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ABSTRACT OF THE DISSERTATION

3D Capture for Remote Environments

by

Peter Tueller

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2022

Professor Ryan Kastner, Chair

There are many environments on Earth that are so remote that they are inhospitable to

humans and conventional sensing equipment. Yet, these environments can hold information of

ecological and cultural significance that cannot be gathered anywhere else. Current methods of

gathering information in these environments give an important window, but utilizing modern

sensors to capture 3D information can allow us to interpret existing data and understand the

environments in new and unique ways. This thesis will demonstrate how 3D capture can improve

data collection and interpretation in three separate remote environments. First, I will show how

Synthetic Aperture Sonar on autonomous underwater vehicles paired with optimized feature

detectors can improve target detection and seafloor recognition. Next, I will show how RGBD

xii



cameras, photogrammetry, and LiDAR can be used in isolated Guatemalan archaeological

excavations to visualize and contextualize ancient sites in relation to each other and to our broader

understanding of Mayan history. Finally, I will demonstrate the effectiveness and potential of

RGBD cameras for fish stock assessment through detection and length and biomass measurement

in open waters and in aquaculture.
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Chapter 1

Introduction

There are corners of this Earth that hold secrets and information vital to improving our

understanding and appreciation and ability to preserve the planet. By observing and measuring

these remote environments, we can estimate the health of the planet and the sustainability of

current practices. For example, being able to track and measure the health of fish populations in

the ocean or within aquaculture farms is important for understanding how much of that population

can be harvested so overfishing does not occur. Also, these remote environments can yield

culturally significant information, such as in the case of uncovering and understanding ancient

structures or shipwrecks, and can yield important information regarding safety, such as detecting

and neutralizing mines on the seafloor.

These corners need to be observed and information needs to be gathered somehow, but

traditional techniques and equipment are often insufficient. Large equipment cannot be easily

brought into jungles or maneuvered around tight enclosed spaces such as caves, and underwater

environments prohibit the use of much of the electromagnetic spectrum, in addition to the ever

present water pressure, particulate matter, and lack of light.

There is a vast amount of research on techniques for gathering information in these

inhospitable environments. Some research seeks to improve the physical sensors themselves;
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from improving the resolution and scope of acquired data, to the usability and functionality in the

field. Additional research improves the data processing methods for gleaning the most information

from the acquired data, whether this be through procedures for cleaning and registering samples,

or machine learning-based detection.

This paper focuses on the use of 3D sensors and capture techniques for remote environ-

ments, as well as the methods to appropriately process and analyze 3D data that will complement

and improve upon current state-of-the-art techniques. We focus on 3D capture in three remote

environments. First, we consider target detection on the seafloor using autonomous underwa-

ter vehicles (AUVs) and synthetic aperture sonar (SAS). Next, we consider imaging and 3D

reconstruction of ancient Mayan temple excavations in northern Guatemala for archaeological

analysis and accessible presentation through virtual reality (VR). Finally, we consider using

RGBD cameras for fish detection, length and biomass measurement, and population assessment

in open ocean environments as well as aquaculture farms.

There are a number of contributions of this work regarding the use of 3D sensors in these

environments. We list the contributions here in order:

• A method for feature-based target detection on synthetic aperture sonar imagery that takes

into account the spatial identification of a target, as well as the type of background;

• An implementation of an active learning design space exploration method to optimize

feature detector parameters on sonar imagery;

• A comparison of the relative performances of feature detectors on a simulated synthetic

aperture sonar dataset;

• A comparison of 3D capture techniques for archaeological tunnel excavations to evaluate

most accurate and most usable techniques for virtual representation;

• A workflow for representing archaeological tunnel excavations using data from 3D sensors
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that is more complete and accurate than workflows using single sensors;

• An exploration of virtual reality as a means for communicating and visualizing archaeolog-

ical excavations;

• Development of a low-profile diver-operated platform for free-swimming fish imaging;

• An implementation of a machine learning detector for identifying fish in RGBD images;

• An implementation of a fish length measuring algorithm for RGBD images.

The remainder of this paper is organized as follows. Chapter 2 presents an overview of

specific 3D sensors and their benefits and drawbacks in remote environments. It also presents

a generic workflow for utilizing and making the most out of 3D capture techniques. Chapter 3

presents the use of SAS imagery as it pertains to target detection on the seafloor. This chapter

additionally presents an analysis of the use of feature detectors and an active learning design space

exploration method for optimizing this detection. Chapter 4 presents the use of LiDAR (both

ground-based and aerial), photogrammetry and structure for motion (SfM), and RGBD cameras

for reconstructing archaeological excavations and presenting the reconstructions in a modern,

intuitive, and accessible manner. Chapter 5 outlines a RGBD camera-based underwater imaging

platform and processing pipeline for detecting and measuring fish in open ocean environments

and in aquaculture farms. Finally, Chapter 6 concludes the paper and summarizes the results.
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Chapter 2

3D Data Capture

When capturing remote environments, we use a generic workflow as presented in Figure

2.1. The first step represents the quantification of physical attributes of the environment through

the use of 3D sensors. The second step takes each return from a particular sensor and combines

them into a coherent view of the scene as a whole. The third step incorporates additional

information from other sensors about the environment to modify the resulting views from step

2. This information could be additional views of the scene, 3D or not, as well as information

about location, geography, or color, for example. Finally, the fourth step takes the view of

the environment with all the required context and interprets it and performs all the requisite

measurements and analyses.

Remote environments can be challenging in unique ways, but this generic workflow allows

us the flexibility to use the sensor best suited for the environment, while still resulting in a useful

and meaningful final representation of the data. It also allows for the use of multiple sensors,

where the best qualities of each are incorporated, and a view of the environment at a scope and

resolution greater than each of the sensors is possible. This particular aspect will be portrayed in

more detail in Chapter 4.

Each of the three environments that are investigated by this paper will follow this pipeline,

4



Figure 2.1: Generic workflow for utilizing 3D data capture techniques for remote environment
observation.

and each of the contributions improve one particular aspect of the pipeline. In this chapter, we

will outline the 3D sensors that can be used in Step 1 of 2.1.

2.1 Introduction

3D sensors can be a boon to capturing an environment, as there is a whole extra dimension

associated with the data when compared to traditional 2D sensors, such as monocular cameras.

However, the variety of methods for acquiring this third dimension lead to a wide array of sensors

that can be classified as ”3D”, and each one has unique properties that make them useful in

different contexts.

2.2 Synthetic Aperture Sonar

A primary goal of an autonomous underwater vehicle (AUV) is to observe large swaths

of the seafloor. This is to detect mines, pipelines, shipwrecks or plane wrecks, or to perform

bathymetric measurements. Because of the sheer scale of the seafloor, any sensor must have

significant range to observe as much as possible. However, effectively sensing underwater is

extraordinarily difficult when compared to operating a sensor through air. If a terrestrial or aerial

vehicle were to perform similar observation of land, typically its primary sensor would employ
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optics or radar to collect data. Neither of these sensors are feasible in an underwater environment

due to extreme absorption and scattering in the electromagnetic spectrum. Transmissability of

microwaves, such as those employed by radar, is particularly low underwater, with an absorption

coefficient in the range of 100 cm−1, as seen in Figure 2.2. The absorption coefficient of light

in the visible spectrum, which is the range in which cameras would traditionally operate, is

significantly better, but the effective range remains on the order of tens of meters in the best case

scenario with blue-green light and minimal particulate matter [Hug90].

Figure 2.2: Absorption coefficient of pure seawater for different transmission wavelengths.
[SSCL20]

On the other hand, sonar technology has the capability to achieve ranges that are more

effective for seafloor observation and imaging. By employing sound, which is highly transmissible

underwater, some side scan imaging sonars are able to achieve ranges from hundreds to tens of

thousands of meters [MHVL11]. The images that are returned by side scan sonars effectively

capture a 3D view of the seafloor, as the time it takes for the sound to return correlates to distance

from the vehicle. The primary problem with side scan sonar, however, is the azimuth resolution

that decreases as the range increases, and as such the resulting image is ”muddy” and it is difficult

to effectively interpret and use.

Synthetic aperture sonar (SAS) corrects this problem with range-independent azimuth
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resolution [HG09]. Instead of sending out a single narrow beam and waiting for its return before

continuing on, SAS transmits wider beams continuously and processes all returns simultaneously,

as seen in Figure 2.3. This results in a higher resolution return, with the image approaching

optical-like quality. An example SAS image can be seen in Figure 2.4.

Figure 2.3: Side scan sonar vs synthetic aperture sonar.

Figure 2.4: SAS image of the sunken USS Murphy.

Although SAS operation is less flexible and more expensive than traditional side scan

sonar, the benefits it offers in terms of resolution, and particularly resolution at long range, make

it ideal for seafloor imaging and detection of targets, which will be explored in Chapter 3.

7



2.3 LiDAR

Similar to the operation of sonar, where pings of sound are emitted and the intensity of the

return is measured to estimate 3D geometry of the environment, LiDAR emits energy, typically

in the infrared portion of the electromagnetic spectrum, and measures the time it takes for pulses

of energy to return. LiDARs have various sizes and usages, with range and resolution correlating

to their size and power.

For example, the Leica BLK360 Imaging Laser Scanner is easily hand carried and

operated, though it must remain stationary while scanning. It has a range from 0.6 to 60m, a

horizontal field of view of 360°, a vertical field of view of 300°, and a 3D point accuracy of

6mm at 10m. It collects 360,000 points per second, and a full scan of the environment takes

about 3 minutes. It also has an RGB imaging sensor and can align and project images from that

sensor onto the points within the point cloud that the LiDAR component generated. As such, it is

particularly useful creating high resolution 3D representations of environments from the ground.

We use this sensor in Chapter 4 to create scans of the tunnels within the excavations, as well as

certain scans on the exterior of the excavation sites. An example of a point cloud gathered by the

Leica BLK360 is shown in Figure 2.5.

Figure 2.5: Leica BLK360 LiDAR scan from the El Diablo excavation in El Zotz, Petén,
Guatemala. Captured June 2021.
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2.4 RGBD Cameras

RGBD cameras, another, more modern class of sensor, have seen increasing usage in

remote environments. As their name would indicate, they capture RGB images like a traditional

optical sensor, but combine it with some sensor that captures depth information, as seen in Figure

2.6. These sensors are used in a similar manner to cameras, and RGB and depth frames together

are captured and aligned typically between 10 and 30 frames per second. This is in stark contrast

to the previous two sensors described, as SAS imaging and LiDAR scanning collects a single

scan on the order of minutes. The RGBD sensors that are described here are also smaller and

more mobile and maneuverable. However, the sensors only return frames with 3D information,

as opposed to full point clouds from the Leica BLK360, and as such there is a larger burden on

the intra-sensor registration (step 2 in Figure WORKFLOW) to create a full 3D representation of

the environment.

Figure 2.6: RGB (left) and depth (right) images.

2.4.1 Time of Flight

A common type of RGBD camera uses a Time of Flight (ToF) depth sensor. Similar to

the operation of a SAS or LiDAR, the sensor emits energy in the infrared spectrum in a particular

direction and measures the phase of the returning signal to estimate the time it took to return, and

thus the distance along that vector. By doing this emittance and measurement process across the
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entire field of view, the sensor constructs a depth ”image” of the environment, where each pixel

has a corresponding distance associated with it. An example depth image can be seen in Figure

2.6. This image is aligned with the RGB image of the same view of the environment. The depth

image then has the color from the RGB image ”painted” onto it to get a full 3D color picture of

the scene.

Arguably the most prominent RGBD camera that utilizes ToF technology is the Microsoft

Kinect Sensor V2. This sensor has a maximum depth distance of 4.5m, a horizontal field of view

of 70°, a vertical field of view of 60°, and returns 1080p RGB images paired with 424p depth

images at 30 frames per second.

Another RGBD camera that utilizes ToF technology is the Intel RealSense L515. This

camera has an active LiDAR as its depth sensor, with a range of 9m, a horizontal field of view

of 70°, a vertical field of view of 55°, and returns 1080p RGB images paired with 768p depth

images at 30 frames per second. One of the primary benefits of this particular camera is its small

size. At 61mm in diameter and 26mm deep, it is easily handheld, and the use of Intel’s Vision

D4 chip for on-board processing means that fully aligned RGB and depth image pairs can be

transmitted to the host computer without a need for additional processing. Thus, mobile devices

can be used as the host computer with a real-time reconstruction software like Dot3D aligning

the RGBD frames together, which further increases the flexibility and portability of this device

for sensing in remote environments, such as archaeological excavations, which we will further

explore in Chapter 4.

