected by the TE
for readmission of the controller. ACWi and acknowledges
Ci with an AXI-compliant error.

3.2 ACW extension to other protocols

Fig. 4: The architecture of ACWi ported to the OCP protocol.

Given its wide implementation in modern commercial
platforms, we opted for developing our solution targeting
the AMBA AXI protocol. Nevertheless, our solution can
be ported to other popular on-chip protocols, such as the
Open Core Protocol (OCP) [18] or SiFive TileLink [9]. The
porting process starts with the identification of the signals
dedicated to the propagation of transaction requests, read
data, write data, and transaction responses. To make an
example, differently from AXI, OCP shares common signals
for the propagation of the read and write requests issued by
Ci – MAddr is the signal designated to propagate the target
address while MCmd propagates the type of the requested
transaction (read or write). The MData signal is the signal
designated for the propagation of the write data provided
by Ci. The signals SResp and SData are designated for the
propagation of the request’s responses and of the requested
read data, respectively. Figure 4 depicts the internals of the
ACW ported to operate following the OCP protocol.

3.3 IP-level Security Verification
IP-level security verification validates that the access control
wrapper adheres to properties related to proper decoupling,
the integrity controller’s operation, and confidentiality of
the configuration data. This section describes the AKER IP-
level verification process focusing on the interactions be-
tween the controller C , the ACW module wrapping C , and
a peripheral P . We aim to assure ACW performs its access

control operations as intended using the six-step CWE-IFT
verification process [19].
1) Create the Threat Model: The first step in the verification
process develops the threat model. This assumes that the
controller C is untrusted, while the ACW and P are trusted.
The threat model evaluates the scenario where C can ille-
gally transmit information to a peripheral P , i.e., the ACW
is not correctly implementing its local access control policy.
2) Identify the Assets: Assets correspond to important
information, resources, registers, and other components to
be protected. Assets are used to refine the threat model to
specific properties, e.g., AKER uses the assets in its templates
to automatically generate security properties. The IP-level
assets are the five AXI channels connecting the ACW to C
and P and the signals forming the anomaly registers and
configuration. These assets are referred to as the M AXI
group and config/control group, respectively, due to the
similarity in their security requirements.
3) Identify the Potential Weaknesses: Weaknesses are
mechanisms that introduce security vulnerabilities related
to the defined assets and the threat model. Identifying
these weaknesses requires an understanding of the design
specification, the hardware implementation, and the threat
model. As mentioned in Section 2.3, Mitre’s CWE database
contains many CWEs (i.e., weaknesses) related to SoC access
control which we assume to be known by the attacker. Due
to the implementation-agnostic and broad nature of CWEs,
we manually review every access-control-related CWE in
order to determine if the weakness it describes is applicable
to (1) our design/implementation and (2) the assets we are
protecting at the current level of verification. Although this
process may seem costly with respect to manual effort, it
provides structure to what would otherwise be an ad-hoc
weakness identification process. In other words, weaknesses
are difficult to systematically identify because their presence
in a design is typically unknown and/or accidental. By
manually reviewing CWEs, we increase the likelihood of
considering and identifying potential weaknesses in our
design that we may not have considered without referring
to the CWE database. It is worth mentioning that hardware
CWEs are a relatively new addition to the CWE database so
it is possible for a designer-identified weakness to not yet
have a corresponding CWE. For this reason, we also rely on
security analysis guided by the design specification (instead
of CWEs) in order to identify potential weaknesses in our
design implementation. Using the process described above,
we identify 17 CWEs related to IP-level verification:

Relevant CWEs: 1220, 1221, 1244, 1258, 1259, 1264, 1266, 1267, 1268,
1269, 1270, 1271, 1272, 1274, 1280, 1282, 1326

These are divided into two groups: (1) CWEs related to M
AXI including the read and write access points available to
C (the AXI channels). (2) CWEs related to the configura-
tion registers (e.g., storing the LACP of the ACW), to the
anomaly registers storing metadata on illegal requests, and
to the logic checking the legality of the transactions.
4) Define the Security Requirements: Security require-
ments articulate how a weakness translates into a failure
mechanism. Consider the M AXI group of assets. The secu-
rity requirements addressing the existence and the content
of information flows between C , the ACW, and P . The ACW

5

modulates the interactions between C and P . Thus, when-
ever C and P communicate, an information flow between
C and the ACW and between the ACW and P occurs. The
source of such flows commands their allowable behaviors.
Information flows between C and P , must occur only when
a legal transaction has been issued by C and the ACW is
in supervising mode. In all of the other instances, the only
allowable information flows are those where the source is
the ACW, the destination is either C or P , and the content
of the flow does not deviate from the default AXI values.

Requirement 1: C cannot receive/send data from/to P which
originates while the ACW is in reset mode.

We develop security requirements for registers and signals
in the config/control group of assets identified in Step 2.
Several CWEs (e.g., 1258, 1266, 1269, and 1271) [12] focus on
the failure to properly initialize, set, and clear the contents of
security-critical registers/signals (especially on transitions
between system states/modes) – the config/control group
of requirements dictates what content is appropriate for
registers/signals given the ACW’s current operation mode.

Requirement 2: The configuration/anomaly registers are cleared
and set to their default values while the ACW is actively being
reset.

5) Specify the Security Properties: In order to verify a
security requirement, it must be manually converted into
a formally specified security property that uses explicit
values, design signals, and operators to form an evaluable
expression. Rather than specifying nearly identical security
properties for each design signal that should adhere to
a given security requirement, AKER provides a property
generation framework that automatically generates these
specific properties given a single security property template
with placeholder signals and a list of target design signals.
For the security requirements relevant to the M AXI group
(Requirement 1), the security property templates are primar-
ily information flow tracking IFT properties. IFT properties
enable us to tag information from a particular source signal
and track it as it flows through our system [20]. For example,
Security Requirement 1 can be formalized using a property
template that fails if any information originating from C
during active reset flows to P .
‘signal_from_C‘ //source
when (ARESETN == 0) //tagging condition
=/=> //no-flow operator

‘signal_to_P‘ //destination

Note that the property involves the no-flow operator
(=/=>) which indicates noninterference between the source
and destination [21]. Hardware information flow properties
are a type of hyperproperty [22] that require specialized
verification tools [23]. IFT properties are more challenging to
verify than trace properties. Trace properties are stated over
a set of traces and are commonly used in functional veri-
fication. Hyperproperties are stated over sets of traces and
are useful for proving noninterference – a crucial aspect of
information flow analysis [24]. For the security requirements
relevant to the config/control group (Requirement 2), the
security property templates are primarily trace properties
that indicate the exact values of a specific signal/register
under various conditions. For example, the security require-
ment is formalized using the following template which fails

if the configuration/anomaly registers do not contain their
default values after being reset.
‘reg‘ == ‘dflt_val‘
unless
(ARESETN != 0 && ‘acw_w/r_state‘ != 2’b00)

In total, we develop eighteen security property templates
for verifying the security of the ACW, which are expanded
to hundreds of individual properties in Step 6. Eleven of
these templates are related to information flow and seven
templates relate to trace properties.
6) Verify the Security Properties: The final step verifies the
properties using off-the-shelf hardware security verification
tools. The eighteen security property templates created in
Step 4 and the assets identified in Step 5 are used to
automatically generate 316 security properties which are
comprised of 164 information flow properties and 152 trace
properties. The verification uses a configurable AXI DMA
module acting as controller C . C is wrapped with an
ACW. A top testbench module mimics the behavior of the
peripheral P . The testbench iterates through resets and
configurations of the ACW and the DMA with the goal of
switching the ACW between operative modes to provide
adequate coverage of the necessary conditions for all of the
security properties. Each property is written as an assertion
using the Cycuity Security Rules. We use Cycuity Radix-
S [25] to generate a security model from the security rules
and the ACW Verilog. The security model is simulated
with the testbench. Radix-S reports how many times each
individual property assertion fails along with the time at
which each failure occurs.

