
UNIVERSITY OF CALIFORNIA SAN DIEGO

Semi-Supervised Semantic Segmentation in UAV Imagery

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Computer Science

by

Ashlesha Vaidya

Committee in charge:

Professor Ryan Kastner, Chair
Professor Julian McAuley
Professor Curt Schurgers

2020

Copyright

Ashlesha Vaidya, 2020

All rights reserved.

The thesis of Ashlesha Vaidya is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2020

iii

DEDICATION

I dedicate this thesis to my family for their constant support and inspiration

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Abbreviations . vii

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Abstract of the Thesis . xiii

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Conservation of Mangroves . 2
1.3 Image Segmentation . 3

1.3.1 Types of Image Segmentation 3
1.4 Semi-Supervised Learning . 4

1.4.1 Semi-Supervised Learning in Image Segmentation 5
1.5 Deep Learning . 6

1.5.1 Transfer Learning . 8
1.5.2 Fully Convolutional Networks 8

Chapter 2 Data . 11
2.1 Obtaining the data . 11
2.2 Orthomosaics and Shapefiles . 13
2.3 Pre-processing of the data . 15

Chapter 3 Models . 18
3.1 Clustering based segmentation . 18
3.2 Pseudo-Labelling . 20

3.2.1 Self-Learning . 20
3.2.2 Applying self-learning . 21

3.3 Graph-Based Label Propagation 26
3.4 UNet-Autoencoder . 27

3.4.1 Autoencoders . 28
3.4.2 U-NET Segmentation . 31
3.4.3 Semi-Supervised UNet-Autoencoder Architecture 34

v

Chapter 4 Results . 35
4.1 Performance evaluation metrics . 35
4.2 Clustering based segmentation . 36
4.3 Pseudo-Labelling . 37
4.4 Graph based Label Propagation . 41
4.5 UNet-Autoencoder . 43
4.6 Comparing performance . 46

Chapter 5 Conclusion and Further Improvements 49

Bibliography . 50

vi

LIST OF ABBREVIATIONS

UAV Unmanned Aerial Vehicle

SSL Semi-Supervised Learning

GIS Geographic Information System

GMM Gaussian Mixture Model

EM Expectation Maximization

CAE Convolutional Autoencoder

ELU Exponential Linear Unit

MSE Mean Squared Error

DBSCAN Density-Based Spatial Clustering of Applications with Noise

IoU Intersection over Union

vii

LIST OF FIGURES

Figure 1.1: Example of unlabelled and labelled orthomosaic. The unlabelled orthomosaic
is labelled in QGIS with polygons marking the boundaries of the mangroves. 6

Figure 1.2: Example structure of a fully connected neural network with 3 hidden lay-
ers.All nodes of any of the hidden layers are connected to all the nodes of the
adjacent layers as in a fully connected network. 7

Figure 1.3: Example of a filter applied to a mangrove tile. Multiple applications of such
a filter creates a feature map. 9

Figure 2.1: The resolution of 10m (left) and 120m (right) data imagery. The example is
taken from [1]. The images captured at 10m naturally give higher resolution
data than the images captured at 120m. 12

Figure 2.2: Mangrove images captured using a lawn-mower pattern at an overlap rate of
85% on all sides. The image shows one capture of the mangrove ecosystem
area. Multiple such captures with an overlapping pattern are taken. 12

Figure 2.3: The figure on the left shows an image captured by a UAV(drone) and the
image on the right shows a compiled and orthorectified orthomosaic. The
image on the left is the orthomosaic for one of the sites in La Paz. 14

Figure 2.4: Figures showing the unlabelled orthomosaic (left) and labelled shapefile
(right) for the corresponding orthomosaic. The shapefiles are visualized
using QGIS. 14

Figure 2.5: Figures showing the retiling process. Image on the left shows a part of
the entire orthomosaic and the images on the left shows the tiles of the
corresponding part of the orthomosaic. The tiles shown here are 4096×4096
and the tile size used to train the model is 256×256. 15

Figure 2.6: Samples of the orthomosaic tiles and their corresponding annotations. . . . 16

Figure 3.1: Expectation Maximization algorithm used in k-means clustering for assigning
points to clusters. The expectation step assigns points to the nearest cluster
center Maximization step sets the cluster centers to the mean. The figure is
taken from [2]. 19

Figure 3.2: Expansion of the labelled training data in the process of self-learning. The
labelled training set expands by adding the confident predictions of the
pseudo-labeller to it. 21

Figure 3.3: The model architecture of the pseudo-labelling classifier. The label propaga-
tion model can either be based on self-learning or graph based propagation
of labels. 22

Figure 3.4: Random forests work by randomly sampling data into smaller parts and it
then creates decision trees on randomly selected data samples, gets prediction
from each tree and selects the best solution by means of voting 26

viii

Figure 3.5: A general structure of an autoencoder. The input is any vector X and the
output of the autoencoder is a reconstruction of the input X , represented in
the image by X

′
. 28

Figure 3.6: The autoencoder representation used in our application. The encoder unit
comprises the convolutional layers for downsampling the input tile and the
decoder unit comprises the deconvolutional layers for the upsampling of the
compressed input image. The decoder outputs the reconstructed image. . . 29

Figure 3.7: UNet architecture used in our application. The network architecture as
shown consists of a contracting path and an expansive path, which gives it
the u-shaped architecture. 32

Figure 3.8: Overlapping tile strategy for segmentation of large images. The prediction of
the pixels in the yellow area require the image data within the blue area as
input. 33

Figure 3.9: UNet Autoencoder workflow used for semi-supervised semantic segmenta-
tion. The weights learnt from the autoencoder are transferred to the UNet
model. This transfer learning mechanism enables the model to learn from
the unlabelled tiles. 34

Figure 4.1: The intersection over Union. This metric finds the ratio of where the two
vectors under consideration overlap to the total combined area of the two
vectors. 36

Figure 4.2: Results of clustering sample tiles of the La Paz site. In figure a the mini batch
k-means clustering algorithm is used while in figure b the gaussian mixture
model is used. 37

Figure 4.3: Performance of the Pseudo-Labelling semi supervised segmentation model
with 10% labelled data. The figure on the left shows how the accuracy varies
and the figure on the right shows how the IoU varies. 39

Figure 4.4: The precision recall curve for the pseudo-labelling model for 10% labelled
data and tested on the entire site. 39

Figure 4.5: Sample segmented tiles by self learning based Pseudo-Labeller for different
amounts of labelled data. 40

Figure 4.6: The precision recall curve for the graph based semi-supervised segmentation
model for 10% labelled data and tested on the validation data. 42

Figure 4.7: Sample segmented tiles by Graph based label propagation for different
amounts of labelled data. 43

Figure 4.8: Graph showing the performance of the UNet-Autoencoder in terms of Inter-
section over Union score for different epochs (in multiples of 10) 44

Figure 4.9: showing the loss of UNet-Autoencoder with increasing epoch 45
Figure 4.10: Sample segmented tiles by UNet-Autoencoder for different amounts of la-

belled data. 45
Figure 4.11: Performance comparison of different semi-supervised semantic segmentation

models w.r.t. different percentages of labelled data. 46

ix

Figure 4.12: The La Paz under consideration in this research and the actual segmentation
for the site. 47

Figure 4.13: Segmentation results of the whole La Paz site obtained by Pseudo-Labeller
and the UNet-Autoencoder when 10% labelled data is used for training . . 47

Figure 4.14: Segmentation results of the whole La Paz site obtained by Pseudo-Labeller
and the UNet-Autoencoder when 75% labelled data is used for training . . 48

x

LIST OF TABLES

Table 2.1: Table showing different data distributions used in the training and validation
of the machine learning models. 17

Table 4.1: Best hyper-parameters obtained with the hyper-parameter tuning on 10%
labelled data. 38

Table 4.2: Performance of Pseudo-Labelling semi-supervised semantic segmentation
model with different amounts of labelled data 41

Table 4.3: Performance of graph based semi-supervised segmentation model with differ-
ent amounts of labelled data . 42

Table 4.4: Performance of UNet-Autoencoder semi-supervised segmentation model with
different amounts of labelled data . 44

xi

ACKNOWLEDGEMENTS

Firstly, I would like to thank Prof. Ryan Kastner for giving me the opportunity to

work with him in the E4E Mangrove Monitoring team, for his support and invaluable feedback

throughout the course of the project. I would also like to thank Dillon Hicks, the technical lead on

the Mangrove Monitoring team for getting me set up at the start of my research. He has always

been proactive about answering my questions and has generously shared his knowledge which

help me a lot during the entire course of my project. A big thank you to all the E4E researchers

as their work has inspired me in my research and given me direction when I was lost. I also thank

Prof. Curt Schugers and Prof. Julian McAuley for their willingness to join my thesis committee

and giving me feedback on my thesis.