2.4.2 Stereo

Another RGBD camera, the Intel RealSense D455, seen in Figure 2.7, utilizes two passive

infrared cameras as a stereo pair to create a depth image. Each image pair from the two infrared

cameras are compared and features are matched between them on-board the camera, and with the

distance between the cameras being fixed and known, the camera is able to compute a disparity
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image. This process can be done at 90 frames per second with 720p resolution and with a

maximum range of 6m. This depth stream is then combined with the 800p resolution, 30 frames

per second RGB stream to achieve an RGBD 3D image with a horizontal field of view of 90°and a

vertical field of view of 65°. There is an infrared emitter within the camera, but its only function is

to illuminate the scene in the infrared band to make stronger and more accurate feature matching

in the depth stream; there is no sensor measuring ToF to establish depth.

Figure 2.7: Intel RealSense D455 RGBD camera.

The passive sensing nature and low-profile of this camera makes it ideal for underwater

short-range applications. This aspect will be discussed further in Chapter 5.

2.4.3 Structured Light

One other common method of depth sensing for RGBD cameras is with structured light.

Structured light is where a known pattern of light, typically infrared, is projected onto the

environment over the field of view of the camera. Then, the imaging sensors measures the

deformation of this pattern of light, and thus the 3D geometry of the environment, as seen in

Figure 2.8. This 3D information is quantified into a depth image, which is then aligned with the

RGB stream, similarly to the previously mentioned RGBD cameras.

One prominent structured light RGBD camera is the first generation of the Microsoft

Kinect Sensor. Another such camera is the Intel RealSense SR305 RGBD camera. These cameras

were state of the art a decade ago and are still usable, but improvements in computation have

allowed stereo and ToF RGBD cameras to surpass structured light RGBD cameras in terms of

resolution and accuracy in recent years.
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Figure 2.8: Operation of structured light.

2.5 Photogrammetry and SfM

One final method of gathering 3D information about a scene uses the most common

sensors of all: monocular RGB cameras. Just as stereo cameras match features between image

pairs to create a single disparity image, with monocular cameras we are able to match features

between sets of single images to create an estimate of the 3D geometry of the scene. This is

known as Structure from Motion (SfM), which is a type of photogrammetry. As the number of

images of the scene increase, particularly images that have significant overlap, the geometry of the

scene and thus the position of the camera for each image can be estimated. However, in contrast

to stereo imaging, the distance between images is not known. This means that even though the

geometry may be accurate, it is impossible to know the scale of the reconstruction unless there

is are known points of reference within the scene. This is not difficult to do in environments

that are easily controlled, as you can place and measure markers within the scene, but in more

complex environments, the results from SfM must be correlated with other sensors to achieve

proper scaling and allow measurements to be taken. We explore this further in Chapter 4.
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Chapter 3

Target Detection using Features for Sonar

Images

In this chapter we present and explore a workflow for utilizing 3D data capture to image

and detect targets on the seafloor with synthetic aperture sonar (SAS). This workflow follows

along the generic workflow presented in Figure 2.1 and we primarily explore the final step in

this workflow with the optimization of a target detection algorithm. Steps 1 through 3 in this

particular application are handled by the SAS and the computer of the autonomous underwater

vehicle (AUV) that controls the SAS. SAS emits and listens for the acoustic beams (step 1),

constructs the return of each beam into an image (step 2), and adds in longitude, latitude, and

depth information as determined by the navigational sensors on the AUV (step 3).

3.1 Introduction

Sonar imaging is a valuable tool for analyzing the seafloor. Detecting the presence

of sunken ships and archaeological sites on the seafloor, mapping structures and objects, or

performing pipeline inspection are all extremely useful tasks that are difficult for divers to
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accomplish, particularly in areas of significant depth. Current synthetic aperture sonar (SAS)

imaging systems provide cm scale resolution at ranges of ≈ 100m, and can be equipped on

Autonomous Underwater Vehicles (AUVs) or vessels that remain on the surface, such as ships

or Unmanned Surface Vehicles (USVs). Yet, sonar images are heterogeneous by nature, and

the design of a fully automated system for object detection that is robust to various seafloor

environments and that functions well for different types of targets is challenging. Fig. 3.1 shows

a sonar image that contains different seabed structures where Poseidonea, sand, and sand ripples

exist in the same image. Each of these have different features and characteristics that make

detection challenging.

There are a number of approaches for the task of detection objects in a sonar image.

One possibility is using a supervised learning approach that compares regions in the image to

previously known patterns that correspond to objects. Barngrover [Bar14] trains a Haar-like

feature classifier on a large dataset of objects for mine detection. These approaches are prone to

false negatives when there is mismatch between the template and the actual sonar image, e.g.,

due to changes with altitude and angle of the sonar system with respect to the target. Further, this

supervised learning may only correspond to the case when the shape of the target is known a priori.

Figure 3.1: Sonar image with heterogenous seabed structures – sand, sand ripples, and Posi-
donea plant life.
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Figure 3.2: Synthetic Aperture Sonar (SAS) image of the seafloor with an object appearing
prominently in the center right.

Myers et al. [MF10] suggests an alternative which segments a sonar image into five classes based

on simple thresholding and compares them to previously established templates. These templates

are generated from a database of targets at a variety of orientations. Recently, Abu et al. [AR19]

abandons supervised learning altogether and proposes a statistical detection approach. Their

classifier uses the sonar parameters and on the expected distribution of the highlight, shadow, and

background. The result is a detected region-of-interest based on segmentation of highlights and

shadow, set by a likelihood ratio.

While the above approaches perform well for their application, they all inherently assume

some knowledge about the target, e.g., the shape of the object in template matching or an assumed

distribution for the highlight or shadow as in statistical detection methods. Instead, in this work

we focus on the case where such information is not available. Our method only relies on the

assumption that the object is sufficiently different from its environment. That is, we assume that

there exist some features related only to the object to allow us to separate it from its environment.

As shown in the example in Fig. 3.2, these objects can manifest as a bright circle against a sandy

background or a shadow with complex geometry.

Feature detectors lie at the heart of all indirect image processing techniques. They
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do not require prior knowledge of the target; instead they aim to identify geometry that is

highly distinguishable from the background. As a result, feature detectors fulfill the robustness

requirement for handling multiple sea environments and sonar images. Yet, although feature

detectors have been successfully applied for the detection of objects in optical images or videos

[HCC+15],[LWZ11],[DABP14],[ZN13], there has been little done to explore their effectiveness

in the sonar realm.

The two main challenges of feature-based target detection are 1) separating the target from

the background and 2) setting up of the feature parameters. Regarding the former, the features

extracted from the target and from target-like objects like rocks or ripples are hard to distinguish

especially in a diverse seabed environment. Regarding the latter, the number of parameters range

from 3 to 6 depending on the method used (see Table 3.1). Yet, the number of values for each

parameter has thousands of possibilities. While the default parameters have been set to give

good performance with simple images, these default parameters are far from being suitable in

the general case [MTM10] and we show that custom parameters are necessary for sonar images.

Unfortunately, the brute force exploration of all possible configurations is not feasible. This is

exacerbated by the fact that the performance of the feature extraction is highly affected by the

unique patterns on the seafloor, such as sand, sand ripples, or grass, as seen in Fig. 3.1.

We introduce a new methodology for feature-based target detection that addresses these

two challenges. Our method accounts for the expected spatial separation of the target and the

type of background in the sonar image. The method also efficiently explores the parameter

space across the various environment backgrounds to find the optimal or near optimal parameter

configuration for a given sonar image background type. Our method does not guarantee optimal

detection, but rather approaches optimality with low complexity.

Our method fits target identification applications like simultaneous localization and

mapping (SLAM) or identification of targets that stand out from their environment, e.g., pipeline

exploration, archaeological surveys, and mine detection. The algorithm works by first gathering
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features across a dataset of sonar images and training a classifier to label each feature as object

or non-object.We then modify the parameters of the feature detectors and find the set of best

parameters to fit the evaluated seabed type using design space exploration. This solves the problem

of needing to hand tune the parameters of the detector, and manually test tens of thousands of

configurations to optimize performance. Finally, given a set of features generated by the optimal

parameters, we perform target detection by prioritizing detection of distinct features in space to

identify the coordinates of single or multiple targets.

Our contributions are:

1. A method for feature-based target detection on sonar imagery that takes into account the

spatial identification of a target, as well as the type of background;

2. An implementation of an active learning design space exploration method to optimize

feature detector parameters on sonar imagery;

3. A comparison of the relative performances of feature detectors on a simulated synthetic

aperture sonar dataset.

We explore the performance of our algorithm via a designated simulator for sonar images,

and over a set of sonar images we obtained using our own AUV platform. This SAS image

simulator [AD18] has been used previously to train methods that have been experimentally verified

on real SAS images, and thus we can expect similar reliability. The results show that identifying

the background and utilizing a feature detector with parameters optimized for that background

yields the best result. Yet we also observe that in the general case where the background is not

known or estimated, utilizing parameters trained for all backgrounds together produces the most

reliable performance. Additionally, the design space exploration yields much higher performance

than the default values for every feature detector. The optimized parameters for each background

also yield different performances, dramatically so for some feature detectors.

17



This paper is organized as follows. In Section 3.2, we describe the state-of-the-art in

target detection on sonar images. Section 3.3 includes the details of our target detection method.

In Section 3.4 we show how the feature exploration’s parameters are set. Section 3.5 includes

results from synthetic images and from real sonar images. We conclude in Section 3.6.

3.2 Related Work

There has been a great deal of interest of non-model based object detection in sonar

imagery for segmentation and mapping unknown environments. However, the literature is sparse

when it comes to analyzing and optimizing feature detection, which is the very first step of the

process.

Feature-based detectors for sonar images have been mostly used for applications related

to subsea navigation. In particular, the main approaches use feature extraction to identify similar

objects within a set of sonar images. Wililams et al. [WDDW01] perform two steps for such

identification: first, they identify areas of constant depth as those may correspond to real objects.

Then they classify pixels which are of consistent depth and not larger than a specified threshold

as point features and feed them into subsequent feature matching for navigation. Similarly, the

work by Johannsson et al. [JKE+10] utilizes a simple computer vision pipeline of smoothing,

gradient thresholding, and clustering, which is similar to simple feature detectors that the work

by Harris et al. [HS88] evaluates. They use these features to perform registration on overlapping

frames, which in turn generates motion estimates between frames for SLAM.

The use of feature extraction for SLAM applications is common. Ribas et al. [RRNT06],

[RRTN08] use a mechanical forward looking scanning sonar (FLS) that produces consecutive

sonar images while the underwater vehicle is moving. The movement creates a warped image

since different parts of the image will be observed from different locations. To remove these

distortions, they use a motion estimate to re-align each pixel to a globally consistent frame.
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After this pre-processing step, they use a simple line extraction detector for target identification.

Similarly, Fallon et al. [FFML13] propose a feature-based navigation system to incorporate

features from high resolution maps of the seafloor and relocate objects using a lower resolution

FLS. To detect features from the FLS, they first adaptively thresholded each image based on

altitude to remove background noise. Then, they segment the image and use a gradient based

feature detector with a threshold based on the average background image level to identify points

of highlight and shadow. They then register these features back against the map and use them in a

SLAM framework. Yet, the results show that performance are highly dependent on the seabed

type.

While the above methods are tested for realistic sonar images, we identify some major

gaps. In particular, the algorithms do not consider the spatial variation in sonar images. Even

more importantly, the available methods optimize their parameters based on a small scale of cases,

which may not fit the aim of robustness to various target types and different seabed structures.

Specifically, these methods are missing an analysis of how to optimize the performance of these

detectors in a broader set of environments. In this paper, we consider these two observations

and offer a method for feature-based target detection that uses spatial information in target

identification, as well as a rigorous methodology of how to set parameters to match a self-

identified seabed type.

3.3 Feature Based Target Detection

3.3.1 System Model and Key Idea

Our system model includes a single sonar image of any type, e.g., SAS, multibeam, or

FLS. The sonar image we consider is two-dimensional (2D), although 3D extension is straight

forward. The sonar image may or may not include a target, but we assume that if a target is

present, it is distinguishable from the seabed environment. That is, it is either isolated compared
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to similar objects (e.g., a cluster of rocks) or it has a unique pattern. We do not assume knowledge

about the shape of the target. Our goal is to identify the existence and location of a target in the

given sonar image. In our scheme, we use knowledge of the seabed environment type: specifically

sand ripples, grass, and a mix of these backgrounds.

Figure 3.3 outlines our general approach. We start with an image (block 1) and setting the

parameters (block 2) to a feature detection algorithm to detect an object in the presence of any

typical seafloor pattern. These default parameters will be the ones that give the best results across

a mix of all backgrounds. The detection algorithm then returns keypoints (block 3), which are the

pixel coordinates and calculated intensities associated with a feature. We rank the intensity of

the keypoints and apply a threshold (block 4)1 to return the best keypoints and their coordinates.

