
S2N2: A FPGA Accelerator for Streaming Spiking Neural
Networks

Alireza Khodamoradi
alirezak@eng.ucsd.edu

University of California, San Diego

Kristof Denolf
kristof@xilinx.com

Xilinx

Ryan Kastner
kastner@eng.ucsd.edu

University of California, San Diego

ABSTRACT
Spiking Neural Networks (SNNs) are the next generation of Artifi-
cial Neural Networks (ANNs) that utilize an event-based represen-
tation to perform more efficient computation. Most SNN implemen-
tations have a systolic array-based architecture and, by assuming
high sparsity in spikes, significantly reduce computing in their
designs. This work shows this assumption does not hold for ap-
plications with signals of large temporal dimension. We develop a
streaming SNN (S2N2) architecture that can support fixed-per-layer
axonal and synaptic delays for its network. Our architecture is built
upon FINN and thus efficiently utilizes FPGA resources. We show
how radio frequency processing matches our S2N2 computational
model. By not performing tick-batching, a stream of RF samples can
efficiently be processed by S2N2, improving the memory utilization
by more than three orders of magnitude.

CCS CONCEPTS
• Hardware → Hardware accelerators; High-speed input / out-
put; Reconfigurable logic applications; Emerging architectures.

KEYWORDS
Spiking Neural Networks, Streaming, FINN, RF

ACM Reference Format:
Alireza Khodamoradi, Kristof Denolf, and Ryan Kastner. 2021. S2N2: A
FPGA Accelerator for Streaming Spiking Neural Networks. In Proceedings
of the 2021 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’21), February 28-March 2, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3431920.3439283

1 INTRODUCTION
Artificial Neural Networks have shown remarkable success in large-
scale image and video recognition [39, 41], speech recognition
[5, 13], radio signal classification [33], and many other application
domains [15, 20]. Spiking Neural Networks (SNNs) use an event-
based model that better mimics biological neurons [12, 25] with the
goal of providing high prediction accuracy while using minimal
energy [42]. Recent advancements in SNN architecture design and
training methods show promise in matching the accuracy of non-
spiking ANNs [2, 3, 10, 40] and the potential to out-perform a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’21, February 28-March 2, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8218-2/21/02. . . $15.00
https://doi.org/10.1145/3431920.3439283

similar-sized non-spiking ANN [8]. However, much work remains
until we fully uncover the potentials of SNNs [42].

A conventional neuron model assumes every input requires
calculation and performs 𝑁 operations, e.g., multiplying and ac-
cumulating 𝑁 input values with 𝑁 weights (and an optional bias -
see Equation 1). A typical convolutional layer in a modern feedfor-
ward neural network includes many neurons with an equal number
of inputs (fan-in). This architecture creates patterns suitable for
massively parallel implementations. Frameworks such as FINN [4],
fpgaConvNet [48], and Eyeriss [6] provide efficient implementa-
tions of this architecture on FPGAs.

Conversely, event-based neural networks reduce wasted com-
putation by only processing received events. For example when
an event-based neuron with fan-in=𝑁 receives𝑀 < 𝑁 events, cal-
culating the input only requires 𝑀 operations (Equation 2). This
assumes a certain amount of sparsity and requires dynamic han-
dling of events. This sparsity creates a run-time dependency based
on the input data and induces unpredictable and potentially irreg-
ular memory accesses. Therefore exploiting parallelism in SNN is
more challenging than CNNs, DNNs, and other more traditional
neural networks.

Previous works such as IBM TrueNorth [2], Intel Loihi [9], SpiN-
Naker [35], and BlueHive [28] have shown that processing SNN
events can be efficiently implemented in custom hardware for both
training and inference. Neurogrid [3] uses a mixed analog-digital ap-
proach for simulating large-scale spiking models and Minitaur [31]
and SpinalFlow [30] describe inference accelerators for SNNs. Event
processing is either done by encoding and storing events in a buffer
to be processed in a systolic fashion (tick-batching) [2, 9, 30, 31] or
a spike-routing mechanism is used to prevent deadlocks [3, 28, 35].

In this work, we introduce a streaming accelerator for spiking
neural networks, S2N2. Our design efficiently supports both ax-
onal and synaptic delays for feedforward networks with interlayer
connections. We show that because of the spikes’ binary nature, a
binary tensor can be used for addressing the input events of a layer.
We describe the condition when addressing events with a binary
tensor, and no tick-batching (streaming) can provide a better mem-
ory utilization compared to encoding events and tick-batching. We
show that this condition depends on the input’s sparsity (more de-
tail in Section 3.3) and holds, for example, applications, in particular
for Radio Frequency (RF) applications.

We use the FINN framework [47] as our baseline and extend it
with new functions for supporting our event-based processing of
SNNs. Our proposed changes can maintain the high throughput of
FINN and provide an efficient streaming implementation for SNNs
by benefiting from FINN’s optimized utilization footprint.

We also propose novel example applications for SNNs in the
RF domain that can benefit from S2N2’s streaming architecture.

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

194

https://doi.org/10.1145/3431920.3439283
https://doi.org/10.1145/3431920.3439283

By looking at RF samples as events in In-phase and Quadrature
(I/Q) plane, RF samples can be turned into highly sparse events as
input to a SNN. RF inputs available in RF datasets [32, 34] have a
large temporal dimension, and a SNN designed for classifying these
inputs can efficiently be implemented in S2N2.

In addition, our design is tested by using some of the published
applications for SNNs in the image classification domain [18, 40].
In order to adopt these previously published spiking networks to
S2N2, we propose new architectural changes in these networks
and show that modified networks can maintain their accuracy after
re-training with new hyperparameters.

Our contributions can be summarized as following:
• We introduce a new streaming architecture, S2N2, for accel-
erating SNNs on FPGA platforms.

• We describe how to reduce the memory utilization for inputs
with a large temporal dimension.

• We propose novel applications for SNNs in the RF domain
that can benefit from our streaming architecture.

• We release our code as open-sourced to enhance accessibility
and aid in future comparisons of our work 1.

The remainder of the paper is organized as follows. In Section 2,
we introduce SNNs in more depth and review the previous work on
SNN FPGA implementations. S2N2 is described in detail in Section 3
and we demonstrate its advantages and implementation results for
RF applications in Section 4. Additionally, Section 5 applies the S2N2
architecture to previously published SNNs for image classifications.
We conclude our work in section 6.

2 SPIKING NEURAL NETWORK
Spiking neural networks are the third generation of ANNs devel-
oped to process information more similar to biological neural net-
works [25, 42]. In these networks, neurons propagate information
by using spikes. The information is coded into the rate and time-of-
arrival of the spikes.

Figure 1 shows an example comparison between a frame-based
input and an event-based input with rate-coded spikes. In general,
input to each layer in a non-spiking neural network is a tensor
of values (a multi-channel matrix). In contrast, in a SNN, inputs
to each layer are events that have temporal and spatial positions.
The temporal dimension of the input in SNNs consists of several
"ticks". A tick is the minimum unit of time in a SNN that a neuron
evaluates its input, updates its potential, and, depending on its
model parameters, may generate a spike in its output.

