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Information flow tracking (IFT) is a fundamental computer security technique used to understand how information moves through a
computing system. Hardware IFT techniques specifically target security vulnerabilities related to the design, verification, testing, man-
ufacturing, and deployment of hardware circuits. Hardware IFT can detect unintentional design flaws, malicious circuit modifications,
timing side channels, access control violations, and other insecure hardware behaviors. This article surveys the area of hardware
IFT. We start with a discussion on the basics of IFT, whose foundations were introduced by Denning in the 1970s. Building upon this,
we develop a taxonomy for hardware IFT. We use this to classify and differentiate hardware IFT tools and techniques. Finally, we
discuss the challenges yet to be resolved. The survey shows that hardware IFT provides a powerful technique for identifying hardware
security vulnerabilities as well as verifying and enforcing hardware security properties.
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1 INTRODUCTION

A core tenet of computer security is to maintain the confidentiality and integrity of the information being computed
upon. Confidentiality ensures that information is only disclosed to authorized entities. Integrity maintains the accuracy
and consistency of information – verifying that it is correct, complete, and not modified in any unauthorized manner.
Understanding how information flows throughout a computing system is crucial to determine if that system operates
securely with respect to confidentiality and integrity.

Information flow tracking (IFT) is a security technique that models how information propagates as a system computes.
It labels data objects with a tag to denote security classes, which are assigned different meanings depending on the type
of security property under analysis. IFT updates the tags as the data is computed upon, and verifies information flow
properties by observing the state of the tags.

Information flow tracking can reason about the confidentiality and integrity properties. IFT verifies confidentiality by
determining if secret information can ever be disclosed to an unclassified location. An example confidentiality property
states that information related to a secret key should not leak outside a restricted memory space. IFT can also verify
data integrity properties by not allowing untrusted entities to operate on trusted information. An example integrity
property states that a user level program can never modify the system configuration data.
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IFT has been used to enforce security properties across the computing system stack including operating systems [35,
78, 160], programming languages [126], distributed systems [104, 161], and cloud computing [6]. It can detect and prevent
a wide range of software security issues including buffer overflow, memory corruptions, SQL injection, formatted string
attack, cross-site scripting attacks, and malware [1, 36, 101, 108, 137]. IFT has been applied to verify the functional
correctness and security of complex software systems like the SeL4 secure OS kernel [74, 103]. More recently, hardware
IFT techniques have been used to detect and assess security threats related to hardware design vulnerabilities [65, 135],
insecure debug modes [15, 60, 123], timing channels [2, 4, 29, 64, 162], and hardware Trojans [44, 53, 107, 152]. A survey
on security verification of hardware/software systems cited information flow analysis as the most commonly used
technique for modeling and reasoning about security [26].

This article introduces a hardware IFT taxonomy, which is used to survey, classify, and compare hardware IFT
techniques. We start by discussing the initial information flow model put forth by Denning [30, 31]. We identify the
distinguishing characteristics of Denning’s information flow model including the security property enforced, level of

abstraction, operator precision, and verification technique. We use this to create a taxonomy to help compare and contrast
the hardware IFT techniques. Figure 1 shows a taxonomy which consists of the following elements:
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Fig. 1. A taxonomy for hardware information flow tracking. We start by describing the characteristics of an information flow model
and define basic terminology. After that, we expand on different ways to classify the IFT techniques. The precision of class combining
operator as well as the type of security property under consideration play an important role in defined the characteristics of the IFT
technique. Another distinguishing characteristic is the abstraction level of the technique’s information flow model. Finally, the IFT
techniques enable different forms of verification, which provides another method of differentiation.

• Operator Precision: How does the class combining operator update security classes?
– Conservative: IFT operator uses a least upper bound.
– Precise: IFT operator considers the effect of data values.
– Tradeoffs: IFT operator performs tradeoffs between precision and computational complexity.

• Security Property: What types of security properties are supported?
– Confidentiality: IFT technique prevents leakage of sensitive information.
– Integrity: IFT technique prohibits overwriting of trusted data by an untrusted entitites.
– Isolation: IFT technique prevents communication between two entities of different trust.
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– Timing channel: IFT technique captures information flows through a timing channel.
– Hardware Trojan: IFT technique detects malicious design modifications.

• Level of Abstraction: What is the level of abstraction of the information flow model?
– System: IFT technique considers system level flows.
– Algorithmic: IFT technique is deployed during high-level synthesis.
– Architecture: IFT technique is deployed at the instruction set architecture (ISA) level.
– RTL: IFT technique targets register transfer level (RTL) design.
– Gate: IFT technique considers a gate-level netlist.
– Circuit: IFT technique targets analog and mixed-signal hardware designs.

• Verification Technique: Which verification techniques are supported?
– Simulation: IFT technique uses simulation tools to determine information flows.
– Formal verification: IFT technique employs formal methods to verify security properties.
– Emulation: IFT technique allows for hardware emulation of information flow behaviors.
– Virtual prototyping: IFT technique creates a software version of hardware to measure information flows.
– Runtime: IFT technique can dynamically track information flows during runtime.

We use this taxonomy to classify and describe different hardware IFT techniques. This helps us discuss the relative
advantages, weaknesses, and drawbacks of these techniques. We attempt to draw a clear picture of the past and future
of hardware IFT research with a focus on its capability for developing new hardware security tools.

The remainder of this article is organized as follows. In Section 2, we discuss the core concepts of information flow,
covering the fundamental elements in Denning’s information flow model [31], the classical noninterference model [42],
the different types of flow relations as well as basics of covert and side channels. Section 3 formalizes the concept of
class combining operator precision and discusses IFT precision and computational complexity tradeoffs. In Section 4,
we describe the different types of security properties that can be modeled and enforced under the information flow
framework. Sections 5 reviews existing hardware IFT techniques from the perspective of the level of abstraction where
they are deployed while Section 6 elaborates on the various mechanisms for performing information flow security
verification. We discuss potential research vectors and challenges in Section 7 and conclude the article in Section 8.

2 INFORMATION FLOW

Information flow tracking (or information flow control) verifies that no unauthorized flow of information is possible.
IFT techniques work by labeling storage objects with a security class, tracking those labels as their data is computed
upon, and enforcing information flow policies to understand, verify, and/or control the movement of information in
the system. Simple examples of policies include: 1) confidential information should never leak to an unclassified

location and 2) untrusted information should never overwrite a trusted memory component.
Denning developed the earliest models for information flow [30, 31] that enables one to define the allowable flows of

information between storage objects N using security classes SC and flow relations →. Processes P operate on those
storage objects. And a class combining operator ⊕ provides a relationship between security classes. We use Denning’s
information flow model to discuss and compare different hardware IFT techniques.

An information flow model FM is defined by FM =< N,P,SC, ⊕,→> where:

• N = {a,b, · · · } is a set of storage objects. Elements of N can vary depending on the level of abstraction under
consideration, e.g., files, segments, registers, and flip-flops.
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• P = {p,q, · · · } is a set of processes where information flows through, e.g., functions, arithmetic operations and
Boolean gates.

• SC = {A,B, · · · } is a set of security classes corresponding the security classification of data objects, e.g., secret
and unclassified. The security class associated with the information stored in an object a can either be bound
statically or updated dynamically with the propagation of information. These are also commonly called labels or
tags.

• The class combining operator ⊕ takes a pair of security classes and calculates the resulting security class, i.e.,
SC × SC 7→ SC.

• A flow relation → is defined on a pair of security classes. It is a “can flow” relation on SC, i.e., →⊆ SC × SC.
Information flows from class A to class B whenever information associated with A could affect the value of data
object associated with B. In other words, there exists a situation where changing the value of object associated
with A leads to a change in the value of object associated with B. We write A → B if and only if information in
class A is allowed to flow to class B.

We attempt to adopt this classic notation as much as possible throughout this article. Our goal is to classify the work
in hardware IFT using this notation so that it can provide a common language to compare and contrast the different
techniques and methodologies. In the following subsections, we elaborate on the elements of this information flow
model. Section 2.1 describes storage objects and processes from a hardware viewpoint. Section 2.2 discusses relevant
information related to the flow relations and security classes. Section 2.3 introduces the idea of noninterference. Section 2.4
categorizes and illustrates the different types of information flow relations. Section 2.5 covers the basics of covert and
side channels.

2.1 Storage Objects and Processes

An object is a container of information and a process describes computations performed upon those objects. Storage
objects and processes vary depending on the security policies and level of abstraction. The initial work by Denning [30,
31] largely considered the security of software processes or programs. Much of it focused on security at the operating
system level, and thus objects were things like files, directories, and users. Hardware storage objects are constructs
defined in hardware description languages (HDLs) and their corresponding logical representations and physical
implementations.

In hardware design, storage objects are defined using HDL types that can take or store values, e.g., input and output
ports, internal wires and signals, registers, flip-flops, and memory blocks. It is often convenient to consider objects as
any stateful elements in the hardware, i.e., to ignore wires and signals and focus on registers, flip-flops, and memory
blocks. These objects are operated upon by processes P that can be defined as register transfer operations, finite state
machine (FSM) actions, combinational functions, and other common hardware models of computation.

Unfortunately, “process” is an overloaded term since process is a defined keyword in VHDL which denotes a set of
sequential statements. The security notion of a process (P) covers a much broader scope; it refers to any arithmetic,
logical or analog hardware component that operates on input data objects and produces a resulting object. Examples of
hardware process P include arithmetic, logical, and circuit-level operations.
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2.2 Security Classes and Flow Relations

Information flow policies define allowable relationships between data objects. To do this, IFT associates every object
with a security class, i.e., gives objects a security label or security tag. Objects define the functional state of the system;
their security labels determine the system security state.

The flow relation operator → defines an allowable flow of information on two security classes. SC = {A,B}, A → B

states that information from security class A is allowed to flow to security class B. We can also denote the lack of an
information flow with the operator↛, e.g., B ↛ A states that information in security class B should never flow to
security class A.

Security practitioners often use a lattice to describe flow relations. For example, Denning defined information flow
policies as a finite lattice [31]. A lattice is in the form of L = {E, ⊑}, where E is the set of elements and ⊑ is a partial
order relation defined on E. The tuple {E, ⊑} constitutes a lattice if there exists a least upper bound element and a
greatest lower bound element for any A,B ∈ E in the element set. The class combining operator ⊕ is also a least upper
bound operator in that for all A,B,C ∈ E:

A → A ⊕ B and B → A ⊕ B

A → C and B → C =⇒ A ⊕ B → C
(1)

The greatest lower bound operator ⊙ is defined as A⊙ B = ⊕LSet(A,B), where LSet(A,B) = {C | C → A andC → B}
is the set of security classes from which information can flow to both A and B.

We usually consider lattices with finite number of elements. Let E = {A1,A2, · · · ,An }. The least upper bound (also
called maximum element, denoted as high) and the greatest lower bound (also called minimum element, denoted as low)
on the lattice are defined as follows:

high = A1 ⊕ A2 ⊕ · · · ⊕ An

low = A1 ⊙ A2 ⊙ · · · ⊙ An
(2)

An information flow policy/property can be modeled using a security lattice L = {SC, ⊑}, where SC is a set of
security classes and ⊑ is the partial order defined on SC. Given any two security classes A,B ∈ SC, we say A is lower
than B (or B is higher than A) when A ⊑ B.

low

high

(a)

Trusted

Untrusted

(b)
Unclassified

Secret

Confidential

(c) (d)
low

high

A

AB

B C

AC BC

Fig. 2. Example security lattice structures. The lattice defines allowable information flows. Any operations that lead to an unallowable
flow (e.g., allowing Untrusted information to flow to a Trusted data object or Confidential information to flow to an Unclassified
data object) result in a security violation. Information flow is allowed to flow upward along the arrow in the security lattice; downward
flows of information are not permitted.

