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Abstract—The computational complexity of deep learning has
led to research efforts to reduce the computation required.
The use of low precision is particularly effective on FPGAs as
they are not restricted to byte addressable operations. Very low
precision activations and weights can have a significant impact
on the accuracy however. This work demonstrates by exploiting
throughput matching that higher precision on certain layers
can be used to recover this accuracy. This is applied to the
domain of automatic modulation classification for radio signals
leveraging the RF capabilities offered by the Xilinx ZCU111
RFSoC platform. The implemented networks achieve high-speed
real-time performance with a classification latency of ≈8µs, and
an operational throughput of 488k classifications per second.
On the open-source RadioML dataset, we demonstrate how to
recover 4.3% in accuracy with the same hardware usage with
our technique.

I. INTRODUCTION

Automatic Modulation Classification (AMC) is an important
method that can be used in applications such as cognitive
radios. The high level goal is to monitor the RF spectrum and
determine the different modulations being used. A cognitive
radio subsequently uses this information to more efficiently
transmit its own data. Ideally, modulation classification is done
with low latency, so that decisions can be quickly made based
upon the current situation.

Recent results show that neural networks are effective in
performing modulation classification with high accuracy [9],
[14], [23]. However, these results ignored any real-time de-
mands and used networks that are computationally expensive.
In this work, we design, develop and prototype a real-time
AMC using the Xilinx RFSoC platform - a new FPGA-based
radio platform.

In order to achieve a real-time implementation, we must
perform classifications at a high rate. Figure 1 shows the
peak classification rate of three different networks running
on a GPU and the RFSoC platform. The modern NVIDIA
RTX 2080 Ti GPU tops out at a peak throughput of ≈ 30k
classifications per second on the smaller models. In addition, a
large batch-size plays a vital role in sustaining this throughput,
which may not be feasible for a real-time implementation due
to latency constraints. For RF applications, the data-rate can
be much higher on the order of 100s of millions of samples
per second, and hence, both the latency and throughput of
the AMC design are critical for sensing and responding to
changes in the RF channel. Using the techniques described in
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Figure 1: Peak classification throughput vs model accuracy
on 24 modulation classes, measured on two modern hardware
platforms. Note that increasing batch size also increases the
response latency of the model.

this paper, the RFSoC provides the computational power to
perform real-time modulation classifications.

The contributions of this work are as follows:
• A fully-pipelined ternary-weights convolution neural net-

work implementation that is capable of producing high-
speed real-time classifications on the signal modulation
classification problem.

• Training CNN’s by incrementally increasing the precision
of the activations (INCRA) to exploit properties of the
hardware implementation.

• To the best of our knowledge, the fastest, open source,
FPGA-based AMC implementation.

II. BACKGROUND

A. Automatic Modulation Classification

Automatic Modulation Classification (AMC) is a common
requirement in cognitive radio networks (CRN) for both mil-
itary and civilian applications. For example, AMC plays a
pivotal role in dynamic spectrum management where cognitive
radios are expected to detect idle frequency bands and transmit
data in these bands such that the primary users of these
channels are not affected [13].

AMC is a challenging task for two reasons: (1) often, there
is no a priori information known about the transmission sig-
nal/channel (e.g. signal-to-noise ratio, carrier frequency, etc.),



especially in military contexts, and (2) latency/throughput
requirements to achieve real-time processing limit the com-
plexity of the implementation and its runtime effectiveness.

The classic approach to AMC is built on statistical/stochas-
tic methods that require high domain expertise and frequent
manual tuning to achieve reliable performance in each specific
environment [11], [1], [13]. Recent efforts use deep learning
techniques for the classification [9], [14], [23], which demon-
strate an improvement to classification accuracy and reliability.
However, developing real-time machine-learning based AMC
implementation is left unexplored. Our work explores the
practicalities of realizing a high throughput and low latency
system implementation for doing AMC. It examines the trade-
offs in a number of networks for their hardware size and
achievable throughput balanced against accuracy. This allows
us to develop a system implementation on the RFSoC board
that is truly real-time while maintaining reasonable accuracy.

