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Design space exploration (DSE) provides intelligent methods to tune the large number of optimization
parameters present in modern FPGA high-level synthesis (HLS) tools. HLS parameter tuning is a time-
consuming process due to lengthy hardware compilation times – synthesizing an FPGA design can take tens
of hours. DSE helps find an optimal solution faster than brute-force methods without relying on designer
intuition to achieve high-quality results. Sherlock is a DSE framework that can handle multiple conflicting
optimization objectives and aggressively focuses on finding Pareto optimal solutions. Sherlock integrates a
model selection process to choose the regression model that helps reach the optimal solution faster. Sherlock
designs a strategy based around the Multi-Armed Bandit (MAB) problem, opting to balance exploration and
exploitation based on the learned and expected results. Sherlock can decrease the importance of models that
do not provide correct estimates, reaching the optimal design faster. Sherlock is capable of tailoring its choice
of regression models to the problem at hand, leading to a model that best reflects the application design space.
We have tested the framework on a large dataset of FPGA design problems and found that Sherlock converges
toward the set of optimal designs faster than similar frameworks.
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1 INTRODUCTION
Optimizing a high-level synthesis (HLS) design involves a lengthy process of refactoring the code
and tuning directives. An HLS designer can modify the amount of exploitable parallelism, pipelining,
memory structure, and data types to balance the design’s throughput, resource utilization, power
consumption, and other relevant optimization objectives. Any design change can result in a drastic
modification of the underlying hardware architecture, which forces the designer to perform time-
consuming synthesis runs to obtain accurate estimates of throughput, resource usage, and power.
One synthesis run can easily take multiple to tens of hours.
HLS tools provide many directives, resulting in a large design space that must be explored

intelligently. These directives create a highly complex design space that is often non-linear [7, 17],
and generally contains mutually exclusive objectives (e.g., resource usage vs. throughput). Therefore,
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it is crucial for the designer to find the set of optimal designs along all the objectives. In a context
where compiling and/or running each design takes a long time, evaluating all possible designs is
infeasible, and thus the designer is forced to selectively sample the design space to find the best
results.

Sherlock is a design space exploration (DSE) framework that uses active learning to evaluate and
intelligently explore the HLS design space. Sherlock can quickly reach the set of Pareto optimal
designs by minimizing the initialization size, and performing a sample selection entirely driven by
the estimated optimal set, using a strategy that balances exploration and exploitation based on an
underlying design space surrogate model.

Sherlock’s active learning process is based on a regression model that iteratively provides design
space estimates. We tested Sherlock using multiple types of regression models, spanning from
complex models often used in active learning literature, to simpler consensus-based interpolation
kernels that help to reach an almost optimal solution faster. In order to make Sherlock more flexible
and adaptable, we create a model selection strategy based on the multi-armed bandit problem that
rewards the models directly improving the actual Pareto front. With this strategy, the framework
can quickly decrease the importance of models that do not provide correct estimates. It can then
leverage all models relative to their positive contribution to reach the optimal designs faster.
Sherlock uses several unique features in its design space exploration process. First, Sherlock

focuses on accurately modeling only the designs on or near the Pareto front. This reduces the
problem size complexity, focuses the design space exploration, and generally allows the exploration
to converge quickly. Second, Our results show that a one size fits all approach to design space
modeling is not effective; HLS design spaces are unique and thus they cannot all be accurately
modeled using a single surrogate model. Sherlock adaptively selects from different surrogate models
(Gaussian process, Random Forest, radial basis functions) to determine the one that most accurately
reflects the design space under consideration. Finally, Sherlock balances between exploration and
exploitation in selecting its samples to evaluate. Exploration aims to maximize the uncertainty of
the model while exploitation samples points that are most likely to be Pareto optimal. Our results
show that this sampling process plays an important role in DSE.

This article describes the Sherlock DSE framework. The major contributions are:

• We show that design space model plays an important role in design space exploration.
Sherlock uses a model selection strategy to adapt it to a wide variety of design spaces.
• Sherlock uses an adaptive exploit versus explore sample selection strategy. We show this
strategy is effective in quickly converging to the Pareto front.
• We compare Sherlock to other DSE tools and determine that Sherlock generally outperforms
those tools for FPGA HLS DSE.
• We release Sherlock as open-source (https://git.io/JKuFz).

Section 2 introduces the problem and notations, describes Sherlock’s core active learning algo-
rithm, and present the method to select regression models. Section 3 contains the results of running
Sherlock against multiple FPGA benchmarks that cover a wide variety of applications. We discuss
related work in Section 4. And we conclude in Section 5.

2 SHERLOCK
Sherlock is a design space exploration strategy that uses active learning to iteratively improve
the known set of optimal designs. Sherlock relies upon a surrogate model to estimate the design
space. Sherlock allows for different models and provides a model selection techniques that can
automatically select between the available models to best match the underlying design space.
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This section starts by defining the design space exploration (DSE) problem and introducing
formal definitions. Then, it provides details about the Sherlock algorithm. This includes the ability
to use different surrogate models to model the underlying design space..

2.1 Scope and Definitions
A design space1 is composed of both an input space and an output space. The input space is a
set of FPGA HLS designs that met the application’s functional requirements. The differences in
the designs can be described through the definition of different design parameters, also known
in the DSE literature as knobs. In FPGA HLS DSE, knobs are related to loop unrolling factors,
pipeline initiation intervals, the number of work items/work groups, etc. The output space is
defined by the optimization objectives set by the designer of the application. The major objectives
for FPGA HLS DSE relate to throughput and resource utilization. Evaluating a design sample to
obtain these objectives requires fully synthesizing and implementing HLS designs to a bitstream,
integrating them into a larger system, and evaluating them using a dataset representative of
the target application [7, 23]. These results form the output space, represented by a matrix 𝑦 of
dimensions (𝑚 × 𝑜), where 𝑜 is the number of objectives. Each row of 𝑦 is a fully resolved sample
of the FPGA HLS design with specified input space knobs.
More formally stated, the input space 𝑋 is defined as 𝑋 = {𝑘1 × 𝑘2 × ... × 𝑘𝑛} ∈ X𝑚×𝑛 where