Figure 2 provides four examples of lattices commonly used in modeling security. Figure 2 (a) shows the high and low

security lattice that we mentioned earlier. Here, the security class set has two elements SC = {high, low}. The partial
order (reflected by the arrow) defines allowable flows of information among different security classes, e.g., low ⊑ high

indicating that low information is allowed to flow to a high data object.
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Figure 2 (a) to (c) are linear security lattices, where any two security classes are ordered or comparable. There are
also more complex lattice structures with partial ordering. Figure 2 (d) gives an example of such non-linear security
lattice, which contains non-comparable security classes, e.g., security classes A and B as well as A and BC. Information
flow between security classes without partial order defined by the lattice should be prohibited.

In practice, most policies use a two-element lattice like in Fig. 2 (a). This allows the modeling of security properties
related to confidentiality and integrity as low ⊑ high. In cases where multi-level security needs to be enforced, often
times we employ conservative label operators (e.g., the least upper bound or greatest lower bound operators) to
determine the security class that the output of a process should take. More precise security class updating rules expand
the two-level technique to account for the influence of the data values on security class operation [54, 55].

2.3 Noninterference

Noninterference is a strict multi-level security model proposed by Goguen and Meseguer [42]. It creates a model of
information flow by modeling all system inputs, outputs, and state as either high or low. It states that any changes in
high inputs shall not result in changes in low outputs. That is, low objects can learn nothing about high data. Another
way of stating this is that a computer system produces the same low outputs for any set of low inputs regardless of
the high inputs. That is, it is impossible to learn any information about the high values by changing the low inputs.
Equivalently, the computer system responds exactly the same to any input sequence of low values regardless of the
high values.

Noninterference provides a notion of strong, end-to-end security properties [128]. That is, it tracks the release and
subsequent transmissions of the data to ensure that they adhere to the desired security properties. It extends the notion
of access control [32, 80, 154], which strictly limits accesses to objects in the system. These lists enable restrictions
on who can access an object; yet once it is released, its propagation is not restricted, and this information can be
subsequently transmitted in an insecure manner.

Definitions of noninterference often rely on semantic models of program execution. Early work in this space includes
Cohen’s work using the notion of strong dependency [22, 23] and McLean’s definition of noninterference using
trace semantics [100]. Volpano et al. formalize Denning’s lattice approach as a type system viewable as a form of
noninterference [148]. Many follow-on works extend the expressiveness of the model and extend the typing system to
handle concurrency, nondeterminism, synchronization and exceptions; for more information, see Sabelfield and Myers’
excellent survey on language-based information flow security [126].

Much of this early work on noninterference was related to accessing user data and isolating programs running
on shared computers. Thus, it largely dealt with files, resources, and users as objects and took a very “software” or
operating system centric view. Regardless, the general notion of noninterference translates well to hardware. Perhaps
the most straightforward example is the SecVerilog project [162], which employs the notion of noninterference using
semantic models from Verilog. SecVerilog adds security labels to the Verilog language and extends previous security
typing languages to hardware design. The challenge is accounting for all the eccentricities of the hardware models of
computation, and in particular of vast use of concurrency. Regardless, the general idea that low objects should not be
able to infer any information about the high objects still holds and can be translated to hardware.

A major challenge is that the number of objects in hardware is typically much larger than in software. Hardware
objects could be comprised of the entire memory space, registers, and other low-level state – any stateful storage
element could be considered. Of particular note is that objects can vary by the level of abstraction. For example, objects
at the operating systems are files and users. ISA-level objects are visible programmer state, e.g., registers, memory, and
Manuscript submitted to ACM
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some program state (PC, status and configuration registers). Objects at the RTL would start to include intermediate
registered values and state related to control flow. Objects at the gate level would likely denote every flip-flop which
would include all registers (programmer visible or not) and the state of different controllers (i.e., finite state machine
bits). Enforcing noninterference across all of these objects can be challenging. Yet, regardless of the number of objects,
the notion of noninterference remains true – any information related to high objects should not flow to low objects.

2.4 Types of Information Flow Relations

While flow relations provide a way to specify security policies related to whether or not information is allowed to be
transferred between objects, they do not strictly define the method to determine if there is a flow of information. There
are many different ways in which information can be transmitted. Understanding the different types of information
flow relations and how they manifest themselves in hardware is an important first step for precisely measuring all
flows of information and further tightly enforcing the security policies.

Information can flow through functional (e.g., Boolean gates, arithmetic operators, transactions) and physical
channels (e.g., power, electromagnetic, and thermal). A major difference between functional and physical flows lies in
how information is encoded and transmitted. Functional flows encode information by using specified behavior of the
hardware. The simplest example is directly writing data from one object to another. Physical information flows use
some notion related to the physical process of performing the computation. This could be the time that an operation
takes where examples include the time to receive data through a cache or compute some operation whose execution
time depends on the data involved in the computation (e.g., modular exponentiation [77]). Additionally, any circuit
switching activity results in power consumption, electromagnetic radiation, and thermal emission. Each of these can be
used to infer what is being computed, and thus creates a flow of information.

In this article, we primarily focus on functional information flows, which traditionally have been categorized as
explicit and implicit. In the following, we illustrate the difference between explicit and implicit flows. We also discuss a
special type of implicit flow called timing flow, which usually leads to leakage of sensitive information.

2.4.1 Explicit Flow. Explicit flow is associated with the direct movement of data. Thus, it is also called data flow. As
shown in Fig. 3, information flows explicitly from the source operand(s) to the destination operand (from A and B to
Sum in this example) when an expression sum := A + B is evaluated.

1:  input A,  B
2:  output Sum
3:  Sum := A + B

+
A

B
Sum

Fig. 3. A simple example of explicit flow. The data from A and B explicitly flow to Sum when the add operation is executed.

2.4.2 Implicit Flow. Implicit flow is a more subtle type of information flow that is caused by context dependent
execution such as conditional operations. Here, information can flow between two objects even when there is no direct
data assignment. Consider the example shown in Fig. 4 (a), which implements a simple if/else control structure.

It is clear that both A and B flow explicitly to Mux through the statements. The more challenging question is whether
there is an information flow between Sel and Mux . There is obviously no direct explicit flow. However, it is possible
to infer the value of Sel depending on what is written into Mux , i.e., whether Mux is assigned the value from A or B.
Thus, there is an information flow, or more precisely an implicit information flow between Sel and Mux . Information
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1:  input A,  B,  Sel
2:  output Mux
3:  if Sel then
4:      Mux := A
4:  else
5:      Mux := B

A

B
Mux

Sel

A

B

Sel Mux

(a) (b) (c)

1

0

Fig. 4. A simple example of implicit flow. (a) The if/else hardware control structure causes a flow of information from Sel to Mux
even though there is no direct assignment of the Sel data to Mux . As the design is synthesized to RTL (b) and gate level (c), the
implicit flow becomes explicit as the multiplexer in (b) and the gates in (c) now denote an explicit flow between Sel and Mux .

flows implicitly from the conditional variable Sel to Mux , where how Mux will be updated depends on the value of Sel .
It is important to understand that an implicit flow can occur even if there is no explicit data assignment.

These implicit flows start to become more like explicit flows as the level of abstraction becomes lower. For example,
in Fig. 4 (b) and (c), the if/else statement from Fig. 4 (a) is synthesized into a multiplexer, which is a three input (A, B,
and Sel) one output (Mux) function block. As synthesis progresses, the multiplexer is further decomposed into gates
which again implements the same function. Thus, the implicit flow from Fig. 4 (a) becomes an explicit flow after RTL
(Fig. 4 (b)) and logic synthesis (Fig. 4 (c)). As RTL conditional branch statements are synthesized to multiplexers and
even smaller primitive Boolean gates, the information flow from Sel to Mux appears no different from those from A or
B to Mux . In other words, all functional information flows are explicit at the gate level. At the same time, it becomes
harder to decouple the different types of flows as the level of abstraction is lowered. For example, assume a security
policy needed to differentiate between explicit and implicit flows. This would be more challenging to distinguish at the
gate level.

2.4.3 Timing Flow. A timing flow is a special type of implicit flow where information is flows through timing-related
design behavior. Figure 5 shows a simple example of cache timing flow. The cache signal hit input affects the time at
which the valid signal is asserted. It is not a functional flow because valid will eventually be asserted regardless of the
value of hit . Yet, by observing the time at which valid is asserted, an attacker can infer the value of hit . Thus, hit flows
to valid through a timing channel.

DRAM

valid

hi
t=

=
1?

hit

Cache
1:  input hit
2:  output valid
3:  if hit then
4:      cache_read()
4:  else
5:      dram_read()
6: valid := cache_valid | dram_valid

cache_rd

dram_rd

cache_valid

dram_valid

Fig. 5. A cache timing flow. The signal hit flows to the signal valid through a timing channel, i.e., an attacker can determine
information about hit by observing when valid is asserted.

A more subtle case is that an information flow measurement can be a mix of functional and timing. Consider a RSA
implementation through repeated square-and-multiply used in Kocher’s timing attack [77]. There is functional flow
from the key to ciphertext since the value of key directly affects the encryption result. However, there is also a timing
flow to cipher in this implementation since the individual key bits determine the amount of time needed to encrypt a
given message. It is possible to distinguish between timing flows from functional flows using hardware IFT [2, 113].
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2.5 Covert and Side Channels

A covert channel is a transfer of information using an unintended source. The Orange Book classifies two types of
covert channels - storage and timing channels [99]. The storage covert channel transmits information to a “storage
location” (e.g., disk sectors) from parties in different security levels that are not allowed to communicate. The timing

covert channel transmits information through the usage of system resources, which are observable by another process.
Lampson defined a covert channel as a channel “not intended for information transfer at all, such as the service

program’s effect on system load” [79]. Sabelfeld and Myers followed this notion and characterized covert channels as
ways to transfer information within a computing system using mechanisms not intended to function as information
channels. They classified covert channels to several categories, including implicit flows, termination channels, timing
channels, probabilistic channels, resource exhaustion channels, and power channels [126]. Covert channels can be a
security threat depending on what attackers can observe about the computing system, e.g., execution time, power
consumption, resource usage and probability distribution of observable data.

By comparison, a side channel is a leakage of information through non-functional (often physical) characteristics,
e.g., execution time, power consumption, EM radiation, and acoustic emissions. Kocher pioneered in developing
side channel attacks to recover the cryptographic key from runtime and power trace measurements using statistical
analysis [76, 77]. Meltdown [88], Spectre [75], and Foreshadow [13, 153] leverage architectural level security flaws to load
kernel information into cache and then use timing channel attack to retrieve protected information. These side channels
are caused by access to shared resources. There also can be a security threat in shared computing environments such as
the cloud server [155].

An interesting consequence of modeling information flow at the hardware level, is that it provides cycle accurate
timing information enabling timing channels (or lack thereof) to be modeled and formally verified using IFT [2, 4].
Section 4 describes this in more detail.

Covert and side channels often exploit similar phenomenon, e.g., timing, power consumption, and thermal radiation.
A major difference between a covert and side channel is intent. A covert channel often times involves one party
attempting to transfer information to another; a side channel is usually unintentional, but it often exploited as a
vulnerability.

3 OPERATOR PRECISION

IFT techniques can use different class combining operators (or label propagation policies) to calculate the security class
of the output upon input security labels. The type of operator employed can affect the precision of an IFT technique in
measuring information flows and further the computational complexity to do the measurement. This section categorizes
IFT techniques by operator precision and also discusses precision and complexity tradeoffs.