Once we identify the subset of features and locations (block 5), we extract the additional feature

descriptors (blocks 6-7) and we make a decision about the seabed type between four different

clusters (block 8): sand ripple; grass; sand; and mix. Then we execute the feature extraction

algorithm again for the set of parameters that best fits the evaluated seabed environment (blocks

2-7). Finally, we perform target detection (block 9) based on the joint spatial spread of the

detected features to identify a single or a set of targets that stand out from their environment either

in terms of their pattern or by being spatially separate.

3.3.2 Feature Extraction

We base our detector on an underlying feature extraction algorithm. In this work, we do

not develop our own feature extracting algorithm. Rather, we explore a variety of such filters,

and provide the framework to include these algorithms for target detection in sonar images.

Non-model based feature detectors are all fundamentally based on analyzing intensity gradients

in an image, but differ in determining uniqueness based on patterns at a point (i.e. corner) or

within a region surrounding a point (i.e. blob) or some combination of the two.

1Note the threshold is determined as a system parameter and is not user defined.
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We compare seven feature extraction algorithms: Harris [HS88], Shi-Tomasi [S+94],

STAR [Ope18], FAST [RD06], SIFT [Low04], SURF [BTVG06], and ORB [RRKB11]. Each of

these are widely-used, are considered general purpose, and are similar to detectors used by state-

of-the-art feature based navigation methods [FFML13],[JKE+10]. Further, these algorithms are

all available in the open-source library OpenCV [Bra00]. These algorithms act as the Detection

Filter block in Fig. 3.3. Given a set of parameters, the feature detector gives coordinates for a

feature along with a single intensity value. Some detectors, namely STAR, SIFT, SURF, and ORB,

return additional information beyond the single intensity value, such as scale and orientation of

each feature.

The key idea, pros and cons, average running time per feature, and the number of

parameters to tune for each of these detectors are summarized in Table 3.1. The average running

time per feature is computed using each image in our dataset (explained in Section 5.1) and every

possible parameter configuration on a 3.2GHz Intel Core i5 processor with 16-GB 2400-MHz

Figure 3.3: General framework for our feature-based detection algorithm.
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Table 3.1: Comparison of feature detectors

Feature Detector Description Number of Parame-
ters, Number of Con-
figurations

Average
Time Per
Feature

Pros Cons

Harris [HS88] Computes gradi-
ent with respect to
each direction.

5 parameters, 10000
configurations.

637.01 µs Distinguishes
corners and
edges well

Susceptible to
scale variance

Shi-Tomasi [S+94] Similar to Harris
but uses a sim-
pler thresholding
method.

3 parameters, 10000
configurations.

682.77 µs Distinguishes
corners and
edges well

Susceptible to
scale variance

STAR [Ope18] Multi-scale de-
tector with no
subsampling
base on CenSure
[AKB08].

5 parameters, 1000 con-
figurations.

1257.68 µs Robust to view-
point changes

Susceptible
to brightness
changes

FAST [RD06] Computes differ-
ence in brightness
of neighbors in
Bresenham circle.

3 parameters, 500 con-
figurations.

16.42 µs Efficient Poor noise
robustness, sus-
ceptible to scale
and illumination
variance

SIFT [Low04] Computes ori-
ented gradient
histograms for
patches around a
point.

4 parameters, 5000 con-
figurations.

793.94 µs Rotation and
scale invariant

Computationally
expensive, sus-
ceptible to
blur

SURF [BTVG06] A more efficient
approximation of
SIFT.

3 parameters, 1000 con-
figurations.

73.35 µs Faster than SIFT Susceptible to
viewpoint and
illumination
change

ORB [RRKB11] Efficient replace-
ment for SIFT
that builds off
of the FAST
detector.

6 parameters, 15000
configurations.

34.84 µs Scale and rota-
tion invariant,
real-time, noise
resilience

Generally fewer
features

DDR4 RAM. The parameters used by each of these detectors affect the performance in terms of

feature detection. For example, SURF’s three parameters affect the threshold at which points are

accepted or rejected and the size and number of octave layers, which are fundamental components

to its operation. These, in turn, affect the size of features that SURF detects and returns.
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3.3.3 Feature Classification

The output of the feature extraction process is a set of pixel coordinates with associated

intensity values; i.e. a set of features. To decide on the important features out of those that passed

the detection filter by means of classification, we label each feature with ’1’ if it is related to a

target and ’0’ otherwise. As illustrated in Fig. 3.4, for classification we use this set of labeled

features to train a support vector machine (SVM) model via a 4-fold validation process over

a radial basis function (RBF) kernel. SVM was chosen due to its ability to perform well also

for small sets of training data. The model takes the detectors’ outputs (feature intensity, and, if

relevant, scale and orientation), as well as the location of the identified features in the image.

Recall we assume that features corresponding to an object in a sonar image are isolated

from other features. Thus, to classify an object, we use the relative position information to

serve as an input to our SVM model. We avoid setting the absolute position information as

Figure 3.4: Feature classification. The first flow chart represents training an SVM model, and
the second flow chart represents performing classification using that model.
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an input, though, as an object may appear at any position in the image. Instead, we calculate

two characteristics that relate to the feature’s density. The first parameter describes any given

feature’s distance to the closest of two centroids, which we calculate given the total distribution

of features in a single image. In images with a single object, numerous features around the object

will create a centroid that is very close to the position of the object. Therefore, theoretically,

features that have smaller distances to their nearest centroids would be more likely associated

with an object. The pseudocode to setup the distance characteristic is outlined in Algorithm 1,

and a visual representation is depicted in Fig. 3.5.

ALGORITHM 1
Distance to Nearest Centroid

nClasses← 2
kMeansIterations← 15
c← k Means Init Centroids( f eatures,nClasses)
for i = 1 : kMeansIterations do

idx← f ind Closest Centroids( f eatures,c)
c← compute Centroids( f eatures, idx,nClasses)

end for
for p ∈ f eatures do

distCentroid1← norm(p− c(1))
distCentroid2← norm(p− c(2))
if distCentroid1 < distCentroid2 then

distance(p)← distCentroid1
else

distance(p)← distCentroid2
end if

end for

The second parameter is a density index, as related by Equation (3.1), that quantifies the

relative distance from a single point to all other points in the image. This way, features that are

close to many other features will have a lower value than features that are isolated in the image.

These two feature density parameters and the parameters inherently calculated by the

feature detector all make up the ”keypoint descriptors” in Fig. 3.4 that are input to the SVM

model. After training, the SVM, for each keypoint descriptor, will output either a ’1’ for ’object’

24



Figure 3.5: Placement of centroids on simulated sonar images. Features are displayed as cyan
points, and the two centroids are the green plus symbols. Features associated with an object
(left) will on average be closer to a centroid than features not associated with an object (right).

or ’0’ for ’non-object’. By this method we perform feature classification.

3.3.4 Identifying Seabed Structure

Once we extract the set of features, F , we make a decision on the type of seabed.

Information on the seabed type allows us to better determine the feature extraction algorithm’s

parameters. We take a set of images of an unknown seabed and compute the number of features,

the distribution of features within images, and feature descriptors. These criteria are compared to

averages of the same criteria computed from a representative dataset of three environments. If

the criteria from F match one of these environments within a predetermined threshold, we make

a decision on the type of seabed and apply the optimal parameters for that seabed. Referring

to Fig. 3.6, we distinguish between sea grass, sand, and sand ripples. We use mix and its

corresponding optimal parameters for a seabed environment that is not well distinguished by the

above criteria. Then, once we properly set these parameters, we execute the feature extraction

algorithm again so that we can glean the most accurate set of features possible.

We base our decision regarding the type of seabed on fixed thresholds on the distribution,

number of the features extracted, and descriptors from the feature detector. We learn these

thresholds from a simulator built by the definitions from Abu et al. [AD18] for the different three
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(a) Example Simulated sonar images.

(b) Distribution of SURF features on the simulated seabeds. The location of a feature is represented by a
green plus symbol, and the scale associated with that feature is represented by a green circle around it.

Figure 3.6: Simulated sonar images with grass (left), ripple (middle), and sand (right) seabeds.

seabeds in Fig. 3.6, while normalizing by the number of pixels in the sonar image.

To quantify the spatial spread of the features, we project the 2D location space of each

feature fi into a closeness index. Let ri be the 2D location of the ith feature, and di, j be the

Euclidean distance between features i and j. We choose the closeness index to be

hi = ∑
k,k 6=i

∑
j, j 6=i,k

(
1−

(ri− rk)
(
r j− rk

)
‖di,k‖‖di, j‖

)
, (3.1)

which, for a point i iterates through each feature k and compares it to every pair of feature i, j. If i

is far from most other features, and those features are relatively close to each other compared

to i, then the equation will evaluate to a relatively large value. Thusly, hi measures how isolated

feature i is relative to the other features, such that the higher hi is, the more isolated feature i is.

Then, we compare the mean of hi ∀i together with the number of extracted features by the above

logic to determine if the current seabed is composed of a few/large number of isolated/dense

features, and then identify the seabed environment.
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3.3.5 Target Detection

Once we identify the seabed, the feature classification step is run with the detector

parameters tuned for that specific seabed type. This yields a set of features that we can now

analyze to identify the coordinates of a single or a set number of targets within an image. We use

three methods for identifying a target. The first method sorts the features by intensity and applies

a simple threshold to label the n features with the highest intensities as n targets in the image.

This is the method that is typically used, as by design a higher intensity indicates a ’stronger’

feature.

The second method calculates weights for each feature using (3.1). The weights are then

normalized by calculating

ŵi =
hi

∑
j

h j
, (3.2)

and then the weight ŵi of each feature is multiplied by its intensity vi:

v̄i = ŵivi. (3.3)

The intuition here is that intensity is not the only quality of a feature indicating it can correspond

to an object. The spatial relationship between one feature and all other features can also hint at

the existence of an object. Combining this information will theoretically lead to a more robust

target detection.

The third method utilizes the same weights ŵ and multiplies by the intensity of a feature

normalized with a fixed window:

ṽi = ŵi
vi

1
‖S j‖ ∑

j∈S j

v j
, (3.4)

where S j is the set of features within a 5 by 5 pixel window surrounding feature j. Features

corresponding to objects will theoretically be more different than their immediately surrounding
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features in comparison to the difference between features corresponding to noise or backgrounds.

However, this method relies on the window size being larger than the objects in the image so that

the intensity differences are more significant.

Finally, similar to the first method, a threshold is set for the sorted values of v̄ and ṽ to

identify the n targets within the image.

3.4 Design Space Exploration

One of the main challenges in our feature-based target detection is how to determine

the optimal set of parameters for each feature detection algorithm to obtain a favorable trade

off between the true positive rate and the false positive rate. While each of the algorithms we

consider may only have 4 or 5 parameters, the number of possible combinations quickly builds

up as the granularity of the sampling for each parameter increases.

To illustrate this, consider an algorithm with only 5 parameters each having only 4 possible

values. Then, the total number of designs is 1024. Now consider an evaluation process for a

single design that lasts for 10 minutes. The result would be approximately 1 week of continuous

computing to fully explore the design space. Naturally, this duration compounds when several

seabed environments and target types are explored. Clearly a method to reduce the computing

time while still achieving a good approximation of the set of optimal designs is required. While

for optic images the default parameters supplied with the feature extractors are designed to be

suitable, to the best of our knowledge, how to set the parameters for sonar images has not been

explored.

3.4.1 Exploring the Space of Parameters

We propose a parameter-tuning methodology based on active learning. While there exists

several options for parameter exploration via active learning, e.g., [LC13],[IMS+08],[BNZ+16],
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we adopt previous design space exploration work known as ATNE [MAGK16] that we have

modified for our application, which works by sampling a design based on whether it guesses

that the results will either further explore the design space or get closer to the optimal edge.

Instead of brute-force exploring the whole sample domain, ATNE covers a subset sufficient to

estimate the Pareto-optimal front for even very complicated non-linear design spaces. It marks an

improvement on previous active learning papers by requiring fewer initial random samples: 6

compared to 3000 [BNZ+16]. Additionally, it can handle complex design spaces of a variety of

sizes and retain similar prediction quality. By running ATNE on each detector for each dataset

of seabed environments (200 images for grass, ripple, and sand, and all 600 images for the mix

dataset), we can generate a set of feature detector parameters. The result is a decrease by 70%

in the exploration time of the best set of parameters. Each design can take up to 8 minutes to

evaluate on an Intel Core i5-6500 Skylake Quad 3.2GHz with 16GB of memory and a Sapphire

Radeon Nitro R7 370 4GB GPU. Thus, with a feature detector with 500 possible designs, it saves

about 47 hours of processing time.