For a more clear comparison, we look at the operations required
for evaluating inputs in non-spiking and spiking neurons. Input to
a non-spiking neuron is calculated as follows:

𝐼 =

𝑁∑
𝑖=0

𝑤𝑖𝑥𝑖 (1)

Here, 𝑥𝑖 are the input values and𝑤𝑖 are their associated weights
and bias is not shown.

While input to a spiking neuron at tick=𝑡 is calculated as follow-
ing:

1github.com/arkhodamoradi/s2n2

𝐼𝑡 =
∑
𝑖∈𝑆𝑡

𝑤𝑖 (2)

Here, 𝑆𝑡 is the set of inputs to the neuron that have a spike at
tick=𝑡 , and𝑤𝑖 are the weights associated with those inputs.

Figure 1: A frame-based input (on the left) is a matrix of
numbers. An event-based input (on the right) includes trains
of spikes. In this example, the number of trains is equal to
the number of pixels in the frame. The duration of the spike
trains is equal to the number of ticks. At each tick, up to one
spike can exist in each train.

With sparsity in input spikes, Equation 2 requires fewer and
simpler accumulation operations compared to the fixed number of
MAC operations required in Equation 1. However, Equation 1 is
more suitable for applying techniques such as loop-unrolling for
exploiting parallelism. In addition, Equation 2 requires memory to
store 𝑆 to keep track of input spikes. Later in this work, we provide
solutions to efficiently implement Equation 2 on custom hardware.

In a conventional ANN, an activation function of a neuron de-
fines the output of that neuron given an input. In SNNs, neuron’s
output and evaluation of neuron potential are governed by neuron’s
model.

Neuron models used in SNNs are biologically plausible models
that are computationally more powerful units compared to activa-
tion functions used in non-spiking networks [12]. These models
are capable of extracting the temporal information embedded in
their input and perform more complex tasks [25].

Although more complex mathematical models such as Izhike-
vich [16] and Hodgkin–Huxley [14] can accurately model a biolog-
ical neuron’s behavior, current training methods for SNNs are not
geared to train these complex models [42]. For now, simpler models
such as Integrate and Fire (IF) and Leaky Integrate and Fire (LIF)
are more prevalent in current SNN applications. In this work, we
use a LIF model with one internal parameter.

2.1 LIF Model
Leaky Integrate and Fire (LIF) model is a neuron model widely used
in SNN applications [18, 21, 36, 40, 50]. LIF model memorizes its
past inputs by adding every input to its membrane potential and
uses a leak (decay) parameter to forget them. This leak parameter is
reflecting the diffusion of ions that occurs through the membrane
when some equilibrium is not reached in the cell:

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

195

Figure 2: LIF neuron with two inputs. An incoming spike in-
creases themembrane voltage by the weight associated with
its connection. A decay parameter decreases the membrane
potential, and if this voltage passes a threshold, it resets to a
preset value, and the neuron generates a spike at its output.

𝑚𝑡 = (1 − out𝑡−1) ∗ 𝑑 ∗𝑚𝑡−1 + 𝐼𝑡 , 0 < 𝑑 < 1 (3)

out𝑡 =

{
1, if 𝑚𝑡 > 𝑇

0, ow
(4)

Here, 𝑑 ∈ (0, 1) is the decaying leak parameter, 𝑇 is the thresh-
old,𝑚𝑡 is the membrane voltage at tick= 𝑡 , and 𝐼𝑡 is the input from
Equation 2. The term (1 − out𝑡−1) in Equation 3 is the reset mecha-
nism that sets the membrane voltage to zero if neuron fires a spike
in its output. This mechanism is illustrated in Figure 2.

Generally, training LIF neurons is done by treating the threshold
(𝑇) and decay (𝑑) as non-trainable hyperparameters.

2.2 Propagation Delays in Neuron
As shown in Figure 3, a biological neuron has different components.
Simply, nerve impulses are received by dendrites and processed by
the nucleus. Impulses generated by the neuron travel through the
axon and are distributed through synapses.

This process has two propagation delays: 1) Axonal delay that
is the time required for an action potential to travel from soma to
synapses through the axon. 2) Synaptic delay that is the time interval
required for a neurotransmitter to be released from a presynaptic
membrane distribute across the synaptic cleft and received by the
post-synaptic membrane.

Supporting these propagation delays in implementation can in-
crease the complexity of the design. Hence, only a few previous
works support these delays (more detail in the next section).

2.3 Custom SNN Implementations
Analog [22, 23, 44], digital [2, 7, 9, 28, 30, 31, 35, 45], and mixed-
analog-digital [3, 29] accelerators for SNNs have been described in
the literature.

Analog realizations [22, 23, 44] are based on memristive tech-
nology [43] and have to deal with latency, density, and variability
issues related to this technology [1]. In an other work [29], in addi-
tion to a memristive-based analog module, a digital module is used
to route events and update receptive neurons. Neurogrid [3] does
not use memristive technology in its analog module and increases

Figure 3: Illustration of a biological neuron. Dendrites re-
ceive inputs from presynaptic membranes to soma. The nu-
cleus reacts to the received signals and may produce an ac-
tion potential, which then has to go through the axon and
distribute to post-synaptic membranes through Synapses.

parallelism by using a digital router for its events. In this work, we
introduce a digital implementation for SNNs, and therefore we do
not compare our work with analog realizations.

Large scale custom chip implementations such as Intel Loihi [9]
with 4,096 on-chip cores and 1,024 neural units per core, SpiNNaker
supercomputer [35] with 57,600 chips and 1,036,800 processors each
capable of simulating 1,000 neurons, and IBM TrueNorth [2] with
4,096 cores and supporting one million neurons are designed with
synaptic delay support. These implementations are designed to sup-
port a mesh of neurons with no particular topology. This is done by
using advanced routers and schedulers. For example, Loihi uses six
bits for the synaptic delay and two independent physical routing
networks for core-to-core multicast. And events in SpiNNaker are
coded to AER [26] packets (including timestamp, position, polarity,
and debugging bits) and are source coded, meaning that the des-
tination of each neuron has to be stored for routing the packets.
TrueNorth has its own packet coding scheme, including the address
of the core, axon index, tick number, and debugging flags. It buffers
the events and uses a scheduler for processing events at specified
ticks for supporting the synaptic delay.

Previous FPGA implementations of SNNs took a similar ap-
proach. BlueHive [28] is a 4-FPGA system and supports 64k Izhike-
vich [16] neurons per FPGA. BlueHive uses a routing system for
events and 16 FIFOs for queuing events for 16 different synaptic
delays with 1 millisecond granularity. Minitaur [31] encodes its
events into five bytes, four bytes for timestamp and one byte for
layer index. It supports a fixed axonal delay by buffering its events.
In some other implementations routing and queuing is done with-
out supporting synaptic or axonal delays [7, 11, 30, 45]. Because
of queuing, parallelism in these works is done when an event is
processed. Each event has a number of destinations, and upon pro-
cessing an event, all of its destinations (membrane potentials) are
incremented by their associated weights in parallel. Routers and
schedulers are used to prevent deadlocks and data hazards while
processing events from different queues with the same destinations.
A comparison is provided at Table 1.