4 AKER FIRMWARE AND SYSTEM INTEGRATION

AKER uses a distributed set of ACWs that locally enforce
memory access control policies at each controller. The ACWs
require that their local access control policy be set by a
trusted entity (TE). The interactions between the ACWs and
the trusted entity must be verified and secure. Moreover,
the firmware for configuring the ACWs running in the
trusted entity plays a crucial role in the system security – a
misconfiguration can compromise the SoC’s confidentiality,
integrity, and availability. A Hardware Root of Trust (HWRoT)
is a special system resource that performs security-critical
tasks required for safe and secure operation. The HWRoT
stores and maintains cryptographic keys. It helps authen-
ticate the validity of SoC data and code. And generally
ensures the SoC boots and operates in a safe and secure
manner. AKER uses the OpenTitan [26] as its trusted en-
tity for configuration and management. The highly-critical
operations performed by an HWRoT require security verifi-
cation. OpenTitan includes an extensive design verification
including testbenches, self-checking agents, and assertions.
In Section 4.1, we provide a further degree of security to the
system, performing a property-based security verification
for the integration of the OpenTitan as the AKER trusted
entity. Following, in Section 4.2, we present the AKER tech-
niques for analyzing the security of an access control policy
provided by a system integrator and automatically generat-
ing secure firmware for the configuration and management
of the AKER access control system from the HWRoT. Finally,
in Section 4.2, we provide a security verification to assess the

6

system-level interactions between the ACWs and the trusted
entity after firmware generation.

4.1 Firmware-level Security Verification
We leverage the same six-step process proposed in Sec-
tion 3.3 for validating the interactions between the ACWs
and the trusted entity. . In this specific case, we are con-
cerned about four entities: a controller C , an ACW (wrap-
ping C), a peripheral P , and the trusted entity TE.
1) Create the Threat Model: the ACW, TE, and P are
considered trusted. C is untrusted – its possible ability to
communicate with P via the ACW in a manner that does
not adhere to the access control policy is a system threat.
2) Identify the Assets: the assets are additional to the assets
from the IP level. The identified additional assets are the
design signals composing the AXI channels of the ACW’s S
interface for configuring the ACWs from the trusted entity
and the interrupt lines of the ACW connected to the TE.
3) Identify the Potential Weaknesses: seven relevant CWEs
have been identified. These expand the potential weak-
nesses in the config/control group from Section 3.3. Such
additional potential weaknesses include the configuration
ports of the ACW, which allow the configuration of the
LACP and the two interrupt lines of the ACW connected
to TE. The CWEs and weaknesses identified in the IP
level security verification are still relevant for this scenario.
However, as these have already been examined, we focus
here on the weaknesses related to the interactions between
the ACW and the TE.

Relevant CWEs: 276, 1191, 1193, 1262, 1283, 1290, 1292

4) Define the Security Requirements: the security require-
ments address the existence and the content of information
flows between the TE and the anomaly and configuration
registers of the ACW through the ACW S port. As TE is in
charge of configuring the LACP of the ACW, it should be
the only source of information flows modifying the configu-
ration registers. Also, the anomaly registers metadata of the
ACW should not be able to be modified by the TE.

Requirement 3: The configuration/anomaly registers contain the
default values until they are modified by the TE (config.) and/or
ACW (illegal req. metadata tracking).

Concerning the interrupt lines of the ACW, the security
requirements address the signal values. The TE should
be alerted by the corresponding ACW whenever an illegal
transaction happens, by driving the interrupt line.

Requirement 4: An interrupt to TE is generated after the ACW
detects an illegal request.

5) Specify the Security Properties: the requirements rele-
vant to the TE and the configuration and anomaly registers
are primarily information flow tracking IFT properties. To
make an example, Requirement 3 can be formalized using
the following template – such a template fails in case any
unauthorized source modifies the configuration registers
and anomaly registers after a reset has been triggered.
‘unauthorized_signal‘ //source
when (‘reg‘ == ‘dflt_val‘) //tagging cond.
=/=> //no-flow op.

‘reg‘ //destination
unless (‘reg‘ == ‘dflt_val‘)

The security property templates we specified for the secu-
rity requirements of the interrupts are trace properties –
requirement 4 is formalized using a specification failing if
the interrupt line does not assume the proper value given
the operative mode of the ACWs, as following described.
‘INTR_LINE_W/R‘ == 1
unless (‘acw_w/r_state‘ != 2’b10)

Totally, for the verification of the security in firmware-level
interactions between the ACW and the TE we developed
four security property templates. Three of such templates
are IFT properties. The remaining one is a trace property.

6) Verify the Security Properties: we use the security
property templates for the assets identified in Step 2 and
crafted in Step 5 to automatically generate 1,438 security
properties. Such properties are split into 1,436 IFT prop-
erties and 2 trace properties. The setup for verifying such
properties resembles the one introduced for the IP level
security verification in Section 3.3, but for the additional
presence of the trusted entity.

4.2 Secure Firmware Generation

The AKER Secure Firmware Generator (SFG) supports the
integration of an AKER access control system into an SoC.
The Secure Firmware Generator provides a driver for the
ACW, it generates firmware for the secure setup and man-
agement of an AKER access control system, and it ana-
lyzes the access control policy for data leaks caused by
improper configurations. The SFG tool inputs two files:
(a) the SysArch file, defining the system architecture (i.e.,
controllers, peripherals, and associated address regions) and
(ii) the AkerACP file, defining the SoC access control policy
(static or dynamic) – our repository reports instructions and
templates for the definition of these files [6].

