
1

Renée: New Life for Old Phones
Jennifer Switzer, Eric Siu, Subhash Ramesh, Ruohan Hu, Emanoel Zadorian, and Ryan Kastner

Abstract—Discarded consumer electronics are a significant and
growing source of hazardous waste. Repurposing smartphones
has the potential to reduce the rate of disposal. However, reusing
smartphones for general computational tasks is difficult due to
the variety and domain-specificity of the mobile software stack,
and the relatively low computational power of these devices.
We present the design and proof-of-concept implementation of
Renée, a smartphone-based cluster built from used phones that
provides Function-as-a-Service (FaaS) capabilities. Our experi-
ence indicates that reusing decommissioned smartphones for
general computational tasks is not only feasible, but that a local
cluster built from these devices has the potential to provide faster
response times than commercial FaaS, while reducing the yearly
Global Warming Potential of the reused devices.

I. INTRODUCTION

DESPITE their nominal 10-year lifespan, most phones
are decommissioned within 2 years [1]. This rep-

resents not only a waste of computational power, but an
acute environmental threat. Smartphones cannot be recycled
by traditional means. Even when they do make their way
to E-waste recycling facilities, these are often unregulated
and hazardous [2]. Shorter lifespans also increase the carbon
intensity of these devices, since as much as 84% of the
greenhouse gases associated with smartphones is released
during the manufacturing process [3].

We argue for an alternate approach: Extending the life-
time of discarded smartphones by reusing them for general
computational tasks. Previous work has indicated the fea-
sibility of this approach, but many challenges remain [4],
[5]. Mobile operating systems tend to get in the way of
long-term, unsupervised device deployments [6]—for instance,
Android battery optimizations may kill background processes
[7]—and smartphones boast less computational power than
other consumer electronics [8]. Despite these challenges, we
find it is possible to build a cluster of discarded smartphones
that provides FaaS capabilities.

We approach this as a distributed systems’ problem, and
implement our smartphone server as a cluster of used phones,
which we call Renée.1 We replace the Android operating
system with Ubuntu Touch, an open-source OS for mobile
devices [9] that allows us to treat the phones as standard Linux
machines. We treat the phones as unreliable nodes, and design
our system to be robust to multi-phone failures. A central
management device (we use a Raspberry Pi) provides a single
point of entry for the outside user.

Renée is not meant to replace high-end cloud computing
servers, but rather provide a cost-effective, low-latency so-
lution for small-scale, local compute. Example use-cases for
such a micro-datacenter include: edge computing; servers for
small businesses; and computing in remote environments.

1Renée is French for reborn.

0 1 2 3 4 5
Years of Re se

6

8

10

12

14

16

Ca
rb
on
 In
te
ns
ity
 kg

CO
2e

ye
ar

Baseline

−25%

−50%World Electricity Mix
CA Eletricity Mix
Solar

Fig. 1. The carbon intensity of devices in our cluster decreases over time.
The rate of decline is dependent on the source of the electricity used to power
the cluster. Curves are given for the world average (blue), California average
(orange), and full solar (green). See ?? for more details.

We estimate that Renée has the potential to reduce the
carbon intensity of reused phones by as much as 50% after 4
years of reuse (Figure 1).

II. BACKGROUND

Prior work has shown that mobile phones have the po-
tential to provide a cost- and energy-efficient alternative for
high-performance computing (HPC). Rajovic et al. propose
the use of mobile SoCs for HPC, and find that they are
both sufficiently performant for many applications, and more
energy-efficient than traditional HPC chips [5]. Shahrad and
Wentzlaff propose a server built from decommissioned mobile
phones [4]. They evaluate the total cost of ownership of such
a system, and estimate it to be less than an equivalently-
performant system built from high end components. Neither
of these include an associated implementation.

Büsching et al. connect 6 Android phones over WiFi, and
evaluate the cluster’s performance via the LINPACK bench-
mark [10]. Their implementation targets parallel computing
and does not include an associated cluster management system.
They also do not explore applications beyond LINPACK.