In the next section, we argue that by considering the network
topology, for a feedforward network with interlayer connections,
fixed-per-layer axonal and synaptic delays can be supported with-
out extra FIFOs, schedulers, and separate routing networks.

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

196

Table 1: A comparison between S2N2 and previous works.

Architecture Technology Purpose Supported Topology Supported Propagation Delay Required Complexity for supporting delay

Loihi [9] custom chip training and simulation general mesh synaptic two separate physical routers

SpiNNaker [35] custom chip simulation general mesh synaptic AER packets+router

TrueNorth [2] custom chip simulation general mesh synaptic per-chip scheduler

BlueHive [28] FPGA simulation general mesh synaptic 16 FIFOs with 1ms granularity

Minitaur [31] FPGA accelerator general mesh fixed axonal tick-batching and sorting

SpinalFlow [30] FPGA accelerator feedforward none tick-batching (without supporting delays)

[45] FPGA accelerator small and dense none N/A

[7] FPGA accelerator feedforward none tick-batching (without supporting delays)

[11] FPGA accelerator feedforward none tick-batching (without supporting delays)

[17] FPGA accelerator feedforward none tick-batching (without supporting delays)

S2N2 FPGA accelerator feedforward synaptic+axonal streaming

3 STREAMING SPIKING NEURAL
NETWORKS (S2N2)

To explain the streaming architecture of S2N2, we first look into the
coding scheme used for storing events in input buffers. And explain
the condition when a binary tensor can utilize less memory. We
then explain how feedforward SNNs with interlayer connections
can support fixed-per-layer synaptic and axonal delays without
requiring schedulers and separate routing systems.

3.1 Input Buffer - Memory Utilization
As shown in Figure 1, a spiking input has a temporal duration with
a total number of ticks (time units). In tick-batching, all the events
for the entire duration of input are buffered and processed in a
systolic implementation [30].

Let’s look at the input events in a layer of a feedforward network.
Assuming 𝑆 being the total number of inputs to the layer, and𝑇 the
total duration of the input, to encode events, we need log2 𝑆 bits
for addressing the position and log2𝑇 bits for addressing the tick
number of each event. Assuming sparsity in the incoming events,
the layer can receive up to 𝑝 ∗𝑆𝑇 events when 𝑝 = 1−sparsity_ratio
and 𝑝 ∈ (0, 1). Therefore we need a buffer of size:

buffer size in bits = 𝑝𝑆𝑇 log2 𝑆𝑇 (5)

On the other hand, we can use a binary tensor to address the
input events, ones for when there is an event, and zeros otherwise.
In this case, we need 𝑆𝑇 -bits to store addresses in a binary tensor.
Buffering encoded events requires less memory compared to a
binary tensor if:

𝑝 log2 𝑆𝑇 < 1 (6)

This can be a tight condition on input’s sparsity. E.g., for a layer
with an input tensor of size 64 × 16 × 16 with a total duration of 16
ticks, only for 𝑝 < 1

18 = 5.5% or 94.5% sparsity for input, buffering
encoded events uses less memory compared to a binary tensor of
size 218 bits. In this example, as soon as the input’s sparsity drops
below 94.5%, Equation 6 is not satisfied, and the binary tensor

requires less memory. In Sections 4 and 5, we show that Equation 6
can not be satisfied for our applications.

3.2 Fixed-Per-Layer Propagation Delays

Figure 4: Top: A simple 3-layer networkwith fixed-per-layer
axonal and synaptic delays. Inputs to each layer are binary
vectors, and "1"s are for spikes. Input to a neuron is the
sum of all inputs, and all weights are equal to one. Bottom:
the flow of the input through the network. E.g., network in-
put at tick=1 (color-coded) is received by both neurons in
the first layer. With no axonal delay, they each produce one
spike at their outputs at the same tick. The second layer re-
ceives this input (same color code) with a synaptic delay (3
ticks). At tick=4, both inputs to each neuron in the second
layer have spikes. Hence their inputs are equal to 2.

As mentioned before, synaptic delays are realized in a limited
number of previous work. Custom chips [2, 9, 35] queue their events

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

197

and use complex routing and scheduling systems to process events
at the correct tick with an appropriate delay. In FPGA implemen-
tations, multiple FIFOs are used to support synaptic delays with
large granularity (1 millisecond) [28]. These implementations sup-
port different topologies of spiking networks. And [31] supports
feedforward networks with fixed axonal delays by buffering and
sorting its encoded events.

Feedforward SNNs with interlayer connections have a specific
topology that can be exploited for supporting fixed-per-layer synap-
tic and axonal delays with a reduced implementation cost. As shown
in [49], temporal coding is still possible with fixed propagation de-
lays. Figure 4 shows a simple 3-layer network with fixed-per-layer
axonal and synaptic delays, meaning that all neurons in one layer
have the same axonal delay and the same synaptic delay. For the
sake of simplicity, neurons in this network spike if they receive an
input larger than zero, and all weights are equal to one. Input to
each neuron is the sum of all inputs.

The bottom part of Figure 4 shows how spikes spread through the
network under axonal and synaptic delay conditions. Input to each
layer is a binary vector, and spikes are represented by "1"s. Weights
are equal to one, and input to a neuron is the sum of weights for
connections with a spike. E.g. at tick=4, both inputs to neuron 10
have spikes and in(10) = 2. Previous works with propagation delay
support [2, 9, 28, 31, 35] support this with different complexities
(see Table 1).

Figure 5: With fixed-per-layer propagation delays in the ex-
ample network shown in Figure 4, we can process inputs and
outputs of all layers assuming no delay and push all the de-
lays to the end. Then an accumulated delay (shown in purple
and blue) can be added to the network output.

However, because of the network topology, we can process all
the layers, assuming no propagation delay, and push all the delays
to the end. Then a total delay equal to all accumulated delays can
be applied to the network’s output as shown in Figure 5.

This practice can be applied to any structured feedforward net-
work with only interlayer connections. In this case, we can support
both synaptic and axonal delays without schedulers, extra FIFOs,
and sorting mechanisms used in previous works.

3.3 Architecture
The streaming architecture of S2N2 is designed based on the FINN
framework [47]. In the following, we first describe FINN’s approach
to implementing non-spiking and conventional neural networks.
We then describe our design to support the LIF model in FINN.

FINN framework: The original FINN paper [47] introduced a
framework for building fast and flexible FPGA accelerators using a

flexible heterogeneous streaming architecture. Exploiting a set of
optimizations, FINN enables efficient mapping of binarized neural
networks to hardware and supports fully connected, convolutional,
and pooling layers. The second version of FINN described in [4],
provides support for non-binary networks.

In the FINN architecture, a Sliding Window Unit (SWU) prepares
the input by applying interleaving and implementing the image-
to-column (im2col) algorithm. The output stream of a SWU feeds
a Matrix Vector Threshold Unit (MVTU), which is the computa-
tional core for FINN’s accelerator designs. This core is used in the
implementations of both fully connected and convolution layers.