AKER allows for static or dynamic access control policy in
the AkerACP file. In static scenarios, the policy comprises
a single AKER access control map, that is, a valid config-
uration for the AKER access control system defining the
read/write access rights of any controller to the peripherals.
In a dynamic scenario, multiple AKER access control maps
can be defined. Consider a system having N controllers
C = C1, C2, . . . , CN and L peripherals P = P1, P2, . . . , PL

(as described by Figure 2). To keep a compact notation, we
assume that each peripheral has a single address region,
that is, a contiguous set of addresses associated with each
peripheral (see Section 2.1). The set of the address regions is
denoted as R = R1, R2, . . . , RM , so that R1 is the address
region associated with P1 and so on. The tool can manage
scenarios where the peripheral requires multiple address
ranges having different read/write rights. For the sake of
generality, we assume that the interconnect permits connec-
tions among all of the controllers and peripherals though
the tool can be extended to consider constrained scenarios.

The AKER SFG tool is comprised of three modules: (i) the
ACW driver template, (ii) the firmware generator tool, and (iii)
the data leak analysis tool. The ACW driver template sketches
the functionalities required for the management of an ACW.
The template driver is leveraged by the firmware generator
tool to automatically generate the firmware code for the
secure setup and maintenance of the selected access control
policy. For best compatibility, we developed the template

7

driver in the C language and following the OpenTitan
guidelines [26]. The description of the workflow of the SFG
tool for static and dynamic policies is reported next.

Static Policy Management: As a first step, the SFG tool
parses the static MS access control map from the AkerACP
file. MS can allow information leaks due to intra-map data
flows caused by an unintended proxy or intermediary in the
system, also known as confused deputy (e.g., see CWE 441).
In such a scenario, information flow is caused by uninten-
tional data movement operated by a controller. To explain
the problem, consider a simple architecture involving two
controllers C1 and C2 and two peripherals P1 and Pprot
(a protected peripheral storing critical data). Consider now
the following policy defined in MS : (i) C1 has write access
rights to R1 and read access rights to the protected region
Rprot; (ii) C2 has read access rights to R1, but it is forbidden
to access the protected region Rprot (for both read and write).
Since C1 has read access to Rprot and write access to R1, C1

can potentially operate a data flow from Rprot to R1. Once
the protected data are stored in R1, they could be easily
accessed by C2. This would create a security-critical data
flow from Rprot to C2 breaking the access control policy
defined in MS . To avoid such scenarios, the AKER SFG
tool implements an analyzer able to capture the possible
data flows of MS in a generic architecture. If any flows are
discovered during analysis, the AKER SFG tool generates a
report for the system integrator containing the source and
the destination for each potential flow. The AKER SFG tool
also automatically proposes countermeasures to remove the
illegal flows. The generic algorithm we developed to find all
of the potential illegal data flows is reported below.

Algorithm 1: The algorithm reporting all of the
possible data leaks due to intra-map flows.

Input: System architecture and static access control policy MS

Output: Set of possible data leaks due to intra-map flows
for Ci ∈ C do

for Cj ∈ C, j ̸= i do
FS

i,j = MS
i,W ∩ MS

j,R

LS
i,j = MS

i,R \ (MS
i,R ∩ MS

j,R)

if FS
i,j ̸= ∅ and LS

i,j ̸= ∅ then
for PK ∈ LS

i,j do
report PK ==> Cj through FS

i,j

end
else

no flows for (Ci, Cj)
end

end
end

At first, the algorithm sets two controllers (Ci and Cj).
For such controllers, MS

i,W is the write access control policy
for Ci, defining which peripheral can be written by Ci. Du-
ally, MS

j,R is the read access control policy for Cj , defining
which peripheral can be read by Cj . Then, the set FS

i,j is
computed – this is the set of buffers providing a channel
through which illegal data flow can happen. Following,
the set LS

i,j is computed. LS
i,j contains the address regions

corresponding to peripherals that are readable by Ci but not
by Cj – the data in such regions could illegally flow to Cj

through the buffers in FS
i,j . At this point, if both FS

i,j and LS
i,j

are not empty, illegal data flow can happen from each region
in LS

i,j to Cj though any region in FS
i,j . The sets FS

i,j and
LS
i,j are reported to the system integrator, which can prevent

illegal flows by applying the countermeasures proposed by
the SFG tool in order to make at least one of the sets FS

i,j or
LS
i,j empty. However, this step would require modifications

to the access control policy. To provide the best flexibility,
we leave the final decision on the modification to operate
on MS to the system integrator – they can decide to fully
or partially apply the proposed countermeasures solving
the illegal flows or accept the risk and keep MS with no
modifications. The algorithm is iterated for each tuple of
controllers. Finally, the SFG tool fills the AKER template
driver according to the improved definition of MS ap-
proved by the system integrator and generates the firmware
for the secure setup of the ACWs in the AKER access control
system from the HWRoT.

Dynamic policy management: Following the require-
ments of modern applications, the AKER framework has
been developed to allow the definition of dynamic access
control policies. Such policies are particularly handy in
systems dealing with multiple operative modes (i.e., normal
mode, debug mode, secure boot, etc.), each requiring to
enforce different access rights on peripherals. In such a
scenario, consider a system having Q operative modes.
The access control policy defined by the system integrator
comprises Q access control maps MD = M1,M2, . . . ,MQ,
each associated with one of the system modes. The HWRoT
is in charge of setting up the proper map according to the
running operative mode and securely switching the policy
at any mode transition of the system.

As explained for the static scenario, also in this case
intra-map illegal flows can happen. Thus, the first step
performed by the SFG tool is to check and report intra-
map flows for each of the maps ∈ M . Again, the system
integrator has flexibility in applying the proposed counter-
measures. However, dynamic scenarios can generate inter-
map leaks – such leaks take advantage of the transition from
one map to another. To explain this issue, consider a simple
scenario (as in the example of the previous section) with
two controllers (C1 and C2) and two peripherals (P1 and
Pprot). Assume that the system has two operative modes,
each associated with an access control map (M1 and M2,
respectively). M1 defines the following rights: (i) C1 has
write access to R1 (associated with P1) and read access to
Rprot, (ii) C2 is forbidden to access either R1 and Rprot, both
in read and write. M2 defines the following rights: (i) C2 has
read access to R1 but it is forbidden to access Rprot, both in
read and write, (ii) C1 is forbidden to access R1 and Rprot.

By applying the algorithm proposed for static policy,
both M1 and M2 are exempt from intra-map flows. How-
ever, consider the transition between M1 to M2. When M1

is the running access control map, C1 could read data from
Rprot and write them to R1. After, whenever the system
mode changes (and thus M2 is loaded in the access control
system), P1 may still retain data moved from Rprot by C1,
which become accessible by C2 when M2 is the running
policy. This creates an inter-map security flow breaking the
access control policy. The proposed algorithm to spot all
of the possible illegal data leaks generated by inter-map
flows in a generic system is following reported. At first,
a double loop selects two of the access control maps Mx

and My – this is to check the illegal inter-map flows in
the transition from Mx to My . Following, a double loop

8

Algorithm 2: The algorithm computing the possible
data flow due to inter-map data leaks.