Lastly, I would also like to thank my family including Anjali Vaidya, Vivek Vaidya,

Devansh Zurale, Subhaga Zurale and Avinash Zurale for their constant support and motivation. A

big thank you to all my friends who always inculcated a positivity in my personal life which has

always helped me move forward with my research.

xii

ABSTRACT OF THE THESIS

Semi-Supervised Semantic Segmentation in UAV Imagery

by

Ashlesha Vaidya

Master of Science in Computer Science

University of California San Diego, 2020

Professor Ryan Kastner, Chair

Mangrove forests are rich ecosystems that support our planet and the mankind in many

unique ways. Unfortunately, these mangroves are declining at a rapid rate due to deforestation

and other activities of the mankind. Monitoring and tracking of these mangrove trees is essential

for their conservation. Machine Learning can be used for this purpose but to take advantage

of the power of machine learning, image data needs to be captured for these mangrove ecosys-

tems. This data collection is done using Unmanned Aerial Vehicles like drones in this research.

Manually labelling the acquired image data for machine learning applications is a tedious and

time-consuming task. This called for development of architectures which could learn from limited

labelled data and take advantage of the large amounts of unlabelled data. Such architectures are

xiii

the semi-supervised semantic segmentation architectures and are studied in this research. We have

shown how different semi-supervised models like the self-learning based Pseudo-Labelling archi-

tecture, the graph-based label propagation architecture and the deep leaning UNet-Autoencoder

architecture perform on the task of mangrove segmentation in the aerial imagery. In order to

evaluate different models we mainly look at the Intersection over Union because of it’s popularity

in segmentation tasks. Overall, we see that the deep learning UNet-Autoencoder architecture

performs the best with an average IoU of 0.78. Conceivably, the performance of each of the

models improves as more labelled data is provided for training. The highest IoU obtained in this

research is 0.9 with the UNet-Autoencoder when as much as 75% of the data provided is labelled.

xiv

Chapter 1

Introduction

1.1 Background

Mangroves are trees and shrubs that predominantly grow in inter-tidal regions along

subtropical coastlines. These are extremely valuable species to humankind and to the ecosystems

they exist in. Despite their importance, a dominant loss of these mangrove systems has been

recorded to an extent of as large as 50% [3]. These losses are largely attributed to the direct or

indirect interference of mankind. Over the past decade scientists and researchers have noticed the

alarming decline of these species, thus pushing the research community to take steps to help in

their protection.

Technological advancements in the fields of Unmanned Aerial Systems(UAV) have helped

with the above cause. These UAVs or drones are used to capture very high resolution images of

locations from an aerial view . Researchers study this captured imagery in order to identify the

presence/absence of mangrove species for their conservation.

Various methods have been employed to identify the mangrove species. Some researchers

use manual identification for this. However due to the time consuming and labor intensive nature

of the manual identification, this process is rendered quite inefficient. Thus a lot of work is being

1

done to automate this process. Various machine learning techniques are sought after for this

purpose. However the performance and capability of these models is contingent on the availability

of labelled training data.Obtaining completely labeled images is challenging and time consuming

while unlabelled imagery is relatively easy to acquire. Thus instead of using supervised machine

learning algorithms, researchers are looking into semi-supervised algorithms where the model

could be trained using the labelled and the unlabelled images.

In this research we show how different semi-supervised models like self-learning based

pseudo-labelling, graph based label propagation, deep learning based UNET-Autoencoders

perform on the drone captured imagery. We observe that the deep learning architectures utilizing

the UNET and the autoencoders perform the best based on different experimentations.

1.2 Conservation of Mangroves

Mangroves provide a lot of value to the ecosystem. Mangroves can support a complete

ecosystem that is a conglomeration of several species of flora, fauna and biotic features in an

area and their interaction with each other. Due to their sturdy roots, they form a natural barrier

against storms, hurricane winds, waves, and floods. Mangroves also help prevent erosion by

stabilizing sediments with their tangled root systems. They maintain water quality and clarity,

filtering pollutants and trapping sediments originating from land. Mangroves play a major role in

carbon sequestration. Thus clearly, mangroves are very crucial to our ecosystem and we need to

conserve them.

Recent technological advancements have helped the ecologists by giving them the proper

tools to detect habitat loss. Identifying the species will lead to their conservation in the long run.

The technological advancements referred to here mainly refer to the machine learning algorithms

used for classification and segmentation tasks. Using these tools the exhausting task of identifying

these mangrove species can be automated. Researchers from different fields of engineering and

2

ecology are coming together to make use of these developed tools to help conserve mangrove

species.

1.3 Image Segmentation

Image segmentation is a commonly used technique in computer vision. It is the process

of partitioning an image into different regions-based on some criteria where the regions are

meaningful and disjoint [4]. The goal in many tasks is for these regions to represent meaningful

areas of the image, such as the crops, urban areas, and forests of a satellite image. In other

analysis tasks, the regions might be sets of pixels grouped into such structures as line segments

and circular arc segments in images of 3D industrial objects. This partitioning is performed often

based on the individual characteristics of the pixels of the image and their relative orientation to

each other.

1.3.1 Types of Image Segmentation

Image Segmentation can be categorized into Region based segmentation, clustering

segmentation and edge detection segmentation[3]. Over the years various image segmentation

algorithms have been developed and the most recent work in this field involves the use of deep

neural networks.

Region based segmentation separates the objects into different regions based on some

threshold value(s). Edge detection segmentation makes use of discontinuous local features of

an image to detect edges and hence define a boundary of the object. Clustering segmentation

divides the pixels of the image into homogeneous clusters. Recent works involve the use of

artificial neural networks for the process of segmentation. In this research we have experimented

with clustering based segmentation approaches, region based segmentation approaches and deep

learning architectures for our application of mangrove detection. Although, after experimentation

3

it is seen that clustering does not give satisfactory results, but the approach based on deep learning

gives the best results.

1.4 Semi-Supervised Learning

Historically there have been two different types of tasks in machine learning. The first

task is unsupervised learning. In this, the machine learning models are trained on a sample of

data points on their own. For example, if X represents a set of a total of n data points where

X = x1,x2 . . .xn, the machine learning model is trained on all xi ∈ X . Typically it is assumed that

the points are drawn i.i.d. (independently and identically distributed) from a common distribution

on X . Fundamentally unsupervised learning is used to find an underlying structure of the data

distribution like the density distribution which could have led up to the formation of X . There also

exist other forms of unsupervised learning like clustering, outlier detection and dimensionality

reduction [5]. In an supervised learning setting each point in X exists with a corresponding label

y, for example,Y will represent a set of n corresponding labels where Y = y1,y2 . . .yn and the

machine learning model is trained on both X and Y. Even in this setting, it is a basic requirement

to have (xi,yi) samples drawn i.i.d from some distribution taken from X×Y . The goal of these

algorithms is well defined as the training itself is performed on some point xi with it’s mapping yi

[6]. Hence it is used in applications where some sort of mapping is required like classification or

regression. However, with time the amount of data unlabelled data increased for applications like

information retrieval, image processing, bioinformatics and geosensing [5]. If we want to use

supervised learning (which is a more powerful tool), we would have to get labels for this abundant

unmapped data. Since generating labels for all this data by hand is quite inefficient, researchers

began to work on algorithms where we could make use of both labelled and unlabelled data.

Semi-supervised learning is a machine learning paradigm concerned with the study of how

computers learn in the presence of both labeled and unlabeled data . In this case the data can be

4

divided into two parts, one of which is the labelled data : Xl = x1,x2 . . .xn with its corresponding

mapping Yl = y1,y2 . . .yn and the other division consists of the unlabelled part of the data which

can be represented as Xu = xn+1,xn+2 . . .xm. The machine learning model is trained by making

use of both these parts of the data.