3.1 Precision of IFT

Precision is an attribute that reflects whether an IFT technique can accurately measure all (and only) existing information
flows in hardware designs. LetO be an n-input function denoted asO = f (I1, I2, · · · , Ik , · · · , In ). A precise IFT technique
indicates a flow from Ik to O if and only if the value of input Ik (1 ≤ k ≤ n) has an effect on that of O , i.e., a change in
the value of Ik will result in a change in O .

Ik → O ⇔ f (I1, I2, · · · , Ik , · · · , In ) , f (I1, I2, · · · , I
′
k , · · · , In ) (3)
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Precise IFT techniques can accurately model the information flow behaviors of hardware designs while imprecise
ones can either indicate non-existent information flows (i.e., false positives) or miss actual information flows (i.e., false
negatives). The false positives in information flow measurement correspond to information flow behaviors that would
not actually happen. Most imprecise IFT techniques tend to introduce false positives, which are safe but may lead to
conservative design decisions, i.e., a perfectly secure design may be verified as insecure. However, it should be noted
that false negatives can arise due to incomplete analysis, e.g., when an information flow security property cannot be
verified within reasonable amount of time and resource.

3.2 Imprecise IFT

Early hardware IFT techniques all tend to employ the conservative least upper bound operator in Denning’s information
flow framework to calculate the output security class and determine the flow of information [12, 137]. These techniques
assume that information will always propagate from the inputs to outputs driven by them. In other words, information
flows are independent of the functionality of the component and input conditions; the output will take a high label as long
as any input is high. Let L(I1),L(I2), · · · ,L(In ) be the security labels of the inputs I1, I2, · · · , In respectively and L(O)
be the security label of output O . The conservative label propagation policy can be formalized as Equation (4), where
the ⊕ symbol represents the least upper bound operator. Imprecise IFT techniques employing this label propagation
policy has the computational complexity of O(2n ).

L(O) = L(I1) ⊕ L(I2) ⊕ · · · ⊕ L(In ) (4)

The label propagation policy shown in Equation (4) can be conservative for certain hardware components according
to Equation (3). Consider the two-to-one multiplexer (MUX-2), whether an input could propagate to the output depends
on the value of the select line.

Although imprecise IFT techniques can lead to conservative verification results, they usually allow a quick profile of
potential information flow security vulnerabilities. This can be useful for identifying security violations that occur under
rare conditions, e.g., a hardware Trojan that leaks information only when triggered [53]. However, the verification
performance benefits that come at the cost of loss in precision may later be counteracted by additional efforts needed to
exclude false alarms, e.g., a disabled debug port that had access to critical memory locations [52].

3.3 Precise IFT

Precise IFT techniques take into account both the functionality of a hardware component and the input values when
determining flow relations. The label propagation policy can be formalized as a function of both the inputs and their
labels as shown in Equation (5). Thus, the complexity of precise IFT techniques is O(22n ).

L(O) = f (I1, I2, · · · , In,L(I1),L(I2), · · · ,L(In )) (5)

Gate level information flow tracking (GLIFT) [144] is the first well-established precise IFT technique. Figure 6 shows
the difference in class combining operation with/without considering data values.

Figure 6 (b) and (c) show some partial flow relation and class combining operations without/with consideration of
data values respectively. The entries in red text reveal the differences between these two rule sets. In Fig. 6 (b), the least
upper bound operator is used for class combining and thus high information will always flow from B to O . However,
data value can sometimes determine the output and prevent the flow of information from the other input. Take the
Manuscript submitted to ACM
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A B O Flow →
(low, 0) (high, 0) (low, 0) low → L(O)

(low, 0) (high, 1) (low, 0) low → L(O)

(low, 1) (high, 0) (high, 0) high → L(O)

(low, 1) (high, 1) (high, 1) high → L(O)

A B O Flow →
(low, 0) (high, 0) (high, 0) high → L(O)

(low, 0) (high, 1) (high, 0) high → L(O)

(low, 1) (high, 0) (high, 0) high → L(O)

(low, 1) (high, 1) (high, 1) high → L(O)

(a) (b) (c)
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• Implicit flow: consider the conditional assignment statement if f (xm+1, xm+2, · · · , xn ) then� := f (x1, x2, · · · , xm ).
The implicit �ow xi ! �(i = m + 1,m + 2, · · · ,n) should be checked as �xed security class, i.e., L(xm+1) �
L(xm+2) � · · · �L(xn ) v L(�) should hold. The implicit �ow does not contribute to the update of L(�). In other
words, L(�) = L(x1) � L(x2) � · · · � L(xm ) in this case.

The above rules can be used to describe and check �ow relations. While these are easy to implement, they can be
overly conservative since the rules did not consider the e�ect of values (of data objects) on �ow relations. Figure ??
uses a two-input AND to illustrate �ow relation and class combining operations.

A B O
(low, 0) (high, 0) (low, 0)
(low, 0) (high, 1) (low, 0)
(low, 1) (high, 0) (high, 0)
(low, 1) (high, 1) (high, 1)

A B O
(low, 0) (high, 0) (high, 0)
(low, 0) (high, 1) (high, 0)
(low, 1) (high, 0) (high, 0)
(low, 1) (high, 1) (high, 1)O

A B

(a) (b) (c)

Fig. 3. Example flow relation and class combining operation. (a) Two-input AND gate. (b) Class combining operation without
considering data values. (c) Class combining operation with consideration of data values.

I meant for this comment here not later. Basically have a simple �gure and talk about how data can
sometimes make a di�erence in terms of determining the label, e.g., when some input dominates it doesn’t
matter what the label of the other inputs are. This can then transfer into noninterference by saying that
there needs to be some notion of what information transfer means. And the most common de�nition of
that is noninterference.

2.5 Covert Channels

A covert channel is a transfer of information using an unintended source. The term, as de�ned by Lampson, is a channel
“not intended for information transfer at all, such as the service program’s e�ect on system load” [Lampson 1973]. The
Orange Book classi�es two types of covert channels - storage and timing channels [US Department of Defense 1985].
The storage covert channel transmits information to a “storage location” (e.g., disk sectors) from parties in di�erent
security levels that are not allowed to communicate. The timing covert channel transmits information through the
usage of system resources, which are observable by another process.

Lampson de�ned covert channels as channels that exploit a mechanism whose primary purpose is not information
transfer [Lampson 1973]. Sabelfeld and Myers followed this notion and characterized side channels as ways to transfer
information within a computing system using mechanisms not intended to function as information channels. They
classi�ed covert channels to several categories, including implicit �ows, termination channels, timing channels, proba-
bilistic channels, resource exhaustion channels and power channels [Sabelfeld and Myers 2003]. Covert channels can
be a security threat depends on what attackers can observe about the computing system, e.g., execution time, power
consumption, resource usage and probability distribution of observable data.

An early example of a timing covert channel was demonstrated on the Multics system. By performing or not
performing data accesses to a shared library �le, one process sends information to another who infers this information
based upon the amount of time it took to read the di�erent parts of the same library �le. Due to page faults, the
Manuscript submitted to ACM

Fig. 6. Examples of flow relation and class combining operation. (a) Two-input AND gate. (b) Flow relation and class combining
operation without considering data values. (c) Flow relation and class combining operation with consideration of data values.

second and third rows in Fig. 6 (c) for example. The (low, 0) input in A will dominate the output to be (low, 0). In such
cases, the high information in input B does not have any effect on the output and thus cannot flow to O .

Oberg and Hu et al. have formalized precise IFT logic for Boolean gates under the notion of GLIFT [57, 111]. In a
successive work, they performed a formal analysis on the complexity of the precise hardware IFT logic generation
problem and revealed the impreciseness that can arise when tracking information flows in a constructive manner [58].

Ardeshiricham et al. proposed RTLIFT [3], a precise hardware IFT technique at the RTL. The major challenges are
handling the complex conditional branch structures such as if-else, case and loop statements. However, RTLIFT allows
more effective handling of timing flows modeled as conditional register updates controlled by tainted values [2].

Although RTLIFT has observed a magnitude of improvement over GLIFT in terms of verification performance and
scalability, precise IFT can inevitably be expensive for large hardware designs since it is inherently an NP-complete
problem [58]. Thus, it is desirable to derive practical IFT methods that can balance between the performance benefits
and precision to achieve verification goals in acceptable amount of time and resource.

3.4 Precision and Complexity Tradeoffs

Precision and complexity are two contradictory factors for evaluating hardware IFT techniques [52]. We have to tradeoff
one for the other like we have done for area and performance in logic synthesis.

Switching circuit theories provide insightful explanations about the impreciseness of hardware IFT techniques. Oberg
and Hu et al. have identified the root cause of false positives in IFT analysis as static logic hazards [57, 111]. They used
a MUX-2 example to demonstrate how false positive will arise when there is either static-0 or static-1 logic hazard.

Hu et al. associate the source of impreciseness with internal variable correlations caused by reconvergent fanouts [58].
They also formally proved that precise hardware IFT logic generation is an NP-complete problem. To overcome the
exponential scale complexity of the precise IFT logic generation problem, constructive as well as heuristic methods
were proposed to create imprecise tracking logic in polynomial time at the cost of loss in precision.

In [52], Hu et al. investigated the effect of logic synthesis optimizations on precision of IFT. This work reveals that
the false positives of hardware IFT hide behind unreachable satisfiability don’t care conditions in digital circuits. It
provides an efficient approach to derive different version of hardware IFT logic with variable precision and complexity
for Boolean gates. The observation is that precise IFT logic more accurately measures information flows because it
considers the value of variables in label propagation. We would move towards the less precise by gradually ignoring
the inputs to relax precision. Figure 7 illustrate this process using the two-input AND (AND-2) gate as an example,
where A, B and O are the inputs and output of AND-2; At , Bt and Ot are their security labels, respectively.
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Ot = ABt + BAt + AtBt

Ot = Bt + BAt Ot = ABt + At

Ot = At + Bt

Ot = ABt + BAt + AtBt Ot = ABt + BAt + AtBt

Ot = Bt + BAt Ot = ABt + At

Fig. 7. Deriving simplified hardware IFT logic for AND-2.

At the top level, we have the most precise hardware IFT logic for AND-2. The second level shows three simplified
versions of hardware IFT logic derived by setting one of the inputs to don’t-care. By eliminating an additional input, we
reach the least precise (but most simplified) hardware IFT logic for AND-2 at the bottom.

In [52], both graph and QBF-SAT based search techniques are proposed to gradually introduce false positives into
hardware IFT logic to accelerate security verification and pinpoint security vulnerabilities. Becker et al. took a step
further to quantitatively introduce a certain percentage of false positives into IFT logic with the assistance of QBF
solvers, allowing a finer-grained tradeoff between precision and complexity [7].

4 SECURITY PROPERTIES

gInformation flow properties are expressed as flow relations over objects. The property specifies how information
stored in hardware objects can or can not flow to other objects. For example, a confidentiality property is specified by
stating certain flows cannot occur (e.g., secret ↛ unclassified). An integrity property is also specified by restricting
flows (e.g., untrusted ↛ trusted).

gInformation flow tracking properties are examples of hyperproperties since they express expected behaviors that
require verification across multiple traces [21]. A trace is an execution of the hardware, e.g., a set of waveforms denoting
the values of the hardware registers over time. An individual trace can be determined to satisfy or violate a trace

property. Functional hardware verification techniques use trace properties, which are defined over sets of traces, e.g., a
register should be set to ‘0’ upon reset. While trace properties can encode functional properties, IFT properties require
comparing the hardware’s behavior with respect to more than one trace. Hyperproperties are defined on sets of sets of
traces (also called systems) and thus more complex than trace properties.