To demonstrate the operation of ATNE, Figure 3.7 shows that a 30% sampling of the

design space with the predicted best configurations in black, compared to the true optimal (brute

forced) Pareto front in red. Additionally, the sampled designs are shown with a magenta dot, and

the full space of designs are shown simply as blue circles. It is clear that ATNE, though sampling

only a portion of the designs, essentially reconstructs the space and estimates a Pareto-optimal set

of designs that are close to the ground truth optimal set. We measure the closeness to ground truth

using average minimum distance from reference set (ADRS) [MAGK16],[PSZ09] and ATNE.

ADRS is defined as

ADRS(Pgt,Ppred) =
1
|Pgt| ∑

pgt∈Pgt

min
ppred∈Ppred

d(pgt,ppred), (3.5)

where Ppred and Pgt are the sets of points in the predicted Pareto front and the ground truth Pareto
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Figure 3.7: Example for a Design Space Exploration. The red line shows the true set of optimal
designs, and the black line shows what was estimated utilizing only the magenta points.

front, and the function d(pgt,ppred) represents the distance between a point in the ground truth set

and a point in the predicted set.

3.4.2 Utilization Function for Parameter Exploration

As any reinforcement learning technique, ATNE requires an objective function or space

to converge to. Since our aim is target detection, we choose the receiver operator characteristic

(ROC) which compares the number of correctly classified object features against the number of

incorrectly classified non-object features. One alternative is the precision-recall curve, which is

used in cases where there is an abundance of one class over another. Though there is an imbalance

in our case (there are far fewer object pixels than background pixels), the ROC is a better choice

because it is more important to us that the object as a whole is identified robustly in comparison

with the background, rather than every single object pixel be identified. The ROC is a common

way of choosing parameters for detections; yet, ROCs can also be used to compare detectors. In

that context, we recall that a desired detector would yield a better false positive-true positive trade

off in most of the cases compared to other options. If we use a graphical explanation (see for

example Fig. 3.8), the best detector would be the one obtaining the far left curve of the ROC.

Utilizing this observation, as a utility function, we feed ATNE with approximations of the ROC
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by sampling three true positive-false positive pairs on the curve.

Our procedure works as follows. For each feature detector design and parameter con-

figuration, we execute our detection and classification workflow (see Section III) to obtain a

list of features labeled as object. This list is then compared with ground truth information to

yield a precision-recall pair for each parameter configuration. Once ATNE tests one design and

configuration, it decides which design to sample next, based on its updated estimate of the design

space. After sampling 30% of the space, we can then reasonably say that ATNE has recreated the

Pareto-optimal front of the design space. The Pareto-optimal front will consist of the points that

are on the edge of the scatter plot with the fewest false positives and most true positives.

Figure 3.8: Three detectors’ ROCs for a single design
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3.5 Results

In this section, we explore the performance of our feature-based target detection scheme.

Our dataset comprises 600 simulated sonar images to determine the parameter space of each

feature extraction algorithm. In addition, we explore performance for some genuine sonar images

that we gathered in multiple sea experiments. This dataset includes sonar images from a synthetic

aperture sonar (SAS) mounted on our Eca-robotics Alister A18 AUV and we gather multibeam

images using a surface ship-mounted multibeam. We start by exploring the set of parameters

based on our simulator, and then provide sea trial results for target detection.

3.5.1 Simulations

The simulated SAS images depict a single target on one of three backgrounds: grass, sand

ripple, or sand. An example of all three environments is shown in Fig. 3.6. The backgrounds have

equal representation in the dataset, such that there are 200 grass-, 200 ripple-, and 200 sand-based

sonar images. We obtain this dataset from a distribution function tailored to each of these seabed

environments – see [AD18] for further details.

Within each background, there are many different target, shadow, and background intensi-

ties, so that there is sufficient variety represented in the dataset. Because the dataset is split into

three backgrounds, there are four experiments that we can run: one for each background and one

for a mix of all backgrounds. This allows us to test the suitability of various feature detectors for

particular backgrounds in comparison to each other. This is done by measuring the number of

true positives and false positives that each detector generates with a specific design, where the

number of true positives corresponds to all the features that are within the bounding box of the

object, and the number of false positives corresponds to all other features which are outside that

bounding box. We relate these with Equations (3.6) and (3.7) for true positives and false positives,

respectively. We measure the true positive performance by dividing the number of true positives,
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Ntp, by the number of pixels that should have been detected but were not (i.e. false negatives),

Nfn, plus the number of true positives. This denominator corresponds to the number of pixels that

correspond to the object in the image. We measure the false positive performance by dividing the

number of false positives, Nfp, by the number of pixels that were correctly not identified (i.e true

negatives), Ntn, plus the number of false positives. This denominator corresponds to the number

of pixels that correspond to the background of the image.

Ptp =
Ntp

Ntp +Nfn
, (3.6)

Pfp =
N¬fp

Nfp +Ntn
, (3.7)

3.5.2 Classification Results

Table 3.2 illustrates the performance of each of the seven feature detectors on each of the

four datasets. We plot the optimal set of designs for each dataset for a given feature detector for

comparison, with the true positive rate on the y-axis calculated by Equation (3.6) and the false

positive rate on the x-axis calculated by Equation (3.7). With Table 3.2 we show the performance

of the grass, ripple, sand, and mix optimal designs for each of the four datasets. In each plot, there

is a line of best fit for each of the optimal design sets to obtain an estimate of the Pareto-optimal

curve. For example, in the Harris Grass plot, there are five sets of designs that we test on the

grass dataset. As expected, the designs that are optimized for the grass dataset perform the best,

as the red dotted line is the closest to the top left corner. The designs optimized for the other

datasets are shown as well: ripple in magenta, sand in green, mix in blue, and the default designs

with no optimizations in black. In this particular instance, the sand designs appear closest to the

most optimal set of designs.

We calculate the distance between each curve on a single plot using average distance
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to reference set (ADRS) as defined in Equation (3.5). Table 3.4 shows the ADRS values for

each plot. ADRS gives a measure of how far the results are from the optimal results, so lower is

better. An ADRS of 0 indicates that the sets exactly match. We calculate ADRS based off of the

number of true positives and false positives for each point, rather than the performance metrics in

Equations (3.6) and (3.7). Since all the images in the dataset contain the same number of pixels,

this will represent the same relative performance as the plots in Table 3.2. For example, the Harris

Grass plot in Table 3.2 corresponds to the Optimal Grass row in the Harris subtable in Table 3.4.

In this particular case, as we already supposed from the plot, designs trained on the Sand dataset

and tested on the Grass dataset are the closest to the grass optimal front, with an ADRS value of

1.47. This means that if we substitute the parameters for Harris which have been optimized for

the sand dataset, we will get a similar performance as if we used grass parameters, which are

optimized for the actual dataset that is being tested.

In all cases, as the plots illustrate, all optimized designs (even the ones trained and tested

on mismatched datasets) perform better than the designs with default parameters. Additionally, in

most of the combinations, using the designs optimized for the particular background that is being

viewed will dramatically improve performance compared to using a mismatched training dataset.

We would expect that there be a consensus of which set of optimal designs would be best

to use without any knowledge of the background that is being tested. In other words, that a single

column in each of the subtables in Table 3.4 will contain a majority of bold values, such as is the

case for the Shi-Tomasi table, where the designs optimized for the mix dataset are always second

best in each of the individual datasets.

3.5.3 Comparing Feature Extraction Algorithms

While is not our main aim, our method provides a efficient way to compare the perfor-

mance of the seven feature extraction algorithms used. We base our comparison on the ROC

performance of the seven methods in Tables 3.2 and 3.4.
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Table 3.2: In the majority of cases, all optimized curves perform better than the default curves
(in black). The curves optimized for a particular background perform at least as well, but
typically significantly better than curves optimized for other backgrounds.

Harris Shi-Tomasi SIFT SURF
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Table 3.3: ROC Curves Continued

STAR FAST ORB
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Table 3.4: ADRS values for each feature detector. The dataset with the designs closest to each
optimal front is in bold. This is a numerical representation of the plots in Table 3.2, and support
the conclusions drawn from visual analysis.

Harris Grass Ripple Sand Mix Shi-
Tomasi

Grass Ripple Sand Mix

Optimal
Grass

0 9.14 1.47 5.12 Optimal
Grass

0 9.01 5.12 7.78

Optimal
Ripple

9.24 0 24.15 16.19 Optimal
Ripple

5.02 0 7.44 0.50

Optimal
Sand

13.35 34.23 0 12.41 Optimal
Sand

7.37 6.24 0 2.36

Optimal
Mix

86.16 56.76 142.80 0 Optimal
Mix

28.17 19.31 28.59 0

SIFT Grass Ripple Sand Mix SURF Grass Ripple Sand Mix

Optimal
Grass

0 2.30 6.94 6.62 Optimal
Grass

0 10.06 20.50 10.17

Optimal
Ripple

79.96 0 93.25 50.41 Optimal
Ripple

5.23 0 17.32 3.91

Optimal
Sand

28.65 19.50 0 18.04 Optimal
Sand

18.22 9.45 0 7.79

Optimal
Mix

22.32 11.90 25.16 0 Optimal
Mix

32.59 1.82 39.08 0

STAR Grass Ripple Sand Mix FAST Grass Ripple Sand Mix

Optimal
Grass

0 20.00 13.36 33.35 Optimal
Grass

0 2.95 0 9.77

Optimal
Ripple

45.27 0 35.73 25.60 Optimal
Ripple

46.33 0 52.87 35.41

Optimal
Sand

4.56 7.60 0 25.35 Optimal
Sand

0 0.24 0 3.68

Optimal
Mix

7.11 10.77 9.46 0 Optimal
Mix

20.22 0 17.49 0

ORB Grass Ripple Sand Mix

Optimal
Grass

0 3.65 2.13 1.71

Optimal
Ripple

60.22 0 289.55 140.56

Optimal
Sand

19.24 26.60 0 12.20

Optimal
Mix

25.52 9.58 5.70 0
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From the plots, and verifying with the ADRS values, the Shi-Tomasi, SURF, and ORB

designs optimized for the dataset containing a mix of all backgrounds performs consistently well

in comparison to the other feature detectors in all categories. These are the most robust of the 7

feature detectors that were tested, and would function better than the others in environments with

a variety of seabeds if there was no ability to detect the type of seabed.

Harris is interesting in that each set of designs trained on the individual datasets perform

very close to optimally when tested on the datasets all together, but the designs trained on the

datasets all together only perform averagely when tested on individual datasets. FAST is also

unique in that it has a smaller design space and a number of the designs have identical performance.

This yields a situation where the designs trained on grass and sand are identically optimal when

testing on grass and sand datasets, but have different ADRS values when testing on the ripple or

mix datasets.

3.5.4 Real Sonar Images

Table 3.5 shows the performance of the target detection step on real sonar images. The

first two images are from a surface ship mounted multibeam sonar. The first image contains

multiple prominent rocks on a nonhomogenous seafloor. The second image contains three targets

deliberately placed on the seafloor, but are not as prominent against the background. The third

and fourth images are from our AUV mounted SAS, and each contain a single target: a simple

pipe and a complex shipwreck, respectively. For the first two images, which contain multiple

targets, we expect that Method 1, a simple threshold filter, will identify the single most prominent

target. We also expect that Methods 2 and 3, which take the distribution of features into account,

will identify other targets in the image as well. Additionally, for all images we expect that features

with high intensities that correspond to the seafloor will be eliminated by Methods 2 and 3.

We show results for the SURF feature extraction algorithm, and note that the results are

similar in trends for the other feature extraction algorithms. The images each have at least one
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target, outlined in the first column. The methods we test are outlined in Section III.E: Method

1 corresponds to the simple feature intensity thresholding, Method 2 corresponds to (3.3), and

Method 3 corresponds to (3.4).

We observe that Methods 2 and 3 present a clear improvement over Method 1. In particular,

separate targets are identified more strongly in the first and second images, and in the first and

third images the vast majority of false detections on the background are eliminated. The fourth

image depicts a single, large, complex feature, and as such it is easily identifiable by all methods.

3.6 Conclusion

In this paper, we presented a feature extraction-based method to detect targets in sonar

imagery. Our method does not require prior knowledge of the shape or distribution of the

target, and is capable of target detection for multiple seabed environments and sonar types. We

described the framework of our detector, and showed how it exploits the spatial diversity of the

extracted features. Further, we described our methodology for exploring the parameter space

across the various environment backgrounds to determine the parameters of the feature extraction

algorithms. We demonstrated the applicability of our approach over a simulated dataset and

examined it on genuine sonar imagery of different sonar types. The results showed that optimized

parameters yields much higher performances than default parameters. Further work will combine

the positives of all feature extraction algorithms to yield a better and more robust detection rate.