Most of the semi-supervised models have few underlying assumptions. Common as-

sumptions include the smoothness assumption and the related low density assumption [5]. By

the smoothness assumption if two points xi and x j are close in a high density region then their

mappings yi and y j should also be close. The second common assumption in a semi-supervised

learning setting is the cluster assumption. This assumption suggests that if the points in the data

form clusters for separate classes then the unlabelled samples could be used to confidently place

a good decision boundary in the low density region.

1.4.1 Semi-Supervised Learning in Image Segmentation

The growth of Semi-Supervised Learning in image processing has grown a lot over

the years. Semi-Supervised Learning has already been proven to be a powerful paradigm

for leveraging unlabeled data to mitigate the reliance on large labelled datasets [7] in Image

classification techniques. This research aims to implement semi-supervised models for image

segmentation of drone captured images of mangrove sites. In our research the meaning of using

semi-supervised approaches for image segmentation means the use of both labelled and unlabelled

images captured by a drone to train a machine learning model. The outcome of these models

is a decision boundary formed at the edge of mangroves that can be efficiently and confidently

produced based on the numerous unlabelled and the limited data samples present. The figure 1.1

shows examples of labelled and unlabelled data for our application of mangrove detection. More

detailed information about the actual data is available under later chapters.

5

Figure 1.1: Example of unlabelled and labelled orthomosaic. The unlabelled orthomosaic is
labelled in QGIS with polygons marking the boundaries of the mangroves.

1.5 Deep Learning

Deep learning is yet another concept in the field of machine learning where the model is

inspired by the structure of a human brain. Such an architecture is in general called an artificial

neural network. Deep learning is getting a lot of attention lately and for good reason. It’s

achieving results that were not possible before. These deep learning models are giving state of

the art performances and thus there is a boom in the use of this technology.

A neural network comprises multiple layers depending on the application basis. Generally,

the higher the number of layers in a network the higher the complexity of the model thus resulting

in higher learning capacity. Based on the physiology of the human brain, the functional units in

each layer are called neurons and they have weighted connections to the neurons of the adjacent

layer. The first and the last layers of these networks are the input and output layers and all the

layers in between are the hidden layers. The figure 1.2 shows an example of a fully connected

neural network. A fully connected network means that all neurons of one layer are connected

to all other neurons of the adjacent layer. We are going to be dealing with such fully connected

networks in our research.

6

Figure 1.2: Example structure of a fully connected neural network with 3 hidden layers.All
nodes of any of the hidden layers are connected to all the nodes of the adjacent layers as in a
fully connected network.

In order to train these deep neural networks we give them samples of inputs and outputs

represented as numerical features. Using this data they learn a relationship among the input

and output variables which can further be extrapolated to other inputs. The complexity of

the relationship learnt depends on the number of hidden layers. In order to begin training a

network, we need to assign certain initial weights of the connections between all the layers. This

initialization is either random or using some existing techniques [8]. We use the concept of

transfer learning in our research to initialize the weights for the UNet architecture.

After initialization, the first layer of neurons is fed with (x,y) samples for training the

model. Each neuron just outputs a linear combination of all the inputs it receives from the neurons

of the previous layer. In order to learn nonlinear relationships among the input-output samples, a

nonlinear function is applied to the linear combination found. This nonlinear function is called the

activation function. There exist a number of activation functions for example, sigmoid activation

function. This outputs the values in the range of 0-1 normally used to get probabilities of a certain

output. The final goal of the neural network is to minimize some kind of loss i.e. the predicted

output of the output layers should be as close to the actual output as possible. In order to achieve

this, the weights of all layers are updated continuously for several iterations until the loss reaches

7

a certain acceptable level. The weights are updated in the gradient where the loss keeps reducing

constantly. The rate at which the weight updates also depends on a constant called learning

rate. This constant can be adjusted to increase or decrease the rate of change of the weights. An

optimal learning rate is essential as a high learning rate can lead to a model never converging or

a low learning rate can lead to a model taking a very long time to converge. If such a model is

trained properly, it has high capability of generalization to unseen data.

Various deep learning architectures have been recently developed for the applications of

image segmentation. Since we are looking at semi-supervised learning, we will be using certain

concepts in deep learning which can help take advantage of the unlabelled data available along

with traditional deep learning architectures. The subsection below explains the concept of transfer

learning which is used for the UNET-Autoencoder architecture applied in this research.

1.5.1 Transfer Learning

Transfer learning refers to the process of transferring knowledge from a machine learning

task to another related task. While most machine learning algorithms are designed to address

single independent tasks, the development of algorithms that facilitate transfer learning is a topic

of ongoing interest in the machine-learning community [9].In our work, we train auto-encoders

using the unlabelled data and then use the weights learnt by this model for pre-training another

deep architecture trained on the labelled samples. This is seen to give the best performance of all

the methods tried for the application of semi-supervised image segmentation.

1.5.2 Fully Convolutional Networks

The UNet architecture we have used in our deep learning model is a fully convolu-

tional network. It is built only from locally connected layers, such as convolution, pooling and

upsampling. These layers are explained in the following paragraphs.

8

Convolutions

In our deep learning architecture we make use of autoencoders and a fully convolutional

network called UNet. Thus the concept of convolutions becomes important. A convolution is

an application of a filter to some input like an image. This results in an activation. Multiple

application of filters on one input results in a map of activations called a feature map. The

autoencoders used in the UNet-Autoencoder generates such a feature map by applying multiple

convolutions. The figure 1.3 shows this process figuratively.

Figure 1.3: Example of a filter applied to a mangrove tile. Multiple applications of such a filter
creates a feature map.

Pooling layer

The convolution layer generates a feature map for the input. But the feature map by itself

is sensitive to the location of the features in the input. One way to deal with this is to downsample

the feature maps which make it robust to the changes in the position of the pixels in the feature

map. This is called local translation invariance.

In order to do this, pooling layers are used as they can summarize the presence of features

9

in patches of the feature map. There are two common pooling layers which are usually used.

These are called average pooling and max pooling. We use max pooling in our architecture which

calculates the maximum value for each patch in the feature map and thus summarizes all the

pixels in the feature map.

Upsampling

In segmentation we want our output and input to be of the same size but the pooling layer

does not take care of that. The upsampling part of a fully convolutional network creates a pixel

wise dense feature map. The output of the upsampling layer will be enlarged yet sparse feature

maps. The spare maps are converted into dense mappings using deconvolutions. The following

deconvolution layers densify the feature maps through convolution-like operations with multiple

filters.

10

Chapter 2

Data

2.1 Obtaining the data

Mangrove forests are divided between the sea and the land in the tropical and subtropical

regions of the world between approximately 30◦N and 30◦latitude [10]. The mangrove ecosystems

used for this research are located in La Paz, in Baja California. The mangroves in this research are

mostly dwarf mangroves with heights below 5-10 meters. Such mangroves are found in coastal

areas and estuaries. The study site is arid with temperatures above 35◦C.

Large geographic areas are called regions in our study, like the region under consideration

for the machine learning models for this research is La Paz. Each region is captured for about 6-10

mangrove forests and each of these are called sites. Each site is imaged multiple times (flights)

at different altitudes and possibly with different drone or camera settings. The actual image

acquisition is done using a DJI Phantom 4 Pro unmanned aerial vehicle (UAV) with its on-board

camera. UAVs are proven to be very effective in remote sensing. In [11] the authors have shown

the effectiveness of using UAVs for mangrove classification using object based classification

approach.

The original raw images had a 4K resolution with the pixel dimensions as 3840 x 2160.

11

These images were captured at heights of 10m and 120m above the highest point of the mangrove

canopy. The 10m data set had obviously a better resolution than the 120m data, an example is

shown in figure 2.1. Due to the clearer image obtained at 10m above the canopy, these 10m

datasets were used to train the volunteers who were responsible for manually labelling the

mangrove images. These volunteers then hand-labelled the 120m imagery in order to get it ready

for training the machine learning models. Even though the 10m datasets had a better resolution,

we used the 120m datasets because capturing the 120m data in the UAV flights was more efficient

as it is considerably faster. To ensure quality orthorectification and sufficient coverage, images

were captured using a lawn-mower pattern at an overlap rate of 85% on all sides, as illustrated in

figure 2.2 [1]. The reader can find additional information about the flight procedures in [12].