Input: System architecture and dynamic access control policy MD

Output: Set of possible data leaks due to inter-map data leak
for Mx ∈ MD do

for My ∈ MD, x ̸= j do
for Ci ∈ C do

for Cj ∈ C, j ̸= i do
Fx−>y

i,j = Mx
i,W ∩ My

j,R

Lx−>y
i,j = Mx

i,R \ (Mx
i,R ∩ My

j,R)

if Fx−>y
i,j ̸= ∅ and Lx−>y

i,j ̸= ∅ then
for PK ∈ Lx−>y

i,j do
report PK ==> Cj

through Fx−>y
i,j

end
else

no flows for (Ci, Cj) when Mx− > My

end
end

end
end

end

sets two controllers Ci and Cj under analysis. For such
controllers, Mx

i,W is the write access control policy for Ci,
defining which peripheral can be legally written by Ci

according to the map Mx. Dually, My
j,R is the read access

control policy for Cj , defining which peripheral can be
legally read by Cj according to the map My . The set F x−>y

i,j

is computed. This set contains the buffer regions that can
allow the illegal data flow while transitioning from Mx

to My . Following, the set Lx−>y
i,j is populated. This set

contains the read regions through which data could be
leaked from the regions accessible by Ci in M1, but not
accessible by the Cj either in M1 and M2. At this point, if
both the sets F x−>y

i,j and Lx−>y
i,j are not empty, illegal data

flow can happen from each region ∈ Lx−>y
i,j to Cj through

each region ∈ F x−>y
i,j when transitioning from M1 to M2.

Again, the system integrator is warned by the AKER SFG
tool on the possible illegal data flows and countermeasures.
The flows are reported with source and destinations. The
system integrator can prevent any illegal flow to happen
making at least one of the set F x−>y

i,j or Lx−>y
i,j empty. The

AKER SFG tool provides guidelines to achieve this goal and,
for best flexibility, leave the final decision to the system
integrator. However, differently from static scenarios, in
dynamic scenarios, illegal flows can be avoided using also
a different strategy. The transitions among the maps are
operated by the HWRoT. Knowing the regions acting as the
buffer area for the data leaks to happen among two generic
maps Mx and My , the HWRoT could avoid any possible
data leak by wiping such buffer areas before transitioning to
My . As reported in the algorithm, such regions are the one
in F x−>y

i,j . To this aim, we provide in the AKER SFG tool
an optional feature automatically generating the firmware
code for wiping the selected buffer areas before transi-
tioning to a new map. It is worth mentioning, however,
that such an operation can generate data losses. The area
to be wiped are reported to the system integrator, which
must carefully evaluate the system requirements. Again, to
provide maximum flexibility, we leave the final decision to
the system integrator, which decides whether to implement
the wiping functionalities, change the access control policy,
or accepting the risk generated by intra-map and/or inter-

map flows. To consider all possible flows among controllers
and transitions among maps, the algorithm is iterated for
each tuple of controllers and for each tuple of maps. To
make the algorithm more efficient, the system integrator
could define a set of possible transitions of the system.

Again, the SFG tool fills the AKER template driver ac-
cording to the improved definition of MD and the wiping
functionalities (if requested). The firmware is then generated
for the secure setup and dynamic management of the ACWs
in the AKER access control system from the HWRoT.

Fig. 5: The AKER Secure Firmware Generator workflow (simplified).

Sample workflow example: We report following an ex-
ample describing the sample workflow of the SFG tool,
summarized in Figure 5. The system integrator inputs the
SFG tool with the SysArch and the AkerACP files. The
files are analyzed by the AKER data leak analyzer – if
the selected policy is static, the tool checks the presence of
intra-map flows applying Algorithm 1. If the defined policy
is dynamic, besides looking for intra-map flows, the tool
checks also the presence of inter-map flows by applying
Algorithm 2. The discovered flows are prompted to the
system integrator, together with the suggested guidelines
to secure the selected access control policy. The tool outputs
the updated Access Control Policy considering the determi-
nation of the system integrator. The updated policy is taken
in input by the AKER firmware generator, together with the
ACW Driver Template and the SysArch file, to automatically
generate the firmware code for the management of the target
AKER access control system. Finally, the SFG tool outputs
the AKER firmware, which should be integrated into the
firmware code of the TE implementing all of the other
functionalities required in the target system.

4.3 System-level security verification
We leverage the proposed verification process for validating
the security of the interactions between multiple controllers
(each wrapped by an ACW) and the shared resources avail-
able in the system-on-chip for firmware configurations gen-
erated by the AKER SFG tool. For this scenario, we consider
eleven entities: two controllers (C1 and C2), two ACWs
(ACW1 and ACW2), wrapping C1 and C2, respectively,
three peripherals P1, P2, and P3, the AXI interconnect, and
the trusted entity TE (see Figure 2 considering N = 2 and
L = 3). In the considered scenario, the local access control
policy setup in ACW1 (LACP1) states that C1 can read from
all regions of SR

1 = {P1, P2} and write to all regions of SW
1

= {P1}. The LACP2 of ACW2 states that C2 can read from
all regions of SR

2 = {P3} and write to all regions of SW
2 =

{P2, P3}.

9

1) Create the Threat Model: it is assumed that the ACWs,
the peripherals, and the trusted entity are trusted. C1 and
C2 are considered untrusted. The threat model focuses on
the ability of the generic controller Ci to communicate with
the generic peripheral Pk (through the ACW) in a manner
that does not adhere to the LACP .

2) Identify the Assets: the identified assets relevant for this
verification level are the AXI signals connecting the generic
ACWi to the generic Ci and all of the signals within the
unauthorized regions for each Ci.

3) Identify the Potential Weaknesses: three additional rel-
evant CWEs have been identified. These further expand the
potential weaknesses defined in the IP-level and firmware-
level verification steps. As this validation is at the system
level, the additional weaknesses consider the configuration
of the generic local access control policy LACPi for the
generic ACWi, as it relates the generic Ci sharing resources
with the generic Cj .

Relevant CWEs: 441, 1189, 1260

4) Define the Security Requirements: we develop security
requirements addressing the existence and the content of
information flows between the generic tuple (Ci,Pk), accord-
ing to LACPi. We consider that LACP1 (for ACW1) states
that no information should flow between C1 and P3, while
LACP2 (for ACW2) states that no information should flow
between C2 and P1.

Requirement 5: Any C cannot receive/send data from/to any
region not contained within its ACW’s LACP.

5) Specify the Security Properties: in this case, all of the
specified security property templates are IFT properties.
To make an example, the send aspect of Requirement 5 is
formalized by the following template, which fails if any
information originating from the generic controller Ci flows
to any unauthorized region.
‘sig_from_C‘ //source (always tagged)
=/=>

‘unauthorized‘ //destination

We develop two IFT security property templates in
total for verifying the security of the interactions between
the multiple controllers and shared resources in the system.

6) Verify the Security Properties: the assets identified in
step 2 and the security property templates created in step 5
are used to generate automatically 76 IFT properties. The
verification setup, in this case, builds upon the firmware-
level verification proposed in Section 4.1, by adding one
additional controller module (wrapped by a corresponding
ACW), three memory modules (serving as peripherals), and
the AXI interconnect connecting controllers to peripherals.

