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Abstract—Modern data centers leverage large FPGAs to pro-
vide low latency, high throughput, and low energy computation.
FPGA multi-tenancy is an attractive option to maximize utiliza-
tion, yet it opens the door to new security threats. In this work,
we develop a remote classification pipeline that targets the confi-
dentiality of multi-tenant cloud FPGA environments. We utilize
an in-fabric voltage sensor that measures subtle changes in the
power distribution network caused by co-located computations.
The sensor measurements are given to a classification pipeline
that is able to deduce information about co-located applications
including the type of computation and its implementation. We
study the importance of the trace length and other aspects
that affect classification accuracy. Our results show that we can
determine if another co-tenant is present with 96% accuracy.
We can classify with 98% accuracy whether a power waster
circuit is operating. Furthermore, we are able to determine
if a cryptographic operation is occuring, differentiate between
different cryptographic algorithms (AES and PRESENT) and
microarchitectural implementations (Microblaze, ORCA, and
PicoRV32).

I. INTRODUCTION

FPGAs are being deployed in data centers as compute off-
load engines for neural networks [1], genome sequencing [2],
secure database transactions [3], networking [4], and homo-
morphic encryption [5]. These applications handle sensitive
information, and have strict requirements on the confidentiality
of their data and associated computations.

Cloud servers provide large, expensive FPGAs to maximize
the processing power available to customers. Existing systems
employ an “all or nothing” approach where users are allo-
cated the entire FPGA. This leads to under-utilization when
customers cannot fill the available space. FPGA virtualization
has been proposed to maximize utilization and reduce cost [6].

Unfortunately, FPGA virtualization opens the door for new
security problems. A recent class of remote FPGA attacks use
voltage fluctuation sensors implemented on the programmable
logic to sense changes in the local supply voltage. These
minute voltage fluctuations provide information about other
computations that use the same power distribution network.
These voltage fluctuation sensors can use the power network
as a covert channel [7], [8] or as a side-channel to extract
cryptographic keys of co-located encryption cores using com-
mon power analysis techniques [7], [8]. These attacks rely on
co-locating attacker hardware with a victim’s hardware.

This work develops techniques to classify co-located com-
putations using a voltage fluctuation sensor. This includes
determining if there is another co-tenant, if that co-tenant is
performing encryption, whether the co-tenant is utilizing a soft
processor, and other questions that violate the confidentiality
of the co-tenant. This a necessary precursor for performing
attacks in a virtualized FPGA environment, where an attacker
must identify a co-located core before performing an attack, or
defending against them, where a provider recognizes malicious
cores and terminates service.

We consider the scenario where the sensor is given a
logically isolated region of the FPGA (as is common in cloud
FPGA environments). We make no assumptions about design
rule checks, and only assume that the attacker can use relative-
location constraints. We study the ability for the attacker to
use their allocated programmable logic to infer behaviors of
other tenants on the same FPGA. We implement a voltage
fluctuation sensor that measures the compute environment to
produce a signal, and use those readings to classify co-tenant
computations.

We demonstrate the ability to classify different types of
computation cores that are logically isolated on the same
FPGA system. We show that although the voltage fluctuation
sensor is logically isolated from each victim tenant, features
encoded as images from sensor readings are sufficient to train
an image classifier. Our classifier can accurately assess if
there is a co-tenant, determine if the co-tenant is executing
certain types of applications, and derive characteristics of the
implementation of that application. We study different aspects
of the classification pipeline including signal length, signal
conditioning techniques, and image transformations. We make
the following contributions:

• Introduce the ability to classify co-tenant computations
using a voltage fluctuation sensor.

• Study the effects that signal conditioning, signal length,
and other parameters have on the classification problem.

• Quantify the amount of time required to accurately char-
acterize co-tenant computation.

The remainder of the paper is organized as follows: Sec-
tion II presents the threat model that we assume for our
work. Section III introduces the Time-to-Digital Converter
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Fig. 1: Remote TDC Sensor Threat Model – Step 1©: An attacker is given access to a remote multi-tenant FPGA and programs it with a
voltage fluctuation sensor. Step 2©: The sensor readings are gathered and sent to the attacker for analysis. Step 3©: The attacker classifies
the sensor readings to characterize aspects of the co-tenant’s computation.

sensor. Section IV describes our classifier pipeline and how
we make inferences. Section V presents experimental results
that provide insight into the power side channel information
of power traces, a CNN image classifier, several victim multi-
tenant computations, and the accuracy of the network in clas-
sifying the described multi-tenant computations. Section VI
describes related work. Finally, we conclude and summarize
in Section VII.