Additionally, the use of neural networks may illuminate additional optimizations that the support

vector machines we used could not, and presents an interesting opportunity for future research.

This could be paired with additional research into a more robust sonar image simulator. The one

used in this paper has limited dimensionality, and as such generating additional images to use a

neural network runs the risk of overfitting.
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Table 3.5: Target Detection Methods on Real Sonar Images with the SURF detector. Methods 2
and 3 reduce the number of false positives.

Original Method 1 Method 2 Method 3

Object: 5 — Non-Object: 4 Object: 8 — Non-Object: 1 Object: 8 — Non-Object: 1

Object: 4 — Non-Object: 16 Object: 8 — Non-Object: 12 Object: 9 — Non-Object: 11

Object: 6 — Non-Object: 14 Object: 15 — Non-Object: 5 Object: 16 — Non-Object: 4

Object: 48 — Non-Object: 2 Object: 50 — Non-Object: 0 Object: 50 — Non-Object: 0

40



3.7 Acknowledgments

Chapter 3, in full, is a reprint of the material as it appears in IET Radar, Sonar, &

Navigation 2020. Tueller, Peter; Kastner, Ryan; Diamant, Roee. The dissertation author was the

primary investigator and author of this paper.

This work was sponsored in part by the NATO Science for Peace and Security Programme

under grant G5293. A portion of this work with preliminary results was presented at OCEANS

’18 in Charleston, SC, USA on October 24, 2018 [TKD18].

41



Chapter 4

3D Reconstructions of Ancient Mayan

Archaeological Excavations

In this chapter we present a workflow for performing 3D data capture for archaeologists,

specifically with regards to the Mayan civilization at El Zotz in the Petén region of modern

Guatemala. This workflow follows along the generic workflow presented in Figure 2.1 and each

step is explored. For step 1, we use multiple different sensors: LiDAR, photogrammetry, RGBD

cameras, and satellite data. The excavation sites are so remote and fragile that each sensor is

extremely limited in what it can observe safely, and so we aim to combine the best aspects of

each sensor to achieve a full reconstruction of the environment. Steps 2 and 3 focus on cleaning

and combining the scans for each sensor individually and all together, respectively. Finally, step 4

encapsulates the entire reconstruction and how we communicate measurements that are important

to archaeologists and contextualize the scale and geometry of the sites in ways that are intuitive

and clear to people who have not physically visited the sites.
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4.1 Introduction

Digital documentation techniques are becoming increasingly commonplace for visual-

ization and measurement of archaeological excavations where high-resolution, remotely sensed

data provide a more accurate record than traditional analog recording of excavation contexts,

architecture and ancient monuments [GRN+16]. However, each technique may only be viable for

documenting certain aspects of the excavation, such as overall geometric structure or detailed

interior color and texture.

Digital documentation of excavation M7-1 at El Zotz, Guatemala has been done over

several field seasons using Terrestrial LiDAR. In 2014 the Faro Focus 3D 120 was used to

generate a precise 3D model to aid Archaeologist in tunnel mapping. In 2016, structure M7-1

was excavated even further, and a new Point Cloud was acquired to merge with previous data. In

2019, the Leica BLK360 imaging laser scanner was used to append newly excavated tunnels to

the Point Cloud previously acquired.

Starting in the 2017 expedition, we began to incorporate additional techniques for re-

construction called Simultaneous Localization and Mapping (SLAM). While the accuracy of

the reconstructions created by SLAM is lower than the reconstructions from properly executed

LiDAR scans, the usability is much higher. In other words, the ability to properly execute a

scan in the confined quarters of the excavated tunnels is easier. Incorporating this approach has

allowed us to abandon a ’one-size-fits-all’ approach, and instead utilize the best aspects of each

sensor and combine their results in a way that is greater than the sum of their parts. We aim to

find the combination in which usability is manageable and accuracy remains high.

Additionally, during the 2017 and 2021 field expeditions, SLAM based on RGBD scans

from an Intel RealSense L515 camera were used to also gather Point Clouds in an effort to

compare their accuracy to the LiDAR scans and to augment shortcomings of the LiDAR scans.

Regardless of how the desired Point Clouds are obtained the steps that follow can be used to
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prepare the scan data for real-time applications using game engines like Unity or Unreal with a

Desktop (e.g Non-Gaming, Gaming), Mobile-device (e.g Smartphone, Tablet), VR/AR HMD

(e.g Oculus Quest, Microsoft Hololens), or Online Viewer (e.g Potree, SketchFab).

Figure 4.1: Interior of m7-1.

The contributions of this chapter are:

1. A comparison of 3D capture techniques for archaeological tunnel excavations to evaluate

most accurate and most usable techniques for virtual representation;

2. A workflow for representing archaeological tunnel excavations using data from 3D sensors

that is more complete and accurate than workflows using single sensors;

3. An exploration of virtual reality as a means for communicating and visualizing archaeolog-

ical excavations;

4.2 Sensing for Archaeology

For Mesoamerican structures, tunneling is the primary method for archaeological exca-

vation, as opposed to trenching. This is primarily because ancient Maya civilizations tended
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Figure 4.2: Exterior of m7-1

to build structures over and around other structures that were no longer usable. In most cases,

these previous structures were deliberately preserved by the Maya people, and as such, as tunnels

penetrate deeper into the site, archeologists travel back in time. Each layer must be kept intact,

as it is all valuable from an archaeological perspective, and thus the tunnels that are created

become labyrinthine and convoluted. Still, archaeologists must keep careful measurements of the

dimensions of the tunnels so that geometric data of the structures and locations of artifacts can be

accurately recorded, but due to the complicated nature of the tunnels, collecting measurements

to create drawings is not easily usable. Additionally, because the excavations are not exposed,

visually assessing the sites can be a difficult task. Being able to represent the sites with high

resolution and accurate reconstructions is valuable not only for archaeologists to evaluate the

sites from a geometric perspective, but also for a wider audience to evaluate and understand the

sites from a historic and cultural perspective in a way that photographs cannot capture.
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4.2.1 LiDAR

Terrestrial LiDAR scanners are high precision devices that can capture the geometry of

their surrounding environment. LiDARs emit lasers in many directions, and calculate the distance

to the device by measuring the time delay to the reflected signal. These devices are often used for

cultural heritage documentation due to their high accuracy. This type of documentation is popular

in Maya archaeology [GRN+16, CLM14], which means that there is good, high-resolution

baseline 3D data to compare against other sensors and methods. While individual 3D scans

generally get millimeter accuracy, the process of collecting the data over extensive excavation

sections is very long. Furthermore, the final result is obtained after a lengthy post-processing step

that cannot be performed directly in the field, preventing a quick visualization of the current scan.

Finally, the cost of high-quality laser scanners is often a barrier to large-scale deployment, or

deployment in difficult environments (e.g., narrow, dusty tunnels) where the equipment is at risk

of being damaged.

Figure 4.3: Using Fine Registration to extend the virtual excavation with point cloud data from
2015, 2017, and 2019 field expeditions.

4.2.2 Photogrammetry

“Structure-from-motion” photogrammetry is a general technique that uses computer

vision algorithms to reconstruct a 3D shape from a set of 2D pictures. It is a very accessible
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Figure 4.4: Left-Center: CSF Filter Point Cloud Results from m7-1 exterior perimeter. Right:
Meshed Game Asset in Unity

solution to scan different types of environments; the user only needs a digital camera, and

potentially a good light source. This technique also provides good results for cultural heritage

documentation [Yas07, FFADT13]. The largest drawback is the computational time required

to process the data. Due to this limitation, it can be difficult to evaluate the results in the field.

Additionally, the computation time grows very rapidly with the number of photos, and that

number grows quickly with the size of the area to scan, which renders the scan of an entire

excavation very difficult. The sometimes-cramped conditions of archaeological contexts with

fragile cultural heritage monuments can also be a deterrent to photogrammetric methods that

require the photographer to be in close proximity to sensitive features for extended periods of

time.

4.2.3 Simultaneous Localization And Mapping with RGBD Sensors

Simultaneous Localization And Mapping (SLAM) algorithms are a class of algorithms –

first defined in 1986 [SC86] – focused on localizing an agent within an unknown environment

while simultaneously building a map of this environment [DB06]. The goal of SLAM is to

provide an update of the position and/or a map in real-time. The definition of real-time varies with

the application, but in our case, we target an update around the same speed as camera sensors,
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Figure 4.5: Spider Monkey Bowl found in m7-1. From left: photographs taken back at camp.
Center: Agisoft Photoscan reconstruction output, Right: Final Game Asset inside Unreal Engine.

i.e., 30 Hz. We are particularly interested in the use of visual SLAM algorithms, utilizing visual

sensors, but SLAM works with any number and combinations of sensors ([KVSMK11, MSK+11,

LLZH14, FZG+17, IA17, MAT17]).

In parallel with the development of SLAM algorithms, many low-cost visual and depth

sensors have been commercialized in the past few years. The Microsoft Kinect and the Intel

Realsense are two examples of such sensors, which combine an RGB camera with a depth sensor

that provides geometrical information about the scene.

The combination of SLAM algorithms and low-cost sensors yields a good solution to the

problem of obtaining quick 3D scans of a scene. However, the quality of results is unknown and

can be difficult to assess for multiple reasons. First, there is a wide variety of SLAM algorithms

available, all using different methods to achieve the best quality of results. Second, each sensor

has its own specificity, and specifically all sensors present a certain degree of noise that needs

to be mitigated by the algorithms. Finally, many algorithms are developed in a similar, well-lit

environment, but few are tested in the field where the condition are often less than ideal to

maintain a good quality of tracking. We tested our prototype in Guatemala where archaeological

excavations at a Classic Maya (250–1000 CE) site present a challenging environment due to the

lack of good lighting, and narrow tunnels without connecting loops.

Several studies actually compare and evaluate SLAM algorithms. Zennaro and col-
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leagues [ZMM+15] compared two low-cost depth cameras in terms of noise, and Kraft’s

team [KNS+17] evaluated these cameras on trajectory estimation. Huletski and colleagues [HKK15]

compared multiple SLAM algorithms on a standard dataset. The common point of these studies is

the use of an indoor, office-like environment. Though there has also been extensive evaluation of

SLAM in outdoor environments for autonomous driving [BAYG17]. Most of the evaluations are

driven by the availability of data, typically through standard benchmarks with provided ground

truth (e.g., [SEE+12, GLU12]).

Other works study the usage of various handheld or robot-mounted sensors dedicated to

the collection of 3D data in cultural heritage sites. Various studies present the evaluation of a

handheld LiDAR scanning system in different field environments ([ZBG+14, Far16, DFSAB+18,

NMR+17]). This system constitutes an improvement over larger terrestrial LiDARs in terms of

usability, but remains a costly piece of equipment along with closed-source, commercial software.

[NMR+17] and [MFG+17] both evaluated a commercial backpack mapping system, providing a

good mobile sensing solution, but also containing costly sensors. We present a study of multiple

SLAM algorithms with multiple consumer-grade depth cameras, (see [LMFS16] for a similar

study), in a more constrained environment, and comparing more recent and complex SLAM

algorithms.

4.3 Multi-Sensor Registration

Previous expeditions tried to utilize just one sensor to gather the most useful data for

a single site. As the need for covering more detail of the site increased, though, each sensor

began to give diminishing returns in terms of usability and accuracy. In order to capture every

nook and cranny, the number of LiDAR scans that need to be set up and executed increase

exponentially. Photogrammetry is good for small areas, but large geometric reconstructions

are infeasible. Finally, reconstructions from SLAM techniques are easy to gather in a tunnel

49



environment, but the sensors lose tracking over large areas and cannot capture low level detail.

We aim to utilize the best of each of the sensors to create a full, accurate, immersive 3D model of

the excavations, while greatly reducing the time and difficulty of data gathering.

While the benefits of multi-sensor registration may seem clear, it is not often done

because the types of data each sensor provides can be drastically different not just in terms

of format, but also in terms of differing types of error and scale. In this chapter we present

a method for combining data from disparate sensors that are typically used in archaeological

scanning that unlocks the ability to perform this multi-sensor registration. A full tutorial and

descriptions of the usage of each software component to perform this multi-sensor registration can

be found online at our wiki here: https://gitlab.nrp-nautilus.io/maya-archeology/

maya-archeology-unity/-/wikis/home.