𝑘𝑖 is a knob vector containing all the possible values for this knob, and in this case,X = R. The
resulting matrix has 𝑛 columns for each knob, and𝑚 rows for each unique and valid combination
of knob values, i.e.,𝑚 design candidates. Knobs take 𝑛 values, for 𝑛 ∈ [2,∞]. They can be discrete,
categorical, or continuous. Continuous knobs can generally be discretized by knowing the bounds
of the knob and choosing a reasonable set of values based on the target platform (e.g., powers of
two, regular grid, etc.). Categorical knobs are interpreted as numerical values. The output space
𝑦 ∈ Y𝑚×𝑜 is a matrix of𝑚 rows for each design candidate, and 𝑜 columns for each optimization
objective. The final design space 𝑆 is the combination of the input and output space: 𝑆 = {(𝑋𝑖 , 𝑦𝑖 )}.
Design space exploration aims to find the set 𝑃 ⊆ 𝑆 of design candidates that are optimal on at

least one objective. As a multi-objective optimization problem, this set 𝑃 corresponds to the set of
Pareto optimal designs, i.e., designs that can not be improved on one objective without decreasing
another, also known as the Pareto front. Since evaluating a design candidate is a time-consuming
process, DSE should determine the designs on the Pareto front while sampling as few points as
possible.

Figure 1 provides an example of a design space. The input space consists of five knobs (𝑛 = 5) and
the output spaces has two objectives (𝑜 = 2). There are ten designs (𝑚 = 10) each corresponding to
a unique knob vector. The knob settings here are discretized to powers of two. The graph on the
right depicts the output space. In this case, we aim to maximize both the objectives, and thus the
Pareto front consists of designs towards the upper right area of the output space.

A key element of DSE is estimating the function 𝑓 : R𝑚 → R𝑜 such that:

𝑦 = 𝑓 (𝑋 )

We assume that 𝑓 can potentially be non-linear, and thus would require a large number of samples
to be estimated. Furthermore, since the rows of 𝑦 generally come from measurements (e.g., running
time, accuracy, etc.), the output space may not be deterministic. e.g., multiple runs of an application
would lead to different throughput depending on the system state. Thus., a high-quality design
space exploration tool needs to be robust to noise in order to build a stable model of 𝑓 .

1A design space is the combination of an input space and an output space, although the designation is often informally used
to refer to either the input space, output space, or both.
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Fig. 1. Representation of a design space 𝑆 . The example input space 𝑋 consists of𝑚 design candidates, each
with 𝑛 = 5 knob values. The output space 𝑦 is a set of 𝑜 = 2 objectives where larger is better. Graphing the
output space shows the Pareto front, 𝑃 which are the solutions that are optimal w.r.t. at least one objective.

Since the goal of DSE is to find the Pareto front 𝑃 , it is not strictly necessary for the DSE
framework to accurately model the entire design space 𝑆 ; it only needs to understand the design
space around the Pareto front. This is especially important in scenarios where sampling the output
space is expensive.
DSE outputs an estimated Pareto front 𝑃 . To understand the quality of the estimated Pareto

front, a metric is needed to compare the estimated Pareto designs with the actual Pareto front.
Average Distance to Reference Set (ADRS) [19] measures the average normalized distance between
the estimated Pareto front 𝑃 and the actual Pareto front 𝑃 (i.e., the reference). ADRS computes
the distance from every estimated Pareto design to the closest point on the actual Pareto front.
An ADRS equal to 0 indicates that every estimated Pareto point is on the actual Pareto front. An
increasing ADRS indicates that the estimated Pareto front is moving away from the actual Pareto
front. Thus, ADRS is commonly used to compare estimated Pareto fronts where smaller is better.

2.2 Base Algorithm
Sherlock uses active learning [27] to find the Pareto optimal designs. Active learning is a subfield of
machine learning that aims to intelligently sample and better model a problem with limited labels.
Active learning techniques target scenarios where one can pose only a limited number of queries.
Thus, they must carefully consider which designs to sample and learn from the results. For HLS
DSE, the queries are the HLS candidate designs and the resulting labels are objective metrics of the
final implementation of that HLS design, e.g., resource usage and throughput. A query of the design
space involves time-consuming synthesis compilations, implementation on an FPGA system, and
evaluation of the system using real data. This can easily take hours and often overnight or even
longer for the largest designs. Thus, the number of queries should be minimized since it involves a
series of time-intensive operations.
Sherlock works iteratively by 1) creating a surrogate model of the design space to formulate a

hypothesis of the Pareto optimal designs, 2) selecting the next candidate to sample, 3) sampling
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the chosen design to obtain objective values, and 4) refining the model based on the new sample.
The loop continues until a stopping criterion is met. The specifics of Sherlock’s active learning
workflow are summarized in Figure 2 and pseudocode is presented in Algorithm 1.

The goal of Sherlock is to exploit a surrogate design space model to find the Pareto optimal
designs as quickly as possible. In other words, Sherlock aims to improve the Pareto front of known
designs at each iteration. However, if the surrogate model is not accurate, Sherlock should opt to
explore the design space by sampling the design with the most uncertainty with the hopes that it
will lead to a better surrogate model. Furthermore, Sherlock aims to learn the best surrogate design
space model for the given design space. Finally, Sherlock focuses its exploration on designs at or
around the estimated Pareto front in an attempt to keep the sampling process in an optimal space.

Initialize

Increase Decrease

Pareto score

Sample

Surrogate model

Pareto hypothesis

Change sampling
method

Keep sampling
method

Pareto dominance
"Exploit"

Max uncertainty
"Explore"

Fig. 2. Sherlock uses an active learning approach that iteratively selects designs to sample while balancing
exploitation and exploration of the surrogate model.