II. THREAT MODEL

Figure 1 describes the proposed threat model. The attacker
is provided access to a multi-tenant FPGA and co-locates with
a victim tenant. The attack is performed completely remotely;
it does not require physical access to the FPGA. The attacker
develops a design with a voltage fluctuation sensor and pro-
grams it on the multi-tenant FPGA. We assume the system
performs physical and logical separation of the tenants [9]
and the attacker is restricted to system defined interfaces, e.g.,
those provided by a shell. The attacker gathers the sensor
readings and classifies them to determine a characteristic of
the co-located computation.

The attacker is a malicious adversary with the intention of
classifying the computations of other tenants utilizing the same
FPGA. That attacker is given an area of the programmable
logic and can implement a voltage fluctuation sensor. Our
voltage fluctuation sensor is a variant of a time to digital
(TDC) sensor [10]. We assume that our sensor will pass any
bitstream analysis techniques put in place to detect potential
remote attacks [11]. Our sensor does not have timing path
violations or combinational cycles and thus is potentially
stealthier than RO sensors, but we have not experimentally
validated this.

We do not make any assumptions about where the sensor
is placed, e.g., the victim computation does not need to
have one of its wires running through it [12]. However, the
sensors are more sensitive to computations that are spatially
closer [13], and thus, the proximity of the location of the target
computation will effect our ability to classify information.

Our experiments only consider attacks on computation co-
located on the same programmable logic, However, we note
that similar attacks have been shown from the FPGA to a
CPU on the same die [7], across dies on a 2.5D integrated
package [14], and across chips on the same board [8]. Thus,
we believe that our general techniques could be used for these

other scenarios to infer more information about the overall
system (granted they will likely not be as effective due to a
reduction in sensor signal to noise).

We assume that the attacker has access to a set of repre-
sentative IP cores that they intend to characterize. These IPs
do not necessarily need to be the exact IP that the attacker
will encounter, but they need to have similar computational
characteristics. The attacker executes the representative IPs
alongside a voltage fluctuation sensor in a controlled envi-
ronment to build a corpus of labeled training data for each
type of computation being targeted. After the training phase,
the attacker no longer requires access to the IP cores and is
ready to remotely launch the attack.

The attacker remotely uploads a bitstream containing a
voltage fluctuation sensor. The sensor readings are captured
and sent back to the attacker for analysis. The gathered sensor
readings are transformed into an image and feed into the pre-
trained neural network which classifies the computation (as
described in Section IV).

III. TIME-TO-DIGITAL CONVERTER

A Time-to-Digital Converter (TDC) is a circuit that senses
transient voltage variations on a power distribution network
(PDN) [10]. The power supply voltage fluctuations are due
(in part) to power consumption from other computations using
the same power distribution network. TDC sensors can be
implemented using a series of linear delay elements placed in
the FPGA logic. Most implementations use the fast-carry chain
structure provided by an FPGA. The regular routing and circuit
characteristics create a linear propagation delay medium that
eliminates routing path inconsistencies that lead to non-linear
delays [15]. The speed of propagation is a function of the
voltage of the power distribution network.

The output of the TDC is a function of that propagation
speed; it is a time-varying signal that can be analyzed to
infer information about the system. This propagation speed
is captured as a discrete-time signal which is referred to as a
trace.

IV. CLASSIFIER PIPELINE

Traces from the TDC sensor are provided to a classification
pipeline that infers the co-tenant computation using voltage
fluctuations caused by that computation. First, the raw sensor
data from the TDC is processed into numeric traces. Next, the



Fig. 2: Three-Stage Classification Pipeline – In the preprocessing stage the output of the TDC is transformed to produce processed traces.
These signals are then encoded into spectrograms using a Short-Term Fourier Transform (STFT) function. In the classification stage, a
ResNet50 classifier determines which application the signal represents.

traces are encoded into an image using frequency analysis.
This image is then used for training and classification. The
classifier pipeline is shown in Figure 2.