Figure 2.1: The resolution of 10m (left) and 120m (right) data imagery. The example is taken
from [1]. The images captured at 10m naturally give higher resolution data than the images
captured at 120m.

Figure 2.2: Mangrove images captured using a lawn-mower pattern at an overlap rate of 85%
on all sides. The image shows one capture of the mangrove ecosystem area. Multiple such
captures with an overlapping pattern are taken.

12

Before delivering the captured raw image as an orthomosaic, some calibrations are

performed on the imagery captured by the UAV. The calibrations are different for RGB and

multispectral images. The color calibrations are done in order to reduce the impact of natural

factors like changes in weather, time of day, and season on the images captured. Without these

calibrations the machine learning algorithms trained using these images could be negatively

impacted. This calibration is performed using Adobe Lightroom. Once the individual images

have been calibrated , they are imported to MetaShape to process them and generate orthomosaics

and other image products [12].

2.2 Orthomosaics and Shapefiles

An orthophoto is an aerial photograph or satellite imagery which is geometrically cor-

rected or orthorectified such that the scale of the picture is uniform. Such an aerial photo can

be used to measure true distances as it is an accurate representation of the earth’s surface. An

orthomosaic is a raster image (dot matrix data structure) formed by merging many such or-

thophotos. After calibration of the UAV mangrove imagery the raw images are exported as

orthomosaics by the mangrove monitoring team. They do this using Agisoft Photoscan 1.4.2,

which is a photogrammetric software that can be used to generate images for GIS or other imaging

applications. These orthomosaics are an accurate representation of an area which in our case is

the mangrove ecosystem. This is created by stitching many images together and orthorectifying

them. The figure 2.3 shows a drone captured image and a well stitched orthomosaic obtained

after orthorectification.

The orthorectified orthomosaic thus far obtained is unlabelled and needs to be labelled(or

at least partially labelled for the purposes of semi-supervised learning) if we want to use it

with machine learning algorithms. We use QGIS software for this purpose. QGIS is an open-

source cross-platform desktop geographic information system application that supports viewing,

13

Figure 2.3: The figure on the left shows an image captured by a UAV(drone) and the image
on the right shows a compiled and orthorectified orthomosaic. The image on the left is the
orthomosaic for one of the sites in La Paz.

editing, and analysis of geospatial data. The unlabelled orthomosaic is labelled in QGIS with

polygons marking the boundaries of the mangroves.The labels are stored as shapefiles which is a

geospatial vector data format for geographic information system (GIS) software. It is developed

and regulated by Esri as a mostly open specification for data interoperability among Esri and

other GIS software products [13]. The shapefile format can spatially describe vector features:

points, lines, and polygons. Each shapefile usually has attributes that describe it, such as labels for

all pixels in the orthomosaic representing whether it’s a mangrove or non-mangrove. The figure

2.4 shows the unlabelled orthomosaic and the labelled shapefile used in this research. QGIS is

also used to fix geometries of the shapefiles before it can be used as data for our semi-supervised

model.

Figure 2.4: Figures showing the unlabelled orthomosaic (left) and labelled shapefile (right) for
the corresponding orthomosaic. The shapefiles are visualized using QGIS.

14

2.3 Pre-processing of the data

Now that we have the orthomosaics and the labelled shapefiles, we can start with pre-

processing them in order to feed them to our machine learning algorithms. Each orthomosaic is

pretty huge and has data in the range of 1-4GB. Using these images by themselves for training

any machine learning model is impractical and would crash the model due to memory issues.

Therefore we choose to break down the large orthomosaic into smaller tiles of 256×256 pixels

each and then perform coarse segmentation of the image by classifying the tiles instead of pixels

as was introduced in [14]. The larger image files are broken down into tiles using a polygon

file(shapefile) for the orthomosaic under consideration. The figure 2.5 shows a part of the

orthomosaic and it’s broken down tiles. After retiling the original orthomosaic into tiles, all the

remaining tiles with dimensions less than 256×256 are removed.

Figure 2.5: Figures showing the retiling process. Image on the left shows a part of the
entire orthomosaic and the images on the left shows the tiles of the corresponding part of the
orthomosaic. The tiles shown here are 4096×4096 and the tile size used to train the model is
256×256.

Each tile is an image containing 4 bands including the RGB values and an alpha band for

representing the transparency values. An alpha value of 255 suggests a no-data pixel. We only

train our models on the RGB bands of these tiles. The broken down tiles are read using opencv

and GDAL library in python. These images are read in as numpy arrays. After reading them in as

numpy arrays they are reshaped from 256×256×4 to 256×256×3 and also normalized to have

pixel values in the range of 0 and 1. The purpose of this normalization is to scale the numerical

values in the image array to a common range, as the actual pixel values of a RGB image can

15

range from anywhere between 0 and 255.

The shapefiles for the labels of the orthomosaic are also broken down into tiles. These

tiles map to the tiles formed from the original raster file. These tiles are stored in a jpg or tiff

format. The figure 2.6 shows examples of the raster tiles along with it’s annotation tiles . The

labels are read from these tiles as 0s and 1s representing mangrove and non-mangrove regions

respectively.

Figure 2.6: Samples of the orthomosaic tiles and their corresponding annotations.

Finally the dataset for our machine learning model is all the 256×256×3 images with

their respective annotations. This entire data for the La Paz site consists of a total of 2316 tiles.

This dataset is initially divided into training and validation sets. This is done in order to validate

the machine learning architectures and observe their improvement over several iterations. In

order to mimic a semi-supervised implementation we also need some portion of the data to

be unlabelled. We have used different amounts of unlabeled data for training and testing the

performance of the models. The performance is observed as the amount of labelled data increases.

The table 2.1 shows the different amounts of data used in training and validation. The models

are finally tested on the entire site data as the test set. The results of these models are segmented

tiles of size 256× 256× 1. All these tiles are restitched back together to form a segmented

visualization of the La Paz site.

16

Table 2.1: Table showing different data distributions used in the training and validation of the
machine learning models.

Data sets 10% Labelled
data

25% Labelled
data

50% Labelled
data

75% Labelled
data

Labelled Training
set

186, 256, 256, 3 464, 256, 256, 3 829, 256, 256, 3 1060, 256, 256, 3

Labelled
Validation set

463, 256, 256, 3 463, 256, 256, 3 463, 256, 256, 3 463, 256, 256, 3

Unlabelled set 1852, 256, 256, 3 1852, 256, 256, 3 1852, 256, 256, 3 1852, 256, 256, 3

17

Chapter 3

Models

3.1 Clustering based segmentation

When none or 0% of the labelled data is given, the problem becomes an unsupervised

machine learning problem. For experimentation purposes, we tried using few of the clustering

based algorithms in order to segment the images of the mangrove ecosystems captured by the

drones. In this approach we are treating the problem to be a completely unsupervised problem.

Clustering is the task of dividing the given data sample into a number of groups, such

that data points in the same groups are more similar to other data points in that same group

than those in other groups. These groups are known as clusters.This is one of the preliminary

approaches we tried for the semi supervised classification of mangrove ecosystem UAV imagery.

A cluster-then-label method as proposed by [15] could potentially be used to identify high-density

regions in the UAV imagery. The knowledge from these clusters would then be used to help a

supervised SVM in finding the decision boundary and classifying pixels into mangroves and

non-mangroves. Before we implemented this approach we looked at our data distribution using

unsupervised clustering. We fed our tiles to a clustering algorithm and visualized how well the

model performed by looking at the clusters of mangroves and non-mangroves.

18

There are various types of existing clustering algorithms including connectivity models,

centroid models, distribution models and density models. In our research, we have successfully

experimented with a centroid model - batched k-means and distribution model - gaussian mixture

models for clustering the pixels in the aerial imagery.