4.4 Discussion on the requirements

In Section 3.3, 4.1, and 4.3, we provided an overview
of the six-step security verification we performed at the
IP-level, firmware-level and system-level, respectively. Al-
though each level of verification has a different focus, the
overall goal of our security verification effort is to verify
that the access control provided by an AKER access control

system meets certain security requirements. These secu-
rity requirements, and their associated security properties,
relate to the confidentiality, integrity, isolation, and value
of the signals/registers which enable configuration and
communication in an AKER access control system. Across
the aforementioned verification sections, we illustrate our
process using five security requirements and their respective
security property templates. However, it is important to
note that we define/specify a total of twenty-one security
requirements/property templates in our security verifica-
tion framework in order to adequately cover the potential
weaknesses identified at each level of verification. When
expanded using our verification framework, these twenty-
one security property templates automatically generate a
total 1,805 security properties with 1,661 being IFT prop-
erties and the remaining 144 being trace properties (see
Step 6 of each verification section for more information). If
needed, our security verification framework enables system
integrators to easily customize or extend the twenty-one
default requirements/property templates to address any
specific concerns depending on the specific functionalities
of their target controllers/system.

5 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation we con-
ducted to evaluate the performance and area usage of the
AKER access control system and assess its functional and
security correctness. First (Section 5.1), we compare the per-
formance and area usage of an AKER access control system
against two popular methods for implementing on-chip ac-
cess control introduced in Section 2.4. The measurements are
conducted on realistic designs deployed on a commercial
FPGA SoC platform. Following (Section 5.2), we integrate
and validate the proper functionalities of an AKER access
control system on the OpenPULP architecture [5] as a case-
study. Finally, we leverage the automatic tools proposed in
Section 5.3 for generating the firmware code running in the
HWRoT for setting up the AKER access control system in
the OpenPULP case-study.

5.1 Performance on FPGA SoC platforms
We developed a realistic architecture on a Xilinx Zynq Ultra-
scale+ FPGA SoC platform. The architecture is composed of
three controller hardware accelerators C1, C2, and C3 imple-
mented in the FPGA fabric. C1, C2, and C3 are connected to
a Xilinx AXI SmartConnect [27]. The SmartConnect is in turn
connected to the shared DRAM memory controller, accessi-
ble through an AXI S interface in the FPGA-PS interface [28].
This architecture mirror the one reported in Figure 1 (con-
sidering N = 3 and L = 1). C1, C2, and C3 implement the
functionalities of three separated high-performance DMA
IPs. This enables easy configuration of the modules and
can cover a wide range of communication behaviors. We
deployed three different access control systems: in Design
(a) we use the AXI SmartConnect (INTC) (Section 2.4.1), in
Design (b) we leverage the Xilinx Memory Protection Unit
(XMPU) [15] to implement the access control system in PS
(Section 2.4.2), and in Design (c) we deploy an AKER access
control system involving three ACW modules. In this ex-
periment, the configuration of the modules is performed by

10

Functionality for policy definition INTC XMPU AKER
Protect a limited set of predefined regions Yes Yes Yes
Dynamic allocation of read/write regions No Yes Yes
Definition of private read/write regions No No Yes
Definition of read-only/write-only regions No No Yes
Secure transactions identification Yes No Yes

TABLE 1: Comparison of SoC access control systems. The INTC and the XMPU
access control systems available exhibit limitations not seen in with AKER.

one of the processors of the platform, acting as the Trusted
Entity. We deployed a custom, cycle-accurate timer in the
FPGA fabric for obtaining high accuracy in the performance
evaluations. A Xilinx System ILA [29] is also deployed to
verify the proper behavior of the ACW modules. We synthe-
sized the designs using Xilinx Vivado. A major limitation of
the access control implemented Design (a) (leveraging the
AXI interconnect) is that the access control policy is stati-
cally configured at implementation time and thus cannot be
dynamically modified. Additionally, the Vivado synthesis
tool assigns a predefined number of addressable regions for
the controllers – no additional custom regions can be added.
Also, such predefined regions have default full read/write
permissions – no read-only regions can be defined. The
XMPU integrated into the PS and leveraged in Design (b)
for the implementation of the access control system allows
defining 16 custom memory regions. The XMPU uses the
workaround of the AXI ID signals described in Section 2.4.2
for the authentication of the address requests (see [15]).
However, the implementation of the AXI SmartConnect
used to connect the controllers to the PS does not propagate
the AXI ID signals to the PS [27]. This means that, even
forcing C1, C2, and C3 to issue requests with unique IDs, the
AXI SmartConnect propagates the requests to the PS with
the same ID. Thus, the ID information is lost and therefore
the XMPU cannot identify the source of the request. From
the previous considerations, the XMPU cannot securely en-
force any access control policy aiming at differentiating the
requests issued by C1, C2, and C3. It follows that the XMPU
access control system could not enforce even a simple access
control policy defining a private read/write buffer for each
of the controllers deployed in the FPGA fabric. Again, in
the XMPU the defined regions have default read and write
privilege – they cannot be target for defining read-only
regions. In Table 1, we summarize some of the essential
features for the implementation of common security policies
in modern access control systems and the limitations found
in the available solutions. Following, we develop a simple
access control policy compatible with the limitations of the
access control systems of designs (a) and (b) to compare the
performance and resource consumption of the systems.

5.1.1 Response times in isolation and under contention
This first experiment compares the performance impact of
the three access control systems on the memory access
time associated with C1, C2, and C3. We setup a com-
mon forbidden region F in memory. This means that any
controller C is forbidden to read or write to that region.
The memory access times are evaluated in isolation and
under contention. Figure 6(i) reports the memory access
time in isolation. We activated C1, C2, and C3 separately
to access different amounts of data in a legal region of the
memory. The results show similar performance in latency

and throughput in all of the designs. This confirms that
the impact on the performance of the one extra clock cycle
introduced by an AKER access control system is negligible.
In the next experiment, we test the contention generated

16-word 256-word

2

4

6

8

R
es

p.
ti

m
es

of
C

1
(µ

s
)

4 KB 32 KB

50

100

(i) Performance of the DMAs in isolation

256 KB 2 MB

2,000

4,000

6,000

16-word 256-word

2

4

6

8

R
es

p.
ti

m
es

of
C

1
(µ

s
)

4 KB 32 KB

50

100

(ii) C2 interfere the execution of C1 issuing illegal transactions

256 KB 2 MB

2,000

4,000

6,000

16-word 256-word

0

20

40

R
es

p.
ti

m
es

of
C

1
(µ

s
)

4 KB 32 KB

0

100

200

(iii) C2 acts a DoS on C1 flooding the bus with illegal transactions

256 KB 2 MB

0

0.5

1

1.5
·104

(a) AXI INTC (b) XMPU (c) AKER

Fig. 6: Performance Evaluation: (i): the performance are similar in isolation. (ii):
the performance differ in the presence of illegal requests. (iii): C2 can perform a
DoS attack to endanger the availability of the DRAM memory from C1 in (b).