A. Pre-Processing

The raw output sequence of the TDC sensor is a series
of binary strings. This output is then transformed into a
numeric signal through a “population count,” or binary ham-
ming weight. Popcount can also be performed efficiently,
which would be especially important if the attacker aimed
to perform real-time classification (e.g., by implementing the
classification pipeline on the remote FPGA).

B. Short-Term Fourier Transform Encoding

Next, we encode the processed traces into images using a
Short-Term Fourier Transform. The output image represents
the magnitudes of the frequencies that are present for a given
portion of the input signal. An STFT uses a window to take
segments of a given input signal and performs Fourier trans-
forms over each window to produce an image that encodes the
frequency domain of the signal at a given time. These images
are representations of another tenant’s computations on the
FPGA which we wish to classify. An example STFT is shown
in Figure 2.

C. Inference

The final stage of the classification pipeline applies an in-
ference model to the STFT image to predict which application
the image is derived from. We use ResNet50 to infer the
computations of co-tenants by classifying an STFT image into
different classes. The classes correspond to some characteristic
of the co-tenant computation. Our experiments aim to classify
each STFT image into one of nine applications as described
in Section V.

ResNet50 is a convolutional neural network (CNN) that
uses a mix of convolutional, max-pooling, dropout, and fully-
connected layers (50 in total). The convolutional layers form
associations between image features and output labels. The
dropout layers prevent over-fitting during the training phase of
the network by randomly setting the edges of hidden nodes to 0
during the training phase. The output layer employs a Softmax
function to select between the output spaces. The ResNet
architecture uses residual learning where extra connections
from shallower layers bypass some middle layers and connect
to layers further down the network. This has been shown to
increase the efficiency and accuracy of CNNs.

V. EVALUATION

This section describes experimental procedures that demon-
strate the ability to classify co-tenant FPGA computations
using a remotely uploaded voltage sensor. We evaluate dif-
ferent aspects of our TDC sensor and classification pipeline.
This includes techniques to effectively extract information
from the sensor, and trade-offs in the three stages of the
classification pipeline. Our evaluation collects traces for each
target computation on a remote system. We program the
system with 9 unique co-tenant computations, gather training
data, and train a classification pipeline that can accurately
select the computation being computed by the co-tenant.

A. Sensor Parameters

The TDC delay line sensor is implemented on a Xilinx
ZYNQ XC7Z020-1CLG400C. The sensor employs a 64-bit
delay line capture window. The delay elements are imple-
mented as fast-carry adders which provide uniform and linear
delay through the columns of an FPGA. Both the launch and
capture clock domains operate at 100 MHz and are generated
by an MMCM. The sampling rate is 25 MHz.

B. Target Computations

To study what characteristics of co-tenant computation can
be classified, we deploy nine unique computations. One of
these is a baseline, i.e., only the sensor is operating. Another
is a power waster, which emulates a potential fault attack.
We also look at many different implementations of crypto-
graphic operations, including two different algorithms (AES
and PRESENT) running on a variety of different architectural
implementations (custom IP core, Microblaze, ORCA, and
PicoRV). We describe each of these applications in more
detail.

1) Baseline: The primary goal of the baseline is to model
the lack of another co-tenant. The baseline only contains the
voltage fluctuation sensor and associated data collection logic.
This mimics a scenario where only the attacker is present on
the FPGA.

2) Power Wasters: A power waster is a malicious circuit
with the sole purpose of aggressively consuming power. This
design implements banks of ring oscillators which can be
turned on to consume significant amounts of power. Such a
circuit can cause voltage disruptions in the power distribution
network and can be used as a covert channel or to induce
faults. Classifying these circuits is important for removing
these malicious computations from a multi-tenant hardware
platform.



(a) Power Wasters (b) AES (c) ORCA-AES (d) ORCA-PRESENT

(e) MB-AES (f) MB-PRESENT (g) PICO-AES (h) PICO-PRESENT

Fig. 3: Image encodings from the three-stage classification pipeline. Examples of the STFTs output from the Image Encoding stage of the
three-stage classification pipeline are provided for each co-tenant computation considered. These examples all utilize 16K samples for each
given computation.