Batched k-means is a centroid clustering algorithm. The batched K-means work on a

similar concept of k-means algorithm with the difference that the most computationally expensive

step is conducted on a random sample of observations as opposed to all observations. This

approach significantly reduces the time required to reach convergence. The k-means algorithm

searches for a predetermined number of clusters within an unlabeled dataset. The algorithm works

by finding centroids for clusters and then assigning the remaining points to their respective closest

centroid. These centroids are randomly assigned initially. The k-means clustering works on

Expectation Maximization(EM) algorithm for assigning pixels to clusters. The figure 3.1 shows

the process of assigning points to clusters. All the orthomosaic tiles are fed to this clustering

model and the resulting segmentations are visualized.

Figure 3.1: Expectation Maximization algorithm used in k-means clustering for assigning points
to clusters. The expectation step assigns points to the nearest cluster center Maximization step
sets the cluster centers to the mean. The figure is taken from [2].

One drawback of the batch k-means algorithm is a predetermined number of clusters

need to be set and it does not account for variance in the data distribution. To overcome this we

experiment with the Gaussian Mixture Model as it also accounts for variance along with updating

the centroid in the EM process. This is a distribution clustering algorithm. It finds a Gaussian

19

probability distribution that best represents any input dataset. The results of the batch k-means

and the gaussian mixture models is included in the results chapter. We observe that the clusters

obtained by both these algorithms are not particularly good. The unsupervised clustering models

are unable to differentiate between the mangrove pixels and the blocky regions of water present

in the aerial images.

Overall, trying to learn from only unlabelled samples without taking into consideration

some labelled samples in the training data gives poor results. It thus proved that using at least

some amount of labelled samples along with the large amount of unlabelled data samples in

our application of mangrove ecosystem image segmentation is essential. Thus we look into

some semi-supervised machine learning algorithms for this and these are described in the next

subsections.

3.2 Pseudo-Labelling

3.2.1 Self-Learning

Self-Learning is a concept in semi-supervised machine learning. It has been long used for

semi-supervised learning [16] [17]. It is a simple and efficient semi-supervised way of learning

from the available data [18]. Briefly, it is essentially a re-sampling technique that repeatedly

labels unlabelled training samples and retrains itself based on the confidence scores of the pseudo-

annotated labelled data. It uses the limited amount of labelled data for training some classifiers.

After this initial training, this classifier is used to label all the unlabelled portions of the data.

These are called pseudo-labels. The most confident predictions from among these pseudo-labels

are used to retrain the initial classifier. The figure 3.2 shows an example of how the training

dataset is reformed or expanded in this self-learning approach. After retraining, the model is

ready to segment the mangrove and non-mangrove regions from the drone captured imagery.

20

Figure 3.2: Expansion of the labelled training data in the process of self-learning. The labelled
training set expands by adding the confident predictions of the pseudo-labeller to it.

In self-learning, the first step as described above is to spread the labels to all the unlabelled

samples. This process is called label propagation. Label propagation is a semi automatic annota-

tion process for labeling a large amount of unlabeled data. The objective of label propagation

algorithms is to spread the labels from a small set of labeled data to a larger set of unlabeled

data [19]. This can be done in multiple ways. We experimented with two ways to accomplish

this - pseudo labelling using the self learning concept described above and graph based label

propagation. We talk about graph based label propagation in the next section.

3.2.2 Applying self-learning

Using the concept of self-learning, we built a pseudo-labelling segmentation model which

could take into account the information provided by the unlabelled data samples with the labelled

samples. An architecture for this is shown in 3.3. The name pseudo-labeller comes due to the

fact that a supervised classifier is used to label the unlabelled points and then these pseudo-labels

are used to retrain the model.

21

Figure 3.3: The model architecture of the pseudo-labelling classifier. The label propagation
model can either be based on self-learning or graph based propagation of labels.

After forming tiles for the site image of the La Paz region, we segregate the labelled tiles

and the unlabelled orthomosaic tiles. As can be seen by the architecture diagram, the labelled

tiles are fed to a label propagation model, which in this case is a supervised machine learning

classifier. This classifier is then used to predict labels of all the pixels of the unlabelled tiles. The

train dataset is then expanded based on the confidence of the prediction. We add all predictions

with Pr(y = 1|x)> 0.7 and Pr(y = 0|x)> 0.7 to our training data. This process is done without

replacement, this means that the data points added to the labelled set are removed from the

unlabelled samples. Our training data thus now also consists of a sample of the unlabelled data

with their corresponding pseudo-labels.

This gives a classifier which classifies all pixels in an image being either a mangrove or

22

non-mangrove. This model can be run for multiple epochs where the classifier obtained at the

end of each epoch is used to label the remaining unlabelled samples. All the confident samples

from this set is then added on to the training labelled samples and the retraining continues. The

number of epochs can be decided either by setting it to a constant value or when the performance

of the model reaches stagnation. Of Course the number of epochs are limited by the number

of unlabelled samples. If all the unlabelled samples are confidently predicted by the obtained

classifier, the unlabelled set will become empty and the model does not have any more data to

learn from.

We experimented with different machine learning classifiers along with the concept of

self-learning in order to build our pseudo-labelling semi supervised segmentation models. These

classifiers included Random Forests, MLP classifiers and SVM classifiers. Ultimately, we found

that random forests give the best performance as compared to the other classifiers. They were

found to be most efficient in terms of speed and storage. Therefore all experimentations with

different amounts of labelled data were performed on the random forest classifiers used along

with the concept of self-learning.

Random Forests

Random forest is an ensemble tree-based learning algorithm. “Tree-based” means it is

a collection of multiple decision trees. Decision trees are algorithms which learn by splitting

the dataset into smaller and smaller parts. Each “node” in the tree represents the condition (the

condition on each of the features of a particular data point) and the “edge” represents the possible

outcomes. The branching of data in a decision tree takes place until either the data cannot be

split further or some preset rule is reached for example the maximum number of leaf nodes. The

decision trees are generated using an attribute selection measure such as information gain, gain

ratio, and Gini index for each attribute. An attribute selection measure is a heuristic for selecting

the splitting criterion in a tree that correctly decides the partitioning of data which would give

23

the individual classes. These attribute selection measures are also known as splitting rules. The

attribute that has the best score for the measure is chosen as the splitting attribute for the given

data points. Different attribute selection measures are described below.

• Information gain : This measure provides the splitting attributed in terms of the information

required to further describe the tree. It minimizes the information needed to classify

the data into separate partitions and aims to reduce the randomness in these partitions.

Mathematically this can be found as :

In f o(D) =−
n

∑ pi log2 (pi) (3.1)

In f oA(D) =
v

∑
j=1

|D j|
|D|
× In f o(D j) (3.2)

Gain(A) = In f o(D)− In f oA(D) (3.3)

Where pi is the probability that a data point in dataset D belongs to a class Ci where n is the

total number of classes (which in our case is 2) and v is the total number of data samples

created.

• Gain Ratio : The information gain measure is biased towards the attribute with a large

number of values. This bias is dealt with using Gain ratio, which can be mathematically

represented as :

SplitA(D) =−
v

∑
j=1

|D j|
|D|
× log2

|D j|
|D|

(3.4)

24

GainRatio(A) =
Gain(A)
Split(A)

(3.5)

• Gini Index : This measure considers the binary split for each attribute and can mathemati-

cally be represented as follows,

Gini(D) = 1−
m

∑
i=1

p2
i (3.6)

Random forests work by randomly sampling data into smaller parts and it then creates

decision trees on randomly selected data samples, gets prediction from each tree and selects the

best solution by means of voting. The figure 3.4 shows this process diagrammatically. Random-

forest does both row sampling and column sampling with decision trees as a base. The row

sampling is also called bagging or bootstrap aggregation which is a process of reducing variance

in the model without impacting bias. Since random forests create samples of data internally, it

cross-validates the model by itself and there is no particular need to cross-validate the model

separately. The performance metrics of these classifiers even without cross-validation is reliable

and a correct measure of their performance.