An orthogonal line of work is the use of smartphones
as unsupervised edge devices. Klugman et al. relay their
experience deploying a smartphone monitoring system for
monitoring the health of power grids [6]. They find that two
factors limited the usefulness of the devices: the fact that the
Android OS expects human input, and will sometimes stall
without it, and the physical degradation of the phones, which
experienced screen burn-in and battery swell. This experience
motivated our decision to replace the Android OS with Ubuntu
Touch, and to manage device power via smartplugs.



2

MANAGER ON/OFF

POWER

SMART
PLUGS

JOBS

RESULTS,
DEVICE STATUS

OUTSIDE 
USER

JOBS

RESULTS

PHONE BANK

Fig. 2. High-level system diagram. An outside user should be able to treat
our system as any other FaaS.

III. RENÉE

A high-level overview of the cluster is presented in Figure 2.
It consists of three primary components:

1) A central manager that is responsible for managing
power to and distributing tasks amongst the phones

2) The phone bank itself, a collection of used smartphones
repurposed for our project

3) A collection of smartplugs (one for each phone), which
allow the manager to control power to each device

The manager is a designated machine that provides a single
point of entry to the cluster. It maintains a list of all currently
active phones and their status, which includes battery level,
storage use, and CPU utilization. The phones communicate
this information to the manager via regular heartbeats.

Outside users submit jobs to the manager. Each submitted
job consists of a zip file of the code to be executed, and
metadata including the job’s max runtime.

The manager then distributes the received tasks amongst the
phones in ascending order of CPU utilization (e.g., the phone
with the lowest utilization will be assigned a job first).

In addition to assigning jobs to devices, the manager also
deals with phone-level and job-level failures.

Unreachable Phone: Phones send regular heartbeats to
the manager. If the manager does not receive any heartbeats
from a given phone for 2 seconds, it considers that phone to
be inactive. No jobs will be assigned to the phone until a
subsequent heartbeat is received from it.

Runaway Tasks: Every submitted job has a configured
max run-time defined by the end user. The manager uses
this property to periodically scan for jobs running past their
configured max run-time. When this happens, the manager
instructs the device to kill the job and reschedules it.

Phones listen for new task submissions from the manager.
Upon receiving a submission, the phone checks the resource
requests, and decides whether or not it is capable of
running the job. It returns a job ACCEPT/REJECT message
accordingly. Once the job is completed, the phone returns the
result to the manager.

Power management is accomplished via network-connected
smartplugs. When a phone’s battery falls below 25% (as
reported by the heartbeats), the manager sends an ON signal
to the smartplug associated with the device; when the battery
reaches 75%, an OFF signal is sent. This maintains the battery

level of all phones between 20%-80%, avoiding low battery
levels while minimizing charge time.

Renée’s centralized design does present a single point
of failure: if the manager dies, the entire cluster becomes
unavailable. However, the cluster is robust to the failure of any
number of phones. Given our choice of hardware, we believe
this is a reasonable trade-off, since we expect the used phones
to fail quite often, and the management device to fail rarely.

IV. IMPLEMENTATION

A. Hardware

Our management device is the Raspberry Pi 4 Model B
with 8 GB of RAM, and we use the Wyze Indoor Smart Plug.
Our development phones are LG Nexus 4’s with 16 GB of
disk space. They contain a Qualcomm Snapdragon S4 Pro
APQ8064 SoC with a 1.5 GHz quad-core Krait CPU, and
2 GB of RAM. The Raspberry Pi communicates with the smart
plugs via the If This Then That platform, and with the phones
directly over WiFi via the local area network.

B. Mobile OS

We replace the phones’ native Android with Ubuntu Touch’s
Nexus 4 distribution [9], which is built on version 3.4.0 of the
Linux kernel. To set up the OS for development, we:

1) Reconfigure the file system to be writable.
2) Repartition the disk to allocate 6 GB to system folders

(this leaves 10 GB for user data).
3) Install several common Python packages required by our

benchmarking suite.
We otherwise leave the OS unaltered.