As shown in Figure 6, a MVTU has several Processing Elements
(PE) that can generate output channels in parallel. Each PE has a
number of SIMD lanes. If 𝑃FINN be the number of PEs and 𝑆FINN be
the number of SIMD lanes, A 𝑃FINN-high, 𝑆FINN-wide tile matrix
is processed at a time, inputs are mapped to different SIMD lanes
and outputs are calculated in parallel by PEs. To accommodate this
process, weights are also loaded from memory in tiles, and each PE
takes a sub-tile of the weights to process its output.

All PE units have access to the input buffer inside the MVTU.
The width of this buffer in bits is equal to the number of SIMD lanes
multiplied by the activation bit width. For simplicity, only one row
of this buffer is shown in Figure 6. The total number of rows in this
buffer is equal to the ratio of (kernel width × kernel height × #input
channels)/#SIMD lanes. Which makes the input buffer size equal to
(kernel width × kernel height × #input channels) for 1-bit activation.

Figure 6: FINN [47] architecture. SWU interleaves the in-
put by applying the image-to-column algorithm and feeds
MVTU. Each PE inside MVTU processes one output channel
and has a number of SIMD lanes that read from input chan-
nels and multiply the input by kernel weights in parallel.

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

198

Figure 7: Upper: PE implementation in FINN [47]. Lower: PE
architecture to support SNN in FINN.

The process flow of one PE is shown in (Figure 7.upper). The
accumulator is initialized to a preset value (usually zero), then input
and PE’s sub-tile of weights are loaded into SIMD lanes. SIMD lanes
execute Equation 1 and accumulate the results in the accumulator.
After processing all the inputs for the current output, the accu-
mulator value is passed through the activation for generating the
output.

Implementing the LIFModel: S2N2’s contribution to the FINN
platform is by providing support for the LIF model in FINN’s com-
putational core, MVTU. In the following, we describe our design in
detail and explain how to utilize FINN’s architecture for initializing
membrane potentials for each input. In the next section, we describe
a possible optimization for decaying membrane potentials without
a multiplication operation to maintain FINN’s high throughput.

As mentioned in Section 3.1, if the condition in Equation 6 is
not met, using a binary tensor for addressing events has a lower
memory utilization than encoding events. In Sections 4 and 5, we
show that this condition does not hold for example applications.
Therefore, we use the input as is (a binary tensor) for addressing
events. In addition, because FINN is not a systolic implementation,
and the input is processed in a streaming architecture, the size of the
input buffer used in the MVTU can be smaller than the input [47].
E.g., for an input of size 𝐼W× 𝐼H× 𝐼Ch with a kernel size of 𝐾W×𝐾H,
and 1-bit activation, the buffer size is equal to 𝐾W × 𝐾H × 𝐼Ch.

To support SNNs with the LIF model (Figure 7.lower), we initial-
ize the accumulator by the previous membrane voltage stored in
the on-chip memory, multiplied by the decay value, 𝑑 . The SIMD
lanes are programmed to use the input as the address of events and
only load weights if there is a spike in that input position. This is
exactly executing Equation 2. After executing all the operations
required by Equation 2, the value stored in the accumulator is equal
to Equation 3. This value can then be passed to a comparator to
execute Equation 4. The result of this comparator is our output
spike and is also used as the input to a selector for implementing
the reset mechanism (1 − out𝑡) and storing the correct membrane
voltage back to the memory.

The MVTU in a FINN implementation has a control signal defin-
ing the number of runs per input. We use this signal to indicate the
last tick for an input. This signal can be used to reset membrane
potentials to zero if required.

In FINN, the MVTU is used for implementing both convolutional
and fully connected layers. Similarly, with our proposed additions
and modifications to the MVTU, both convolutional and fully con-
nected layers for SNNs can be implemented with the MVTU shown
in Figure 7.lower.

The pooling unit (PU) described in FINN [47] is a binary max-
pooling layer. We chose to use binary tensors for addressing our
spikes. Therefore we use the PU as is.

As illustrated in Figure 8, an event-based input has a temporal
dimension that is divided into a number of ticks. To produce the
classification output, the last layer in a SNN has one counter per
label. Each counter keeps track of all the spikes received for that
label. At the last tick for an input, the value of these counters can
be fed to a function for determining the classification result (e.g.,
SoftMax). These counters are reset to zero at the last tick of each
input.

Figure 8: Binary tensor for addressing spikes in an event-
based input. The last tick is used as a reset signal to reset
membrane potentials (mem. reset) and counters at the last
layer (counter reset).

As we explained earlier in this section, fixed-per-layer propaga-
tion delays in feedforward SNNs with only interlayer connections
can be added as an accumulated delay to the output. Therefore,
our proposed design can be used to implement such networks with
fixed-per-layer axonal and synaptic delays. This design has no
scheduler, and we do not queue encoded events. This gives us a
number of advantages. 1) We can expand the parallelism of our
design by processing events in parallel vs. sequential process in
previous work. 2) By using a binary representation for addressing
instead of addressing events by their position and tick number,
we do not require a separate router. 3) we can support fixed-per-
layer axonal and synaptic delays without a scheduler. 4) Addressing
events with a binary tensor reduces our memory utilization when
the condition in Equation 6 is not met.

4 S2N2 FOR AUTOMATIC MODULATION
CLASSIFICATION

Deep learning for Radio Frequency (RF) applications is a relatively
new field. In particular, using SNNs for RF applications is barely
touched in the literature. One of the RF applications suitable for

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

199

ANNs is Automatic Modulation Classification (AMC). This impor-
tant method can be used in radio fault detection, opportunistic
mesh networking, dynamic spectrum access, and numerous regu-
latory and defense applications. Previous works have shown that
ANNs can effectively perform modulation classification with high
accuracy [24, 27, 32, 34].

This section introduces two new network architectures for AMC
that are based on S2N2. The novelty of these architectures is that
the input is fed to the network as a stream of events in the In-
phase/Quadrature (I/Q) plane. To our knowledge, these are the only
neural networks that consume a stream of RF samples as an event-
based input. In the following, we describe the datasets used for
training and explain our networks’ architecture.

Datasets: We use two RF datasets to train our networks. Ra-
dioML.2016 [32] is a collection of 11 different modulations (8PSK,
AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64,
QPSK, and WBFM). Each class has samples recorded at 20 different
Signal to Noise Ratio (SNR) levels (from -20dB to 18dB in increments
of 2dB). Each pair {modulation, SNR} has 728 training examples, and
Each training example is a time-series of 128 In-phase Quadrature
(I/Q) sample pairs.

RadioML.2018 [34] is a collection of 24 different modulations
(OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK,
32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM,
256QAM, AM-SSBWC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC,
FM, GMSK, andOQPSK). Eachmodulation class has samples recorded
at 26 different SNR levels (from -20dB to 30dB in increments of 2dB).
Each pair {modulation, SNR} has 4096 training examples and Each
training example is a time-series of 1024 I/Q sample pairs. Both
datasets are publicly available 2.