To illustrate the relationship between hyperproperties and hardware IFT, consider an integrity property, which
indicates that the behavior of trusted objects should remain intact with respect to values of untrusted objects. This
policy compares the hardware behavior over multiple traces with differing values for untrusted data. Consequently, the
integrity policy cannot be represented as a trace property. However, integrity can be represented as a hyperproperty
that considers multiple traces which are identical except for the value of the untrusted data. To preserve integrity, the
system is expected to act identically (in terms of the trusted objects) across all the traces assuming they start from
equivalent initial states. Using formal methods, this hyperproperty can be verified for all possible values of untrusted
data components to provide a formal proof of integrity in all possible executions. gOr one could verify it in simulation or
emulation by insuring that the security label never reach an undesired state. This likely will not provide total coverage,
but typically scales better than formal verification techniques.

gHardware IFT tools model movement of information through the hardware using labels that store security relevant
information. The labels indicate whether objects are trusted or untrusted, confidential or public, contains timing
variation or not, etc. The property defines the initial conditions on the labels and a set of conditions for how the labels
can or can not change during execution. For an integrity property, IFT uses labels to indicate if objects are trusted or not.
Manuscript submitted to ACM
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Objects which carry untrusted values are initialized to have a high label while other objects have a low label by default.
To ensure integrity, the property states that the system compute in a manner that maintains the low labels for the
objects which are assumed to be trusted throughout execution. Maintaining a low label in this scenario demonstrates
that untrusted values have not influenced the trusted components.

In this section, we show how different security policies can be modeled from the perspective of information flow and
provide example hardware IFT properties. We describe the properties as an assertion-based IFT property language [49].
Assertion-based verification is commonly used for functional hardware verification [40], and thus should be familiar
with hardware designers. Additionally, commercial IFT hardware tools have adopted assertion-based verification for
IFT properties [97, 98]. Assertion-based IFT verification works by initially setting labels in the system (through assume

statements) and verifying that these labels do or do not propagate to some other object (through assert statements). We
consider an information flow model where relevant hardware components are extended with a security label, and a
two level lattice low ⊑ high shown in Fig. 2 (a). We use the System Verilog Assertion (SVA) language to specify these
properties.

4.1 Confidentiality

Confidentiality properties ensure that any information related to sensitive objects (labeled as high) never flows to an
unclassified object (using a low label). For instance, in a cryptographic core the secret key should not flow to a point
that is publicly observable. Confidentiality properties are written to protect secret assets in a given design. This is
done by marking the secret assets or inputs with a high security label and monitoring the label of public ports and
storage units. To preserve confidentiality, all public ports and storage units should maintain a low label throughout
execution. Examples of confidentiality properties for various hardware designs such as crypto cores and arithmetic
units are shown in the first four rows of Table 1. Here we wish to verify that sensitive/secret objects do not affect
publicly viewable objects. To do this, we set the sensitive objects labels as high using the assume statement, and assert

that the publicly viewable objects remain low.

Table 1. Examples of hardware IFT properties related to confidentiality, integrity, and isolation.

Benchmark Synopsis Formal Representation
SoC Arbiter (Confidentiality) Acknowledgement signal is not driven from sensitive requests assume (req[i] == high); assert (ack[j] == low)

Scheduler (Confidentiality) Grant signal is not driven from sensitive modes assume (mode[i] == high); assert (grant[j] == low)

Crypto Core (Confidentiality) Ready signal is not driven from secret inputs assume (key == high & plain_text == high); assert (ready == low)

Floating Point Unit (Confidentiality) Ready signal is not driven from the inputs
assume (operand1 == high & operand2 == high);

assert (ready == low)

Crypto Core (Integrity) Key register is not modified by public inputs
assume (user_inp == high);

assert (key == low)

Debug Unit (Integrity) Debug flag is not modified by public inputs
assume (user_inp == high);
assert (debug_en == low)

Processor (Integrity) PC, private memory and control flow conditions are not modified by public inputs
assume (user_ inp == high);

assert (PC == low & private_mem == low & cond == low)

Access Control (Integrity) Unauthorized users cannot access protected units
assume (user[i] == high);
assert (asset[j] == low)

SoC (Isolation) Accesses to different cores on an SoC are isolated
assume (req[i] == high); assert (ack[j] == low)
assume (req[j] == high); assert (ack[i] == low)

Memory (Isolation) Memory locations are isolated
assume (mem[i] == high); assert (mem[j] == low)
assume (mem[j] == high); assert (mem[i] == low)

4.2 Integrity

Integrity is the dual of confidentiality - here we mark untrusted hardware resources with a high label and verify that
they do not affect critical components with low labels. For example, in a processor the program counter (PC) should not
be overwritten by data from an unprotected network.
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Integrity properties can be specified for any design where certain memory locations, registers, or flags should be
protected against unauthorized access. This is modeled by marking public access such as user or network input with
a high label and constraining the sensitive variables to maintain a low security label. Table 1 shows four integrity
properties written for crypto cores, debug units, processors, and access control units.

4.3 Isolation

Isolation can also be enforced as an information flow security property. Isolation states that there should never be
information exchange between two components with different trust levels. For example, in SoC designs, trusted IP cores
sitting in the secure world with low labels should be separated from those which are untrusted and are in the insecure
domain with high labels. It should be noted that isolation is a two-way property as shown in the examples of Table 1.

4.4 Timing Channel

Information flow models can be used to capture timing side-channels in hardware designs. These properties assess
whether sensitive information can be retrieved by measuring the computation time. To precisely capture timing flows,
the information flow model needs to distinguish between logical and timing flows. Take as example a floating point
division unit expected to run in constant time independent of the value of the operands. In this case, logical flow exists
from the data inputs (i.e., the divider and dividend) to the data outputs (i.e., quotient and remainder) since the outputs
are computed from the inputs. However, whether or not there is timing flow from the inputs to the outputs (i.e., if the
arithmetic unit runs in constant time or not) depends on the implementation of the floating point unit.

Table 2 summarizes the properties used in [2, 4] to verify timing side channel in different hardware designs. Here, we
assume an IFT model where the flow relation tracks timing-based information flows (denoted by time), e.g. as described
in Clepsydra [2]. To verify timing leakage, the assertions are written over these “time” labels.

Table 2. Summary of properties used for detecting timing side channes.l

Benchmark Synopsis Formal Representation

Sequential Divider Result is ready in constant time
assume (dividend == high & divisor == high);

assert (quotient ==t ime low & remainder ==t ime low)

Sequential Multiplier Result is ready in constant time
assume (dividend == high & divisor == high);

assert (quotient ==t ime low & remainder ==t imelow)

Cache Data is available in constant time assume (index[i] == high ); assert (data[j] ==t imelow)

SoC Arbiter Requests are granted in constant time assume (req[i] == high ); assert (ack[j] ==t imelow )

Thread Scheduler Scheduling is done in constant time
assume (thread_active[i] == high );
assert (thread_grant[j] ==t imelow )

AES Cipher Cipher text is ready in constant time
assume (key == high & plain_text == high);

assert (cipher_text ==t ime low)

RSA Cipher Cipher text is ready in constant time
assume (key == high & plain_text == high);

assert (cipher_text ==t ime low)

4.5 Hardware Trojan

Information flow tracking can be used to detect certain types of hardware Trojans that leak sensitive information by
inserting malicious information channels in the design. For example, Trust-HUB benchmarks [127] include examples
of Trojans added to crypto cores using a small circuitry that transfers the secret key to a public output under certain
conditions. This class of hardware Trojans can be detected using a property that observes information flow from
Manuscript submitted to ACM



Hardware Information Flow Tracking 15

sensitive data (e.g., the secret key) to the public ports. Table 3 summarizes the properties for detecting information
leakage by gate level information flow tracking in the Trust-HUB [127] benchmarks as used by Hu et. al. [53].

Table 3. Summary of properties used for detecting hardware Trojans

Benchmark Synopsis Formal Representation

AES-T100 Key does not flow to Antena
assume (key == high);
assert (Antena == low)

AES-T400 Key does not flow to shift register
assume (key == high);

assert (TSC-SHIFTReg == low)

AES-T1100 Key does not flow to capacitance
assume (key == high);

assert (capacitance == low)

RSA-T200 Key does not flow to count
assume (key == high);
assert (count == low)

gThe Common Weakness Enumeration (CWE) is a community-developed list of software and hardware weakness
types [96]. The hardware CWE list started in 2019 and includes a large number of enumerations that can be modeled
using IFT properties. This includes most of the CWE categories including CWE-1195: Manufacturing and Life Cycle
Management Concerns, CWE-1196: Security Flow Issues, CWE-1197: Integration Issues, CSE-1198: Privilege Separation
and Access Control Issues, CWE-1199: General Circuit and Logic Concerns, CWE-1201: Core and Compute Issues,
CWE-1202: Memory and Storage Issues, CWE-1205 Security Primitives and Cryptography Issues, CWE-1207: Debug and
Test Problems, and CWE-1208: Cross-Cutting Problems. Many of these weaknesses can be modeled as IFT properties
discussed in this section. The IFT based security verification tool Radix [97, 98] claims support of over 80% of the
hardware CWEs.

5 LEVEL OF ABSTRACTION

Hardware designs are translated through many levels of abstraction before implementation. Each abstraction level
has different capability and accuracy in describing hardware behaviors, which in turn allow verifying of different
types of security properties. For example, timing properties require cycle accurate precision which is only possible
at the RTL and below. In the following, we categorize Hardware IFT techniques according to the abstraction level
where they are developed and deployed, ranging from system, to RTL, and all the way down to Boolean gates and the
circuits [3, 9, 39, 54, 67, 119, 129, 132, 137, 144, 157, 162].

Figure 8 shows some hardware design abstractions and the IFT tools at these different levels of abstraction. A
question that would arise naturally is when and where to deploy hardware IFT? It is important to choose the right
abstraction for the job [85]. At higher levels (e.g., system and algorithmic), the models abstract away significant amount
of design details, which can lead to better verification performance and scalability. In addition, we can detect potential
security vulnerabilities earlier in the design process and fix them at much lower cost. However, we usually need to
make conservative assumptions about the hardware behaviors due to the lack of implementation details at such an
early design phase. The architectural level has enough design information for verifying the security related interference
between hardware and software as well as firmware. However, it is a non-trivial task to account for explicit flows and
timing channels at this level. As we move to RTL, the model is cycle accurate and can capture timing information
flows. However, the complex HDL syntax features (i.e., conditional branch statements) renders automatic IFT logic
generation a complicated process. At the gate level, the complex syntax structures are simplified to Boolean gates and
all information flows explicitly, significantly lowering the effort for IFT logic formalization. However, it is well-known
that gate level simulation and verification is typically one or two orders of magnitude slower than doing the same job
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Fig. 8. Hardware IFT techniques at different levels of abstraction.

at the RTL [8]. However, gate level and circuit level IFT techniques are still essential complements to higher level IFT
methods. Some designs may come in the form of synthesized or layout netlist or we may want to understand if security
properties still hold after logic synthesis and technology mapping.

5.1 System Level

A number of approaches explore hardware extension for dynamic information flow tracking (DIFT) to perform system
level verification [20, 48, 72, 82, 83, 117, 130, 149, 151]. Some techniques use loosely-coupled processor or dedicated
hardware to perform IFT at runtime while others employ IFT to verify system security during design time.