2.2.1 Initialization. As a starting point of the algorithm, we choose an initial number of samples
to evaluate and collect their objective values. We build a set 𝐾 of known designs (for which 𝑦𝑖 is
known) that will grow with future iterations.

𝐾 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), ...} (1)
Before the initial sampling, we do not possess any information on the output space, therefore

the sample selection must occur based on the input space only. Sherlock uses the Transductive
Experimental Design (TED) [34] algorithm to provide a representative set of samples. TED intelli-
gently selects the initial sampling space 𝐾 such that the sampled designs are hard to predict while
remaining representative of the entire input space. TED is only used for the initial sampling. After
that, Sherlock decides on the next samples to select based on an exploit/explore strategy that is
detailed in the following. Our experiments set 𝐾 = 5.

2.2.2 Formulation of Pareto Hypothesis. The goal of Sherlock is to focus the learning method on
the Pareto front of the design space. The intuition is that it is important to accurately assess the
Pareto designs. Likewise, it is less important to accurately model non-Pareto points especially those
that are far from optimal.
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Algorithm 1: Sherlock Static Model Algorithm
Input :𝑋
𝑠1, 𝑠2 = 𝑇𝐸𝐷 (𝑋 )
𝐾 = {𝑠1, 𝑠2}
mode← “explore”
prevscore = −∞
while |𝐾 | < sample budget do

𝑓 ← 𝑔(.;𝐾)
𝑦, 𝐻 ← 𝑓 (𝑋 )
𝑃, 𝐻𝑃 ← pareto(𝑦, 𝐻 )
curscore← max𝑠∈𝑃 (scores(𝑦))
if curscore < prevscore then

mode← next(mode)
end
if mode = “explore” then

𝑖 ← argmax(𝐻𝑃 )
else if mode = “exploit” then

𝑖 ← argmax𝑠𝑖 ∈𝑆\𝐾 (scores(𝑦))
end
𝐾 ← 𝐾 ∪ {𝑠𝑖 }
prevscore← curscore

end

Sherlock estimates the Pareto front through the use of a surrogate model. A surrogate model is
defined as a function 𝑓 :

𝑓 ← 𝑔(𝐾) (2)

𝑔 : 𝑆 → (X→ Y) (3)
where 𝑔 is a supervised learning method for regression. We use the surrogate model to provide an
estimate of the entire output space:

𝑦, 𝐻 ← 𝑓 (𝑋 ) (4)
where 𝑦 is the estimated output space and 𝐻 is the uncertainty of each estimation. Sherlock
then extracts the estimated Pareto designs using that surrogate model. More precisely, Sherlock
calculates the estimated Pareto front 𝑃 from the estimated output space 𝑦 along with a measure of
the uncertainty of the Pareto front estimate 𝐻𝑃 .

𝑃, 𝐻𝑃 ← pareto(𝑦, 𝐻 ) (5)

where pareto is a function to extract the set of Pareto optimal designs.

2.2.3 Sample Selection. Sampling is the process of choosing one design 𝑠𝑖 to evaluate and obtain
its output value. The result is an increased set of known designs:

𝐾 ← 𝐾 ∪ {𝑠𝑖 } (6)

Sherlock must decide at every iteration the index 𝑖 of the next candidate design to sample. Sherlock
focuses on sampling designs on the Pareto front. In order to reach these designs, the algorithm
has two options: increase the understanding of the design space near the Pareto front (explore) or
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directly sample a design on the estimated Pareto front (exploit). The explore sampling mode chooses
the Pareto design that has been estimated by the surrogate model with the highest uncertainty:

𝑖 ← argmax(𝐻𝑃 ) (7)

This mode increases the confidence of the estimated Pareto front. The exploit mode selects the
design from those that have not already been sampled with the largest estimated Pareto dominance
(𝑠𝑐𝑜𝑟𝑒𝑠):

𝑖 ← argmax
𝑠𝑖 ∈𝑆\𝐾

(scores(𝑦)) (8)

When the surrogate model has a good estimate of the space around the Pareto front, this step leads
to picking a more optimal design.
Sherlock opts to switch between explore/exploit modes when the maximum score of current

estimated Pareto designs, as calculated by Algorithm 2, is less than the previous maximum score.
Any decrease of maximum score results in a mode change to counteract the decreasing score and
thus the decrease in estimation quality.

Algorithm 2: Score Algorithm
Input :𝑦
Output :Scores: array of size𝑚
for 𝑗 ∈ [1..𝑜] do

Sum[ 𝑗] = ∑
𝑖 𝑦 [𝑖, 𝑗]

end
for 𝑖 ∈ [1..𝑚] do

Scores[𝑖] = ∑
𝑗 (𝑦 [𝑖, 𝑗] ∗𝑚 − Sum[ 𝑗])

end

Algorithm 2 describes the score function. It compares the output value of each design (scaled
by the number of designs) against the sum of the output of all other designs. Recall that 𝑜 is the
number of optimization directives and𝑚 is the number of design candidates. The first for loop
calculates the sum of each output optimization objective across all of the design candidates. This is
used like an average of all the optimization values. The second for loop calculates a score for each
design candidate. The score is a summation of how much each of that design candidate’s objectives
compare to the average value of that objective (stored in 𝑆𝑢𝑚[]). As 𝑆𝑢𝑚[] represents the average
objective value scaled by 𝑚, 𝑆𝑐𝑜𝑟𝑒𝑠 [] represents the distance from the average, scaled by 𝑚. A
large score indicates that the design candidate’s objectives are much greater than the average value
of those objectives. Thus, a large score indicates that that candidate is located far away from the
center-of-mass of the hypervolume and is thus a high-quality design that is likely to be on or near
the Pareto front. A negative score indicates that the design candidate’s objectives are generally
worse than the average value of the objectives, and thus a poor design candidate.