B. Deep Neural Networks on FPGAs

Convolutional neural networks (CNNs) are deep neural
networks that comprise of convolution, pooling, and dense
layers (see Sze et al. [15] for a comprehensive overview of
modern CNN implementation). Our goal is to use a CNN to
classify the modulation scheme of raw I/Q data, i.e., the data
that is sampled directly from the analog-to-digital converter
(ADC).

While CNNs are typically trained with single/double
floating-point precision, inference can be done with reduced
precision and/or pruning without a significant loss in accuracy
[20]. Quantized CNNs are particularly useful for hardware
implementations as the precision directly affects resource
usage and performance [18], [21], [3], [19]. The ternarization
of weights [6], [2] is a popular quantization choice as it
delivers a significant reduction in the memory footprint of the
CNN model while preserving the model accuracy to a large
degree.

Ternary weight networks (TWNs) have parameters that are
quantized during training as follows:

W l
i =


+1, if W l

i > ∆

0, if
∣∣W l

i

∣∣ ≤ ∆

−1, if W l
i < −∆

(1)

where W l
i are the parameters in each layer of the network, and

∆ is a positive threshold parameter used for quantization. The
activations can also be quantized to reduce the computation
required.

C. RadioML Dataset

We train and evaluate all our network designs on an open-
source dataset created by O’Shea et. al. [9]. The RadioML
2018.01A dataset1 is a collection of raw I/Q samples that
have been captured over-the-air using USRP devices [9]. Each
training sample is a time-series of 1024 I/Q sample pairs,
accommpanied by a label that identifies its modulation class.

1https://www.deepsig.io/datasets, Accessed: July 2019

There are a total of 24 modulation classes recorded at 26
signal-to-noise ratio (SNR) levels, ranging from −20 dB to
+30 dB in increments of 2 dB. Each {modulation class,
SNR} pair has 4096 training examples. The dataset has 2.56M
labeled I/Q time-series examples. The 24 modulation classes
of the signals are: OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK,
16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK,
16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-
WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK
and OQPSK. We divide this dataset into training and validation
sets as described in [9].

D. Related Work

Deep learning for RF applications is a relatively new field,
and in particular, existing work on AMC has been restricted
to model design and evaluation purely in software. Mendis
et. al [8] compute the spectral correlation function (i.e. a
cyclo-stationary feature extraction step) and implement a deep-
belief network for classifying five modulation classes. In
[12], [7], the authors report the effectiveness of various deep
neural networks on ten modulation classes, and demonstrate
several strategies that help reduce training time. Zhang et.
al [22] propose a heterogeneous CNN / LSTM (long short-term
memory) model that delivers high classification accuracy on
eleven modulation classes. While inference runtime is reported
for CNN networks (on the order of a few seconds), the authors
do not report runtime of the proposed heterogeneous models,
which is likely to be larger due to the increased complexity
in the models. O’Shea et al. [10], [9] design and evaluate
two CNN models (VGG10 and ResNet33) and demonstrate
competitive accuracy performance on 24 modulation classes.
This paper is an expanded version of our previous work [16],
with the new INCRA technique, expanded descriptions of the
design, more detailed comparison with other implementations,
and a full system implementation.

III. CNN-BASED AUTOMATIC MODULATION
CLASSIFICATION

We use the models proposed in [9] – VGG10 and ResNet33
– as our baseline, and explore design strategies to achieve
a high-speed and resource-efficient FPGA implementation.
In order to achieve this, we experiment with low precision
variations of the VGG10 network and explore the tradeoff of
computation with accuracy. Due to the size of the ResNet33
model, implementing it on an FPGA with high throughput
is difficult for two reasons: (1) the model size is too large
to be spatially mapped to the FPGA fabric, which limits the
achievable classification throughput significantly, and (2) the
residual connections create an unbalanced design which can
result in bottlenecks if large amounts of on-chip memory
are not available to store intermediate activations. Hence, we
elected to use the smaller and simpler VGG10 model instead
for our real-time FPGA-based AMC implementation.

The VGG10 model has seven 1D convolutional layers
followed by three dense layers. All of the convolutional
layers have a kernel size of three and a stride of one. The

https://www.deepsig.io/datasets


convolutions are followed by maxpool, batch normalization [4]
and the ReLU activation layers. In [9], the first two dense
layers use alpha dropout [5] followed by the SELU activation
function. We use this training method for networks trained
with floating-point precision, but swap alpha dropout layers
with batch normalization layers when training low-precision
networks for improved training stability.