C. Manager

1) Initialization: At startup, the manager creates a local
database for tracking the status of phones and jobs. It initial-
izes a SocketIO server to listen for heartbeat messages from
the phones, and job submissions from the end user.

2) Persistent State: The manager maintains the state of all
phones in terms of CPU usage, active status, and cooperation.
The CPU usage of a phone is defined as the average of the
three most recent values reported via heartbeat.

Phones are considered active so long as they send regular
heartbeats. If a phone fails to send a heartbeat, it is marked
as inactive until the next heartbeat is received.

Lastly, cooperation (or lack thereof) is determine by the
number of times a phone has failed to acknowledge a job,
or failed to finish a job that it did acknowledge. Too many
failures causes the phone to be marked as uncooperative, and
automatically decommissioned. Decommissioned phones are
disconnected from power, removed from the database, and
flagged for later inspection (e.g. by a human operator).

3) Runtime: The manager maintains two main threads: one
for accepting job submissions, and one for receiving heartbeats
from the phones. When a job submission is received (via an
HTTP POST request), the manager makes a local save of
the job details (zip file and metadata), then forwards the job
onto the least occupied active phone. If that phone fails to



3

A B C D
Device ID

0

1

2

3

4

5
Re

sp
on
se
 T
im
e 
(s
)

AWS Lambda: 4.91s

3.26s 3.25s

2.57s 2.7s

Useful Compute
Environment Setup & Takedown
Cluster Management & Networking

Fig. 3. Cluster response time for our fib benchmark submitted to Renée
(bars) and AWS Lambda (dotted line). All results are mean over 10 iterations.
Orange is useful work; blue and purple are overhead.

acknowledge the job, or if the job fails, another device is
selected, and so on until a result is returned. The manager
forwards completed results back to the end user.

D. Phone Client

The phone client consists of contains two threads: one for
sending heartbeat messages, and one for listening for and
executing job submissions. The heartbeat thread first sends
an HTTP POST request with the phone’s device ID and
associated smartplug key. After that, heartbeat messages are
sent every 300 ms. The second thread listens for SocketIO
messages containing job submissions. After receiving a job,
the phone returns a task_acknowledgement, and then
starts execution. All submitted code contains a main.sh
entrypoint within the zipped folder, which the device invokes.2

On completion, the phone returns a succeed or fail message.
Our cluster management code is available publicly here:

https://github.com/jfswitzer/The Renee Project.

V. EVALUATION

A. CPU Benchmarking

After replacing Android with Ubuntu Touch, we measure
the individual performance of our Nexus 4 development
phones across several benchmarks (Table I) and find that they
are capable of performing many common computational tasks.

We further compare their performance against a modern
(2020) laptop3, and find that the phones are 9-16x slower than
the laptop. This is to be expected, since the Nexus 4’s have 8x
less RAM than the laptop, and cost approximately 40x less.

B. Response Time

We define the response time of the datacenter to be the time
elapsed between job submission to the manager, and the return

2This is similar to the format expected by AWS Lambda, which requires a
zip file with a known entrypoint.

3A Lenovo ThinkPad X1 Carbon Gen 8 with an Intel(R) Core(TM) i7-
10610U CPU @ 1.80 GHz and 16GB RAM.

0 50 100 150 200 250 300 350
Time (s)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Po
we

r (
W

at
ts

)

Job
acceptance

Job
completion

Fig. 4. Power draw over time, with events marked at the dotted lines. Data
gathered via powerstat for a phone calculating the 40th fibonacci number.
Results were smoothed using a moving average with a window size of 4.5
seconds.

of a completed result to the end user. We use this metric to
compare Renée’s responsiveness to that of AWS Lambda, a
commercial FaaS provider.

1) Experimental Setup: We use the fib benchmark (de-
scribed in Table I) as our test function.