Two time-series examples from RadioML.2018 are shown in Fig-
ure 9.left. These examples are 1024 I/Q sample pairs. In all of the
previous work, inputs are tensors with same shape as these exam-
ples. E.g., for RadioML.2016, inputs are 2 × 128 float tensors, and in
RadioML.2018, inputs are 2 × 1024 float tensors.

S2N2 is not a systolic implementation. Meaning, we can feed the
network with a stream of events. Therefore, in our networks, we
use the constellation of signals (shown in Figure 9.middle), and at
each tick, we feed the network with one sample (Figure 9.right).
Therefore our input is a stream of binary tensors.

To our knowledge feeding RF samples as events to a neural
network has never been done before. The only work on using SNNs
for AMC is a preliminary investigation done by NASA [19] that
implements a two-layer SNN in MATLAB for classifying three
noise-free modulations (BPSK, QPSK, and 8PSK). In NASA’s work,
inputs are 8-bit images of constellations.

Feeding a neural network with RF samples as events come with
two benefits. 1) Althoughwe and all the previousworks use recorded
data, in a real-world setup, our network can consume RF samples
one-by-one in a stream. Other works have to buffer samples (e.g.,
128 or 1024 samples) before taking them as input. 2) We can aggres-
sively quantize the I/Q plane; therefore the input size (in bits) can
get smaller. The following explains the I/Q plane quantization.

Examples in RadioML.2016 and RadioML.2018 are 128 and 1024
pairs of float numbers, respectively. We construct the I/Q plane by

2https://www.deepsig.ai/datasets

Figure 9: Examples of AM-DSB class from RadioML dataset
[34]. On the left, two examples of AM-DSB I/Q samples are
shown at 30dB and 2dB SNR at top and bottom, respectively.
The middle illustrates the constellations of the same exam-
ples. On the right, input to the network at time (tick)=𝑡 is
shown. Input to our networks are samples as events in I/Q
plane.

Figure 10: Applying quantization to the I/Q plane. Original
examples from RadioML.2018 [34] dataset are 1024 pairs of
float numbers (left). In-phase and Quadrature values can be
quantized for a smaller input tensor (first three columns
from the right). At each tick, we feed one slice of the quan-
tized constellation tensor to the network. The figure shows
that the constellation shape is recognizable while I/Q plane
is aggressively quantized.

quantizing the pair using a uniform quantizer. This will reduce our
input size. Figure 10 illustrates three examples from RadioML.2018:
OOK, 64QAM, and 32PSK classes at 30db, 16dB, and 2dB SNR, re-
spectively. To the right of these examples, their constellations with
quantized in-phase and quadrature values are shown. As it is shown,
the shapes of the constellations are recognizable even at the lowest
bit resolution. We used the 4-bit quantized constellations to train
our networks.

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

200

Network Architecture for RadioML.2016
This network is a four layer architecture similar to the network
described in [32] with different number of kernels and LIF model
for activation (Figure 11).

Figure 11: S2N2_rf1 architecture.

Inputs to each layer are binary tensors. We used 90% of the
dataset for training and 10% for validation. For training, we used the
method described in [37] as our baseline and changed the loss func-
tion to smooth L1 loss, and adjusted the hyperparameters. Through-
out this paper, we refer to this network as S2N2_rf1.

Table 2: Comparing validation accuracy andnetwork size for
S2N2_rf1.

Network Input Conv.1 Conv.2 Dense 1 Dense 2 Accuracy

[32] 128x2 64x1x3 16x2x3 128 11 87.4%
32-bit

S2N2_rf1 16x16 16x5x5 8x5x5 128 11 91.7%
binary

We achieved 91.7% Top-1 and 100% Top-5 validation accuracy us-
ing all SNR levels in our training. A comparison between S2N2_rf1’s
size and accuracy with the previous work on RadioML.2016 is pro-
vided in Table 2.

Figure 12 illustrates the spike ratio in the input of each layer for
S2N2_rf1. The first convolution layer (Conv.1) receives one event
at each tick; this means that the spike ratio for this layer with an
input of size 16 × 16 is 1

16×16 = 0.0039.

Table 3: Required memory for buffering input at each layer
of S2N2_rf1 is compared with tick-batching (Equation 5).

Layer #Ticks Input Size Maximum Buffer Size Buffer Size Improvement
Spike Ratio Tick-Batching S2N2_rf1

Conv.1 128 16×16 0.39% 1,917 bits 25 bits ×77
Conv.2 128 16×16×16 7% 697,304 bits 400 bits ×1,744
Dense 1 128 8×12×12 8% 212,337 bits 128 bits ×1,658
Dense 2 128 128 12% 27,526 bits 11 bits ×2,502

As mentioned in Sections 2.3 and 3.1, previous works have used
tick-batching and buffered encoded events. This means that for a
total number of ticks=128, and input size of 16 × 16 at spike ration
of 0.39%, according to Equation 5, tick-batching requires 1,917 bits
to queue the input events. Because S2N2 is based on the streaming

Figure 12: The ratio of spiking neurons in input to each layer
of S2N2_rf1. Ratios are collected during classifying one in-
put (128 ticks) with trained weights.

architecture of FINN [47], and only a portion of the input is buffered
for processing. The size of this buffer used in MVTU is equal to
kernel size × #input channels=25 bits for Conv.1 layer. In Table 3,
we provide the same comparison for all the layers of this network.
These results show that, on average, memory utilization for input
buffers in S2N2_rf1 is improved by over three orders of magnitude.

Network Architecture for RadioML.2018
As mentioned in our introduction, training methods for spiking
neural networks are not as mature as other ANNs. In particular,
current training methods are evaluated on smaller networks, and
simple datasets [11] and perform poorly when used for training
very deep architectures [18, 40] and evaluated on more complex
datasets [38]. Therefore we could not train a deep spiking network
similar to the non-spiking networks used in previous works (VGG10
and Resnet33) [34, 46]. Instead, we chose a smaller network with
only eight layers. We refer to this network as S2N2_rf2.

Figure 13: S2N2_rf2 architecture.

S2N2_rf2 architecture is shown in Figure 13. We used the same
training script like the one we used for training S2N2_rf1 as the
baseline.We then adjusted the script for the dataset and its increased
number of labels.

This network can achieve 68.5% Top-1 and 95% Top-5 validation
accuracy on 24 classes in RadioML.2018 dataset. Table 4 compares
our accuracy with two related non-spiking networks.

Although that S2N2_rf2 does not have a high accuracy compared
to deeper and non-spiking networks, it is included in this work to
provide a comparison between S2N2 architecture and tick-batching

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

201

with regards to memory utilization. In particular, when larger RF
inputs are used.

Table 4: Comparing validation accuracy andnetwork size for
S2N2_rf2.

Network Input #Layers Accuracy

ResNet [34] 1024x2 (32-bit) 33 95.5%

VGG [34] 1024x2 (32-bit) 10 88.0%

S2N2_rf2 16x16 (binary) 6 68.5%

Figure 14 shows spike rations at the input of each layer of
S2N2_rf2. These ratios are similar to the ratios in S2N2_rf1 (Figure
12). We expect that with future improvements in training methods
for deeper SNNs, similar spike ratios with no significant reductions
will hold for a spiking network with a higher accuracy.