5.1.1 IFT Through Co-processing Unit. Lee et al. use CDI (Core Debug Interface) to fetch meta data [82, 83]. The ARM
CoreSight ETM (Event Trace Macrocell) trace component is used to collect information for each CPU instruction. This
trace component is later updated to CoreSight PTM (Program Trace Macrocell), which provides information only on
instructions that modify the PC. Wahab et al. use this new debug feature in ARMv7 processor to retrieve details on
instructions committed by the CPU to perform DIFT. A DIFT coprocessor is implemented in the program logic of
Xilinx Zynq device [150] for tag processing. ARMHEx [151] is a DIFT solution leveraging the CoreSight PTM debug
component. Static analysis and instrumentation are employed to retrieve the missing information resulting from the
update. ARMHEx also considers the security of the DIFT unit by using ARM Trust-Zone to protect it. A successive work
develops a more adaptive information flow monitor called BFBlare, which supports multi-thread, virtual tag memory,
floating point and Linux kernel features [149].

Heo et al. propose an application specific instruction set processor (ASIP) architecture for system level programmable
dynamic program analysis [48]. The proposed approach is implemented as a hardware engine called program analysis
unit (PAU ), whose key components are the tag processing core and the main controller. The main controller communi-
cates the execution traces with the host processor through the system bus. The tag processing core is an application
specific instruction set architecture for management of tags.
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Shin et al. proposed the implicit flow tracking unit (IFTU ), an external hardware module connected to the host
processor through system bus. In IFTU, for a conditional branch, the taint tag of data used for branch condition checking
is first propagated to the program counter. Then, for the instructions after the conditional branch, the taint tag of the
program counter is propagated to the destinations where the values are affected by the branch result. IFTU can detect
more recent advanced attacks that exploited implicit flows at reasonable area costs [130].

5.1.2 IFT for Verifying and Enforcing SoC Security. Kastner et al. use IFT to prevent secret information from leaking
(for confidentiality), and untrusted data from being used in the making of critical decisions (for integrity) in SoC systems
using untrusted IPs [72]. They use a gate level information flow model but use it to verify system level properties.

Hassan et al. and Pieper et al. propose an approach for SoC security validation through Virtual Prototypes (VP)
modeled using SystemC TLM 2.0 [46, 118]. They employ static information flow analysis to verify the no flow security
property and detect potential security breaches such as data leakage and untrusted access. However, information flow is
determined by static path search between the source and sink points, which can lead to conservative verification results.

Piccolboni et al. add support of DIFT to loosely coupled accelerators in heterogeneous SoCs, which are vulnerable
to attacks [117]. It is inspired by two earlier works [119, 120] on DIFT targeting such accelerators. A standalone shell
circuit is added for interacting with the accelerator, e.g., loading, propagating and storing tags.

5.1.3 IFT for Enforcing Embedded System Security. In [102], a bottom-up approach is proposed for enforcing information
flow security in embedded systems. The paper implements bit-tight information flow control from the level of Boolean
gates. It then exposes this information flow measurement capability to higher abstraction levels in the system stack
ranging from architecture and all the way up to secure application to enforce security properties.

Cherupalli et al. propose a fine-grained IFT technique for enforcing information flow security for IoT systems
[20]. They introduce application specific GLIFT [144] for IoT systems. The paper builds a gate-level symbolic analysis
framework that leverages the knowledge of the target application to efficiently identify the potential information flow
security vulnerabilities. It designs a software tool that takes as inputs the gate level netlist of the processor, the original
binary of a given application and information flow policies of interest. The tool performs symbolic gate level simulation
of the application binary on the netlist to determine if there is any information flow security policy violation and
identify the offending instructions.

5.2 Algorithmic Level

Some recent works synthesize DIFT enhanced hardware accelerators from high-level specification [64, 119, 129].
ASSURE [64] is a security-constrained high-level synthesis (HLS) framework that automatically synthesizes verifiably

secure hardware accelerators from high-level descriptions under user-defined security policies and constraints. ASSURE
extends the LegUp HLS framework [17] to perform IFT. It generates an additional enforcement FSM to manage public
I/O accesses separately in a way that all secret-conditioned branches are balanced by applying additional latency
constraints. Other operations that do not affect timing of the public outputs are controlled by the main FSM. As a result,
the public outputs have constant latency.

GARUDA [129] is a high-level security policy language and a compiler to compile security policies described in
GARUDA to Verilog modules. It enables the modular construction and composition of runtime hardware monitors for
securing a variety of security policies, including fault isolation, secure control flow, and DIFT via taint checking. The
high-level security policies described in GARUDA are first converted into a policy intermediate representation (IR) and
then compiled to Verilog code using the extraction feature of the Coq theorem prover.
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TaintHLS [119] is an HLS methodology to automatically generate DIFT-enabled accelerators from high-level spec-
ification. TaintHLS creates a microarchitecture to support baseline operations and a shadow microarchitecture for
intrinsic DIFT support in hardware accelerators. The DIFT-enabled accelerators have negligible performance overhead
while adding no more than 30% hardware. These accelerators achieve the same value tags and identical number of false
positives/negatives as compared to software IFT implementation.

5.3 Architecture Level

5.3.1 Capability Vector Architecture. Architectural level hardware IFT research dates back to as early as Denning’s
information flow theoretic framework. In 1978, Saal and Gat from IBM proposed a capability vector machine to enforce
access and information flow control [125]. The machine used a capability vector to describe information flow policy.
For example, an instruction moving data from A to B required the capability vectors <(A, READ) and (B, WRITE)>.
An instruction would be allowed to execute when its implied capability vector existed otherwise the movement of
information should be prohibited.

Bondi and Branstad designed an architecture for fine-grained secure computing [12]. The architecture’s operands are
2-tuples, consisting of a data object and an associated security tag. A dedicated subprocessor and tag memory are added
to perform security tag manipulation in parallel to the data path. The coupled subprocessors enforce multi-level security
(MLS) access control and information flow control. While such an architecture provides efficient security support, it is
infeasible for modern processors with their large instruction set.

5.3.2 DIFT and Related Architectures. Dynamic information flow tracking (DIFT ) is an architectural mechanism to
protect programs against buffer overflow and format string attacks by identifying spurious information flows from
untrusted I/O and restricting the usage of untrusted information [137]. Although DIFT employs conservative tracking
rules, the performance overheads could be as high as 23% for certain benchmarks. To reduce the overheads, Kannan
et al. propose to decouple DIFT with a co-processor [70]. The co-processor receives instruction tuples and loads tag
information from tag memory/cache to perform security checks. The two processors synchronize on system calls. When
a tag check fails, an exception would be generated and the execution results of the instruction and tag update would be
rejected.

Runtime Information Flow Engine (RIFLE) enforces user-defined information flow security policies [146]. In RIFLE,
program binaries are translated from a conventional ISA to an information flow secure ISA. The translated programs
execute on hardware with IFT capability and interact with a security-enhanced operating system, which is responsible
for enforcing the security policies. The authors also show that language-based information-flow systems are less
secure than previously thought while architectural level IFT approaches can be at least as powerful as language-based
information-flow systems.

Raksha is an architecture that combines both hardware and software DIFT mechanisms [24]. Hardware manages
security tags at low performance overhead for user code, OS code, and data that crosses multiple processes while
software performs security checks and handles exceptions. Raksha supports a flexible and programmable mechanism for
specifying security policies, allowing multiple concurrently active security policies to deal with a wide range of attacks.
It enables security exceptions that run at the same privilege level and address space as the protected program. This
allows the integration of the hardware security mechanisms with software analyses, without incurring the performance
overhead of switching to the operating system.
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FlexiTaint [147] is another hardware accelerator for DIFT with support of flexible and configurable taint propagation
rules. It extends the processor pipeline and implements taint-related logic for tag processing. Tags are stored as a
packed array in virtual memory; a taint propagation cache tagged by operation type and input-operand taints to
improve performance. Reported results showed that FlexiTaint incurred negligible performance overheads even when
simultaneously supporting two different taint propagation policies.

In [27, 28], Deng et al. implement DIFT using a soft-core processor. The CPU pipeline is modified in order to allow
the processing core to forward its execution trace for tag processing. In [25], executable binary is instrumented to
extract the required information for DIFT. However, it causes up to 86% performance overhead.

Shioya et al. and Joannou et al. tried to reduce the memory overhead of DIFT techniques by exploiting tag memory
access characteristics, e.g., non-uniformity, locality, and cache behavior. They propose to use multi-level table, cache
structures and memory access optimizations to accelerate tag memory access [69, 131]. Another attempt to optimize
taint label manipulation is to separate trusted and untrusted data objects into different pages, which prevents the
overhead for storing and loading taint labels [92, 93].

Locality-Aware Taint CHecker (LATCH ) is an architecture for optimizing DIFT [145]. The key observation is that
that DIFT exhibit strong temporal locality, with typical applications manipulating sensitive data during limited phases
of computation. This property allows LATCH to invoke precise, computationally intensive tracking logic only during
the execution involves sensitive data otherwise perform lightweight, coarse-grained checks to reduce performance
overheads. The authors design and implement three different DIFT systems that incorporate the LATCH model, i.e.,
S-LATCH for optimizing software-based DIFT on a single core, P-LATCH to optimize DIFT monitoring using a separate
core and H-LATCH that targets hardware-based DIFT.

DataSafe is a software-hardware architecture that provides dynamic instantiations of secure data compartments
(SDCs) [19]. The architecture enforces hardware monitoring of the information flows from the compartment using
hardware policy tags associated with the data at runtime to prevent leakage of sensitive information. Security tags are
derived from security policies associated with sensitive data and passed to the SDC for tag propagation. These tags
would be checked when data were processed by unvetted applications.

5.3.3 Execution Lease Architectures. Tiwari et al. describe how a class of secure architectures can be constructed,
from the gates up, to completely capture all information flows [141–143]. In [142], hardware IFT is applied to an FPGA
device to create a micro-processor that implements bit-tight information flow control. The architecture design is a
full implementation that is programmable and precise enough to track all flows of information and prevent untrusted
data from flowing to critical memory locations such as the PC. Novel techniques are proposed to handle conditional
branches, loops, loads and stores to prevent over tainting. A prototype processor is implemented on Altera Stratix II
FPGA, where IFT logic adds about 70% resource overhead [143].

The execution lease is another IFT enhanced architecture [87, 141]. This lease architecture allows execution contexts
to be tightly quarantined and their side effects to be tightly bounded. Information flow security properties such as
isolation between trusted and untrusted execution contexts can be verified all the way down to the gate-level using the
precise information flow measurement capability of IFT. However, all the leases have a fixed time bound, which does
not support performance optimization micro-architecture features such as caches, pipelining, branch prediction or TLBs
due to the timing variation they introduce. In addition, the lease architecture adds substantial design and performance
overheads resulting from the additional information flow tracking logic.
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To overcome the shortcomings of the lease architecture, in [143] a minimal but configurable architectural skeleton is
crafted to operate along with a small piece of software, which together composes the minimal essential functionality
through which information flow security properties can be verified all the way down to Boolean gates. Such strict
core component is then used to create a hardware-software system that allows unbounded operation, inter-process
communication, pipelining, I/O with traditional devices and other architectural level performance optimizations. This
work also proposes a more scalable verification technique called star-Logic (*-logic), which represents indeterministic
values as the abstract value * in order to verify all possible executions arising from unknown values in a single run.

5.3.4 IFT on Multi-core Architectures. Most architectural level IFT techniques discussed above used a dedicated co-
processor for tag processing. There are also works that distribute data processing and metadata processing to different
cores in a single processor [18, 63, 91, 105, 110, 115, 124]. DIFT on multi-core processor can be a much more challenging
task in that data processing and metadata processing are normally decoupled and in different orders. Maintaining
metadata coherence is a fundamental problem for ensuring the correctness of DIFT in a multi-core environment. To
address possible inconsistency, Santos et al. proposed METACE that included architectural enhancement in the memory
management unit and leveraged cache coherence hardware protocol to enforce metadata coherence [91]. In addition,
there is also performance penalty due to inter-process communication [105].