Sherlock chooses between the two sampling modes based on the improvement of the predicted
Pareto front. To measure the improvement, Sherlock generates a score for the prediction from a
surrogate model, and monitors its changes. When in exploit mode, Sherlock applies the scores
function to design candidates on the estimated Pareto front that have not been already been
sampled, i.e., those not in 𝐾 , and picks the design candidate from that set to sample. On each
iteration, Sherlock compares the current maximum score for all designs on the estimated Pareto
front to the maximum score from the previous iteration. If the score is decreasing, Sherlock switches
the sampling mode between explore and exploit.
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2.3 Surrogate Model
Sherlock can use any surrogate model based on a regression algorithm that provides a prediction
uncertainty. There exist two major methods to provide an uncertainty in a regression model:
1) ensemble technique, and 2) Bayesian learning.

Ensemble techniques create multiple regression models, each with a subset of the known points.
The predictions of different models are aggregated by voting or averaging. The uncertainty of
predictions can be estimated by computing the variance over all the models. A popular ensemble
model is the Random Forest predictor based on a set of decision trees, and is used in several active
learning frameworks.
Bayesian learning techniques leverage Bayes theorem to progressively update statistical distri-

butions based on provided evidence. Typically, a regression model starts with a prior distribution
over its weights, and combines it with the likelihood from known points to create a posterior
distribution. The parameters of the posterior distribution can be used to compute a measure of
uncertainty. A popular example is Gaussian Process models that create a prior distribution over
functions by using a kernel to express the correlation between points.

Sherlock can use any of these types of learning algorithms. We experiment with Random Forest
and Gaussian Process as they can generally model complex design spaces, and we also create a
consensus-based Radial Basis Function interpolator, that provides kernel-based interpolation of
unknown data, and is faster to compute than a Gaussian Process.
Most design spaces are inherently different as they represent a wide variety of relationships

between input variable and output design goals. Some design spaces can be modeled by a simple
linear equation, while others require a more complex model. This is reflected by the performance
of different surrogate models in active learning frameworks.
Figure 3 presents the results of running Sherlock on two different benchmarks (DCT and His-

togram) using two different surrogate models. We plot ADRS against the percentage of design
space sampled. Intuitively, as more designs are sampled, Sherlock does a better job of estimating
the Pareto front (i.e., the ADRS moves towards 0). A lower ADRS indicates a better Pareto front
estimate; an ADRS = 0 corresponds to perfectly estimating the Pareto front. In the DCT design
space, a random forest surrogate model causes DSE to converge towards the Pareto front faster. In
the histogram design space, a Gaussian process model makes DSE converge faster. The major point
that we want to emphasize is that that different models perform better on different benchmarks.
A random forest better models the DCT design space while a Gaussian process is best for the
histogram design space.

0.0 0.2 0.4 0.6 0.8 1.0
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5 10
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Fig. 3. Illustration of the difference of performance using Sherlock with two regression models on two
benchmarks. The left graph shows that the random forest better models the DCT design space while the
Gaussian process is best for the histogram design space (right).
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Algorithm 3: Sherlock Model Selection Algorithm
Input :𝑋 , Models {𝑔1, 𝑔2, ..., 𝑔𝑖 , ...}, Reshape factor 𝑟 = 1
𝑠1, 𝑠2 = 𝑇𝐸𝐷 (𝑋 )
𝐾 = {𝑠1, 𝑠2}
mode← “explore”
prevscore = −∞
Initialize: 𝛼𝑖 = 1, 𝛽𝑖 = 1 ∀𝑖
while |𝐾 | < sample budget do

𝑃𝑖 (𝜃 ) = 𝐵𝑒𝑡𝑎(𝛼𝑖 , 𝛽𝑖 ) ∀𝑖
𝜃𝑖 ∼ 𝐵𝑒𝑡𝑎(𝛼𝑖 , 𝛽𝑖 ) ∀𝑖
𝑖 = argmax(𝜃𝑖 )
Choose model 𝑔 = 𝑔𝑖

𝑓 ← 𝑔(.;𝐾)
𝑦, 𝐻 ← 𝑓 (𝑋 )
𝑃, 𝐻𝑃 ← pareto(𝑦, 𝐻 )
curscore← max𝑠∈𝑃 (scores(𝑦))
if curscore < prevscore then

mode← next(mode)
end
if mode = “explore” then

𝑖 ← argmax(𝐻𝑃 )
else if mode = “exploit” then

𝑖 ← argmax𝑠𝑖 ∈𝑆\𝐾 (scores(𝑦))
end
𝐾 ← 𝐾 ∪ {𝑠𝑖 }
prevscore← curscore
Compute 𝐻𝑣 = hypervolume(𝐾)
𝑥 = 𝐻𝑣 > prev(𝐻𝑣)
𝛼𝑖 = 𝛼𝑖 + 𝑥 ∗ 𝑟
𝛽𝑖 = 𝛽𝑖 + (1 − 𝑥) ∗ 𝑟

end

A common solution to pick a model is to test the algorithm on similar design spaces, and choose
the most efficient one, possibly by cross-validation. Instead, we propose to learn the best model
using a Multi-Armed Bandit strategy that iteratively updates the importance of each model based
on the Pareto set improvement.

2.4 Surrogate Model Selection Algorithm
At each iteration of the active learning process, we want to choose a surrogate model 𝑔 among a
pool of models 𝐺 = {𝑔1, 𝑔2, ...}. We start with no prior knowledge of which model performs better,
and we want Sherlock to iteratively increase its reliance on models that generate good results.
Sherlock selects the surrogate model using a Multi-Armed Bandit (MAB) strategy [28]. The

MAB problem is a Bayesian optimization problem where we wish to determine the distribution of
independent variables with unknown outcomes (the bandits), and choose the variable providing
the best outcome. The various MAB algorithms provide a tradeoff between exploitation (observing

, Vol. 1, No. 1, Article . Publication date: April 2021.