A. Training Method

All models are trained on the RadioML 2018.01A dataset.
We set the batch size to 128, the initial learning rate to
10−3, and train for 250k steps. The learning rate was set
to smoothly decay exponentially at a rate of 0.5 every 100k
steps. The dataset was partitioned into a 90% – 10% split
to create the train and test sets respectively, such that each
{SNR, modulation class} pair had 3686 train and 410 test
examples. For training, we use samples captured at ≥ +6dB
SNR, which is typically the minimum signal strength observed
in most wireless communication systems. This improves the
training time, and ensures that the CNN is able to achieve the
best classification accuracy for typical real-time use cases. In
addition, we also use the teacher-student [2] training method-
ology to further improve accuracy. In this case, for all VGG10
networks, including floating-point implementations, a trained
ResNet33 model was used as the teacher.

Ternary weight networks were quantized using the method
described in [6], which results in a network with ternary
weights and floating-point activations. The authors in [6]
choose a threshold using a value of ∆ = ν · E(|W |), where
they recommend ν = 0.7. As discussed in [17], ν can be
used to control the sparsity of the weights, and hence, it has
a direct impact on the implementation of the network. For
networks with quantized activations we first clip the floating-
point activation values between 0 and 1, and then compute

x′ = round(x ∗ (2k − 1))/(2k − 1)

where x is an activation, and k is the number of bits to use
for the quantization. This activation quantization is done after
the ReLU of each layer.

B. Model Design

We leverage model design techniques described in [17]
to implement and evaluate low precision CNNs. We explore
several different model sizes, and our goal is to maximize clas-
sification accuracy as much as possible while fully utilizing
the available FPGA resources. Table I details all the models
and their properties explored in this paper.

The first four networks in Table I are trained and tested
with floating-point weights and activations. All the networks
with the prefix TW- are trained with ternary weights (i.e. {-1,
0, 1}). For all networks, we use ν = 0.7 for the first layer,
ν = 1.2 for the remaining convolutional layers, and ν = 0.7
for the two dense layers with ternary weights. Networks with
-BA- in the model name refers to binary activations, where
all activations from the layers are binary including the first
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Figure 2: Accuracy (%) vs SNR (dB) with different models

two dense layers. Finally, -INCRA- refers to a network
that was trained with incrementally increasing precision of
activations, starting with 1b activations after the first layer.
The incremental precision network, TW-INRCA-128, was
trained with quantized activations for the first four layers to
the following number of bits: 1, 2, 4, and 8. The next two
convolutional layers do not have quantized activations and
the final convolutional layer was quantized back to binary
acitvations along with the first two dense layers. All networks
have floating-point batch normalization variables. Neither the
weights and activations of the final dense layer, nor the input
data in all networks is ever trained with quantization.

C. Model vs Accuracy tradeoff

Figure 2 shows the performance of different models at
different SNR levels. ResNet33 and VGG10 have the largest
number of parameters and operations, and outperform the
less-expressive models. Unfortunately, it is not feasible to
implement a high-throughput ResNet33 model on the target
RFSoC ZCU111 platform. Hence, we focus on evaluating
models that have ternary weights and fixed-point activations
with varying number of filters.

The confusion matrices in Figure 3 show the distribution
of incorrect classifications when tested with signals at +6dB
SNR. The distribution illustrates that, intuitively, the diffi-
culty in classification lies in similar higher-order modulation
schemes. For example, a valid 256-QAM signal could appear
identical to a 16-QAM signal given the right encoding, es-
pecially over varying SNR, which results in significant clas-
sication errors. This is apparent when comparing Figures 3a
(ResNet33) and 3b (TW-INCRA-128), where most of the mis-
classifications in the hardware-friendly model are due to the
high-order modulation schemes. If a radio application does not
require fine-grained classification between modulation classes,
we can achieve much better overall classification performance.
In Figure 3c, we create “super classes” of different modulation
schemes, which shows that the classification accuracy across
these “super classes” is almost 100% with a hardware-friendly



Table I: Properties of various models designed and explored in this paper.