ShadowReplica [63] is another dynamic data flow tracking technique on multi-core processor. It uses a shadow thread
and spare CPU cores to decouple execution and data flow tracking. The two processes communicate through a shared
data structure. A major difference from previous approaches lies in that it introduces an off-line application analysis
phase that utilizes both static and dynamic analysis methodologies to generate optimized code for decoupling execution
and implementing DFT. This additional phase also minimizes the amount of information that is to be communicated
between the two threads.

SMT-based IFT (SIFT ) is a hardware IFT technique on SMT processors [115]. Taint propagation and policy checking
are performed by a separate thread executed in spare context of an SMT processor. The instructions for the checking
thread are generated in hardware using self-contained off-the-critical path logic at the commit stage of the pipeline.
Instruction generation can be completed in one additional cycle at commit time. Experimental results using SPEC CPU
2006 benchmarks showed 4.5% area overhead, 20% overhead in performance and 23% additional power consumption,
which is significantly lower than several software IFT implementations.

Another benefit of performing IFT on multi-core processors is the possibility of parallelizing DIFT in order to reduce
the high performance overhead of sequential implementations. The major challenge lies in serial dependencies in DIFT,
i.e., label propagation usually depends on resulting labels of prior operations. To accelerate DIFT, different optimizations
are proposed to resolve and simplify such dependencies, e.g., preserving only operation that affect the taint status
of critical points [110] and tracking the information flow only through unary operations [18, 124]. Afterwards, the
parallelized DIFT instances are distributed to multiple cores for processing.

5.3.5 IFT on RISC-V Architectures. The SAFE project developed one of the earliest verified information flow secure
architectures based on the RISC instruction set. A simple stack-and-pointer machine with “hard-wired” dynamic IFC
was designed to provide IFT support to higher-level software. The instructions for implementing the IFT mechanism
are formalized and verified using Coq [5]. More recent projects such as SSITH and AISS both aim to develop secure
RISC-V architectures, where IFT is employed for verifying and enforcing security guarantees [109, 133].

Programmable Unit for Metadata Processing (PUMP) is an enhanced RISC processor architecture with ISA-level
extension [34]. PUMP changes the pipeline to incorporate programmable tag propagation rule checking. PUMP performs
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single-cycle common-case computation on metadata with support of the tag propagation rule cache. On every instruction,
the tags of the inputs are used to determine if the operation is allowed, and if so to determine the tags for the results. A
tag propagation rule cache miss will trigger the policy miss handler to determine if the instruction is allowed.

HDFI is a hardware-assisted solution for data flow isolation by extending memory words with single bit tags and
the RISC-V ISA to perform tag checking [134]. The integrity level of a memory unit is determined by the last write
operation to the unit. At memory read, a program would check if the tag is allowed by the security policy. HDFI enforces
the Biba integrity and Bell-LaPadula confidentiality security models with <2% performance overhead.

HyperFlow [39] is another extended RISC-V architecture with security features for enforcing information flow control.
The processor is designed and verified using a type enforced hardware design language ChiselFlow [65]. It supports rich
configurable security policies described by complex lattice structures and controlled security class downgrading to
allow inter-process communication and system calls. This new architecture also prevents timing channels by enforcing
the security policy that the latency of an instruction should not depend on operand value or memory access from
another process with a higher security type. A later work extends this architecture by also incorporating language-level
IFC for securing the system architecture of secure autonomous vehicles [90].

Several other works build hardware IFT capability into RISC-V processor to provide hardware-assisted security
[116, 132]. In [159], ISA based on IFC is designed to mitigate the gap between IFC hardware and software. This ISA is
used to prove strong timing-sensitive security conditions about software, leveraging the IFC capabilities and guarantees
provided by hardware.

5.3.6 IFT for Speculative Architecture. Speculative Taint Tracking (STT ) [157] is a framework that executes and
selectively forwards the results of speculative access instructions to younger instructions, as long as those younger
instructions cannot form a covert channel. STT tracks the flow of results from access instructions in a manner similar to
DIFT, until those results reach an instruction, or sequence of instructions, that may form a covert channel. It automatically
“untaints” the result once the instruction that produces it becomes non-speculative to improve performance. The
framework enforces a novel form of non-interference, with respect to all speculatively accessed data.

5.4 RTL

A large body of research work aims to develop hardware IFT techniques at the RTL or extend existing HDLs with IFT
capability [2–4, 10, 11, 29, 37, 66–68, 84, 86, 162].

5.4.1 State Machine Based IFT Language. Caisson [86] and Sapper [84] are HDLs enhanced with IFT capability for
automated generation of circuits that enforce IFT related security properties. Both languages model hardware designs
using state machines and prevent illegal flows from a high state to a low state. In Caisson, security policies are enforced
through static type checking. However, this technique can cause large area overheads since static property checking
requires that resource being hard partitioned or even replicated. Sapper improves Caisson by taking a hybrid approach
to label checking. It uses static analysis to determine a set of dynamic checks to be inserted into the hardware design
to enable dynamical tracking. This enables resource re-use and thus lowers the area overheads. In addition, Sapper
also made an attempt to enforce timing-sensitive noninterference by accounting for information flow related to when
events happen.

5.4.2 PCH and Coq Based IFT. Jin and Makris et al. integrated IFT into the proof carrying hardware (PCH ) framework
[10, 11, 66–68]. Their techniques define Verilog-to-Coq conversion rules [11] to automate Verilog design to Coq formal
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logic translation. The resulting Coq semantic circuit model facilitates tracking secrecy labels and proving information
flow security properties. To track the flow of information, the Coq circuit model is extended with a sensitivity label so
that the Coq circuit primitives return a value*sensitivity pair, where sensitivity can be either secure or normal.
The enhanced circuit model is then formally verified under the Coq proof environment to check if the hardware design
adheres to desired security properties. A security violation would be identified when a normal signal takes a secure

tag.
The PCH framework provides a method for protecting the hardware design and supply chain. However, it employs a

conservative sensitivity label propagation policy, i.e., always allowing secure labels to propagate independent of the
operation performed or input values. While this reduces the complexity of the formal Coq circuit model and allows fast
profiling of security properties, conservative IFT usually leads to false positives (as we discuss in Section 3). Qin et al.

made an attempt to eliminate such false positives by incorporating the precise security label propagation policy from
GLIFT [144] into the PCH framework [122, 123]. This allows GLIFT logic to be represented in Coq syntax and verified
using a new proof tool, but it incurs large overheads in the complexity of the Coq circuit model and proof time.

5.4.3 SecVerilog and SecChisel. SecVerilog is a language-based approach for enforcing information flow security [162].
SecVerilog augments Verilog with labels and performs static type checking to determine if the design meets the desired
security properties. It enforces timing-sensitive noninterference and can be used to design secure architectures that are
free of timing channels. The research group later improves the precision of SecVerilog by using finer-grained labels to
reason about the security of individual array memory elements and bits in data packets. The improved security-type
based HDL can be used to verify security properties such as noninterference and uncover hardware vulnerabilities [38].
SecVerilogLC supports mutable dependent types to allow secure sharing of hardware resources. A major challenge
addressed is implicit downgrading [162] caused by unsynchronized update of data value and security label. SecVerilogLC
proposes a new type system and introduces an explicit notion of cycle-by-cycle transitions into the syntax, semantics,
and type system of the new language to solve the implicit downgrading problem [37].

ChiselFlow is another type enforced HDL with timing labels for developing secure hardware architectures [39]. It has
been used to create cryptographic accelerators with hardware-level information flow control and formally verify the
security of these implementations [65]. A successive work extends the Chisel hardware design language with security
features to create a design-time security verification framework, which employs information flow analysis to verify
hardware security properties in order to capture information leaks caused by hardware security flaws and Trojans [29].

5.4.4 RTLIFT. RTLIFT precisely captures all the logical information flows, including timing flows, leveraging the
cycle-accurate timing information at the RTL [3]. The major challenge lies in precisely accounting for the implicit
flows resulting from the complex RTL syntax such as nested conditional branches. This is resolved by converting the
branch statements to multiplexer network so that we only need to instantiate IFT logic for the multiplexers. RTLIFT
allows flexible precision and complexity tradeoffs by instantiating different versions of tracking logic for logical and
arithmetical primitives. It achieves over 5X speedup in verification performance over GLIFT [144] and thus has better
scalability.

Clepsydra [2] provides a new IFT model for distinguishing timing flows from functional ones and formally verifying
timing channel security. A timing information flow occurs when a register is conditionally updated under the control of
a tainted value. In addition to the taint label in IFT, Clepsydra introduces a timing label to track the propagation of timing
variation. The Clepsydra tool can formally prove either the existence of a timing leakage or constant execution time.
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The VeriSketch [4] tool takes a step further and automatically synthesizes hardware designs that satisfy information
flow security properties, using the sketch technique for synthesizing designs that meets specified functional constraints.

5.4.5 Control and Data Flow Graph Based RTL IFT. High-level information flow tracking (HLIFT ) was developed for
detecting hardware Trojans that leak secret information through exclusive output [152]. This method extracts IFT
features from coarse grained control and data flow graph (CDFG) of hardware Trojan benchmarks. Trojan detection is
performed by matching the statement level CDFG of given RTL with the extracted feature library.

5.5 Gate Level

Researchers also aimed to understand the flow of information through Boolean gates. This can be a complement to
higher level IFT methods when the hardware design comes in the form of gate netlist, e.g., an IP core. In addition, the
complex syntax structures such as conditional branch statements are all flattened to primitive gates and thus, hardware
IFT model can be created with significantly lower effort at this level of abstraction.

5.5.1 Gate Level Information Flow Tracking. Gate level information flow tracking (GLIFT ) is a well-established IFT
technique [144]. A key insight is that all information flows, whether explicit or implicit, all appear in a unified form at
the gate level and have good mathematical representations. GLIFT employs fine-grained taint label and label propagation
policy to precisely account for each bit of information flow. It precisely measures the actual flows of information by
analyzing the influence of inputs on the output and greatly eliminates the false positives of conservative IFT techniques.
As an example, GLIFT precisely indicates that a low reset clears the high label of a counter while conservative IFT
methods cannot.

Hu et al. built the theoretical fundamentals of GLIFT [57, 111]. They derived formal representations of GLIFT logic
for arbitrary primitive gates. A successive work formally proved that precise GLIFT logic generation is an NP-complete
problem. It then presented various algorithms for creating GLIFT logic for large digital circuits. The authors also
identified the root cause of the differences in precision of GLIFT logic created using different methods as static logic
hazards or variable correlation resulting from reconvergent fanouts. Such differences motivated IFT precision and
complexity tradeoff research [7, 52] discussed in Section 3.4.

Several works attempt to reduce the complexity of GLIFT logic by employing optimized label encoding technique [56,
59, 71]. The key observation is that the value of a tainted signal can be ignored in taint propagation, i.e., GLIFT logic will
produce identical output taint label when a tainted bit takes the value of either 0 or 1. Thus, we can combine the tainted
states and reduce the possible signal states to three, namely untainted 0, untainted 1 and tainted *. The don’t
care condition in tainted signals provides flexibility for circuit optimization. Further, when untainted 0, untainted 1

and tainted * are encoded as 00, 11 and 01 (or 10) respectively, the GLIFT logic can serve as hardware redundancy
if we set all inputs to be untainted. This allows both information flow security and fault tolerance properties to be
enforced with the same GLIFT logic [59, 71].