3) Cryptographic Cores: We study seven different im-
plementation of crytographic computations. These include
two algorithms (AES, PRESENT) and four different archi-
tectural implementations (custom IP core and as software
running on ORCA, MicroBlaze, and PicoRV soft processors).
This provides seven more unique applications (AES, ORCA-
AES, ORCA-PRESENT, MB-AES, MB-PRESENT, PICO-
AES, PICO-PRESENT).

C. Data Collection and Training

1) Target Computations: Power traces gathered from the
delay line sensor are used in the classification of 3 different
hard IP cores and 6 different soft processor applications as
described in the previous section. Each of these is clocked at
5 MHz and logically isolated from the voltage sensor on the
same FGPA. Bitstreams containing both the delay line sensor
and the victim IP are uploaded through a remote connection
to the FPGA.

2) Data: 250 traces are remotely gathered from each
of the 9 target computations for the duration of their op-
eration for a total of 2250 traces. The traces for each
target are randomly segmented into lengths of N =
32, 64, 128, 256, 512, 1K, 2K, 4K, 8K, and 16K clock cycles.
This is done by starting at an arbitrary sample in the trace
and collecting the following N samples to encode for a
given segment length. These segmented traces along with the
unsegmented, whole traces are then encoded as STFTs. Figure
3 shows example STFTs produced from the processed traces.
This is done for each segment length yielding a total of 11
data sets. A separate classifier is created for each data set
resulting in 11 classifiers of 45000 images each, from which
9000 images are selected at random and 90% of these are used
for training and 10% for testing.

Fig. 4: The 9-way classification accuracies resulting from sampling a
co-tenant’s computations for various clock cycles. The clock cycles
sampled range between 64 cycles to the entirety of the co-tenant’s
computation. Sampling for a longer duration yields better accuracy
from the three-stage classification pipeline.

3) ResNet50: ResNet50 is implemented using Keras and
is pre-trained on ImageNet. This allows for more efficient
training because the network weights are closer to their
global optimums in minimizing the network loss function. The
network hyper-parameters are tuned using 10% of the training
data as a validation set. From here, the same hyper-parameters
are used for the rest of the 10 networks. Each classifier is
trained for 50 epochs on its respective data set.

D. Results

The overall classification results are presented in Figure 4.
Our results show that a larger number of samples increases
the accuracy. This is because more characteristic frequency



Fig. 5: The confusion matrix of a 16K STFT classifier. This matrix
shows the classification accuracy for each of the 9 computations
that are considered in this paper. It also provides insight into what
misclassifications are commonly made for a given subset of the
computations. The values for a given cell provide the percentage
of predictions that a computation is classified as in decimal ranging
from 0 to 1.0.

information relative to the computations of the co-tenant
are captured when sampling for a longer duration. The best
accuracy is achieved by using the whole STFTs which encode
traces that sample for the entire duration of the co-tenant’s
computation. We achieve a 9-way classification accuracy of
about 91% using these whole STFTs data set. However, it is
important to note that the whole STFTs may introduce some
bias to the classifier due to the fact that these computations
vary in the number of execution cycles. So, the classifier may
be internally making associations between the length of each
computation and the feature space of the STFTs. Furthermore,
this would require the attacker to know the duration of each
computation a priori. Thus, we do not feel that it is realistic
or consider the whole traces in our analysis.

The shortest segment length which does not contain this
bias is the 16K cycle STFT data sets as this is the duration of
the shortest computation. The 16K cycle STFT classification
yields a 9-way classification accuracy of about 70%. The
resulting confusion matrix from the 16K cycle STFT classifi-
cation is presented in Figure 5. This classifier performs very
well in distinguishing between various types of computations
which consist of the baseline, AES-128 core, 1024 power
waster chain, and any of the soft processor applications in a
4-way classification with an accuracy of about 97.6%. This is
because the power signatures between these computations are
relatively distinct from one another. In the baseline, nothing
aside from the sensor on board the FPGA is consuming power
in the PL fabric. The AES-128 core is a synchronous core with
well defined periodic rounds, the 1024 power waster chain is
an asynchronous core, and the soft processors are emulating
an instruction set architecture which is distinct from any of

the other hard IPs. None of the soft-processor applications
are misclassified as any of the hard IP cores and the only
source of confusion in this 4-way classification stems from
the misclassification of the asynchronous power wasters as
the baseline with a maximum error of 3%.