To run the test function on Renée, we modify our cluster
code slightly to fix which phone is assigned the job. We set
up the cluster with one of our laptops acting as the end user.
We use the bash time command to measure the total time
elapsed between submitting the job to the manager, and the
receipt of the result. We also benchmark the time elapsed for
the phone to perform the computation alone, and for it to set
up and take down the environment for the computation.4

We run the same experiment on AWS by copying our fib
code into a Python Lambda function that we trigger via a
REST API. We present the response time from CloudWatch.

2) Results: Figure 3 summarizes the results. For the fib
job, Renée’s response time is 1.5-1.9x faster than AWS
Lambda. The majority of this time is spent actually performing
the computation. The overhead added by cluster management
and environment setup/take down adds an additional 0.44-
0.76 seconds.

C. Reliability & Recovery

Renée remains available as long as the manager and at
least one phone are functional, although the capacity of the
cluster scales with the number of phones. When a failure
happens midway through a job, Renée recovers quickly, within
3 seconds for a single phone failure. In the case of no active
phones, the submitted job is saved until a device comes online.
If no phones are registered to the cluster, an error message is
returned to the user within 0.6 seconds.

D. Energy Analysis

We measure the energy consumption of one of our devel-
opment phones for a full cycle of start-up, registration, job

4For our implementation, this means unzipping the received code, creating
and deleting temporary folders, and packaging the result.

https://github.com/jfswitzer/The_Renee_Project


4

TABLE I
BENCHMARKING SUITE. INPUT SIZE INCLUDES CODE AND DATA.

Description Workload Type Input Size Output Size Laptop Runtime Phone Runtime Slowdown
fib Calculates 30th Fibonacci number Math 190 bytes 3 bytes 0.199 s 2.277 s 11.44x

mean
Calculates location-based means on
energy price dataset. Data analytics 657MB 1.1 kB 15.35 s 247.31 s 16.12x

resize
Resizes and stretches the input
image Image processing 186 kB 1.0 MB 0.267 s 2.407 s 9.01x

knn Trains a small knn classifier Machine learning 28 kB 200 kB 0.685 s 10.475 s 15.29x

acceptance, and job completion. The results are shown in
Figure 4. The phone draws an average of 1.6 W at rest, and
2.4 W while completing a job at 90%+ CPU utilization.

An average server utilization of 20% (AWS’ reported uti-
lization) implies a daily energy consumption of 152 kJ per
phone. Taking the 2100 mAh battery capacity reported by LG
for a new Nexus 4, this would require 5.4 charges or 16.4
hours of charge time to maintain. This also means that the
phones are robust to battery capacity decline of up to 30%
before the cluster has to lower its utilization rate.

VI. DISCUSSION

A. Global Warming Potential

Global Warming Potential (GWP) represents the greenhouse
gas (GHG) emissions associated with a particular action,
expressed in kgCO2e (kg of CO2-equivalent). When applied to
the lifetime of a smartphone, it represents the GHG emissions
emitted as a result of that devices’ production and activity.
Yearly GWP (kgCO2e/year) can be used as a proxy for carbon
intensity. We can estimate the yearly GWP of our development
phones when they are redeployed in our cluster.

The general formula is as follows:

Carbon intensity =
CM + CuseT

T
(1)

Where CM is the carbon associated with manufacturing the
device, in units of kgCO2e, and Cuse is the yearly carbon
associated with use of the device, in units of kgCO2e/year. T
is the number of years that the device is in service.

We take the manufacturing carbon reported by [3] for
the Samsung Z5 and scale it according to weight to get an
estimated CM= 50.31 kgCO2e for the Nexus 4.

Cuse is calculated as:

Cuse = P ∗ CIgrid (2)

Where P is the device’s yearly energy use (in kWh/year), and
CIgrid is the carbon intensity of the electricity used, in units
of kgCO2e/kWh5.

Electricity use is calculated by summing the mean power
consumption of all cluster components, and dividing this
number by four to get the amortized wattage of each phone.