Scikit Learn offers an ensemble package which has multiple ensemble classifiers including

the random forest classifier. There are various hyper-parameters which can be tweaked in order to

experiment with the model. The hyper-parameters we have used in our experimentation include

the n estimators, max f eatures, max depth. The n estimators is a hyper-parameter which is the

total number of decision trees of random forest classifier generators before taking the majority

vote or average of the results of the trees. A higher number of decision trees make the random

forest more powerful and it gives a better performance but it also increases the complexity of

the model. The max f eatures is the hyper-parameter which tells the model how many features

to use while deciding to split a node. The max depth hyper-parameter defines what is the

maximum acceptable depth of each of the decision trees formed in the random forest. Different

25

Figure 3.4: Random forests work by randomly sampling data into smaller parts and it then
creates decision trees on randomly selected data samples, gets prediction from each tree and
selects the best solution by means of voting

values of these hyper-parameters are experimented with and an optimal set of values is found

for experimentation with different amounts of labelled data. This process in general is called

hyper-parameter tuning.

3.3 Graph-Based Label Propagation

There are multiple methods to propagate labels to all the unlabelled data samples. One

way is to use a classifier as we have described in the previous section and another way we

experimented with is to use graph based approaches.

Graph based label propagation uses the raw similarity matrix constructed from the data

with no modifications. The idea is to build a graph connecting similar data points and the label is

propagated from the labelled points to the unlabeled points. The edges of this graph are encoded

in the similarity matrix constructed from the data. The similarity between two data points can be

found using one of the two kernels called the RBF and the KNN kernels. The kernels are chosen

based on the scalability of the application.

26

The RBF kernel produces a fully connected graph which is stored as a dense matrix. The

size of this dense matrix may be very large if the data size under consideration is very large. This

leads to very long running times and the need of very large storage. The KNN kernel produces

a sparse matrix which is much more memory friendly than a dense matrix. This leads to faster

running times of the algorithm and less need of storage space. The mathematical representations

of these kernels are shown in 3.7 and 3.8

RBF = exp(−γ|x− y|2) γ > 0 (3.7)

kNN = 1[x’ ∈ kNN(x)] (3.8)

After experimentation we found that graph based label propagation does not work well

when there is a lot of unlabelled data as it requires a lot of memory to build the graphs for label

propagation. The number of nodes in our application would be equal to the number of unlabelled

data pixels. For example, if 90% of the data is unlabelled that means around 10M data pixels are

unlabelled and building a graph for these many nodes will clearly take up a lot of space. Since we

are working on a machine with a limited of 25GB RAM, this process cannot be performed on

a large number of points. However we have shown the performance of this model on a smaller

scale of data. It is seen that there is slight improvement in the performance when compared to the

pseudo-labelling label propagation method. The UNet Autoencoder algorithm described in the

section ahead still performs better than the graph based label propagation.

3.4 UNet-Autoencoder

Due to the recent advancements in deep neural networks, we decided to leverage the

power of deep architectures for our applications. UNets have been proven to be powerful tools for

27

segmentation tasks as they were specifically designed for biomedical image segmentation in the

first place [20]. We experimented with UNet along with Autoencoders for the purpose of taking

advantage of the unlabelled data for our application of mangrove ecosystem image segmentation.

3.4.1 Autoencoders

Autoencoders are neural networks which learn in unsupervised fashion. An autoencoder

can learn non-linear transformations with a non-linear activation function and multiple layers.

Universal applications of autoencoders involve image coloring, feature extraction, image de-

noising, dimensionality reduction etc. We will use convolutional layers in autoencoders for

pre-training another fully-convolutional model for image segmentation. We only need the unla-

belled orthomosaics to train autoencoders. It applies backpropagation and sets all the labels to the

input features, for example if input is X = x1,x2,xi then the each target value is set to be the

input as yi = xi. A general layout of an autoencoder is given in figure 3.5. In our application, we

will be feeding the unlabelled tiles of the orthomosaic to the input layer of the autoencoder and

the output layer is expected to generate a reconstructed image of the input tiles.

Figure 3.5: A general structure of an autoencoder. The input is any vector X and the output of
the autoencoder is a reconstruction of the input X , represented in the image by X

′

The autoencoder as the one shown in figure 3.6 tries to learn a function, hW,b ≈ x which

outputs an image as similar to the one it is being provided with. The process of reconstructing an

28

image using an autoencoder might seem like a trivial task, but if we limit the number of hidden

units in the autoencoder we can learn the interesting underlying structure of the input data. An

autoencoder consists of 3 parts:

• Encoder. This part of the autoencoder represents the input into latent space. It compresses

the input and passes on a distorted version of the input image to the next part i.e. code.

• Code. This part of the network represents the compressed input which is fed to the decoder.

• Decoder. This decompresses the image received from the code to the original dimensions.

This is a lossy reconstruction of the input.

We give unlabelled orthomosaic tiles to the encoder as inputs and the outputs of the

decoder are lossy reconstructions of the input tiles as is shown in figure 3.6. Although we do

not make use of this reconstructed image further in the architecture, but we do make use of the

weights learnt by this autoencoder model to pre-train our UNet.

Figure 3.6: The autoencoder representation used in our application. The encoder unit comprises
the convolutional layers for downsampling the input tile and the decoder unit comprises the
deconvolutional layers for the upsampling of the compressed input image. The decoder outputs
the reconstructed image.

We use convolutional autoencoders(CAE) in our research. Since we only use the autoen-

coder in order to transfer the knowledge extracted from the unlabelled samples, we do not need

to generalize the autoencoder’s learning to unseen samples as the training data is going to be

29

constant. Since there is no potential need for generalization a simple linear activation suffices

and we do not need non-linear activation. The activation used in the autoencoder is also called

identity activation and can mathematically be represented as in 3.9

f (x) = x (3.9)

The encoder and decoder parts of a general autoencoder are represented by the convo-

lutional and deconvolutional layers of the CAE respectively [21]. A convolution operation is

performed between each input image having a depth D. If X represents the image X =X1,X2.....XD

and a set of n convolutional filters like F1
1F

1
n to produce a set of n feature maps. The activation

function a() in our case is a linear activation function.

zm = a(X×F1
m +b1

m) , m = 1 . . .n (3.10)

Where X is the input image, F1
m is the mth convolutional filter and b1

m indicates the bias

of the mth feature map. The reconstructed image X̂ is the result of convolution between the

dimension of the feature Z and the deconvolutional filter F2

X̂ = a(Z×F2
m +b2) (3.11)

. We use the mean squared error(MSE) as the loss function for our autoencoder, shown in 3.12

L(x, x̂) =
1
2
(||X− X̂ ||22) (3.12)

The autoencoder tries to minimize this loss with each epoch and the model is said to

be converged when the loss is either constant or reaches a certain acceptable level. A better

autoencoder will have a lesser loss.

30

3.4.2 U-NET Segmentation

UNET is a fully convolutional network approach which was first proposed by [20] with the

goal of developing better segmentation models for biomedical images. U-Net is more powerful

than conventional convolutional deep learning architectures, in terms of architecture and in terms

of pixel-based image segmentation predicted by convolutional neural network layers. It is even

effective with limited dataset images which is why it also suited our application where it is

difficult to obtain annotated data. The input to this U-Net segmentation model is the labelled

samples of tiles of the orthomosaic and the output is expected to be a segmented image of the tile.

The network architecture as shown in figure 3.7 consists of a contracting path and an

expansive path, which gives it the u-shaped architecture. The contracting path is a typical

convolutional network that consists of repeated application of convolutions. Each of these

convolutions is followed by some activation function(ELU in our case) and a max pooling

operation. During the contraction or down-sampling, the spatial information is reduced while

feature information is increased. After this a sequence of up-convolutions are applied in order to

combine the spatial information learnt in down-sampling along with the feature information by

concatenations of high resolution features from the contracting path [20]. It follows an overlap-tile

strategy as shown in figure 3.8 i.e. the segmentation map only contains the pixels for which the

full context is available in the input image [22]. The border pixels are predicted by extrapolating

the missing context by mirroring the input image. This makes tiling of a large input image

essential for the application of U-Net because otherwise the resolution would be limited by the

storage available.

31

Figure 3.7: UNet architecture used in our application. The network architecture as shown
consists of a contracting path and an expansive path, which gives it the u-shaped architecture.

32

Figure 3.8: Overlapping tile strategy for segmentation of large images. The prediction of the
pixels in the yellow area require the image data within the blue area as input.