4.3.1 Acquisition

LiDAR

The process for Terrestrial LiDAR Scanning (TLS) generally involves setting the desired

scan density, which in affect increases the number of points collected and time needed per scan.

In the case of the Leica BLK360 TLS, medium quality was sufficient for our purposes and

took 3 minutes per scan. Each scan occurred more than 1 meter apart depending on if all the

environment’s geometry could be reached from the previous scans location. The set of individual

point clouds obtained was then registered using visual alignment in Leica’s propriety software

Cyclone Register 360. The output of all this is several standard file format .ptx files all in

alignment with each other, which can then be brought to external software for further 3D point

cloud and mesh processing.
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Structure from Motion (SfM)

SfM point cloud derived models are able to store accurate RGB data at a higher resolution,

but with lower geometric accuracy. Since RGB information collected during SfM have greater

accuracy, they can be useful in projecting color information back onto the Mesh generated by

LiDAR. We can do Fine registration with the Iterative Closet Point (ICP) algorithm on the two

models to share the same coordinate space. Performing SfM on larger environments can be

time consuming in collecting and processing data. In addition to this are the extra constraints

of consistency in scene lighting, and obtaining enough coverage and overlap between photos

of the entire scene. Thus we conceptually decompose an environment into it’s most abundant

components and perform SfM on these components under controlled lighting conditions for

the purpose of high-detail surface scanning applicable toward environmental texturing. The

m7-1 excavation was classified into two materials, it’s general structure component of limestone

stucco and the natural elements comprising the walls and ceiling of the excavation. This surface

information can then be input into newer high-level development tools that utilize machine

learning to upscale and synthesis material variations.

SLAM

SLAM point cloud models are similar in format to SfM point cloud models, but contain

even less geometric accuracy. Generally, these models are used to fill out texturing and coloring

in the portions of the scene that do not have associated SfM point clouds.

4.3.2 Software

CloudCompare

CloudCompare is an open source 3D point cloud and mesh processing software. Within

the application are various tools to clean, project, align, subsample, measure, and perform
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statistical analysis. Once the software is ready you can drag and drop your set of standard 3d files

(.obj, .fbx, .las, .xyz, .ply, etc) into the main window. This can take several minutes depending

on your hardware specifications. After the loading process has been completed the sequence

for preparing the point cloud for meshing can take on many variations. The Statistical Outlier

Removal (SOR) filter is used to remove points that deviate from the average distances of its

nearest neighbors. Overlapping points and areas of unnecessary high density can be addressed

by performing a subsample operation on the data set. M7-1 had approximately 30 Meters of

newly excavated features scanned using the BLK360 that needed to be appended onto the original

model. To do so ’Fine Registration’ using ICP (Iterative Closest Point) algorithm was done in

CloudCompare over a subset of the two point clouds. This process also returns a transformation

matrix which is then applied to the whole point cloud. Merging the exterior of M7-1 with the

interior point cloud cluster requires overlap with the two point cloud clusters, which can be seen

in Figure 4.6. Additional TLS work was done around the radius of the pyramid in an attempt to

capture a digital elevation model (DEM) of the nearby terrain. A Cloth simulation filter (CSF)

technique can be used to extract ground points from point clouds. Additionally, the size of the

final cloud can be reduced so that it can fit on a VR platform through a process called decimation,

which can be observed in Figure 4.7.

Meshroom

Meshroom is an open-source 3D Reconstruction software based on the AliceVision Frame-

work that provides Natural Feature Extraction, Image Matching, Features Matching, Structure

from Motion, Depth maps estimation, and Meshing. Additionally, the AliceVision Plugin for

Houdini provides this functionality inside the 3D Procedural Software. Using Meshroom can be

as simple as dragging your set of overlapping images into the application and pressing Play to

reconstruct a 3D Mesh from photographs. We used Meshroom to produce our photogrammetry

assets that are then sent to Houdini for optimization.
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Houdini

Houdini is 3D procedural software that provides a node-based workflow to define a recipe

of transformations. These workflows can then be easily shared across different projects. In our

workflow are nodes that provide an iterative interface to tweak and send photogrammetry meshes

through common modeling tasks such as Retopology, UV Mapping, Baking, and Texturing. The

software is also used to generate a landscape based off LiDAR data and provide splat maps to

detail the terrain with appropriate materials.

4.3.3 Game Engines

Unity

Unity is used to support El Zotz Maya Archeology Quest VR. The application was

designed for mobile VR headsets accessed through a museum exhibition or digital download.

Unreal 4

Unreal 4 is used to support our Model Viewer publication tool that archaeologists can use

to render out meshed reconstructions of field data collected and provide visuals for outreach.

Unreal 5

Unreal 5 coming soon provides a novel solution for handling seemingly infinite geometry

through a ”virtualized micropolygon geometry system” called Nanite. It will also provide a new

World Partitioning tool to handle automatic optimization of massive terrains. Future iterations of

this project will attempt to push this technology to it’s limits by importing the raw scans from the

archaeological site and procedural generating a huge surrounding forest environment from the

aerial LiDAR survey.
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4.3.4 VR Devices

The Oculus Quest was chosen as an all-in-one solution for providing access to these

experiences anywhere. The console includes room-scale tracking and two wireless motion

controllers with 6-DOF or Hand-tracking capability to interact with the virtual world.

Figure 4.6: The 7 UDIM Sub-objects making up the model were further segmented for a total
21 parts represented by each color.

4.4 Results

This section presents the results collected to compare and contrast the various sensors

and SLAM algorithms used in both a test enviornment (Arroyo Tapidao Mud Caves) and the

deployment environment of M7-1. Additionally, the final VR models of the Maya excavations are

presented.

4.4.1 Arroyo Tapiado Mud Caves

We performed a controlled set of experiments at the Arroyo Tapiado Mud Caves site near

the University of California San Diego. This location was the best option for replicating the
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Figure 4.7: The highlighted areas require the most geometric detail and were separated from
the overall mesh to preserve them during the decimation process.

archaeological conditions in Guatemala in a local setting where all of the laboratory resources

would be available during prototype development. First, we defined an area of approximately

50 m in length and scanned this area with the same FARO LiDAR system that was used to scan

the El Zotz excavations. Then, we ran a series of scans using our SLAM scanning solution with

three different sensors: Kinect v1, Kinect v2, Realsense D435, and two different algorithms:

ORB-SLAM, RTAB-MAP. All the scans were performed by the same operator, and followed a

similar trajectory and scanning pattern. Additionally, we recorded all sensor data, and replayed

them through the InfiniTAM v2 algorithm afterward.

Here we present the results of comparing the output data from the SLAM algorithms to

the LiDAR 3D model.

Cloud-to-cloud difference

Figure 4.8 shows an example of the cloud-to-cloud difference between a SLAM scan

and a LiDAR scan. On top is the LiDAR scan of the mud caves site where we have focused our
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Figure 4.8: From top to bottom: The LiDAR scan of the mud cave, the SLAM scan using
RTAB-MAP and Kinect v2, and the same SLAM scan with point-to-point error with the LiDAR
scan highlighted (darker shade of red = larger error). The scale indicates the error in meters.
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Figure 4.9: RMSE of the cloud-to-cloud difference between SLAM algorithm results and the
LiDAR cloud, for the mud caves site.

56



experiments. In the middle is the point cloud obtained from scanning the cave with the Kinect v2

and the RTAB-MAP algorithm. First, we aligned these models globally using ICP. Then, for each

point in the SLAM point cloud, we computed the distance to the nearest neighbor in the reference

LiDAR scan. The bottom model shows these point-to- point distances colored on a color scale

from white (small distance) to red (large distance). In general, we notice more errors accumulated

where the cave presents a turn. This is mainly due to two reasons. First, more drift is accumulated

in areas with less visibility because the sensor has a more limited view of environment features.

The other reason is that turns are places where sensor noise tends to accumulate. The depth

quality of RGB-D cameras decreases with the distance, therefore distant obstacles can accumulate

the noise from multiple scans.

We summarize the cloud-to-cloud differences for each combination of algorithm and

sensor by computing the RMSE over the entire point cloud. The results are presented in Figure 4.9.

We can observe a similar error in multiple models using Kinect v1 and v2 on ORB-SLAM and

RTAB-MAP. InfiniTAM v2 tends to give a larger error, as expected from an algorithm without

loop closure detection. The Realsense camera tends to show a less consistent, larger error. This is

due to the technology employed to generate depth data. Stereo matching can be noisier, especially

as distance from the sensor increases. Intel provides a number of software filtering options for this

camera, and we can expect better results when fine-tuning the process for this specific application.

We also compare the results to a setup using two Kinect v1 cameras with RTAB-MAP. The model

in this case presents a better RMSE as the software can utilize more sensor data to refine its

trajectory calculation.

Trajectory difference

For each trajectory output from the SLAM algorithms, we recovered the corresponding

ground-truth trajectory using the LiDAR data. We measured the Absolute Trajectory Error

(ATE) between the two outputs in two different ways: 1) by aligning the first pose of each
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Table 4.1: Absolute Trajectory Error (ATE) and Relative Position Error (RPE) on different
combinations of sensors and algorithms. ATE compares the trajectories aligned on the first pose
only. ATE (aligned) compares trajectories globally aligned. RPE measures the relative error per
1 meter segments.

ORB-SLAM RTAB-MAP InfiniTAM v2

ATE
(aligned) RPE

ATE
(aligned) RPE

ATE
(aligned) RPE

Kinect v1
0.64

(0.26) 0.04
0.98

(0.33) 0.05
2.10

(0.59) 0.05

Kinect v2
1.08

(0.36) 0.08
0.70

(0.31) 0.06
1.21

(0.56) 0.10

Realsense
(D435)

5.24
(2.20) 0.25

1.49
(0.32) 0.11 - -

Two Kinect v1 - -
0.87

(0.25) 0.07 - -
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Figure 4.10: Trajectory comparison between RTAB-MAP with Kinect v1 and the recovered
ground truth. The position error is plotted on the SLAM trajectory in meters.
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trajectory—this gives an idea of how much error the algorithm accumulates with respect to the

starting position, and 2) by aligning the whole trajectory to minimize the average error—this

informs about the average error over the entire scan.

Figure 4.10 shows an example of the ATE between a trajectory from RTAB-MAP with

Kinect v1 and the reference output, with respect to the starting position. We summarize the results

in Table 4.1. The InfiniTAM results with the Realsense camera are not included, as they are

too noisy to provide a good reconstruction. Generally, the results from the Kinect cameras are

similar. Despite possessing a global shutter camera, the Kinect v2 does not show a consistent

improvement, however we believe that it is possible to improve the results by using a higher

resolution than the default used in most algorithms. The Realsense camera creates more noise,

and this translates to a less accurate trajectory. The InfiniTAM algorithm accumulates a lot of

error over time as its tracking is based on depth data only. This is clearly reflected by a much

worse ATE (large global error), but still keeping a similar RPE as other algorithms (good local

consistency).

Loop Closure Analysis

While loop closure is a crucial step of most SLAM algorithms in order to increase the

accuracy and reduce the drift, loops are very rare in tunnels and excavations. In this type of

environment, one possible way to trigger a loop closure is to turn around, travel back to a previous

point in the trajectory, and turn around again. This last turn around allows the algorithm to

recognize a visited place by matching similar visual features. We analyze the difference between

closing the loop and not closing it. We run the sensor data through the ORB-SLAM algorithm,

once keeping the loop closure, and once stopping before backtracking. Figure 4.11 shows the

profiles of the trajectories with and without loop closure, and the recovered ground truth. Both

SLAM trajectories present a small drift over time with respect to the ground truth, but the drift is

clearly higher without loop closure.
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Figure 4.11: Comparison of trajectories with and without loop closure using RTAB-MAP with
Kinect v1. The trajectory is plotted in meters for each axis (the z axis is aligned to gravity),
against the camera frame index.
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4.4.2 El Zotz Archaeological Site

We tested our scanning setup in a cultural heritage context at the archaeological site of El

Zotz, Guatemala, and report our results here. Due to various constraints of the field, not all of our

experiments were executed in the exact same conditions. For this reason, we replayed the saved

camera data through the different algorithms to increase the consistency. We collected data with

the Kinect v1 and v2 cameras. Due to algorithm failure, the Kinect v2 data do not perform any

loop closure. We also collected data with a Realsense ZR300 camera, however the results are too

noisy to be properly analyzed here.

We also compared the SLAM models to a LiDAR scan taken at a previous time, and

therefore the models can differ at certain specific areas since excavation conditions changed as

archaeologists expanded new tunnels and backfilled other branches. The cloud-to-cloud difference

is higher for this reason, and can only be used as a comparison metric between SLAM algorithms

and sensors. The trajectory reconstruction has been manually adjusted to ignore the areas with

differences.