The 16K cycle STFT classifier also performs quite well
in distinguishing between the three different soft processors.
A given soft processor is mistaken for another at most 13%
of the time. However, the difficulty comes in distinguishing
what application is running on a given soft processor. The
greatest source of confusion comes from AES running on the
ORCA soft-processor, where this application is misclassified
as PRESENT running on the ORCA about 49% of the time.
These results argue for using soft processors to obfuscate
the power side channel information leaked by a particular
application. While an attacker may be able to classify the soft
processor used by a co-tenant, it is very difficult to infer what
application the co-tenant is running.

These results show that it is possible to classify the compu-
tations of co-tenants on a multi-tenant FPGA. Even by sam-
pling only 32 cycles which is less than 0.2% of the execution
time of any of the targets and less than even 0.0064% of the
execution time for some of the soft processor applications,
it is still possible to perform this 9-way classification with
an accuracy 3x better than a random inference by using our
proposed three-stage classification pipeline.

VI. RELATED WORK

A. Remote Fault Injection Attacks

A co-tenant can exploit the PDN to cause denial of service
or fault attacks by uploading a malicious circuit with the inten-
tion of causing voltage disruption in other tenant applications.
These attacks induce large PDN voltage fluctuations by turning
on circuits that consume substantial power, e.g., banks of Ring
Oscillators, which cause a significant voltage disruption on
the PDN and inject faults into other tenant cores. These faults
occur due to the victim core registers’ inability meet the setup
and hold times required for proper operation due to the lack
of power through the PDN. This can be used to perform fault
attacks on security sensitive IPs [16], [17].

B. PDN Covert and Side Channels

Several projects have demonstrated the ability to extract
covert and side channel information from the PDN. Covert
channels have been measured between cores on an FPGA [12],
[18], between FPGA dies in a 2.5D package [14], and across
chips on the same board [19]. Power analysis attacks have
been demonstrated on co-located encryption cores [20] and
launching a timing side channel on a encryption running on the
ARM processor co-located on the same chip as the FPGA [7].

We show that it is possible to learn more general character-
istics of the co-tenant computation. Our classification pipeline
can answer questions like: is there a co-tenant? Is the co-tenant
performing encryption? What sort of encryption? And how is
the computation implemented? These are key questions that
would be necessary to launch such a remote power analysis



attack and generally violate the confidentiality of co-located
tenants.

C. Mitigation Strategies

It is possible to logically and physically isolate co-tenents
on the FPGA programmable logic [9]. These mitigate some
attacks that require close physical access, e.g., [12]. But many
remote attacks are still possible as they do not have such
constraints on sensor placement [7], [20]. Active fences [21]
attempts to take this one step further by surrounding the
co-tenant IP core with ROs. This induces noise into the
local PDN, making it harder to extract the signal due to the
computation of the core.

Krautter et al. [11] describe techniques that check the
bitstream for circuit structures that resemble those that can be
used to perform active fault or passive side channel attacks.
They focus on structures like ring oscillators, those that induce
timing violations, data to clock paths, and high fanouts. They
argue these are indicative of RO and TDC circuits used in
these attacks.

Yazdanshenas et al. [22] considers defenses against long
wire crosstalk attacks in the context of multi-tenant execution.
Their approach relies on encrypting the data before transmit-
ting outside of isolated region. While this helps defend against
some attacks [12], [23], it is still susceptible to attacks that
do not require such proximity to the susceptible computation,
e.g., [7], [8].

VII. CONCLUSION

In this paper, we have proposed a three-stage classification
pipeline for the remote classification of co-located applica-
tions. By leveraging a TDC sensor to collect power side
channel information, it is possible to classify computations that
are running on a multi-tenant hardware platform. The ability to
classify computations provides a necessary precursor to many
remote power side channel and power distribution attacks, such
as those described by [8], [20]. By identifying the existence
of security sensitive computations like encryption cores on
a multi-tenant hardware platform, an attacker will have the
capacity to know when it is possible to perform these attacks
over the PDN.
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