by illegal transactions on the three designs. The same con-
figuration from the previous experiment is kept for C1. We
configure C2 to attempt to concurrently access the forbidden
region F (i.e., issuing illegal requests). C2 is configured to
model a controller stuck in trying to access the forbidden
region due to a misconfiguration – C2 issues a new ille-
gal request once the access control system replies to the
previous one with an error. As discussed in Section 2.4.2,
the access control systems implemented at the peripheral
(Design (b)) require to occupy time on the interconnect to
abort the illegal requests. This impacts the performance of
legal transactions. Figure 6(ii) reports the measured average
access time for C1. The results show that in Design (b) the
interference generated by the illegal transactions issued by
C2 impacts the performance of C1. In particular, the average
measured response time increases by 203% on a 16-word
transaction, changing from 1.22 µs in Designs (a) and (c)
to 3.7 µs in Design (c). A lower impact has been measured
for longer, consecutive accesses. However, we measured an
impact of at least 20% on the average response times in
all of the scenarios. Differently, Design (a) and (c) stop the
illegal transactions of C2 before entering the network. These
results confirm how an AKER access control system is able
to provide high performance (stopping the interference gen-
erated by any illegal transaction) while providing flexibility
in the definition of the access control policy. In the third
experiment, we test a denial of service scenario. We kept
the same configuration of the previous experiment for C1,

11

while we configure C2 to flood the interconnect of illegal
requests, leveraging the full throughput made available to
C2 by the AXI SmartConnect. In this case, C2 mimics the
behavior of a misconfigured or malicious high-throughput
IP core. Figure 6(iii) reports the measured results, showing
that the impact on the response times of C1 in Design (b)
is way higher than in experiment (ii). In particular, the
measured average response time of a 16-word transaction
issued by C1 passes from 1.22 µs of Designs (a) and (c) to
38.72 µs in Design (b). This corresponds to an increase of
3074%. As in the previous experiment, the impact decreases
on longer and consecutive accesses. Nevertheless, in all of
the tested cases, the impact is at least 165% on the nom-
inal average response times. In other words, the response
time of C1 is more than double with respect to nominal
conditions in all of the scenarios. This experiment shows
how a misbehaving IP can create a denial of service when
using Design (b) for access control. This issue can be critical
in designs integrating software-configurable IPs – malicious
software could exploit this issue to act Denial-of-Service of
the memory or other resources to the other IPs integrated
into the system. Indeed, even if detected at runtime, the
access control system implemented in Design (b) does not
provide any method to stop the flood of illegal transactions
– according to the AXI standard [8], transactions cannot be
aborted after being propagated. Thus, when the access con-
trol system is enforced at the peripherals (as in the case of
the XMPU), any detected illegal request must be completed
propagating faulty data to the requesting controller to keep
the interconnect operational.

5.1.2 Resource consumption

Resources PULP 4-regs ACW 16-regs ACW PULP+ACWs
LUT 156937 (57%) 326 (0.1%) 730 (0.3%) 158421 (58%)
FF 53354 (10%) 358 (0.1%) 744 (0.1%) 54854 (10%)

TABLE 2: Resource consumption of the ACW module. The area impact of the
ACW can be target according to the requirements of the target application.

Table 2 reports the resource consumption and occupation
percentage on a Xilinx ZYNQ Ultrascale+ platform for:
(i) the whole PULP SoC platform (Section 5.2), (ii) ACW
deploying 4 regions (4-regs ACW), (iii) ACW deploying
16 regions (16-regs ACW), and (iv) two 16-region ACWs
integrated in the PULP SoC (PULP+ACWs). The impact of
the ACW modules on resource consumption is limited with
respect to the whole cost of the PULP SoC – the resource cost
of PULP+ACWs is around 1% higher with respect to PULP.
Furthermore, the resource consumption of the ACW can be
optimized to meet the requirements of a target application.

5.2 PULP SoC Experiments

The PULP platform (Parallel Ultra-Low-Power) is an open-
source computing platform comprising a multicore RISC-
V processor. PULP is structured in two domains: an SoC
domain and a Cluster domain – the SoC domain is in charge
of performing the control and other high-level functions.
The cluster leverages its eight RISC-V cores to perform
hardware acceleration. The cluster and the SoC communi-
cate through two communication pathways. One pathway
enables the Cluster to access the SoC (i.e., the SoC is a

Peripheral for the Cluster, which is the controller). Dually,
the other pathway enables the SoC to access the Cluster
(i.e., the Cluster is a Peripheral for the SoC, which is the
controller). The communication pathways permit the fabric
controller core (in the SoC) and the cores in the Cluster
domain to exchange information and access a shared L2
memory. Additionally, the PULP’s memory map defines
memory regions for the Cluster subsystem, the ROM mem-
ory, the SoC peripherals subsystem, and the L2 memory.
Such regions are fully addressable from any of the PULP’s
controllers (i.e., the fabric controller and the eight RISC-V
cores). In the PULP platform, no default access control sys-
tem is deployed for enforcing an access control policy on the
transactions exchanged between the Cluster and the SoC. To
provide such functionalities, we integrated an AKER access
control system regulating the communication between the
SoC domain and the cluster domain via two ACWs. Both
of the pathways implement the AXI standard for data ex-
change. Thus, the process of wrapping their respective AXI
M with the ACWs is straightforward. Once the integration
is completed, we setup the AKER access control system to
enforce an access control policy on the two pathways. The
functionalities of the AKER access control system have been
validated testing various ACW configurations through the
official test simulations provided with the PULP platform.
The test simulations run C programs on the fabric controller
embedded in the SoC. Notably, some of these C programs
make use of the PULP Cluster while others do not. As our
baseline, we ran all of the test simulations on the default
PULP platform, without the AKER access control system, in
order to check their proper functionalities. Following, we
configured the AKER access control system to allow any
read/write transaction and verify that all of the tests run
successfully as with the baseline. Thus, we configured the
AKER access control system to block all read/write requests.
As expected, we observed that the tests not making use of
the PULP cluster run successfully, while the tests accessing
the cluster hang waiting on responses from the decoupled
domains. Finally, we setup a fine-grained access control pol-
icy to ensure that the AKER access control system is able to
enforce realistic access control policies, different from the all-
or-nothing approach leveraged in the initial validations. We
verified the results of each configuration analyzing the test-
bench output logs and vcd/waveforms of the platforms (see
Figure 7). The designs and testing frameworks are available
in our repository [6]. In this experiment, we manually wrote
the firmware setting up the AKER access control system.
In the next section, we leverage the SFG tool proposed in
Section 4.2 for the automatic generation of firmware code.