We use these ratios to show the efficiency of S2N2 for reducing
the input buffer size at each layer. Even if our assumption does not
hold, and in the future networks with lower spike ratios provide a
higher accuracy, S2N2 is still more efficient at the minimum possible
spike ratio; only one spike at layer’s input (first row in Tables 3 and
5).

Figure 14: The ratio of spiking neurons in input to each layer
of S2N2_rf2. Ratios are collected during classifying one in-
put (1024 ticks) with trained weights.

Table 5 illustrates a comparison between input buffer sizes re-
quired for S2N2 and tick-batching. Equation 5 is used to calculate
the buffer size for tick-batching. It is clear that for inputs with large
temporal dimension, using a streaming architecture significantly
reduces the memory utilization.

Synthesis Results
We used Vivado-HLS™tool for evaluating S2N2_rf1 and S2N2_rf2
network architectures. To increase the throughput and reduce our
DSP utilization, we used fixed-points for our parameters and trained
both networks with a decay factor equal to 0.875 (𝑑 in Equation 3).
This way, 𝑑 ×𝑚𝑡−1 in Figure 7 can be replaced by (𝑚𝑡−1 −𝑚𝑡−1 >>

3).

Table 5: Required memory for buffering input at each layer
of S2N2_rf2 is compared with tick-batching (Equation 5).

Layer #Ticks Input Size Maximum Buffer Size Buffer Size Improvement
Spike Ratio Tick-Batching S2N2_rf2

Conv.1 1024 16×16 0.39% 18,403 bits 25 bits ×737
Conv.2 1024 16×16×64 0.5% 2,013,266 bits 1,600 bits ×1,258
Conv.3 1024 12×12×64 6% 13,589,545 bits 576 bits ×23,592
Conv.4 1024 10×10×128 12% 37,748,736 bits 1,152 bits ×32,768
Dense 1 1024 10×10×128 14% 44,040,192 bits 1,024 bits ×43,008
Dense 2 1024 1024 5% 1,048,576 bits 24 bits ×43,690

We could fit S2N2_rf1 (smaller network) on a ZYNQ chip similar
to the one used in the PYNQ development board. Because of the
large size of S2N2_rf2, we selected the ZCU111 development board
in our synthesis. This board is also used for implementing a non-
spiking network for the same dataset [46].

Table 6: Synthesis results for S2N2_rf1 and S2N2_rf2 net-
work architectures.

Network Board BRAM_18K DSP48E FF LUT Tick Resolution

S2N2_rf1 PYNQ 29% 5% 11% 52% 45 ns

S2N2_rf2 ZCU111 98% <1% 4% 24% 30 ns

Our results are shown in Table 6. The high BRAM utilization is
due to the required memory for storing membrane potentials. Tick
resolution indicates how fast RF samples can be consumed by the
network. E.g., at each second, S2N2_rf1 can classify 173.6k examples
from the RadioML.2016 dataset (each example requires 128 ticks).
And S2N2_rf2 can process 32.5k examples from the RadioML.2018
dataset (each example requires 1024 ticks).

5 IMAGE CLASSIFICATION ON S2N2
In this section, we provide an example network for image clas-
sification on MNIST dataset 3. We used the method provided by
DECOLLE [18] to convert MNIST dataset to trains of spikes 4. We
used a four-layer convolutional network similar to the one described
in DECOLLE as our baseline.

Figure 15.left shows the network structure we used for image
classification. We refer to this network as S2N2_cv. We applied
two modifications to the original structure. First, as shown in the
figure, in the original network, convolutional filters are applied
to the membrane voltage. This means MAC operations similar
to Equation 1. We modified the layer, and instead, we apply the
convolutional filters on the input to have the sparse accumulations
similar to Equation 2. Second, the neuron model used in the original
work is a LIF model with two internal variables. We changed the
model to the one variable LIF model described in Section 2.1.

S2N2_cv is trained with the original training script 4, and ad-
justed hyperparameters. It can achieve competitive results com-
pared to other works (see Table 7).

3http://yann.lecun.com/exdb/mnist/
4https://github.com/nmi-lab/dcll

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

202

Figure 15: S2N2_cv structure. On the left, four-layer struc-
ture of the network. Orange box, original organization of
one convolutional layer. Green box, convolutional layer
modified for S2N2.

Table 7: Accuracy result of S2N2_cv on MNIST compared to
similar SNNs.

Network Architecture Validation Accuracy

S2N2_cv 28x28-16c7-24c7-32c7-10 98.5%

[18] 28x28-16c7-24c7-32c7-10 98.0%

[40] 28x28-12c5-2a-64c5-2a-10c 99.3%

Figure 16: The ratio of spiking neurons in input to each layer
of S2N2_cv. Ratios are collected during classifying one input
(500 ticks) with trained weights.

Figure 16 shows the spike ratios at the input of each layer in
S2N2_cv. The method for converting MNIST data to trains of spikes
used in [18] converts each image to a 28 × 28 × 500 binary tensor
of spikes. Unlike RF samples, input to the first layer can have more
than one spike at each tick; therefore, for vision applications, the
input is less sparse. Consequently, the ratio of spikes at each layer
is higher than the layers in S2N2_rf1 and S2N2_rf2.

With higher spike ratios, the buffer size for storing encoded
events in tick-batching rapidly grows. While the buffer size used

in S2N2 is independent of the input’s spike ratio. Table 8 shows a
comparison between these two buffer sizes for S2N2_cv network.

Table 8: Required memory for buffering input at each layer
of S2N2_cv is compared with tick-batching (Equation 5).

Layer #Ticks Input Size Maximum Buffer Size Buffer Size Improvement
Spike Ratio Tick-Batching S2N2_cv1

Conv.1 500 28×28 0.7% 5,2136 bits 49 bits ×1,064
Conv.2 500 16×13×13 16% 4,542,720 bits 784 bits ×5,794
Conv.2 500 24× 11 ×11 33% 10,062,360 bits 1,176 bits ×8,556
Dense 500 32×4×4 41% 1,889,280 bits 10 bits ×188,928

Synthesis Results
S2N2_cv is evaluated with Vivado-HLS™tool. This network is rel-
atively small, and we can fit it on the PYNQ development board.
Our results are shown in Table 9.

To reduce our DSP utilization, we took a similar approach aswhat
we did for training our two other networks and trained S2N2_cv
with a decay factor equal to 0.875 (𝑑 in Equation 3). This way,
𝑑 ×𝑚𝑡−1 in Figure 7 is replaced with a shift and one subtractions
(𝑚𝑡−1 −𝑚𝑡−1 >> 3).

Table 9: Synthesis results for S2N2_cv network architecture.

Network Board BRAM_18K DSP48E FF LUT Tick Resolution

S2N2_cv PYNQ 35% <1% 2% 6% 30 ns

The high BRAM utilization in Table 9 is because of the memory
required to store membrane potentials for the LIF model (Figure 7).