10 Quentin Gautier, Alric Althoff, Christopher L. Crutchfield, and Ryan Kastner

the bandit with the best-known outcome), and exploration (observing other bandits to refine their
distribution) [3].
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Fig. 4. Illustration of varying parameters for beta distribution PDFs. The left graphs shows 𝛼 being varied
while 𝛽 is held constant. The right graph shows 𝛼 held constant and 𝛽 varied. Increasing 𝛼 makes a model to
be more likely selected in the future while increasing 𝛽 makes it less likely to be selected.

In this case, we consider each model as a bandit. The outcome of observing one bandit is either
an improvement in the current Pareto set, or no improvement. In other words, we are trying to
learn a Bernoulli distribution for each model. Consequently, we can select the prior distribution of
the bandits as a Beta distribution. We define the prior distribution with parameter 𝜃 for each model
𝑖 as 𝑃𝑖 (𝜃 ) = 𝐵𝑒𝑡𝑎(𝛼𝑖 , 𝛽𝑖 ). We update these distributions by selecting one bandit and observing the
outcome. A good choice of sampling algorithm is Thompson Sampling [29] that provides a good
tradeoff between exploration and exploitation [4]. The algorithm draws a random sample from
each distribution: 𝜃𝑖 ∼ 𝐵𝑒𝑡𝑎(𝛼𝑖 , 𝛽𝑖 ) ∀𝑖 , then chooses the bandit with the largest sample value. The
observation 𝑥 of the selected bandit corresponds to the improvement of hypervolume over the
known designs (hypervolume(𝐾)), after we sample a design according to a strategy as defined in
Section 2.2.3. In other words, if the model 𝑔𝑖 improved the Pareto set, 𝑥 is a positive outcome, i.e.,
𝑥 = 1, otherwise 𝑥 = 0. A value of 𝑥 > 0 increases 𝛼𝑖 , while a value of 𝑥 = 0 increases the value
of 𝛽𝑖 . As can be seen in Figure 4, by increasing 𝛼𝑖 and holding 𝛽𝑖 constant, the likelihood that the
distribution provides are larger value (closer to 1) is increased. Likewise, increasing 𝛽𝑖 makes is
more likely that smaller sample value will be selected (closer to 0). We use this updated function to
compute the posterior distribution based on the outcome, and use it as prior for the next iteration.

Algorithm 3 shows the details of the method and how it integrates with the Sherlock algorithm
described in Algorithm 1. Note that we use an optional posterior reshaping factor 𝑟 that changes
the variance of the distributions. As a result, increasing the value of 𝑟 favors exploitation over
exploration (i.e., the model providing the best outcome gets selected more often), and the policy
becomes more greedy. Increasing this value also has the side benefit that each positive outcome is
given more consideration, and potential improvements from models later in the sampling process
will re-adjust their importance faster. It provides a small chance to switch the most important
model during the sampling process.
A model selection algorithm is valuable when the design space model changes and our past

research demonstrated substantial differences between HLS FPGA design space algorithms [7].
Thus, the next question is whether Sherlock is capable of learning the best model. We generate two
synthetic design spaces optimized for different regression models (Random Forest and Gaussian
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Fig. 5. Performance of the model selection algorithm on two simulated datasets. On top are the ADRS curves,
on the bottom are the calculated means of the Beta distributions.

Process), and we run the model selection process to verify that the algorithm can choose the proper
model for each design space. The ADRS curves in Figure 5 compare the results of Sherlock using
a single model and using model selection. In both datasets, model selection performs as well as
the best model, or better. On the bottom, we also plot the calculated mean of the Beta distribution
associated with each model when running model selection. As expected, the model performing
better keeps a larger mean. The spikes in the curve correspond to the reshaping factor (set to
10) designed to amplify the increase of the mean when a model performs better only later in the
sampling process.

3 RESULTS
3.1 Experimental Setup
We implement Sherlock using Python 3 with the NumPy and SciPy libraries. We implement four
types of surrogate models: a Gaussian Process (GP) with a Matern kernel using the GPy library, a
Random Forest (RF) from the scikit-learn library, and Radial Basis Function (RBF) interpolation
algorithms with a consensus decision, with both a multiquadric basis and a thin plate basis. We
compute an error metric based on the ground truth design spaces, using the Average Distance to
Reference Set (ADRS) metric [19]. ADRS measures the average normalized distance between the
estimated Pareto front and the reference Pareto front. The closer it is to 0, the better the estimation
is. We are interested in the evolution of the ADRS value in function of the number of samples. For
a better comparison between benchmarks, we normalize the number of samples to the size of the
design space, and report the results in function of the percentage of the space sampled. The goal of
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Sherlock is to produce a curve that converges to zero as fast as possible. To summarize our results,
we compute the area under the curve for a section of the curve (up to 30% of the space sampled), as
a measure of how fast the algorithm converges toward a good solution.
We compare our results to the ATNE algorithm [13] implemented in Python 3, the 𝜖-PAL [37]

algorithm implemented in MATLAB, transductive experimental design (TED) [34] implemented
in Python 3, and the Flash [16] algorithm implemented in Python 2. The ATNE implementation
leverages one of the following models: a decision tree, random forest, or RBF with a multiquadric
or thin plate basis. TED only considers the input space, and does not use an iterative approach.
We ask TED for a certain percentage of designs to sample and increase this number to explore
the design space. For all the other iterative algorithms, we set the number of initial samples to
five. In ATNE, we monitor the ADRS for each design sampled until it converges and stops. For
𝜖-PAL, we set the 𝜖 to zero, monitor the ADRS curve for each sample, and complete the curve with
the samples from the estimated Pareto set after the algorithm converges. All non-deterministic
algorithms are run multiple times on each benchmark, and we compute the average ADRS curve.