5.5.2 Multi-level, Multi-valued and Multi-flow GLIFT. In [54, 55], Hu et al. expand GLIFT for multilevel security lattices
for enforcing multi-level security (MLS). They generalize the GLIFT method to arbitrary linear and non-linear security
lattices by defining unified yet precise class combining operators. Another work expands GLIFT for multi-valued logic
systems [138]. It derives taint propagation rules for additional design states such as unknown and high impedance in
order to support multi-valued IFT simulation. Multi-flow IFT [139, 140] is another recent extension to GLIFT. It aims to
understand the effect of multiple inputs on a signal, e.g., how many key or random number bits are affecting a target bit
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at the same time. This technique enables modeling simultaneous information flow behaviors and proving quantitative
information flow security properties.

5.5.3 GLIFT Enhanced with Timing Label. Oberg et al. demonstrated how GLIFT could be used to enforce timing
information flow security [112–114]. In [112], GLIFT is employed for testing timing information flow security in shared
bus architectures such as I2C and USB. GLIFT shows that there can be unintended interference between trusted and
untrusted devices through timing related design behaviors. They use GLIFT to test for information flow isolation
properties between trusted and untrusted IP components, which share computing resources such as the WISHBONE
system bus and cryptography core [114]. A later work [113] formalizes the notion of timing channel and provides
criteria to separate timing flows from functional ones. A Timing-only flow is defined as the case in which a set of inputs
affects only the timing of the output. As an example, a change in the key of the RSA cipher affects when the encryption
done signal is asserted. The paper then formally proves that GLIFTed state machines could detect timing-only flows.

5.5.4 Gate Level IFT Through Structural Checking. Another work by Le et al. tracked data flow in gate level design
netlist through structural checking [81]. The proposed method assigns “asset” (or “property”) to signals in hardware
designs and then tracks the propagation of “asset” via data flow. It models “asset” related to cryptographic core,
debug interface, timing channel and hardware Trojan. By observing the resulting “asset” of signals, the designer can
understand important security properties such as integrity and confidentiality. However, structural checking is basically
conservative connectivity analysis and thus cannot precisely determine if and when “asset” could propagate like GLIFT.

5.6 Circuit Level

Bidmeshki et al. made a first attempt to understand the flow of information in analog/mixed-signal designs [9]. This
work defines information flow policies for various analog components such as MOSFETs, bipolar transistors, capacitors,
inductors, resistors and diodes and extends the existing PCHIP based IFT method [67, 68] established for digital designs
to analog/mixed-signal circuits. While providing information flow control at the level of transistors is desirable due to
recent security attacks that target analog hardware, IFT in analog/mixed-signal hardware designs can be a challenging
problem. How to encode taint information using continuous analog signals and precisely determine their influence on
the output still needs to be investigated.

VeriCoq [11] is recently extended to track sensitive signals in the mixed-signal domain [44]. It detects charge-domain
Trojans, a generalization of the A2 Trojan [156] and RowHammer [73] attacks. It proposes an abstracted model of
charge-domain leakage structures tainted information flowing to user controllable or accessible flip-flops. Data flow
graph based path search is employed for taint propagation along analog components such as MOSFET, Diode and
Resistor. A charge-domain Trojan is identified if there is a path between the taint source and target.

Apart from a hierarchical view of hardware IFT methods at different levels of abstraction, a horizontal view helps
understand the developing trend in this realm. We mark a few milestones in the development of hardware IFT research
as shown in Fig. 9. Early hardware IFT methods focus on the architectural level coupled by numerous works in language
based IFT techniques [126]. The strong connection between instructions in software programs and functional units in
computer architecture enables a natural extension of the IFT spectrum to the hardware domain. Gate-level IFT methods
allow finer grained measurement and classification of information flow. More recent IFT developments primarily target
different HDLs, e.g., Verilog and HLS C, for better scalability and verification performance. In addition, IFT techniques
have also been extended to combat analog hardware security exploits.
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Fig. 9. Milestones in the development of hardware IFT.

6 VERIFICATION TECHNIQUE

IFT techniques can operate in a static or dynamic manner. Static hardware IFT techniques [3, 4, 9, 20, 67, 162] check if
the design adheres to desired security properties through simulation, formal methods, emulation or virtual prototyping

during design time. The IFT model will be removed when verification completes. Dynamic hardware IFT [27, 28, 70,
83, 130, 134, 137, 151] is a runtime mechanism that augments the original hardware design with tracking logic that
monitors information flow behaviors and prevents harmful flows of information. This typically comes at a cost, e.g.,
additional resource usage and performance overheads.

6.1 Simulation

Simulation is a common method of verifying the behaviors of hardware designs. Functional simulation involves feeding
a testbench to a circuit design and observing if the results meet the desired specification. Hardware security simulation
plays a similar role except the key output is not functional correctness rather if the circuit has violated any security
policies. Figure 10 illustrates the difference between functional and IFT based security simulation for identifying
information leakage.

(a) Functional simulation

(a) IFT based security simulation

Fig. 10. The difference between functional and IFT based security simulation.
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In both the functional and security simulation waveforms, there are switching activities in the output signal
Antena (as spelled in the Trust-HUB AES-T1700 benchmark). However, functional simulation cannot reveal the con-
nection between such switching activities and the key. IFT based security simulation associates security labels (i.e.,
key_t and Antena_t) with the signals, reflecting their security attributes. Here, we label the key as high, i.e., key_t =
128’hFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF. From Fig. 10 (b), the security label Antena_t can be logical 1 in the
dotted red boxes, indicating that Antena can carry high information. In other words, key leaks to Antena during these
time slots. The security label Antena_t accurately indicates when and where leakage happens even if there might be no
switching activity (i.e., leaking a logical 0) at all in the Antena signal.

Some hardware IFT techniques describe their information flow model using standard HDL (e.g., GLIFT [144] and
RTLIFT [3]). In this case, it is possible to perform information flow security simulation using standard or open source
EDA simulation tools such as Mentor Graphics ModelSim or QuestaSim, Synopsys VCS, and Icarus Verilog.

Tortuga Logic and Cadence have released a commercial hardware security simulation tool, namely the Radix-S [98]
hardware root of trust security verification framework, which automates the information flow model annotation process
for IFT based hardware security simulation using standard HDL and EDA simulation environment.

6.2 Formal Verification

Verification tools can be used for formal (or semi-formal) verification of security properties on information flow models
through equivalence checking, SAT solving, theorem proving, or type checking. The benefits of formal approaches are
that the hardware is guaranteed to be secure with respect to the properties proven. However, a major downside is that
formal methods inherently do not scale due to the exponential size of design state space. Certain properties may not
be proved using hundreds of Giga bytes of memory after running for days, e.g., a hardware Trojan triggered under a
specific input pattern or sequence. In addition, the verification outcomes heavily rely on the quality and completeness
of the security properties specified.

6.2.1 Equivalence Checking: Equivalence checking is the most frequently used formal verification technique for
verifying functional correctness. To check if tainted information propagates from a source signal to a destination point,
we can set the taint source to logical 0 and 1 respectively and create two instances of the circuit, i.e., miter circuits.
We then check for equivalence at the destination point to see if the taint source has an effect on the destination. This
provides an approach to secure path and X-propagation verification [14–16, 43, 45, 94]. These verification tools can be
used to prove security properties such as confidentiality and integrity and identify insecure design paths that
could lead to information flow security property violations.

6.2.2 SAT Solving: SAT solvers such as minSAT and zchaff are effective tools for proving functional properties. Several
open source EDA tools such as ABC and Yosys integrate these SAT solvers and HDL to CNF (conjunctive normal
form) formula converters in order to prove design properties on digital circuits. Therefore, they can parse information
flow models written in HDL, e.g., IFT models generated by GLIFT [144] and RTLIFT [3], and prove information flow
security properties as illustrated in Section 4. Such security properties can be easily converted to proof constraints
and incorporated by the solver. The following shows an example of security property mapping for Yosys where we
constrain the 32-bit key to high while clk to low and prove that the ready output should always be low.

A major difference from simulation is that a counter example will be given when the solver captures a security property
violation, indicating exactly when such violation could possibly occur. This provides insightful hints for hardware
designers to pinpoint security vulnerabilities. While SAT tools can be powerful for verifying simple security properties
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1: set key := high
2: assert ready == low
3: sat -prove ready_t 1’b0 -set key_t 32’hFFFFFFFF -set clk_t 1’b0

on combinational circuits, they have some inherent limitations as well. They can only verify qualitative security
properties on CNF formula. SMT solvers such as Yices can complete such limitation and prove quantitative security
properties on QBF (Quantified Boolean Formula) [7, 52]. In addition, SAT solving on sequential digital circuits can be a
challenging task. SAT tools cannot automatically trace beyond register boundaries and thus usually restrict the proof
to a minimal combinational region. Unrolling the design by a number of time frames is a frequently used technique
for proving properties on sequential designs. However, this technique can lead to huge memory and verification
performance overheads.

Commercial formal proof tools can be more effective in verifying security properties and search for security violations.
Mentor Graphics Questa Formal takes a semi-formal approach to IFT verification. It takes as inputs the initialization
vectors and proof-time constraints, simulates the design to a specified proof radius in number of clock cycles and also
performs state space search to identify all reachable design states. As shown in Tables 1 to 3, security properties are
specified using property specification language (e.g., SVA) assertions, which are familiar to hardware designers.

With the security constraints specified in initialization and directive files, the SVA property asserts that at the rising
edge of the ready signal, it should always be low. Existing work has demonstrated how the Mentor Graphics Questa

Formal tool can be used to prove information flow security properties and identify hard-to-detect security vulnerabilities
such as timing channels, insecure debug ports and hardware Trojans [53, 123].

6.2.3 Theorem Proving: A number of hardware IFT methods verify security properties through theorem proving.
Information flow security properties are specified as security theorems while security constraints as pre-conditions.
Formal tools such as Coq can be used to verify these properties [10, 11, 66–68, 122, 123]. There are several HDL
annotation tools the convert RTL hardware designs or gate level netlists to formal Coq circuits augmented with security
labels [11]. While the formal IFT model construction has largely been automated, the proof process still requires
significant amount of human interaction. New security theorems need to be derived as tainted information reaches new
signals. The designer needs to decide the signals to be checked in the next time frame.

6.2.4 Type Checking: Type system is a set of rules that assign a property called type to each computed value, examines
the flow of these values, and attempts to ensure or prove that no type error can occur. It identifies a type error when
a certain type of value is used in an operation where not allowed, e.g., when an untrusted variable is used as the
jump target in a secure execution context. Type system can be employed for proving security properties by associating
variables with security-related types, such as Confidential and Unclassified. Access or information flow control
can be enforced through either static or runtime type checking.

The SecVerilog project [121] releases an open source tool for verifying timing information flow security in Verilog
designs. The tool extends Verilog with annotations that support reasoning about information flows including timing
flows through compile time type checking. SecVerilog associates variables with security types (e.g., {H} and {L}) and
labels to specify the information flow policy to be enforced. Verification is done by checking if information flows cause
violation of type rules.
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6.3 Emulation

With the evolution of IC verification platforms, leading EDA companies have also developed tools to verify information
flow security properties of hardware designs on FPGA emulation servers. Hardware emulation typically can achieve
10X+ verification performance than software simulation [95]. Another advantage with hardware emulation is hardware-
software security co-verification, which is not yet possible for formal verification tools. Emulation can be a promising
approach that leverages the information flow measurement capability of the underlying hardware to perform security
co-verification and detect software attacks that exploit hardware security vulnerabilities.

The Radix-M [97] hardware security platform from Tortuga Logic and Cadence is one such emulation tool that
performs firmware security validation on full system-on-chip (SoC) designs. The tool deploys hardware IFT models on
an FPGA emulation server to run security verifications. Such verification technology can also be used to verify the
security of firmware and even software, providing a promising solution to system level security.