5.3 Secure firmware generation

In this section, we demonstrate the functionality of the
AKER SFG tool by analyzing and fixing a dynamic access
control policy for the PULP using the SFG tool. After this,
we use the SFG tool to generate secure firmware and exper-
imentally validate that this firmware works as expected on
the PULP. It should be noted that the PULP’s AKER access
control system has two controllers (i.e., the Cluster and the
SoC) and many peripherals (e.g., shared L2 memory, ROM,
I/O interfaces, etc.) but, for the sake of clarity, we will only

12

clk

s2c req. data

c2s rsp. data

s2c default AXI data

c2s default AXI data

D
e
fa

u
lt

A
C

W

Fig. 7: s2c is the SoC to Cluster pathway. c2s is the Cluster to SoC pathway. The
default group shows a portion of the execution of a C program using the the
default OpenPulp. The ACW group shows the same portion of the execution
with the addition of two ACWs configured to block all transactions.

refer to two of these peripherals in this section. The dynamic
access control policy we implement builds around two op-
erative modes we have added to the PULP: no cluster mode
and limited cluster mode. no cluster mode (associated with
the AKER map M1) defines the following rights: (i) SoC
has read and write access to R1 (associated with shared L2
memory) and read access to R2 (associated with ROM), (ii)
Cluster is forbidden to access either R1 and R2, both in
read and write. This mode of operation is intended to be
used to turn the shared L2 memory into a “private” memory
for the SoC domain and thus improve its data integrity and
confidentiality. limited cluster mode (associated with AKER
map M2) defines the following rights: (i) Cluster has read
and write access to R1 but it is forbidden to access R2, both
in read and write, (ii) SoC has read access to R1 and read
access to R2. This mode of operation is intended to be used
to leverage the Cluster for hardware acceleration but in a
limited capacity (i.e., the Cluster can only read from or write
to the shared L2 memory). The pseudo-code of the firmware
generated by the SFG tool is reported next.

...
void setup_M1() {
//Configure ACW for SoC
dif_ACW_init(ACW_for_SoC);
...
//Configure ACW for Cluster
dif_ACW_init(ACW_for_Cluster);
...

}
void setup_M2() {
//Wipe region R1 for inter-map flow
dif_wipe_region(R_1)

//Configure ACW for SoC
dif_ACW_init(ACW_for_SoC);
...
//Configure ACW for Cluster
dif_ACW_init(ACW_for_Cluster);
...

}
...

When the system architecture and the access control maps
(i.e., M1 and M2) are passed to the AKER SFG tool, the
tool reports that M1 and M2 are exempt from intra-map
flows but the transition from M1 (no cluster mode) to M2

(limited cluster mode) has the possibility for an inter-map
flow. Assuming R1 is never cleared, the inter-map flow
could happen if SoC reads data from R2 and writes it
to R1 (during no cluster mode), and then Cluster reads
from R1 (during limited cluster mode). To deal with the
inter-map flow, we follow the AKER SFG tool’s proposed
countermeasure which involves wiping R1 before enabling
access control policy M2. We added this countermeasure to

the generated secure firmware. The firmware is loaded into
OpenTitan to program the ACWs in PULP and follow the
same verification process described in 5.2 in order to check
the correctness of the configuration done by the firmware.

6 RELATED WORKS

Multiple solutions have been proposed for enforcing access
control in Network on Chip (NoC) architectures. Gram-
matikakis et al. proposed a NoC distributed firewall en-
forcing access control [30]. Fiorin et al. proposed multiple
integration methodologies on NoC architectures [31]. Wassel
et al. proposed a method to isolate users and effectively
time-multiplex the access to the in the NoC [32]. Sepulveda
et al. [33] proposed a methodology specifically aimed at
the property-driven security verification of NoC routers.
While AKER did not specifically focus on NoC architectures,
our methodology could be extended to NoC architecture
with some modifications. The research community spent
considerable efforts to strengthen the security in shared bus
architectures. Jacob et al. [34] showed how hardware vul-
nerabilities related to access control can be injected in real
systems during the integration of third-party IP modules.
A brief discussion of prevention techniques are provided
without providing any specific solution. Restuccia et al.
proposed solutions to enforce the security and the safety
of AXI-based architectures, including an hypervisor-level
interconnect for dynamic controllers management [35] and
two methodologies preventing denial of service generated
by misbehaving controllers [36], [37]. Tan et al. [38] and
Siddiqui et al. [13] proposed two solutions implementing
decentralized systems for the detection of anomalous condi-
tions in hardware modules. Such solutions can help mitigat-
ing misbehaving conditions caused by hardware module.
However, they do not implement dynamic access control
systems functionalities. Oberg et al. [39] proposed a method-
ology for security verification of USB and I2C busses using
information flow tracking on a time-division access control
scheme. Huffmire et al. [40], [41] and Brunel et al. [42]
described two mechanisms for securing off-chip memories.
Cotret et al. [43] described a module for implementing a
distributed firewall. This last has high performances impact
(18% increase in latency), it lacks security verification, and
lacks integration with modern HWRoTs for the management
of secure configuration.

7 CONCLUSION

In this paper, we proposed the AKER framework. AKER
builds upon three pillars: (i) the Access Control Wrap-
per (ACW), a universal module integrating with on-chip
controllers, (ii) the AKER Secure Firmware generator tool,
analyzing a selected access control policy and generating se-
cure firmware, and (iii) the AKER extensive property-driven
security verification, assessing the secure operation of an
AKER access control system. We integrated an AKER access
control system in real design and showed its limited im-
pact on performance and resource consumption. The AKER
framework is released in our open-source repository [6].

13

REFERENCES
[1] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,

“Modeling and Analysis of Bus Contention for Hardware Accel-
erators in FPGA SoCs,” in 32st Euromicro Conference on Real-Time
Systems (ECRTS 2020), 2020.

[2] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “A holistic
memory contention analysis for parallel real-time tasks under
partitioned scheduling,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020.

[3] The 2021 MITRE CWE Most Important Hardware Weaknesses, MITRE,
https://cwe.mitre.org/scoring/lists/2021 CWE MIHW.html.

[4] W. Hu, A. Althoff, A. Ardeshiricham, and R. Kastner, “Towards
property driven hardware security,” in 17th International Workshop
on Microprocessor and SOC Test and Verification (MTV), 2016.

[5] F. Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini, “Pulp: A ultra-
low power parallel accelerator for energy-efficient and flexible
embedded vision,” Journal of Signal Processing Systems, vol. 84,
no. 3, pp. 339–354, 2016.

[6] Aker Github Repository, https://github.com/KastnerRG/AKER-
Access-Control.

[7] F. Restuccia, A. Meza, and R. Kastner, “Aker: A design and
verification framework for safe and secure soc access control,” in
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 2021, pp. 1–9.