Model Name Architecture Precision1

(Weights/Activations) # parameters # MACs Accuracy2

ResNet33 [9] {ResBlock}×6, (FC, 128)×2, (FC/Soft-
max, 24) 32b/32b (FP) 507k (2.03Mb) 111m 95.5

VGG10 [9] {(Conv, K3, 64), (MaxPool, S2)}×7,
(FC, 128)×2, (FC/Softmax, 24) 32b/32b (FP) 102k (407Kb) 12.8m 88.0

VGG10-64 {(Conv, K3, 64), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 32b/32b (FP) 381k (1.5Mb) 13.3m 89.6

VGG10-128 {(Conv, K3, 128), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 32b/32b (FP) 636k (2.5Mb) 51.1m 90.9

TW-64 {(Conv, K3, 64), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 2b/32b (FP) 381k (95kb) 13.3m 78.8

TW-96 {(Conv, K3, 96), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 2b/32b (FP) 490k (123kb) 29.1m 82.4

TW-128 {(Conv, K3, 128), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 2b/32b (FP) 636k (159kb) 51.1m 82.1

TW-BA-64 {(Conv, K3, 64), (MaxPool, S2)}×7,
(FC, 128)×2, (FC/Softmax, 24) 2b/1b 102k (25kb) 12.8m 62.8

TW-BA-64-512 {(Conv, K3, 64), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 2b/1b 381k (95kb) 13.3m 67.7

TW-BA-128 {(Conv, K3, 128), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 2b/1b 636k (159kb) 51.1m 75.9

TW-INCRA-128 {(Conv, K3, 128), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 2b/(variable) 636k (159kb) 51.1m 80.6

1FP = 32b floating-point; 2Best accuracy at +30dB SNR
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(c) TW-INCRA-128 with “super-classes”

Figure 3: Confusion matrix that demonstrates the effectiveness of signal modulation classification with ResNet33 and
TW-INCRA-128 models at +6dB SNR.

model like TW-INCRA-128. The misclassification between
M-ASK and M-PSK is due to OOK and BPSK modulation
classes, which are very similar binary modulation schemes.

D. Quantization error

The networks trained in Table I use 32b floating-point for
the batch normalization variables and the final dense layer.
During inference, the batch normalization variables can be
multiplied into the scaling factors for the convolution to give
an equation bn(x) = ax + b, where a and b are known
constants that can be pre-loaded into the hardware design.

Note that some networks (e.g. TW-64) also use floating-
point activations. In order to avoid implementing floating-point
blocks for portions of the computation, the calculations are
done in fixed-point instead. We empirically determine that
these models deliver the best accuracy when 6 fractional bits
in the activation layers, and 8 fractional bits for the batch
normalization variables are used. We observe minimal numer-
ical difference at the output, typically around 2% for the class
with the largest output activation value. Table II demonstrates
that this proposed precision design strategy provides enough
bits for stable implementations, such that any difference in
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Figure 4: High-level view of the final system implementation
on the ZCU111 RFSoC platform.

accuracy is essentially training noise.

Table II: Model accuracies on test set before/after quantization
measured at +30dB SNR.

Model Accuracy (%) Quantized
Accuracy (%)

TW-64 78.8 78.7

TW-96 82.4 81.1

TW-128 82.1 81.7

TW-BA-64 62.8 63.1

TW-BA-64-512 67.7 67.4

TW-BA-128 75.9 75.9

TW-INCRA-128 80.6 80.2

IV. IMPLEMENTATION ON ZCU111

Figure 4 shows a high-level block diagram of our final
implementation on the RFSoC ZCU111 platform, which we
detail in this section.

A. Scheduler

The scheduler orchestrates any data movement between the
ADC, the CNN-based AMC core, and the Zynq Ultrascale
host CPU. Data is communicated using the lightweight AXI4
stream protocol, where I/Q samples and prediction outcomes
are sent as packets. We design the scheduler as a configurable
Xilinx IP core, allowing a user to easily reconfigure data-
widths of signals if needed.

B. Auto-generator

In the course of this work, a Python3 package was de-
veloped, which has since been published as an open-source
package in the pip3 packages repository2. It is a Python
implementation of the work in [17] with additional features
that improve the hardware-design productivity significantly.