6 CONCLUSION
In this work, we introduced a streaming accelerator for spiking
neural networks, namely S2N2. We showed that in batch-ticking,
the buffer size used for storing encoded events depends on the
input’s spike ratios. This method is used in previous work, assuming
a low spike ratio in the input.We showed that this assumption could
be a tight condition on input’s spike ratio. We then described how
a binary tensor could address events and confirmed that a binary
tensor with our streaming architecture requires less memory in our
example applications.

We also described how to efficiently support axonal and synaptic
delays in a feedforward SNN with only interlayer connections.
By using binary tensors as inputs, we built our architecture upon
FINN platform. We provided support for the LIF model in FINN
and optional initialization of membrane potentials for each input
to support SNNs in FINN.

Our streaming SNN architecture is suitable for processing sig-
nals of large temporal dimension. Two novel SNN architectures for
AMC are introduced in this work. In addition, an example of image
classification on a SNN is described. All example applications are
evaluated with the Vivado-HLS™tool. Our results achieve a mini-
mum tick-resolution of 30 ns. S2N2 reduces input buffers’ memory
utilization by more than three orders of magnitude.

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

203

REFERENCES
[1] Gina Adam, Ali Khiat, and Themis Prodromakis. 2018. Challenges hindering

memristive neuromorphic hardware from going mainstream. In Nature Commu-
nications, Vol. 9. https://doi.org/10.1038/s41467-018-07565-4

[2] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N.
Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang,
R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha. 2015. TrueNorth: Design
and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
34, 10 (2015), 1537–1557.

[3] B. V. Benjamin, P. Gao, E.McQuinn, S. Choudhary, A. R. Chandrasekaran, J. Bussat,
R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen. 2014. Neurogrid:
A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations.
Proc. IEEE 102, 5 (2014), 699–716.

[4] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Ken-
neth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers. 2018. FINN-R:
An End-to-End Deep-Learning Framework for Fast Exploration of Quantized
Neural Networks. ACM Trans. Reconfigurable Technol. Syst. 11, 3, Article 16 (Dec.
2018), 23 pages. https://doi.org/10.1145/3242897

[5] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. 2015. Listen, attend,
and spell. IEEE International Conference on Acoustic, Speech, and Signal Processing
(ICASSP) (2015).

[6] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE
Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[7] Kit Cheung, Simon R Schultz, and Wayne Luk. 2012. A large-scale spiking neural
network accelerator for FPGA systems. In International Conference on Artificial
Neural Networks. Springer, 113–120.

[8] I. M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo, and J. Alakui-
jala. 2020. Temporal Coding in Spiking Neural Networks with Alpha Synaptic
Function. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 8529–8533.

[9] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P.
Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy,
A. Paul, J. Tse, G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, and H. Wang. 2018.
Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro
38, 1 (2018), 82–99.

[10] Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathinaku-
mar Appuswamy, Alexander Andreopoulos, David J. Berg, Jeffrey L. McKinstry,
Timothy Melano, Davis R. Barch, Carmelo di Nolfo, Pallab Datta, Arnon Amir,
Brian Taba, Myron D. Flickner, and Dharmendra S. Modha. 2016. Convolu-
tional networks for fast, energy-efficient neuromorphic computing. Proceed-
ings of the National Academy of Sciences 113, 41 (2016), 11441–11446. https:
//doi.org/10.1073/pnas.1604850113

[11] H. Fang, Z. Mei, A. Shrestha, Z. Zhao, Y. Li, and Q. Qiu. 2020. Encoding, Model,
and Architecture: Systematic Optimization for Spiking Neural Network in FPGAs.
In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
1–9.

[12] Samanwoy Ghosh-Dastidar and Hojjat Adeli. 2009. Third Generation Neural
Networks: Spiking Neural Networks. In Advances in Computational Intelligence.
Springer Berlin Heidelberg, Berlin, Heidelberg, 167–178.

[13] Alex Graves and Jaitly Navdeep. 2014. Towards end-to-end speech recognition
with recurrent neural networks. In 2014 International Conference on Machine
Learning (ICML), Vol. 14.

[14] Alan Hodgkin and AndrewHuxley. 1952. A quantitative description of membrane
current and its application to conduction and excitation in nerve. In The Journal of
physiology, Vol. 117. 500. Issue 4. https://doi.org/10.1113/jphysiol.1952.sp004764

[15] Zan Huang, Hsinchun Chen, Chia jung Hsu, Wun hwa Chen, and Soushan
Wu. 2004. Credit Rating Analysis With Support Vector Machines and Neural
Networks: A Market Comparative Study.

[16] Eugene. Izhikevich. 2003. Simple model of spiking neurons. In Transactions on
Neural Networks, IEEE, Vol. 14. 1569 – 1572.

[17] X. Ju, B. Fang, R. Yan, X. Xu, and H. Tang. 2020. An FPGA Implementation of
Deep Spiking Neural Networks for Low-Power and Fast Classification. Neural
Computation 32, 1 (2020), 182–204. https://doi.org/10.1162/neco_a_01245

[18] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. 2020. Synaptic Plasticity Dy-
namics for Deep Continuous Local Learning (DECOLLE). Frontiers in Neuroscience
14 (2020), 424. https://doi.org/10.3389/fnins.2020.00424

[19] E. J. Knoblock and H. R. Bahrami. 2019. Investigation of Spiking Neural Networks
for Modulation Recognition using Spike-Timing-Dependent Plasticity. In 2019
IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW).
1–5.

[20] Chang W. Lee and Jung-A Park. 2001. Assessment of HIV/AIDS-related health
performance using an artificial neural network. Information & Management 38, 4
(2001), 231 – 238. https://doi.org/10.1016/S0378-7206(00)00068-9

[21] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. 2016. Training Deep Spiking
Neural Networks Using Backpropagation. Frontiers in Neuroscience 10 (2016), 508.

https://doi.org/10.3389/fnins.2016.00508
[22] Beiye Liu, Yiran Chen, Btyant Wysocki, and Tingwen Huang. 2015. Reconfig-

urable Neuromorphic Computing System with Memristor-Based Synapse Design.
Neural Processing Letters 41 (2015), 159–167. https://doi.org/10.1007/s11063-013-
9315-8

[23] C. Liu, B. Yan, C. Yang, L. Song, Z. Li, B. Liu, Y. Chen, H. Li, Qing Wu, and Hao
Jiang. 2015. A spiking neuromorphic design with resistive crossbar. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

[24] X. Liu, D. Yang, and A. E. Gamal. 2017. Deep neural network architectures for
modulation classification. In 2017 51st Asilomar Conference on Signals, Systems,
and Computers. 915–919.

[25] Wolfgang Maass. 1997. Networks of spiking neurons: the third generation of
neural network models. In 1997 Neural Networks, Vol. 10. 1659–1671.

[26] Misha Mahowald. 1994. An analog VLSI system for sterescopic vision. Kluwer,
Boston, MA.

[27] G. J. Mendis, J. Wei, and A. Madanayake. 2016. Deep learning-based automated
modulation classification for cognitive radio. In 2016 IEEE International Conference
on Communication Systems (ICCS). 1–6.