6.4 Virtual Prototyping

Virtual prototyping involves creating abstract models/libraries for the different hardware components, which allows
verifying the system software before the hardware design is complete. Hassan et al. proposed an approach for SoC
security validation through Virtual Prototypes (VP) modeled using SystemC TLM 2.0 [46, 118]. They employ static
information flow analysis to verify the no flow security property and detect potential security breaches such as data
leakage and untrusted access. High-level abstractive information flow models will lead to better verification performance
and scalability. However, it can only employ conservative label propagation policy to profile the possible information
flow violations due to the lack of design implementation details at this stage.

6.5 Runtime

Dynamic IFT techniques deploy dedicated hardware to monitor and control information flows during runtime. These
dynamic IFT techniques usually target the RTL level or higher, as it becomes costly to perform dynamic IFT at lower
levels of abstractions. Additional label memory and IFT logic needs to be integrated into the circuit. At the architectural
level, this typically involves a tag propagation unit or co-processor that sits along with the main processor to determine
the taint labels of instruction outputs. The labels will then get involved in successive operations or be written back to
update the label memory. These techniques usually need to load all the parameters of instructions to the tag propagation
unit or co-processor in order to calculate the output taint label. Such parameters can be retrieved either from the
execution path of the processor or core debug interface.

Dynamic IFT techniques perform information flow security policy checking on the execution trace, which is typically
a small subset of the entire state space. This prevents the state space explosion problem of formal methods and allows
the methods to scale to large circuits. However, the additional taint propagation and checking logic typically increases
resource usage and power consumption. Even worse, such logic and its synchronization with the original execution
context will inevitably cause considerable performance overheads.

As a comparison, formal verification based IFT techniques can completely verify IPs and small subsystems but does
not scale to complex system level designs due to the state space explosion problem. Simulation and emulation based
IFT approaches have better scalability. However, they cannot cover the entire design state space. Virtual Prototyping
allows a quick but conservative profiling of possible information flow security violations. Runtime IFT mechanisms can
monitor realistic information flow behaviors but incurs large area and performance penalties.
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Table 4 summarizes the different hardware IFT techniques in terms of their verification mechanisms. We note
that some techniques can be used with different verification techniques, e.g., GLIFT can be used for simulation,
emulation, formal verification, and during runtime. Other techniques target a specific area, e.g., VeriCoq [11, 67] and
SecVerilog [121, 162] solely use formal verification techniques.

Table 4. Summary of hardware IFT techniques in terms of verification mechanisms used.

Simulation Caisson[86], Sapper[84], GLIFT[144], GLIFT-SoC[72], GLIFT Timing[112–114], Multi-level GLIFT[54, 55], Multi-value GLIFT[138], Multi-flow IFT[140]
Radix-S[98], RTLIFT[3], Clepsydra[2]

Formal Verification
ASSURE[64], GARUDA[129], TaintHLS[119], ChiselFlow[65], Zagieboylo[159], PCH-Coq[10, 66–68], VeriCoq[11], Qin[122, 123], SecVerilog[121, 162]
SecVerilogLC[37], Ferraiuolo[38], SecChisel[29], RTLIFT[3], Clepsydra[2], VeriSketch[4], HLIFT[152], Hu[52], Becker[7], GLIFT Timing[112–114]
Multi-level GLIFT[54, 55], Multi-value GLIFT[138], Multi-flow IFT[140], Le[81], VeriCoq-analog[9], Guo[44], Nicholas[109], Siddiqui[133], SCRIPT[106]

Emulation GLIFT[144], RTLIFT[3], Clepsydra[2], Radix-M[97]
Virtual Prototyping IFT-VP[46], IFT-VP+[118]

Runtime

CDI-IFT[82, 83], PTM-IFT [150], ARMHEx[151], BFBlare[149], PAU[48], IFTU[130], IFT-Accelerator [117, 120], GLIFT-Embedded[102], GLIFT-IoT[20]
TaintHLS[119], Saal[125], Bondi[12], DIFT[137], Kannan[70], RIFLE[146], Raksha[24], FlexiTaint[147], Deng[27, 28], HAFIX[25], Shioya[131], Joannou[69]
PIFT[92, 93], LATCH[145], DataSafe[19], GLIFT-Lease[87, 141–143], METACE[91], Nagarajan[105], ShadowReplica[63], SIFT[115], Nightingale[110]
Chen[18], Ruwase[124], SAFE[5], Nicholas[109], Siddiqui[133], PUMP[34], HDFI[134], HyperFlow[39], Liu[90], Palmiero[116], Shirley[132]
Zagieboylo[159], STT[157], Caisson[86], Sapper[84], GLIFT[144], GLIFT-TMR[59, 71]

7 FUTURE RESEARCH DIRECTIONS AND CHALLENGES

7.1 Automated Security Property Generation

Security properties are crucial for hardware IFT verification. High-quality security properties allow verification tools
to quickly pinpoint potential security flaws. Unfortunately, specifying security properties that cover a wide range
of vulnerabilities is all too often a challenging and daunting process. Crafting hardware security properties requires
expertise in formal verification, expertise in security, and knowledge of the design under verification. The job is difficult
and time consuming, and critical properties are easily missed. For example, participants of Hack@DAC’18 were able to
write properties covering only 17 of the 31 bugs, which “indicates that the main challenge with using formal verification
tools is identifying and expressing security properties that the tools are capable of capturing and checking” [33].
Automated generation of high-quality security properties is an important problem, especially for developing property
driven hardware security solutions [49, 50]. Two interesting directions in this regard are: 1) developing parameterized
security properties and 2) higher level property languages that build upon the existing hardware IFT models, e.g., an
access control policy language. We discuss both in the following.

7.2 Parameterized Security Properties

Verification IP (VIP) plays an important role in the hardware design process by providing a set of functional inputs
(testbenches, assertions, etc.) for functional verification of a hardware design [47, 158, 164]. The general goal is to
determine whether your IP core correctly interfaces with memory protocols (DDR, QSPI, SD), PCIe, USB, ethernet
and other communication protocols, and AXI, WISHBONE, and other on-chip interfaces. A similar approach could be
done to develop security VIP that focuses on security verification rather than functional verification. One potential
direction is to develop security property templates based upon information flow metrics [51] and leverage functional
property templates from existing assertion based verification approaches [41]. Ideally, the designer would minimally
change property parameters based upon their desired security constraints and their hardware design, and the tool
would automatically provide a series relevant properties. Transys provides evidence that this approach is possible [163],
but we feel there is much room to generalize and enhance this process.
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7.3 Hardware Access Control Policy Language

Modern hardware is comprised of tens to hundreds of different IP cores – processors, custom accelerators, memories,
peripherals, timers, and other system resources – that are interconnected through a network of on-chip busses and
routers. These IP cores, busses, and memories each have their own security policies which govern how they can behave
and how other IP cores can access their data, control registers, and status signals. Since access control is a prevalent
and important aspect of hardware security, a property specification language specifically targeted towards access
control could easily allow security experts to specify a wide range of on-chip access control properties such that they
can be compiled to properties that can be used by existing hardware IFT tools. The properties could utilize lattices to
denote allowable accesses. Additionally, the properties should be able to specify temporal rules, e.g., a memory location
cannot be read by certain processes after sensitive information has been written there. Also, they should allow for easy
specification of common policies like compartmentalization, access control lists, secure handoff, Chinese wall, and
redaction. Huffmire et al. defined a language for policies related to off-chip memory controllers [62]. This could be
used as a baseline for a more general access control language by modifying it for on-chip resources and provide a clear
mapping to hardware security verification properties models.

7.4 Novel Information Flow Models

Hardware IFT opens the door for unique flow models. For example, timing flows become apparent at the RTL [113]
and Clepsydra developed a model that updates labels based only on whether there is a timing channel. Note that GLIFT
does not do this as it encodes functional and timing models simultaneously (i.e., it can only say a flow occurs, and
cannot differentiate if that flow is due to a timing channel or a functional channel). Thus, Clepsydra provided a more
expressive IFT model for tracking timing flows. We see opportunities to use IFT for other side channels like power side
channel [106], faults, and electromagnetic radiation. We believe this would require more quantitative flow models as
opposed to the vast majority of the existing models with take a qualitative approach (there is a flow violation or not).
For these side channels, it is often important to know how much information is flowing in addition to whether there
was a flow or not. There is some initial work to develop tools for measuring quantitative information flow properties
such as leakage and randomness [49, 140]. We believe there is more to explore in these directions. Additionally, IFT
models that can answer questions related to dependability and resilience properties such as availability, reliability,
safety and fault tolerance is also an interesting research vector.

7.5 Automated Debugging

Hardware IFT verification often uncovers a security violation. The verification tools may provide a witness, i.e., an
example trace describing an execution where the property is violated, but nothing more than that. The onus is on the
hardware designer to modify the design and eliminate the flaw. This is a challenging and mostly manual process. Any
debugging tools that aid this process provide immense value. Error localization is a fundamental part of this process
which identifies the parts of the hardware that need to be modified in order to fix the flaw. If this can be done accurately,
one could imagine additional tools to help the verification engineer modify the design to fix the flaws. While fully
automated debugging is a huge challenge, there seems to be ample opportunities and value for partially automating the
hardware security debugging process.
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7.6 Firmware IFT

Firmware is an attractive attack surface for hackers since critical system credentials (e.g., encryption keys and low level
access credentials) are stored in or managed by firmware. In addition, firmware provides direct access to the hardware
and can be exploited to root the system, uncover confidential system security parameters, and perform other nefarious
activities. Firmware requires tracking of information across hardware and software. This is challenging. Firmware IFT
verification tools must formalize the flow models for the computational constructs at this level of abstraction. This
requires research in combined hardware/software flow models. Subramanyan et al. [136] provide some great initial
progress in this space. But there is much more to consider including scalability, mixed hardware/software IFT modeling,
and property modeling.

7.7 Analog/Mixed-signal Hardware IFT

Another potential research direction is to move to even lower levels of abstraction and develop IFT techniques for
analog or mix-signal hardware designs. Recent work has made a first attempt to develop IFT techniques that allow co-
verification of digital and analog hardware to help uncover the cross-domain security vulnerabilities [9]. A fundamental
problem of performing IFT in analog hardware is label encoding. This is fundamentally different from the digital
world since analog signals are continuous signals. Binary labels are no longer eligible for encoding and distinguishing
the complex label information. Consequently, we need to define policies for multi-level and/or multi-bit taint label
propagation.

7.8 Relationship between IFT and Traditional Function Hardware Verification and Test

Security testing and verification closely relate to several classic problems in switching circuit theory, including con-
trollability, observability, X-propagation, and fault propagation [89]. Taint propagation and X-propagation can be
viewed as the same problem [61]. As an example, Mentor Graphics and Cadence have both integrated security path and
X-propagation Apps into their formal verification tool chain. An interesting research direction is leveraging hardware
IFT models to understand these classic testing problems and attempts to formalize them under a unified framework.
A recent work has shown how hardware IFT provides a unified model for verifying both taint- and X-propagation
properties [61]. On the other hand, existing controllability, observability, X-propagation and fault propagation analysis
tools also provides an approach to performing IFT. A benefit with these tools is that these tools all work on the original
circuit model, which has significantly lower complexity than IFT models.

8 CONCLUSION

This article performs a comprehensive review of existing work in the hardware IFT spectrum. Our aim is to draw a
clear picture of the development of this technique, bring forward the potential research directions, and discuss the
challenges to be resolved. Our intention is to introduce the hardware IFT technique to a wider range of audiences in the
hardware security, testing and verification communities and show how this technique can be employed to verify if a
hardware design adheres to both security and reliability properties.
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