[8] AMBA® AXI™ and ACE™ Protocol Specification, ARM, iHI 0022D.
[9] SiFive TileLink Specication, SiFive, v1.8.1.
[10] F. B. Schneider, “Enforceable security policies,” ACM Transactions

on Information and System Security (TISSEC), vol. 3, no. 1, 2000.
[11] J. M. Rushby, “Design and verification of secure systems,” ACM

SIGOPS Operating Systems Review, vol. 15, no. 5, pp. 12–21, 1981.
[12] The CWE Official Webpage, MITRE, https://cwe.mitre.org/.
[13] F. Siddiqui, M. Hagan, and S. Sezer, “Pro-active policing and

policy enforcement architecture for securing mpsocs,” in 2018 31st
IEEE International System-on-Chip Conference (SOCC). IEEE, 2018.

[14] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “Seca:
security-enhanced communication architecture,” in Proceedings of
the 2005 international conference on Compilers, architectures and syn-
thesis for embedded systems, 2005, pp. 78–89.

[15] Isolation Methods in Zynq UltraScale+ MPSoCs, Xilinx, xAPP1320.
[16] A. Basak, S. Bhunia, and S. Ray, “A flexible architecture for system-

atic implementation of soc security policies,” in 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2015.

[17] A. P. D. Nath, S. Ray, A. Basak, and S. Bhunia, “System-on-chip
security architecture and cad framework for hardware patch,” in
2018 23rd Asia and South Pacific Design Automation Conference (ASP-
DAC). IEEE, 2018, pp. 733–738.

[18] Open Core Protocol Specification v3.0, Accellera.
[19] S. Aftabjahani, R. Kastner, M. Tehranipoor, F. Farahmandi,

J. Oberg, A. Nordstrom, N. Fern, and A. Althoff, “Cad for hard-
ware security - automation is key to adoption of solutions,” in
Proceedings of the IEEE VLSI Test Symposium, 2021.

[20] W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware information
flow tracking,” ACM Computing Surveys (CSUR), 2021.

[21] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on selected areas in communications, 2003.

[22] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[23] W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang, and
R. Kastner, “Property specific information flow analysis for hard-
ware security verification,” in Proceedings of the International Con-
ference on Computer-Aided Design, 2018, pp. 1–8.

[24] C. Deutschbein, A. Meza, F. Restuccia, M. Gregoire, R. Kastner,
and C. Sturton, “Toward hardware security property generation
at scale,” IEEE Security and Privacy, 2022.

[25] The Cycuity Radix-S offical website, Cycuity,
https://cycuity.com/solutions/.

[26] The OpenTitan official website, https://opentitan.org/.
[27] AXI SmartConnect v1.0 LogiCORE IP Product Guide, Xilinx, pG247.
[28] Zynq UltraScale+ - Technical Reference Manual, UG1085, Xilinx.
[29] System Integrated Logic Analyzer v1.0, Xilinx, 2017, pG261.
[30] M. D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrig-

oriou, G. Kornaros, I. Christoforakis, O. Tomoutzoglou, G. Tsamis,
and M. Coppola, “Security in mpsocs: a noc firewall and an eval-
uation framework,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 8, pp. 1344–1357, 2015.

[31] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano,
“Secure memory accesses on networks-on-chip,” IEEE Transactions
on Computers, vol. 57, no. 9, pp. 1216–1229, 2008.

[32] H. M. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T.
Chong, and T. Sherwood, “Surfnoc: a low latency and prov-
ably non-interfering approach to secure networks-on-chip,” ACM
SIGARCH Computer Architecture News, 2013.

[33] J. Sepulveda, D. Aboul-Hassan, G. Sigl, B. Becker, and M. Sauer,
“Towards the formal verification of security properties of a
network-on-chip router,” in 2018 IEEE 23rd European Test Sympo-
sium (ETS). IEEE, 2018, pp. 1–6.

[34] N. Jacob, C. Rolfes, A. Zankl, J. Heyszl, and G. Sigl, “Compro-
mising fpga socs using malicious hardware blocks,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, 2017.

[35] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo,
“Axi hyperconnect: A predictable, hypervisor-level interconnect
for hardware accelerators in fpga soc,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[36] F. Restuccia, A. Biondi, M. Marinoni, and G. Buttazzo, “Safely
Preventing Unbounded Delays During Bus Transactions in FPGA-
based SoC,” in 2020 IEEE 28th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2020.

[37] F. Restuccia and R. Kastner, “Cut and forward: Safe and secure
communication for fpga system on chips,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2022.

[38] B. Tan, R. Elnaggar, J. M. Fung, R. Karri, and K. Chakrabarty,
“Towards hardware-based ip vulnerability detection and post-
deployment patching in systems-on-chip,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2020.

[39] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kast-
ner, “Information flow isolation in I2C and USB,” in 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), 2011.

[40] T. Huffmire, S. Prasad, T. Sherwood, and R. Kastner, “Policy-
driven memory protection for reconfigurable hardware,” in Euro-
pean Symposium on Research in Computer Security. Springer, 2006.

[41] T. Huffmire, T. Sherwood, R. Kastner, and T. Levin, “Enforcing
memory policy specifications in reconfigurable hardware,” com-
puters & security, vol. 27, no. 5-6, pp. 197–215, 2008.

[42] J. Brunel, R. Pacalet, S. Ouaarab, and G. Duc, “Secbus, a soft-
ware/hardware architecture for securing external memories,” in
2014 2nd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, 2014, pp. 277–282.

[43] P. Cotret, J. Crenne, G. Gogniat, and J. Diguet, “Bus-based mpsoc
security through communication protection: A latency-efficient
alternative,” in 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, 2012, pp. 200–207.

Francesco Restuccia is a postdoctoral re-
searcher at the University of California, San
Diego. He received his Ph.D. in Computer En-
gineering (cum laude) from Scuola Superiore
Sant’Anna Pisa in 2021. His main research in-
terests include hardware security and safety for
hardware acceleration on heterogeneous plat-
forms, cyber-physical systems, and time pre-
dictable hardware acceleration of deep neural
networks on commercial FPGA SoC platforms.

Andres Meza earned a B.S. Computer Science
and a B.S. Cognitive Science with a Machine
Learning and Neural Computation Specialization
from UCSD (2020). His current research focuses
on hardware security, optimization of ML models
for hardware deployment, and computer vision.
Andres is a part of the research teams at Kastner
Research Group and the Comparative Cognition
Lab at UCSD.

Ryan Kastner is a professor in the Department
of Computer Science and Engineering at UC
San Diego. He received a PhD in Computer Sci-
ence at UCLA, a masters degree in engineering
and bachelor degrees in Electrical Engineering
and Computer Engineering from Northwestern
University. His current research interests fall into
three areas: hardware acceleration, hardware
security, and remote sensing.

Jason Oberg is a co-founder and Chief Technol-
ogy Officer (CTO) of Cycuity, where he is respon-
sible for overseeing the company’s technology
and strategic positioning. Prior to his CTO role,
Dr. Oberg led Cycuity as co-founder and CEO
from 2014 – 2020 where he facilitated raising
capital, recruiting the initial team, and drove the
company’s product revenue growth YoY. He re-
ceived his B.S. in Computer Engineering from
UC Santa Barbara and an M.S. and Ph.D. in
Computer Science from UC San Diego.

14