Cloud-to-cloud difference

Figure 4.12 shows an error plot of a SLAM model against the LiDAR model. The areas

of high errors mostly correspond to the differences between the scans. Otherwise we notice a

similar trend with the mud caves models, where certain walls accumulate noise from sensor. This

is more noticeable with ORB-SLAM as the sensor data are simply merged together without any

kind of filtering.

Figure 4.13 shows the summary of RMSE for the two cameras. ORB-SLAM with

Kinect v2 fails to reconstruct, but otherwise presents better results for Kinect v1. In this case, the

Kinect v2 gives better results even though there is no loop closure. This environment is more

difficult and scans are very shaky, which can be handled better by the global shutter camera.
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Figure 4.12: Point-to-point difference between the point cloud from ORB-SLAM with Kinect v1
and the LiDAR point cloud. Darker red corresponds to a larger error, which happens in areas
with concentrated sensor noise, and areas where the two models differ in geometry.
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Figure 4.13: RMSE of the cloud-to-cloud difference between SLAM algorithm results and the
LiDAR cloud, for the M7-1 excavation site.
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Figure 4.14: Top view of the trajectory comparison between SLAM results and the recovered
ground truth. The position error is plotted on the SLAM trajectory in meters.

Table 4.2: ATE and RPE in meters, on the M7-1 excavation.

ORB-SLAM RTAB-MAP InfiniTAM v2

ATE
(aligned) RPE

ATE
(aligned) RPE

ATE
(aligned) RPE

Kinect v1
0.21

(0.19) 3.32*
0.47

(0.29) 0.06
2.27

(2.49) 0.08

Kinect v2 - -
0.93

(0.17) 0.08
1.10

(0.47) 0.10

* The trajectory has a large discontinuity causing a very
large value for RPE.

Trajectory difference

We recovered a reference trajectory based on the LiDAR data for our camera scans.

Figure 4.14 shows the trajectory errors from ORB-SLAM and RTAB-MAP with Kinect v1. In this

case, the RTAB-MAP algorithm has accumulated more drift than ORB-SLAM. We summarize

the trajectory metrics in Table 4.2. The results are similar to what we measured in the mud

caves environment, with InfiniTAM results being worse in global consistency compared to the

image-based tracking algorithms.
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4.4.3 Virtual Reality Model

The combination of LiDAR, SfM, and reconstructions from SLAM algorithms results

in a Virtual Reality model, according to the combination instructions presented in the pre-

vious section and in the aforementioned wiki. Screenshots of the VR world can be seen in

Figures 4.15 and 4.16, and the entire models, including video demonstrations and raw Unreal

Engine files can be viewed at the following link: https://sites.google.com/ucsd.edu/

maya-archeology-xr/vr-development/vr-demostrations.

Figure 4.15: The Final m7-1 model composed of several sub-objects

Figure 4.16: Resulting Game Asset for the Maya Archaeology VR Application utilizing
Physical-based materials and Optimized Geometry in Unreal Engine.
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4.5 SLAM Results Analysis

In this Section, we discuss high-level trends and directions to take to maximize the accu-

racy of SLAM-based scanning, based on the results presented in Section 4.4 and our observations

in the field.

4.5.1 Sensors

The RBG-D cameras that we used are broadly divided into two categories: active depth

sensing (Kinect v1 and v2), and passive depth sensing (Realsense). Both our results and our

observations confirm that active sensing produce the best results in terms of 3D scans. The

difference in technology for active sensing (structured light with Kinect v1 and time-of-flight

with Kinect v2) has a less significant impact on the result, although there tends to be a slight

global improvement with the time-of-flight sensor. Stereo-based sensors produce depth maps

that tend to be spatially and temporally noisy, which increases the drift in SLAM algorithms,

and also increases the frequency of tracking loss during data collection. The ZR300 camera

produced results too noisy to be analyzed in Section 4.4.2. However, it is important to note that

the active sensors can only operate indoors, and would not be suitable to scan the exteriors of

sites. Additionally, the stereo sensors can be improved in software through the fine-tuning of

filters, although this increases the complexity of the scanning system.

4.5.2 Algorithms

The algorithms can also be divided in two categories: feature-based tracking (ORB-SLAM

and RTAB-MAP), and registration-based tracking (InfiniTAM). Feature-based algorithms mostly

rely on image features, and therefore can more easily recover from tracking failure. However,

these algorithms cannot recognize the same tunnel viewed from a different point-of-view (e.g.,

after turning around), and must rely on loop closure to create a consistent model in that case.
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Registration-based algorithms rely on depth data only, and as such can recognize an environment

based on its geometry only. These algorithms tend to be less stable in terms of tracking as

they rely primarily on frame-to-frame alignment. InfiniTAM v3 is a good compromise, but

our experiments failed to properly scan on long distances. While InfiniTAM v2 can be used

for scanning without much tweaking, InfiniTAM v3 would require more tuning to be useable

in these conditions. Feature-based algorithms worked better in our experiments, but they did

require particular attention to the lighting of the scene. Our scanning system is equipped with a

light panel emitting diffuse light, which minimizes the negative effects on the SLAM algorithm,

however a strong, static light is recommended whenever possible.

4.5.3 Scanning Procedure

In Section 4.4, we highlight the importance of creating a loop closure, even when the

environment presents no obvious such loop. This procedure applies to feature-based algorithms,

or algorithms capable of handling loop closure, but is still useful in all cases simply to add new

points-of-view of the scene and increase the number of details. However, due to the nature of

these real-time algorithms, finding a loop closure can sometimes lead to a tracking failure, which

forces the user to start over. Techniques for recovering the tracking in real-time are improving and

the next generation of algorithms might solve this problem. There are also several good practices

that we have noted during our experiments. First, each depth sensor has its own specifications in

terms of sensing range and field of view. These limitations are very important for the user to keep

in mind, as they generally make the difference between a failed scan and a good scan. Typically,

there should always be a recognizably distinctive portion of the scene (containing visual features

and geometric features) within the nominal range of the sensor (especially above the minimum

range). Second, the scanning speed is important. While generally faster than other techniques,

SLAM-based scanning is sensitive to fast motion which introduces errors from: motion blur,

lens distortion from rolling shutter cameras (minimized by using a global shutter camera such as
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Kinect v2), more distance between frames (minimized by using higher frequency cameras such as

the Realsense D435), or simply breaking the small motion assumption made by registration-based

algorithms.

4.6 Conclusion

We have analyzed multiple hardware and software solutions to help with the documenta-

tion of cultural heritage within restricted spaces. Through multiple experiments in the field, we

have established an accuracy value for different combinations of sensors and algorithms in these

low-light conditions. In terms of software, image-based tracking algorithms tend to perform better

for large-scale area scanning, but may offer a sparser 3D model without post-processing. Dense

SLAM algorithms relying on depth tracking offer a good solution for small areas but do not scale

well, unless implemented with loop-closure solutions. In terms of sensors, active depth sensing

solutions targeted at indoor use perform better than stereo-based cameras in an underground

environment. We have found that in average, the best performing combination of sensor and

algorithm for our SLAM prototype scanning system is a Kinect v2 with RTAB-MAP. This result

can be generalized to new generations of cameras with similar technology (global shutter with a

time-of-flight depth sensor), which, when running a feature-based SLAM algorithm, are likely to

perform better.

SLAM algorithms provide a low-cost alternative to LiDAR, and a fast alternative to

photogrammetry methods. They are generally limited in the quality of results: in the presented

use-case of documenting archaeological underground excavations, the best system can produce

about 20 cm of error in average after alignment, and up to 50 cm in some cases. The proposed

system is nevertheless a good solution for the rapid documentation of areas with extensive damage

from looting where having an expensive instrument in difficult field conditions is impractical.

Likewise, such a system has cultural heritage documentation applications in high-risk areas where
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archaeological sites are damaged or threatened in order to make rapid assessments of impacts and

resource requirements.

We have also presented a method of multi-sensor registration optimized for presenting

archaeological tunnel excavations in virtual reality. By combining data from high-accuracy

low-usability sensors and techniques such as LiDAR and SfM with middling-accuracy and high-

usability sensors and techniques such as RGBD cameras and SLAM, we can create representations

of these sites that are not only useful for archaeologists, but also for the general public to

understand the sites’ historical and cultural implications.

Cutting edge advancements in SLAM such as Dot3D and the Intel RealSense L515

handheld LiDAR may pave the way to further incorporating pointclouds from highly-usable

sensors and not interfere with accurate reconstructions from larger LiDARs and SfM. Preliminary

data collection efforts to test the effectiveness of the L515 as a platform and Dot3D as a method

for SLAM have been conducted, and future expeditions will evaluate their utility.
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Chapter 5

FishSense: RGBD Imaging for Underwater

Fish Detection and Assessment

In this chapter we present the usage of 3D data capture with regards to underwater

imaging of fish for detection and health assessment. Once again, we follow the generic workflow

presented in Figure 2.1. We explore step 1, which in this case comprises the usage of an RGBD

camera underwater, by developing and validating an underwater imaging platform. In this case,

step 2 is handled by the software of the platform to align RGB and depth images individually,

but as we are interested in the fish themselves, and not necessarily with the environment as a

whole or the temporal and spatial relationship of the fish, we are satisfied with collecting and

analyzing the RGBD images individually. Similarly, for step 3, the only context required is

the deployment location of data collection, which for the moment is manually entered, but the

platform can be extended in the future to incorporate additional sensors that may aid the detection

and measurement process. Finally, step 4 is explored extensively with the development of machine

learning algorithms to detect the fish and calculate the length and geometry of the fish.
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5.1 Introduction

Our ocean ecosystems are facing a problem of enormous proportions: overfishing. Despite

estimates that 3.5 trillion fish are swimming throughout the ocean, ecologists estimate that the

planet will be devoid of fish as early as 2048 [WBB+06]. This chilling prediction is backed by

fishing data as well: approximately 50% of the global fish population is harvested for human

consumption every year [MB10]. These figures do not even include the illegal fishing market that

comprises an estimated 18% of the yearly catch [APP+09]. Such a drastic loss in biodiversity

will not only impact the health and quality of our marine ecosystems, but will also starve nearly

three billion people who depend on fish for survival.

In order to combat this daunting problem, scalable, yet simple, sensing systems are des-

perately needed to measure fish populations; specifically their biomass and health. Measurements

are predominantly gathered using direct human observation: divers conduct manual censuses

of fish populations and observers survey populations from above. Other solutions, such as

catch & release, are invasive, often requiring fish to be removed from the sea for measurement.

[Str93][WSS06]. These methods greatly affect fish health and stress levels, which ultimately

negatively impact their growth rate[Ash07]. Research of non-invasive methods for measuring

free-swimming fish has yielded solutions that require underwater imaging and machine learning

techniques.

Effective methods for underwater imaging are absolutely vital in retrieving valuable data.

Typical methods include stereo vision [PFA+18], laser-based systems [RWT17] [ARO15], or

acoustic-based systems [LZKW16]. These methods can be computationally complex and require

intricate computer vision algorithms. There are also methods which have been presented which

correct the effects of light scattering using light stripe range scanning and photometric stereo

[NN05]. Alternatively, the Sea-thru method attempted to reconstruct the color in images through

a process of removing the water from underwater images [AT19]. Other methods have used light
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emitters in conjunction with cameras to estimate depth in images. One such method proposed a

scanning with a digital camera and laser that operated along a railed system [ARO15]. Another

method proposed included the use of a structured light depth camera used for 3D underwater

capture, which also employed a calibration method that accounted for underwater refraction

[DCT+16], though this system did not have sufficient range for capturing fish. Many of these

systems are unwieldy, large, or too difficult for divers to operate, making them problematic for

sustainable use.

Figure 5.1: FishSense imaging platform

In this work, we propose FishSense: a new handheld underwater RGBD imaging platform

that measures fish length. This system can be used to derive fish biomass [Ful04] and health.

The FishSense core technologies include depth cameras, compute platforms, software, and a

sleek mechanical design. FishSense utilizes scientific advancements in underwater imaging and

machine learning to collect and process data. This integrated technology provides scientists with

meaningful data to advance scientific predictions about fish health and populations. Our main

contributions are:

1. A low-profile diver-operated platform for free-swimming fish imaging, as seen in Fig. 5.1;
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2. An implementation of a machine learning detector for identifying fish in RGBD images;

3. An implementation of a fish length measuring algorithm for RGBD images.

The remainder of this paper is organized as follows. Section II provides an overview of

the FishSense platform detailing the mechanical and electrical interfaces, as well as the Intel

RealSense imaging device. Section III delves into the machine learning application with relation

to fish detection and measurement. Section IV addresses the collected data. Finally, Section V

provides the conclusion.