3.2 Dataset
We test our algorithm on a set of FPGA benchmarks that cover different types of applications.
These benchmarks are FPGA applications outfitted with knobs that can be tuned, along with a test
dataset to run them and measure their throughput. The knobs are software-defined parameters
that translate into architecture changes. They cover typical FPGA optimizations such as pipelining,
unrolling, partitioning, and some optimizations specific to each application (sliding window width,
etc.). The different combinations of values for knobs create unique designs that are functionally
equivalent, but produce a different outcome in terms of logic utilization and throughput.
The majority of our dataset consists of the Spector benchmarks [7]. The Spector benchmarks

are compiled using the Altera OpenCL SDK. Each design takes multiple hours to compile, making
DSE essential. In total, all of the Spector benchmarks required over twenty thousand hours of
compilation time. All designs of these applications have been compiled and executed on a Terasic
DE5 board with a Stratix V FPGA to create design spaces containing between 200 and 1500 designs
each. We also add the Iterative Closest Point (ICP) algorithm from [8] that is implemented on FPGA
using OpenCL, and uses knobs to create a similar design space as in Spector, with 1276 designs. We
use these provided design spaces that consist of the knob values, the actual FPGA area utilization,
and the measured throughput of each design. Please consult the Spector repository and technical
paper for more information [7].

The goal of a DSE framework is to search a predefined space for optimal designs. Therefore our
ground truth consists of the set of Pareto-optimal designs in each design space. We run Sherlock
by considering that the outcome of each design is unknown and let the tool incrementally find and
improve an estimated Pareto set. We can then compute the ADRS metric between the estimated
Pareto set and the ground truth set that we defined initially.

3.3 Results
The first experiment aims to understand how the effect of different surrogate models. We do this
by comparing the results of Sherlock using four different regression models. We show that the
regression model has a large role in the quality of results. Additionally, the experiment aims to
understand how the general Sherlock technique compares to different styles of DSE techniques
(specifically ATNE, 𝜖-PAL, TED, and Flash).

Figure 6 presents the ADRS curve for ATNE with the four models, 𝜖-PAL, TED, Flash, four
versions of Sherlock with statically defined surrogate models, and Sherlock with model selection.
The experiment varies the percentage of designs that are sampled shown on the x-axis. We calculate
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Fig. 6. Average performance of several algorithms on all the FPGA benchmarks. We plot the error (ADRS -
lower is better) against the percentage of design space sampled. We test Sherlock and ATNE with multiple
regression models.

the average ADRS value across all benchmarks at each sample. The ADRS is calculated against
the ground truth design spaces which were evaluated and provided for each of the benchmarks.
Intuitively, the ADRS should decrease as the number of sampled designs increases.
We run Sherlock with four different regression models: Gaussian process, random forest, RBF

(multiquadric), and RBF (thin plate) as well as model selection. The results focus on the first 30% of
the design spaces. 30% is a large budget for most applications with a slow evaluation time, and in
our test cases, it is always sufficient to reach an ADRS below 1% with the best regression model.
Figure 6 indicates that 𝜖-PAL is generally inferior to all the techniques. TED has slightly better

but still overall poor results. ATNE performs poorly when the sampled design space is smaller (less
than 10%) but improves as the number of samples increases. Sherlock using a static random forest
model is the worst performing version of Sherlock followed by Sherlock Gaussian process. The two
versions of Sherlock using RBF model perform the best out of all of the techniques. Model selection
appears to generally follow the RBF model, providing most of the benefit of RBF without needing
to commit to a single model. Comparing ATNE with RBF and Sherlock with RBF, it is clear to tell
that RBF does generally model the data better, but does not account for all of the improvement
provided by Sherlock over ATNE. Figure 6 shows that, regardless of the model, Sherlock performs
better or similar to other algorithms in the first 5% of the spaces. After that, Sherlock perform
differently based on the chosen model. On average, using the RBF interpolator with a thin plate
kernel provides the best average ADRS.

However, the average ADRS curves do not entirely reflect the performance on individual bench-
marks, and is especially skewed by the FIR benchmark, which is more difficult for several versions
of Sherlock due to some local minima. Thus, while it is tempting to just set Sherlock to always use
the RBF thin plate surrogate model, our later results indicate that different models better estimate
different design spaces. This motivates the benefits for tailoring the model towards the design space
as Sherlock does with its model selection algorithm (Algorithm 3).

In order to better understand the results across benchmarks, we use area under the curve (AUC)
over the first 30% of the design space sampled as a measure of the quality of a particular DSE
algorithm on each individual benchmark. The AUC metric calculates the area of a given ADRS
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curve, which provides a measure of the convergence of an ADRS curve. This metric puts more
weight at the beginning of the curve where we expect the error to decrease quickly.
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Fig. 7. Performance of 𝜖-PAL, ATNE with four models, Flash, TED, and five versions of Sherlock across the
individual benchmarks. We compute the area under the ADRS curve as a measure of convergence over the
first 30% of design space sampled. A lower value means that the algorithm reaches a better estimation of the
Pareto front faster. The Sherlock results include four versions using different regression models: Gaussian
process (GP), random forest (RF), and two radial basis functions (RBF) – multiquadric and thin plate. Model
Selection is a version of Sherlock that uses Algorithm 3 to dynamically switches between those four different
models with the goal of automatically adapting to the best model. ATNE also uses four models: decision tree,
random forest, RBF with a thin plate basis, and RBF with a multiquadric basis. ATNE with a decision tree
model is the original implementation.

Figure 7 shows the AUC for 𝜖-PAL, ATNE with four models, Flash, TED, and five versions of
Sherlock for each benchmark. As before, we show Sherlock using four fixed models and we add the
results of Sherlock using model selection. The results indicate that the model plays a large role in
the quality of the results. For example, Sherlock using a Gaussian Process (GP) has a substantially
lower AUC than all of the other techniques in the BFS sparse design space. Whereas Sherlock using
a random forest (RF) model provides the best results for DCT. Histogram is best using Sherlock RBF
multiquadric. Sherlock RBF thin plate is not the best in any individual benchmark, but generally
performs well across the benchmarks as indicated in Figure 6. Thus, the model clearly plays an
important role in obtaining the best results. Furthermore, one model does not clearly dominate in
terms of consistently provide the best result across all the applications.
Sherlock Model Selection dynamically chooses the model, which can change during the DSE

process, with the goal of finding the model that best guides the search for the Pareto front. In theory,
the model selection results should be equal to or superior than the best results of the Sherlock
fixed model. This is clearly not the case as the Model Selection results is inferior to one or more
the Sherlock fixed models in most of the benchmarks. For example, in the Histogram benchmark,
Sherlock RBF multiquadric and Sherlock RBF thin plate both give better performance than Sherlock
with Model Selection. This indicates that the model selection process is not perfect, i.e., a good
model selection algorithm should statically pick only one model if that would give the best results.
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Thus, an ideal model selection algorithm would have just picked the RBF multiquadric for the
entire duration. Clearly, this is not what happened. On the other hand, model selection can provide
superior results; model selection performs better than all the Sherlock fixed models in merge sort.
And on average, model selection works very well as we discuss in the following.