[28] Simon W Moore, Paul J Fox, Steven JT Marsh, A Theodore Markettos, and Alan
Mujumdar. 2012. Bluehive-a field-programable custom computing machine for
extreme-scale real-time neural network simulation. In 2012 IEEE 20th International
Symposium on Field-Programmable Custom Computing Machines. IEEE, 133–140.

[29] Surya Narayanan, Ali Shafiee, and Rajeev Balasubramonian. 2017. INXS: Bridging
the throughput and energy gap for spiking neural networks. In 2017 International
Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19,
2017. IEEE, 2451–2459. https://doi.org/10.1109/IJCNN.2017.7966154

[30] Surya Narayanan, Karl Taht, Rajeev Balasubramonian, Edouard Giacomin, and
Pierre-Emmanuel Gaillardon. 2020. SpinalFlow: An Architecture and Dataflow
Tailored for Spiking Neural Networks. In 2020 47th International Symposium on
Computer Architecture (ISCA-47).

[31] Daniel Neil and Shih-Chii Liu. 2014. Minitaur, an event-driven FPGA-based
spiking network accelerator. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 22, 12 (2014), 2621–2628.

[32] Timothy J. O’Shea, Johnathan Corgan, and T. Charles Clancy. 2016. Convolutional
Radio Modulation Recognition Networks. In Engineering Applications of Neural
Networks. Springer International Publishing, Cham, 213–226.

[33] T. J. O’Shea, T. Roy, and T. C. Clancy. 2018. Over-the-Air Deep Learning Based
Radio Signal Classification. IEEE Journal of Selected Topics in Signal Processing
12, 1 (2018), 168–179.

[34] T. J. O’Shea, T. Roy, and T. C. Clancy. 2018. Over-the-Air Deep Learning Based
Radio Signal Classification. IEEE Journal of Selected Topics in Signal Processing
12, 1 (2018), 168–179.

[35] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R.
Lester, A. D. Brown, and S. B. Furber. 2013. SpiNNaker: A 1-W 18-Core System-
on-Chip for Massively-Parallel Neural Network Simulation. IEEE Journal of
Solid-State Circuits 48, 8 (2013), 1943–1953.

[36] Priyadarshini Panda and Kaushik Roy. 2016. Unsupervised regenerative learn-
ing of hierarchical features in spiking deep networks for object recognition. In
International Joint Conference on Neural Networks (IJCNN). 299 – 306. https:
//doi.org/10.1109/IJCNN.2016.7727212

[37] Ali Samadzadeh, Fatemeh Sadat Tabatabaei Far, Ali Javadi, Ahmad Nickabadi,
and Morteza Haghir Chehreghani. 2020. Convolutional Spiking Neural Networks
for Spatio-Temporal Feature Extraction. arXiv:2003.12346 [cs.CV]

[38] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. 2019.
Going Deeper in Spiking Neural Networks: VGG and Residual Architectures.
Frontiers in Neuroscience 13 (2019), 95. https://doi.org/10.3389/fnins.2019.00095

[39] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and
Yann LeCun. 2014. OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks. In 2014 International Conference on Learning
Representations (ICLR).

[40] Sumit Bam Shrestha and Garrick Orchard. 2018. SLAYER: Spike Layer Error
Reassignment in Time. In Advances in Neural Information Processing Systems 31,
S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Eds.). Curran Associates, Inc., 1419–1428. http://papers.nips.cc/paper/7415-
slayer-spike-layer-error-reassignment-in-time.pdf

[41] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:1409.1556 [cs.CV]

[42] James Smith. [n.d.]. A Roadmap for Reverse-Architecting the Brain’s Neocortex. Fed-
erated Computing Research Conference (FCRC). https://iscaconf.org/isca2019/
slides/JE_Smith_keynote.pdf

[43] Dmitri Strukov, Gregory Snider, Duncan Stewart, and Stanley Williams. 2008.
The missing memristor found. In Nature, Vol. 453. 80–83. https://doi.org/10.1038/
nature06932

[44] T. Tang, L. Xia, B. Li, R. Luo, Y. Chen, Y. Wang, and H. Yang. 2015. Spiking neural
network with RRAM: Can we use it for real-world application?. In 2015 Design,
Automation Test in Europe Conference Exhibition (DATE). 860–865.

[45] David Thomas and Wayne Luk. 2009. FPGA accelerated simulation of biologi-
cally plausible spiking neural networks. In 2009 17th IEEE symposium on field

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

204

https://doi.org/10.1038/s41467-018-07565-4
https://doi.org/10.1145/3242897
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1162/neco_a_01245
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1016/S0378-7206(00)00068-9
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1007/s11063-013-9315-8
https://doi.org/10.1007/s11063-013-9315-8
https://doi.org/10.1109/IJCNN.2017.7966154
https://doi.org/10.1109/IJCNN.2016.7727212
https://doi.org/10.1109/IJCNN.2016.7727212
https://arxiv.org/abs/2003.12346
https://doi.org/10.3389/fnins.2019.00095
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
https://arxiv.org/abs/1409.1556
https://iscaconf.org/isca2019/slides/JE_Smith_keynote.pdf
https://iscaconf.org/isca2019/slides/JE_Smith_keynote.pdf
https://doi.org/10.1038/nature06932
https://doi.org/10.1038/nature06932

programmable custom computing machines. IEEE, 45–52.
[46] S. Tridgell, D. Boland, P. H.W. Leong, R. Kastner, A. Khodamoradi, and Siddhartha.

2020. Real-time Automatic Modulation Classification using RFSoC. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
82–89.

[47] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. 2017. FINN: A Framework for Fast, Scal-
able Binarized Neural Network Inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (Monterey, Cali-
fornia, USA) (FPGA ’17). Association for Computing Machinery, New York, NY,
USA, 65–74. https://doi.org/10.1145/3020078.3021744

[48] S. I. Venieris and C. Bouganis. 2016. fpgaConvNet: A Framework for Mapping
Convolutional Neural Networks on FPGAs. In 2016 IEEE 24th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 40–47.

[49] Thomas Voegtlin. 2006. Temporal Coding Using the Response Properties of
Spiking Neurons. In Proceedings of the 19th International Conference on Neu-
ral Information Processing Systems (NIPS’06). MIT Press, Cambridge, MA, USA,
1457–1464.

[50] Friedemann Zenke and Surya Ganguli. 2018. SuperSpike: Supervised Learning
in Multilayer Spiking Neural Networks. Neural Computation (2018), 1514–1541.
https://doi.org/10.1162/neco_a_01086

Session 3: Machine Learning and Supporting Algorithms FPGA ’21, February 28–March 2, 2021, Virtual Event, USA

205

https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1162/neco_a_01086

	Abstract
	1 Introduction
	2 Spiking Neural Network
	2.1 LIF Model
	2.2 Propagation Delays in Neuron
	2.3 Custom SNN Implementations

	3 Streaming Spiking Neural Networks (S2N2)
	3.1 Input Buffer - Memory Utilization
	3.2 Fixed-Per-Layer Propagation Delays
	3.3 Architecture

	4 S2N2 for Automatic Modulation Classification
	5 Image Classification on S2N2
	6 Conclusion
	References