5.2 Platform

The FishSense design is a 12 inch long, 6 inch diameter cylindrical enclosure which stores

our depth camera, compute platform, and batteries. The Intel RealSense D455 Depth Camera is

mounted on one end, the four battery packs are on the other, and the Raspberry Pi 4 and switch

system are located in between (see Figure 5.2).

Figure 5.2: FishSense mechanical prototype cross-section
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5.2.1 Mechanical

A small, handheld system allows for easy portability, storage, and modularity. Our design

allows for multiple configurations without changes to the housing. For example, the system can

be easily converted into a camera trap, underwater vehicle payload, aquaculture cage monitor, or

simply as an attachment to another piece of equipment. Mounting our device for any application

is made simple and straightforward due to the multiple directions of screw holes.

Our device is fully optimized for underwater functionality. The system is well equipped

to handle underwater deployments, with a depth rating of 65 meters, handles for divers, and

magnetic switches for power and recording. Even with its sealed, waterproof design, it has four

blank ports on the back plate, which enable wired connections into the system. With these ports,

users can stream the camera feed to a topside computer, add an extended power bank for longer

deployments, or simply charge the batteries without needing to open the housing.

5.2.2 Electrical

Our initial prototype uses a Raspberry Pi 4 with the Intel RealSense D455 and a 1TB SSD

both connected via USB 3.0. It is powered by four 4S 3500 mAh lithium ion battery packs. With

a fully charged pack, RealSense depth and color videos can run at 1-5 fps for approximately 12 h.

As seen in Fig. 5.3, the battery is connected to a power module that distributes power to the reed

switches, LEDs, and Pi.

To power on FishSense, a magnet needs to be applied to a reed switch. The walls of the

enclosure are thin enough to allow for even a small magnet to activate the switch, which enables

the user to power on the FishSense system without the need to open the watertight enclosure. It

also allows for faster setup time and makes it more practical for amateur use. Another reed switch

is used to start and stop the data collection, and a simple LED array alerts the user to the status of

the system.
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Figure 5.3: FishSense wiring diagram

5.2.3 Intel RealSense D455

This project utilizes the Intel RealSense D455 Depth Camera. RealSense camera captures

RGB images with a global shutter and a resolution up to 1280 x 800 at frame rate of 30 fps.

The stereoscopic depth images have a resolution up to 1280 x 700 and a frame rate up to 90

fps. The RealSense camera uses an infrared emitter to project a pattern so that the stereoscopic

depth cameras can easily reconstruct a depth image. The RealSense camera also contains the

Intel RealSense Vision Processor D4 for vision processing to align the RGB and depth images

together and capture a 3D view of the world. The Intel RealSense D455 camera was selected

because of it’s ability to perform with dynamic movement and for it’s simplicity. Our camera

has been calibrated for underwater use, which will allow us to capture and construct the entire

scene with the D4 processor. This is important because our system is dependant on the accuracy

of the camera, and it needs to construct the 3D view at the correct scale. The RealSense camera is

positioned at one end of the FishSense system to capture images of fish in a desired location. The

camera was used in conjunction with the Intel RealSense SDK 2.0.
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5.3 Fish Detection and Measurement

Complementary to underwater imaging, techniques must be utilized to evaluate the

collected data for extended use. A binary image classifier was used in [MFS+18] where Regions

of Interest (RoI) were identified in data. Another source attempts to classify fish via an Artificial

Neural Network, a supervised learning algorithm [PWS19]. The machine learning method in

[VRSM19] utilized the Speeded-Up Robust Features (SURF) and Support Vector Machines

(SVM) algorithms along with a bag of features for simplicity. Specific to RGBD imaging, there

are certain algorithms that utilize both the RGB and D components of the image simultaneously

to perform detection, such as in [WN18][ZFC+21][TJUM20]. While all algorithms have benefits,

the YOLOv4 model has been tested and time-proven to be the best when accounting for both

detection speed and accuracy. Also, because YOLOv4 operates solely on the RGB component

of the image, we can leverage existing image datasets of fish. The relative newness of RGBD

imaging to underwater systems means that there are practically no open source datasets of fish,

and thusly, YOLOv4 is the model we chose for our system.

Figure 5.4: Process of data interpretation

The camera captures two pieces of information per frame. One being a standard RGB
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image, the other being a comma separated value (csv) file containing the distance of each pixel

from the camera (i.e. depth image). Initially our machine learning algorithms work on the RGB

image, detecting potential fish, and then the pixel values denoting the bounding box around each

fish are recorded. From this bounding box, pixels at the tip of the head and the end of the tail

are selected, and the corresponding depth associated with those pixels are retrieved from the

depth image. These pixels are then projected into 3D space by using the intrinsic parameters

of the RealSense depth camera, and the Euclidean distance between the points are measured to

determine the length of the detected fish. This process can be seen at a high level in Figure 5.4.

The performance of machine learning model is tested using Mean Average Precision, as

well as ROC curves. The machine learning algorithm uses a test dataset that was 10% of the

training dataset. This test set is only used to measure the accuracy of the predicted bounding

boxes, against human annotated bounding boxes. The average loss is also calculated, and used

along the mAP to ensure learning was accurate. Once the models finish training, they are then

tested in a controlled pool with a toy fish, as well as an aquarium with many species of fish to

generate ROC curves.

The performance of the length measurement component of our process is assessed by

analyzing all the true detections of the toy fish in our controlled pool tests. The average and

standard deviation of length measurements are computed and compared to the ground truth length

of the toy fish.

5.4 Analysis

For training the models, three distinct data sets were used. The first set of weights were

trained off a subset of fish within Google’s Open Image Dataset [KRA+20] and the OzFish

Dataset [Aus20] that were not colorful or exotic i.e Cuttlefish, Lionfish, Betafish etc. This allowed

for the weights to standardize to ”normal” or ”regional” fish, which allows our system to perform
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(a) Region based model in
Single fish tests

(b) Species specific model in
Single fish tests

(c) General use model in Single
fish tests

(d) Region based model in
Multiple fish tests

(e) Species specific model in
Multiple fish tests

(f) General use model in
Multiple fish tests

Figure 5.5: ROC curves for three models over two pool tests

much better in mounted scenarios, where we can predict which species will be present. The

second set of weights were trained off images of our toy fish in various scenarios. This allows our

system to perform better a single species application like aquaculture. The last set of weights

were trained off of the entirety of the Open Image Dataset and OzFish Dataset. These weights

provided a baseline for our system would perform in open ocean scenarios, where we might

encounter a wide variety of fish. All three of these weights were tested against two different data

sets. The first being our toy fish in a controlled test pool, and the other being various species of

fish in an aquarium.

Figure 5.6: Sample images from the Pool 1 (top) and Pool 2 (bottom) datasets
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The ROC curves shown in Figure 5.5 demonstrate the functionality and trade offs of each

set of weights. Model 1 is the set of weights used for usage in mounted scenarios with predictable

”regional” species. Model 2 is the set of weights trained for usage in single species detection.

Model 3 is for general use, trained to detect all fishes. Pool 1 had a single toy fish in a controlled

test pool, whereas Pool 2 is a 70,000 gallon aquarium that contains many different fish, such as

leopard sharks, moray eels, Giant Black Sea Bass, Garibaldi, kelp bass, opaleye, and other fish

native to Southern California. Sample images from each of these pool datasets can be seen in

Figure 5.6. Model 1 performed well with a high threshold in both datasets, as despite detecting

false positives, it confidently detects real fish with a high deal of accuracy (Figures 5.5a and 5.5d).

Unsurprisingly, Model 2 performed extremely well in the Pool 1 dataset, as seen in Figure 5.5b,

as it was trained off of the specific fish used in that experiment, but fell short when confronted

with many different species in the Pool 2 dataset, as seen in Figure 5.5e. This tells us that there is

a danger to focusing the model too much on a single type of fish and encountering a fish outside

of the training dataset. Finally, it can be seen that Model 3, the general model, performed decently

in the single fish test (Figure 5.5c) and performed average in the multiple fish test(Figure 5.5f).

This tells us that a general model can be useful when imaging unknown species of fish, but that

there is opportunity to improve detection when there is knowledge of the ”regional” type of fish,

and especially if there is interest only in a single species of fish.

The toy fish that is used in the Pool 1 deployments was measured by a tape measure and

found to be 31.5cm. When using the depth images over all the true positive detections of that

fish in the Pool 1 dataset, we found the average length to be 31.83cm, with a standard deviation

of 1.950cm. This result is extremely encouraging, and suggests FishSense is a valid instrument

for length calculations underwater. We observed the error in the measurement to come from two

sources. First, the depth images occasionally had blur, which made the fish seem longer or wider

than it actually was, or on rare occasions, missing chunks, which affected the quality of point

selection. The second source of error was the orientation of the fish in the image. If the fish was
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not in clear profile, then it was harder to pick the same points on the fish consistently.

5.5 Conclusion

In this work, we have outlined FishSense, an underwater RGBD imaging platform for

fish detection and fish length measurement. We have experimentally validated our system with

three detection models and two underwater datasets, and have shown it to accurately detect and

measure fish.

Although our initial prototype has demonstrated feasibility in many of our intended

applications, future iterations will improve the efficiency of the system and allow it to extend

into new applications. To achieve longer deployments, an increase in computing power, storage

capacity, and battery count are essential. Integrating a higher resolution color camera allows for

better image analysis and species classification. Also, the addition of an LCD screen for depth

map display, system diagnostics, and a settings menu will make underwater use easier and open

up other possibilities during underwater operations.

Our current compute platform is limited by the bandwidth of its USB controller. More

specifically, it cannot simultaneous read from the RealSense and write to the SSD at 30 fps using

the same USB controller. As such, we performed our experiments at a reduced framerate, but

to solve this problem, future compute platforms will utilize more powerful hardware to perform

full throughput video recording. More computing power will additionally enable the possibility

of real-time data processing on-board the device. Currently, an NVIDIA Jetson TX2 processor

serves as the catalyst for these solutions. With a higher bandwidth USB controller and SATA

compatibility, we expect to save data at the full frame rates the RealSense offers, along with

exploring more advanced real-time processing.

Another opportunity for improvement lies with the detection model. It currently performs

detections with RGB data independent of depth data; however, by incorporating the depth data
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into the detections to create particular regions of interest (ROI), detection accuracy should increase

dramatically. Since most fish will be in within some range of the camera, by setting boundaries

and parsing through the depth image, various ROIs could be created. These regions might include

a lot of false positives, as it would pickup rocks, kelp etc. However, if these ROIs are combined

with detectors, and even with the actual neural network architecture these false positives can be

accounted for. Likewise, the depth data could also be incorporated into preprocessing techniques

to counteract the hazing that occurs in water. By using the RealSense SDK this is a lot more

intuitive, and can bolster detector accuracy as well the increase the viability of above water data.
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Chapter 6

Conclusion

This dissertation addresses the problem of capturing 3D data of remote environments.

Remote environments present a significant challenge in terms of access and observability, and

yet they contain important information that have cultural and health-related global impacts. We

present a generic workflow for obtaining, processing, and utilizing 3D data. We also present

three remote environments and explore their usage of the workflow and conduct experiments

optimizing one or more components of the workflow.

First, we present an overview of the generic workflow for acquiring, processing, and

presenting 3D data. We then present a discussion on the first step of the workflow: an enumeration

and description of 3D sensors that are typically used in remote environments and their specific

benefits. These sensors are the fundamentals on which the remaining chapters build their

contributions.

We present the first remote environment example: target detection on the seafloor using

synthetic aperture sonar. We present experiments surrounding the final step of the workflow, and

show that interpretation of the data can be optimized using feature detectors. We also present

a method for optimizing parameters of the feature detectors for SAS imagery with different

backgrounds.
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We then present the second remote environment example: Mayan archaeological excava-

tions in the Petén region of Guatemala. We explore all aspects of the workflow in this example,

from the selection of sensors to accommodate the unique challenges of the environments, to an

analysis of intra-sensor registration through SLAM, to the challenges of coherently combining

sensor data, to the quality of results and the usefulness of 3D data in an archaeological context.

Finally, we present the third remote environment example: underwater imaging of fish

using RGBD-stereo cameras. We present the development of an underwater platform that samples

and collects 3D data. We also present experiments regarding the final step of the workflow

and examine machine learning algorithms to robustly detect the fish and length measurement

algorithms to derive the information important to fisheries science researchers.

Overall, the research presented by this dissertation improves the usage of 3D sensors in

remote environments in multiple instances. It provides contributions to the oceanic engineering,

fisheries, archaeology, embedded systems, and computer vision fields.
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