At a 20% utilization, the per device energy usage is P =
24.18 kWh/year. With a California energy mix, this works out
to Cuse = 6.12 kgCO2e/year.

We find that four years of reuse has the potential to reduce
device carbon intensity by as much as 50% (Figure 1).

5The carbon emitted per kWh varies across energy sources. For instance,
0.49 kgCO2e/kWh for natural gas and 0.048 kgCO2e/kWh for solar.

B. Limitations

Our approach relies on Ubuntu Touch to provide a desktop-
like environment for development. While this is useful for
prototyping, it is also limiting, since the Ubuntu Touch project
only has support for 65 devices. In the future, it would be
preferable to implement Renée on top of a modified Android
OS, so that we can support more devices.

VII. CONCLUSION

Our experience shows that even 8 year old phones can
support common computing tasks, and that a local cluster built
from such devices can provide comparable performance to a
commercial FaaS provider. This strategy has the potential to
reduce harmful E-waste, and reduce the carbon intensity of
the reused devices. As newer phones are released, and newer
phones are thrown out, the potential of such a system will only
increase.

REFERENCES

[1] M. Brannon, P. Graeter, D. Schwartz, and J. R. Santos, “Reducing elec-
tronic waste through the development of an adaptable mobile device,” in
2014 Systems and Information Engineering Design Symposium (SIEDS),
2014, pp. 57–62.

[2] I. Ilankoon, Y. Ghorbani, M. N. Chong, G. Herath, T. Moyo, and
J. Petersen, “E-waste in the international context – a review of
trade flows, regulations, hazards, waste management strategies and
technologies for value recovery,” Waste Management, vol. 82, pp.
258–275, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0956053X18306366

[3] M. Ercan, J. Malmodin, P. Bergmark, E. Kimfalk, and E. Nilsson,
“Life cycle assessment of a smartphone,” Proceedings of the ICT for
Sustainability, Amsterdam, The Netherlands, pp. 29–31, 2016.

[4] M. Shahrad and D. Wentzlaff, “Towards deploying decommissioned
mobile devices as cheap energy-efficient compute nodes,” in Proceedings
of the 9th USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’17. USA: USENIX Association, 2017, p. 6.

[5] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and
M. Valero, “Supercomputing with commodity cpus: Are mobile socs
ready for hpc?” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2013, pp.
1–12.

[6] N. Klugman, M. Clark, P. Pannuto, and P. Dutta, “Android resists
liberation from its primary use case,” in Proceedings of the
24th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 849–851. [Online]. Available:
https://doi.org/10.1145/3241539.3267726

[7] “Background optimizations,” https://developer.android.com/topic/
performance/background-optimization.

[8] “Android benchmarks - geekbench,” https://browser.geekbench.com/
android-benchmarks.

[9] “Ubuntu touch,” https://ubuntu-touch.io/, 2021, accessed: 2021-04-12.
[10] F. Büsching, S. Schildt, and L. Wolf, “Droidcluster: Towards smartphone

cluster computing–the streets are paved with potential computer clus-
ters,” in 2012 32nd International Conference on Distributed Computing
Systems Workshops. IEEE, 2012, pp. 114–117.

https://www.sciencedirect.com/science/article/pii/S0956053X18306366
https://www.sciencedirect.com/science/article/pii/S0956053X18306366
https://doi.org/10.1145/3241539.3267726
https://developer.android.com/topic/perfor mance/background-optimization
https://developer.android.com/topic/perfor mance/background-optimization
https://browser.geekbench.com/android-benchmarks
https://browser.geekbench.com/android-benchmarks
https://ubuntu-touch.io/

	Introduction
	Background
	Renée
	Implementation
	Hardware
	Mobile OS
	Manager
	Initialization
	Persistent State
	Runtime

	Phone Client

	Evaluation
	CPU Benchmarking
	Response Time
	Experimental Setup
	Results

	Reliability & Recovery
	Energy Analysis

	Discussion
	Global Warming Potential
	Limitations

	Conclusion
	References