The activation used on the convolutions is called the Exponential Linear Unit (ELU). This

activation function has recently been found to converge the cost function to zero faster and also

produce more accurate results [23]. It is different from other activation functions, as it has an

extra alpha constant which should be a positive number. This activation function is basically used

due to its capability to speed up learning [22] by decreasing the bias shift by pushing the mean

activation towards zero. The ELU is given as :

elu(x) =


α(exp(x)−1) if x≤ 0

x if x > 0
(3.13)

and it has the gradient

∂elu(x)
∂x

=


elu(x)+α if x≤ 0

1 if x > 0
(3.14)

The loss function used in our experimentation is the Binary Cross Entropy loss. It is also

called Sigmoid Cross-Entropy loss. It is a Sigmoid activation plus a Cross-Entropy loss. The

mathematical formulation of this loss function is given in 3.15

33

L = ∑
i

yi log10 oi +(1− yi) log10 (1−oi) (3.15)

The UNet tries to reduce this loss with each epoch and as in the autoencoder, the model is

said to have converged once the loss either reaches stagnation or attains an acceptable value.

3.4.3 Semi-Supervised UNet-Autoencoder Architecture

In our application of semi-supervised semantic segmentation we leverage the concept

of transfer learning with the autoencoder and the U-Net architectures described above. The

weights learned by the autoencoder are saved and transferred onto a supervised U-Net model

as a pre-training measure. In this way the U-Net model learns the data embeddings from the

unlabelled data sample. After pre-training the model with the weights learnt by the autoencoder,

it is trained on the limited amount of labelled data available. This yields a more powerful tool for

segmentation than a simple baseline U-Net which is only trained on the small labelled sample

without taking into account the unlabelled sample. The performance improvement is shown in

the results chapter. The figure 3.9 shows the working of this semi-supervised architecture.

Figure 3.9: UNet Autoencoder workflow used for semi-supervised semantic segmentation. The
weights learnt from the autoencoder are transferred to the UNet model. This transfer learning
mechanism enables the model to learn from the unlabelled tiles.

34

Chapter 4

Results

4.1 Performance evaluation metrics

The performance of the semi-supervised segmentation model is evaluated by mainly

looking at the Intersection over Union score (IoU). IoU, also known as the Jaccard index, is the

most popular evaluation metric for tasks such as segmentation, object detection and tracking [24].

This is a metric to evaluate how similar a bounding box in a predicted image is to the ground truth

bounding box. It works by finding a ratio of the area where the two boxes overlap to the total

combined area of the two boxes which is mathematically shown in 4.1 . The figure 4.1 shows an

example of this process.

IoU =
|A∩B|
|A∪B|

(4.1)

35

Figure 4.1: The intersection over Union. This metric finds the ratio of where the two vectors
under consideration overlap to the total combined area of the two vectors.

We also plot precision recall curves for the classification of the pixels obtained after

training each of the models. This plot summarizes the trade-off between the true positive rate and

the positive predictive value for a predictive model using different probability thresholds.

4.2 Clustering based segmentation

We experimented with clustering based segmentation models. For this we clustered

our data (the tiles generated from the mangrove ecosystem site) using various algorithms. The

clustering of tiles using mini batch k means and gaussian mixture model is shown in figure 4.2.

We can see that the results obtained using only the unlabelled data points are not that good. The

pixels that are classified as non-mangrove need to be very different from the mangroves for

this algorithm to work, which is not the case here. The images have non mangrove green areas

which the algorithm misclassifies as mangroves. Thus, using these clusters to spread labels to the

unlabelled pixels in our aerial imagery was not an option. Therefore we tried out other methods

using the semi-supervised semantic segmentation.

36

Figure 4.2: Results of clustering sample tiles of the La Paz site. In figure a the mini batch
k-means clustering algorithm is used while in figure b the gaussian mixture model is used.

Since the mangroves are densely clustered together so we also tried another clustering

algorithm (DBSCAN) which we thought could have performed better as it is density based

clustering. This is based on the idea that a cluster in data space is a contiguous region of high

point density, separated from other such clusters by contiguous regions of low point density. Since

this clustering method is inefficient for large datasets due to it’s recursive nature, we had speed

issues implementing this. We were not able to successfully implement this.

4.3 Pseudo-Labelling

The Pseudo-Labelling semi-supervised segmentation model was trained on various

amounts of labelled data. Some of the available labelled data was kept aside as a validation set

and this was used for performance analysis of the model after each training session.

37

Before we began to test the model with different amounts of labelled data, we experi-

mented with different hyper-parameters used in the random forest classifier used in the model.

We did our hyper-parameter tuning on this using the 10% labelled data sample. For all other

experimentation with different amounts of labelled data, the hyper-parameters obtained with this

initial tuning are used. We tried out different values for the following hyper-parameters:

• Max depth : [5,10]

• N estimators : [5,10,15,20,25,30]

• Max features : [’auto’,’sqrt’]

Table 4.1: Best hyper-parameters obtained with the hyper-parameter tuning on 10% labelled
data.

Max Depth N Estimators Max Features
10 20 auto

As the number of decision trees in a random forest architecture increases, it adds to the

complexity of the model and thus the performance of the segmentation model is expected to

increase with the increase in the number of trees. Of course this takes a toll on the run time

complexity of the model, thus a good enough number for these trees needs to be selected. This

number is selected based on the percent of improvement of the model as compared to a lesser

number of trees. When the model stops performing significantly better, that particular number is

selected for the parameter n estimators The graph in figure 4.3 shows how the performance of the

model varies with increasing number of decision trees in the random forest model. We can see

that for 20 decision trees the model performs best in terms of performance and computation cost.

38

Figure 4.3: Performance of the Pseudo-Labelling semi supervised segmentation model with
10% labelled data. The figure on the left shows how the accuracy varies and the figure on the
right shows how the IoU varies.

The precision recall curve of the final Pseudo-Labelling model is depicted in figure 4.4.

This is plotted when the classifier is tested on the entire site with 10% labelled data available for

training the model.

Figure 4.4: The precision recall curve for the pseudo-labelling model for 10% labelled data and
tested on the entire site.

Once the hyper-parameters are chosen, the model is trained on the available limited data.

This then classifies the unlabelled data and the confident predictions amongst these are used to

39

retrain the model. Once the final model is ready, this is used to segment all the tiles of the La Paz

site. The figure 4.5 shows examples of tiles as segmented with the Pseudo-Labelling model when

different amounts of labelled data are given to it.

Figure 4.5: Sample segmented tiles by self learning based Pseudo-Labeller for different amounts
of labelled data.

We mainly look at the IoU scores as a performance evaluation metric for the pseudo-

labelling model. This is shown in table 4.2 . It can be seen that as the labelled data increases the

performance of the model improves as expected. The IoU values range from 0.58 for as little as

10% labelled data to 0.66 IoU for as much as 75% labelled data.

40

Table 4.2: Performance of Pseudo-Labelling semi-supervised semantic segmentation model
with different amounts of labelled data

Performance
Metric

10% Labelled
data

25% Labelled
data

50% Labelled
data

75% Labelled
data

Accuracy 0.890 0.8965 0.8978 0.9058
IoU 0.5869 0.6195 0.62015 0.6612

4.4 Graph based Label Propagation

When we use graph label propagation instead of using a random forest classifier as a

label propagator as in the previous section, we observe an improvement in the IoU score even

when as little as 10% of the data is given. One drawback of this model is that it takes up to

3 times as long as the pseudo-labelling model to train and also it is very memory inefficient.

Due to these restrictions we couldn’t’t train it on all the tiles available. But we made sure to

keep the percentage of labelled data the same as other experiments so that the evaluations can

be correctly compared with other models. The table 4.3 shows the improved performance of the

graph based pseudo-labelling model on different percentages of labelled data. The figure 4.6

shows the precision recall of this model when 10% of labelled data is provided for training. Even

an eye test on the segmented tiles given in figure 4.7 show that the graph based model performs

better that our original pseudo-labeller. Even for as little as 10% labelled data the graph based

label propagation model improves by 0.10 IoU i.e. for as little as 10% labelled data, the graph

based model gives an IoU of 0.66 which the previous pseudo-labeller could only obtain when

around 75% labelled data was provided.

41

Table 4.3: Performance of graph based semi-supervised segmentation model with different
amounts of labelled data

Performance
Metric

10% Labelled
data

25% Labelled
data

50% Labelled
data

75% Labelled
data

Accuracy 0.8451 0.8594 0.881 0.899
IoU 0.66170 0.65610 0.7390 0.7644

Figure 4.6: The precision recall curve for the graph based semi-supervised segmentation model
for 10% labelled data and tested on the validation data.