Figure 8 shows the average AUC over all benchmarks. A smaller AUC represents a faster
convergence of the algorithm toward the true Pareto front. The best performing static model on
average (RBF with a thin plate kernel) produces an AUC 1.7× smaller than Flash, 2.7× smaller
than ATNE, 4.5× smaller than TED, and 5× smaller than 𝜖-PAL. However, the performance of each
model varies with individual benchmarks. While we could reasonably pick the model with the best
average result, we would ideally allow Sherlock decide the best surrogate model.
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Fig. 8. Average area under the curve for the benchmarks presented in Figure 7. We present the arithmetic
mean, and the geometric mean to take into account the variability of the results. The values are scaled by
1000 for readability.

In many cases, the performance of Sherlock with model selection is comparable to Sherlock with
the RBF interpolator, and better in some cases. In average, this algorithm performs better than the
other solutions, without having to choose a particular model. The AUC is about 2× smaller than
Flash, 3× smaller than ATNE, and 6× smaller than 𝜖-PAL. The Gaussian Process and Random Forest
implementations of Sherlock do not converge very well in many benchmarks, as a result of being
stuck in local minimum regions. The model selection process can more easily avoid these local
minima by selecting a different model. Certain models such as FIR filter contains a local minimum
that creates a high variance in the performance of different models, and the selection process clearly
helps in this case. Conversely, a benchmark like SPMV 0.5% depends more on the learning rate of
the chosen model, and the overhead of choosing between multiple models is more obvious.
Figure 9 shows the ADRS curves for all of the benchmarks and all of the algorithms. These are

the most complete results that have been summarized previously using average ADRS (Figure 6)
and AUC (Figures 7 and 8). The results provide some more information about the variability of the
performance of different DSE algorithms on the different designs. Rarely does one model dominate
across an entire design sample size; some models work better in the lower sample regime while
others models do better with more samples.
Based off of the results presented, Sherlock is able to provide similar and often better results

compared to similar frameworks. Paired with its model selection feature, Sherlock is able adapt itself
well to a previously unknown design space. While model selection generally performs competitively,
it is possible to choose a model that fits the space better than Sherlock’s general model selection.
This indicates that model selection is important, Sherlock does a good job of model selection but it
could certainly be improved.

3.4 Execution Time
We collected the execution time of each of the DSE algorithms on every dataset. These times are
plotted in Figure 10. These algorithms were collected on an AMD Ryzen 2700 with 16GB of RAM
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Fig. 9. Comparison of the ADRS curves for multiple algorithms on all the FPGA benchmarks.

and an Nvidia 1060 with 6GB of VRAM on a system running Ubuntu 20.04 LTS. Additionally,
we estimate the time to evaluate a sample design, i.e., perform a complete synthesis. The exact
synthesis times per design are not available for the Spector benchmarks. We assume that each
sample takes an average of 2 hours to generate, which was the average time cited in the Spector
benchmarks [7]. In general, sample generation time may vary greatly and be difficult to predict.
Regardless, sample evaluation dominates the overall time for DSE.
Sherlock is generally among the lowest when it comes to total execution time. This is largely

due to Sherlock’s ability to quickly converge to the Pareto front leading to a reduced number of
samples required to be evaluated as shown in Figure 9.

4 RELATEDWORK
FPGAHLS tools allow designers to explore vastly different architectures using built-in optimizations
including pipelining, memory optimization, and bitwidth optimizations [9]. Efficiently exploring the
design space is important since FPGA HLS is a time-consuming and costly process. DSE techniques
enable the designer to specify potential optimization options and determine the best specifications
that produce the most optimal architectures. DSE facilitates faster and more effective architectural
optimizations and reaching optimal solutions more quickly than a manual search.
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Fig. 10. Comparison of the execution time for multiple algorithms on all the FPGA benchmarks. Sample
generation is estimated at an average of 2 hours per sample [7].

Sherlock targets DSE problems where the evaluation of any individual sample is a compute
intensive and time consuming process (on the order of hours or more). For example, compiling an
HLS design to bitstream can easily take hours primarily due to physical synthesis process. In these
DSE scenarios, limiting the number of synthesis runs is very important, as each single design not
sampled can save hours of optimization time. In such scenarios, one cannot perform a brute force
exploration of the entire space and are limited to evaluating only a small number of samples.
Many strategies exist to effectively explore design spaces to find the optimal set of design

parameters [21, 25]. We describe those that are most relevant to our work with respect to the type
of DSE problem that they attempt to solve and the strategies that they employ to solve perform the
exploration process.
Evaluation-based methods measure the exact quantity of the target objectives to optimize. In

hardware design, this method consists of compiling an architecture specification to the target system,
running the compiled design using an application-specific dataset, and measuring the throughput,
area utilization, power consumption, and other optimization goals. These measurements give an
accurate representation of how the design actually performs at the cost of long synthesis times.
One solution to accelerate this evaluation process is to parallelize it, and employ a smart division
of the space to attribute the computing resources. Xu et al. [32] use a Multi-Armed Bandit (MAB)
algorithm to balance the computing resources between different portions of the space, and leverages
the exploration-exploitation tradeoff of MAB to iteratively allocate more resources to the optimal
subspaces.
Predictive DSE methods develop an analytical model for the design space which allows for