42

Figure 4.7: Sample segmented tiles by Graph based label propagation for different amounts of
labelled data.

4.5 UNet-Autoencoder

UNets are believed to give state of the art performance on image segmentation tasks and

so is also proved with our experiments with our UNet-Autoencoder model. The autoencoder part

learns the patterns from the unlabelled data and this is used with a traditional UNet to build a

semi-supervised semantic segmentation model. We have trained our autoencoder for 50 epochs

and our pre trained UNet for 70 epochs. The figure 4.4 shows the performance of this model

with different amounts of labelled data. It clearly performs better than both our previous models.

Increasing the training time for this model is expected to further improve the IoU score for this

model. When we train our autoencoder and the UNet for 150 and 170 epochs respectively, we

43

observe an IoU of 0.9 which is the highest obtained in our application. The graphs in figure 4.8

and figure 4.9 show how the model improves with each epoch.

Table 4.4: Performance of UNet-Autoencoder semi-supervised segmentation model with differ-
ent amounts of labelled data

Performance
Metric

10% Labelled
data

25% Labelled
data

50% Labelled
data

75% Labelled
data

Accuracy 0.954 0.9594 0 0.9658 0.9716
IoU 0.7254 0.737 0.806 0.8426

Figure 4.8: Graph showing the performance of the UNet-Autoencoder in terms of Intersection
over Union score for different epochs (in multiples of 10)

44

Figure 4.9: showing the loss of UNet-Autoencoder with increasing epoch

Figure 4.10: Sample segmented tiles by UNet-Autoencoder for different amounts of labelled
data.

45

4.6 Comparing performance

We observe that the UNet-Autoencoder model performs the best among all our models

with the scope of further improvement. The graph in figure 4.11 shows a performance comparison

of all the models when different amounts of labelled data is given to each of the models. We can

see a clear improvement in the performance of each of the models.

Figure 4.11: Performance comparison of different semi-supervised semantic segmentation
models w.r.t. different percentages of labelled data.

The models are tested on all the tiles of the orthomosaic of the mangrove ecosystem site.

These predicted segmented tiles are stitched back together to a single segmented orthomosaic

using GDAL and openCV. This is done in order to create better visualizations of the performance

of the models.The figures 4.12, 4.14 and 4.13 show the completely segmented image of the

La Paz site that we used to train and validate different models. We can see that although the

Pseudo-Labelling model doesn’t improve a lot when a lot of labelled data is given for training,

but the UNet-Autoencoder improves by a lot. Comparison of the two different models show that

the UNet-Autoencoder gives a much better segmentation of the entire site as compared to the

46

Pseudo-Labelling model for all percentages of labelled data.

Figure 4.12: The La Paz under consideration in this research and the actual segmentation for
the site.

Figure 4.13: Segmentation results of the whole La Paz site obtained by Pseudo-Labeller and
the UNet-Autoencoder when 10% labelled data is used for training

47

Figure 4.14: Segmentation results of the whole La Paz site obtained by Pseudo-Labeller and
the UNet-Autoencoder when 75% labelled data is used for training

48

Chapter 5

Conclusion and Further Improvements

In this research we looked into various semi-supervised semantic segmentation methods

in order to help with the conservation of mangroves. Since hand labelling the aerial imagery

captured by UAV is costly in terms of human effort and time, models which can learn using a

limited amount of labelled data can be very helpful. Our semi-supervised methods varied from

the simplest of self-learning based Pseudo-labelling semi-supervised segmentation model to a

complex high performing deep learning based UNet-Autoencoder architecture. We found that the

UNet-Autoencoder performs the best in a semi-supervised setting for our segmentation task. This

model attains an Intersection over Union score of around 0.72 for as little as 10% labelled data.

An increase in the amount of labelled data expectantly improves the performance of the model.

The UNet-Autoencoder gives an improved performance of around 0.84 IoU when 75% labelled

data was given for training the semi-supervised model. The current UNet-Autoencoder model

could be improved by training it for longer. Both the autoencoder and the UNet architecture can

be trained for more epochs. Some post-processing steps like masking the resulting segmentations

could result in better overall segmentations. More future work could be to apply the current model

to different sites of mangrove ecosystems so as to see how well the current model generalizes.

49

Bibliography

[1] Dillon Hicks, Arden Ma, John Dorian, Astrid Hsu, Katherine Qi, Eric Lo, Ryan Kasnter,
Curt Schurgers, and Octavio Aburto. Mangrove ecosystem detection using transfer learning-
based convolutional neural networks and high spatial-resolution uav imagery. unpublished,
2020.

[2] Jake VanderPlas. Python data science handbook: Essential tools for working with data. ”
O’Reilly Media, Inc.”, 2016.

[3] Stephanie S Romañach, Donald L DeAngelis, Hock Lye Koh, Yuhong Li, Su Yean Teh, Raja
Sulaiman Raja Barizan, and Lu Zhai. Conservation and restoration of mangroves: Global
status, perspectives, and prognosis. Ocean & Coastal Management, 154:72–82, 2018.

[4] Heng-Da Cheng, X H Jiang, Ying Sun, and Jingli Wang. Color image segmentation:
advances and prospects. Pattern recognition, 34(12):2259–2281, 2001.

[5] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,
20(3):542–542, 2009.

[6] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. A discussion of semi-supervised
learning and transduction. In Semi-supervised learning, pages 473–478. MIT Press, 2006.

[7] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and
Colin A Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances
in Neural Information Processing Systems, pages 5049–5059, 2019.

[8] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[9] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, pages 242–264. IGI
global, 2010.

50

[10] Chandra Giri, Edward Ochieng, Larry L Tieszen, Zq Zhu, Ashbindu Singh, Tomas Loveland,
Jeff Masek, and Norman Duke. Status and distribution of mangrove forests of the world
using earth observation satellite data. Global Ecology and Biogeography, 20(1):154–159,
2011.

[11] Jingjing Cao, Wanchun Leng, Kai Liu, Lin Liu, Zhi He, and Yuanhui Zhu. Object-based
mangrove species classification using unmanned aerial vehicle hyperspectral images and
digital surface models. Remote Sensing, 10(1):89, 2018.

[12] Astrid J Hsu, Eric K Lo, John B Dorian, and Benigno Guerrero Martinez. Drone flight
manual ucsd mangrove imaging procedure (version 1.2). 2019.

[13] ESRI ESRI. Shapefile technical description. An ESRI white paper, 4:1, 1998.

[14] Thomas Moranduzzo, Mohamed L Mekhalfi, and Farid Melgani. Lbp-based multiclass
classification method for uav imagery. In 2015 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), pages 2362–2365. IEEE, 2015.

[15] Mohammad Peikari, Sherine Salama, Sharon Nofech-Mozes, and Anne L Martel. A cluster-
then-label semi-supervised learning approach for pathology image classification. Scientific
reports, 8(1):1–13, 2018.

[16] Chuck Rosenberg, Martial Hebert, and Henry Schneiderman. Semi-supervised self-training
of object detection models. 2005.

[17] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis
lectures on artificial intelligence and machine learning, 3(1):1–130, 2009.

[18] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML,
volume 3, 2013.

[19] Olga Zoidi, Eftychia Fotiadou, Nikos Nikolaidis, and Ioannis Pitas. Graph-based label
propagation in digital media: A review. ACM Computing Surveys (CSUR), 47(3):1–35,
2015.

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

[21] Hongfei Li, Lili Meng, Jia Zhang, Yanyan Tan, Yuwei Ren, and Huaxiang Zhang. Multiple
description coding based on convolutional auto-encoder. IEEE Access, 7:26013–26021,
2019.

[22] Martin Heusel, Djork-Arné Clevert, Günter Klambauer, Andreas Mayr, Karin Schwarzbauer,
Thomas Unterthiner, and Sepp Hochreiter. Elu-networks: fast and accurate cnn learning on
imagenet. NiN, 8:35–68, 2015.

51

[23] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[24] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union: A metric and a loss for bounding box
regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 658–666, 2019.

52