faster and more comprehensive sampling by using this approximated model. This enables the rapid
exploration of the design space by sampling more potential solutions. DeSpErate++ [11] uses a
scheduling system to predict and efficiently simulate the designs and quickly explores the design
space of the analytical model. Another approach builds compute and memory models based on the
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compiler internal representation that can be used as surrogate models to significantly speed up the
DSE process [30, 31]. Their performance prediction error varies between 4 and 16%. Schafer [22]
explores the design space by building a probabilistic model for each type of optimization. They
perform a fast exploration by using an ant colony optimization algorithm, and obtain an error
of 1.7% on SystemC benchmarks. Lin-Analyzer [35] and MPSeeker [36] propose tools to analyze
the structure of the HLS code directly before the synthesizing steps occur. Their model achieves a
400-4000× speedup and a final accuracy of 95%. Generally, predictive-based methods exploit features
specific to the optimized application. These specific features make predictive approaches difficult to
generalize to other applications. Sherlock learns the appropriate model for the application at hand,
which allows it to generalize better than these predictive approaches that rely on application-specific
features.

Metaheuristics are commonly used as a general optimization framework for design space explo-
ration. Simulated annealing is a probabilistic technique for approximating a function that naturally
lends itself to assumption-free modeling a design space [6, 24, 26]. Evolutionary design space
exploration [1, 5, 15, 20] uses genetic algorithms to converge toward an optimal solution. Particle
swarm optimization [14, 18] generates a population of particles searching the space of designs and
using various metrics to advance toward the optimal solutions. These techniques require a large
number of samples to converge, and therefore are more adapted to problems where the evaluation
of each sample is a fast process, but the space is too large to be evaluated entirely, which usually
does not apply to FPGA HLS.

Iterative machine learning algorithms aim to minimizes the number of designs to evaluate while
maximizing the quality of the DSE model. Liu and Carloni describe an iterative approach based
on transductive experimental design (TED), randomized selection, and random forests [10]. ATNE
is an active learning framework based on non-Pareto elimination [13]. ATNE creates multiple
regression models that estimate the design space from different subsets of the known data, then
computes an elimination threshold from the variance of the predictions. Based on this threshold,
designs predicted to be dominated are eliminated from consideration. The algorithm then samples
a new design and iterates until convergence. By focusing on estimating only the Pareto optimal
designs, ATNE can quickly converge toward the Pareto front. The Hypermapper framework [2, 17]
performs active learning by modeling known designs with a random forest regression algorithm,
and simultaneously sampling all the predicted Pareto-optimal solutions. The algorithm iterates
until a sampling budget is reached. This framework is optimized towards large design spaces where
it is reasonable to perform a high number of design evaluations (100 to 300 samples per iterations).
Their framework is applied to the optimization of Simultaneous Localization And Mapping (SLAM)
algorithms. The 𝜖-Pareto Active Learning (𝜖-PAL) [37] is an improvement over PAL [38], and uses
Gaussian Process as a regression model in order to predict an uncertainty region for each predicted
design output. By using these uncertainty regions, the algorithm can discard non-optimal designs
with high accuracy, and progressively build a predicted Pareto-optimal set with an 𝜖 margin. The
sampling process is based on minimizing the uncertainty of the predictions. Sherlock is similar to
𝜖-PAL and ATNE, but without the pruning step, which can potentially eliminate optimal designs
from consideration, especially when the regression model is not adapted to the design space being
searched.

Flash [16] is a method to explore the space of possible configurations for software systems. Flash is
a sequential model-based optimization that uses decision trees to iteratively sample configurations.
It uses the information from prior selected samples to inform the best future samples. Our results
show that Sherlock performs better than Flash in most cases.
Sherlock aims to address the issue that one model cannot adequately address all design spaces.

SPIRIT [33] determines the Pareto front using iterative refinement while employing spectral analysis
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to determine uncertainty in the design space model. They study six different response surface
models. They note that different models provide different benefits, and decide on RBF because it is
generally best at modeling their DSE problem. While our results agree that RBF is a good model
on average (see Figure 6), we show that different design spaces are modeled better by different
models (see Figure 8), which indicates that statically determining a model is not an optimal solution.
Sherlock adaptively chooses the best model based on the design space and will likely be able to
better model designs spaces that RBF does not model accurately.
OpenTuner [1] develops a MAB-based technique to choose which search algorithm should be

used to select samples. Sherlock uses a similar technique, tailored to our active learning search
algorithm, that can choose which regression model performs better on each design space.

Prospector [12] uses Bayesian optimization that builds a probabilistic model of the design space
and iteratively determines the best points to sample. Prospector’s Bayesian Optimization Unit uses
a squared exponential kernel as a Gaussian process to create a model of the design space. Sherlock
uses a Gaussian process (GP) as one of its models. The results when Sherlock uses the GP do not
perform as well as other models on average, though it does perform very well on some benchmarks.
Prospector uses PESMO to select the sample points with the goal of reducing the entropy of the
Pareto front. PESMO focuses on exploration at the beginning of the process and exploitation near
the end. Sherlock changes its focus between exploration and exploitation dynamically depending
on the progress of the DSE search.

5 CONCLUSION
We presented Sherlock – an evaluation-based, multi-objective, design space exploration framework.
Sherlock is an active learning algorithm, heavily focused on improving the set of optimal designs at
each iteration, and as such converges very quickly toward a low-error solution. Sherlock is capable
of using specific models if a similar space is known, but Sherlock excels in scenarios where the
design space is not already known by providing an intelligent way to select a model to represent
the space by using its Multi-Armed Bandit-based algorithm. We have tested our framework with
multiple regression models that present a wide variance in the quality of results on different
benchmarks. In general, we have found that simple RBF interpolation functions perform better than
traditional Random Forest or Gaussian Process models on FPGA design spaces. The results of this
model selection are consistent over multiple benchmarks, and provide better average performance.
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