Before generating the Verilog, the package also performs
common subexpression elimination (CSE) on the input matrix
in order to encourage result-sharing and to alleviate compu-
tational redundancy in the network. In our experiments, we

2https://github.com/da-steve101/radio_modulation

observed that this CSE step can reduce the computational re-
quirements by as much as 55% of the original network, which
is crucial for deriving a highly pipelined architecture proposed
in this paper. The CSE outputs an irregular adder/subtractor
tree that computes a single output pixel of the convolution.
The CSE is independent of the activation precision or the
throughput. The output tree from the CSE, along with the
specified precision and method of adding the inputs, is then
used to generate the RTL implementation of the computation.

Once the trained weights from a network are conditioned
into a CSV file, generating the Verilog to compute the con-
volutions is less than 40 lines of Python code. The tree can
also be fed into a C generator for quick verification of the test
set results, which offered a substantial runtime boost to the
evaluation phase in our experiments.

C. Implementation of Batch Normalization

During inference, the batch normalization layer computes
Y = ax + b, which requires a fixed-point multiplication
for each output channel of the convolutional layer and is
frequently mapped to a DSP block on the FPGA. We merge
the batch normalization layer with the ReLU function, where
we compute relu(x) = x × (x > 0). For quantized acti-
vations with k bits, the batch normalization and ReLU are
implemented as:

Yi =


1, if aixi + bi > 1
round((aixi+bi)(2

k−1))
2k−1 , if 0 ≤ aixi + bi ≤ 1

0, if aixi + bi < 0

(2)

On the FPGA, to compute the results with integers requires
multiplying with 2k − 1 where necessary. We incorporate the
factor of 2k − 1 into the batch normalization variables, a and
b, prior to transforming them to fixed-point numbers.

D. Implementation of Dense layers

The dense layers are implemented by storing the ternary
weights in read-only BRAMs on the FPGA. The weights
are then streamed in over multiple cycles, while the soft-
logic (LUTs/FFs) manages the data movement and issues
the necessary multiply-accummulate operations. This is then
followed by a batch normalization and ReLU as described in
the previous section.

E. Throughput matching

As discussed in [17], the throughput of a pipelined CNN
implementation is affected drastically by each maxpool layer.
In a VGG10 model with 1D convolutions, the throughput
drops by a factor of two after each maxpool layer, since
each subsequent layer expects a smaller signal length at the
input due to the maxpool operation. This drop in throughput
would result in idle cycles for fully pipelined designs, where
the hardware is simply waiting for new data to arrive before
it is able to compute the next outputs. The number of idle
cycles is exacerbated deeper down the network, and without
throughput matching, the last convolution layer in VGG10 will

https://github.com/da-steve101/radio_modulation


be sitting idle for ≈97% of the time, which is a significant
under utilization of the available hardware resources.

We can exploit this property of the network by doing
careful throughput matching. Since we know the architecture
of the CNN model from the beginning, we also have apriori
information available on the throughputs produced by each
layer in the network. We can then allocate additional precision
to the activations between layers in such a way that the number
of idle cycles is minimized, or completely eliminated. For
example, if a {convolution + maxpool} layer produces 2b
activations, instead of using 2b adders in the subsequent layer,
we can use bit-serial adders that compute each new output over
2 cycles. We can keep increasing precision in this fashion after
each maxpool layer, which gives us two positive outcomes: (1)
the increased precision improves the accuracy of the network,
giving us higher-quality classifications at the same throughput,
and (2) we can persist with the bit-serial arithmetic units in our
implementation, which lowers the hardware utilization cost to
the equivalent of binary activation networks. This technique
essentially delivers an accuracy boost without any significant
hardware overheads on the RFSoC platform, as observed
in Table III and Table II when comparing TW-BA-128 and
TW-INCRA-128 (≈5% accuracy boost with <1% hardware
overheads). Incrementally increasing precision in this way is
a core contribution of this paper.

We also do throughput matching in the dense layers.
However, instead of increasing the precision, we unroll the
datapath in the dense layers such that its throughput now
matches the arriving data rate at its input. On the RFSoC
platform, we found that we were able to increase the size
of the dense layers from 128 in the baseline VGG10 model
to 512 in our proposed models without suffering from over-
utilization. When mapped naïvely, the last two dense layers
in the baseline implementation sat idle for 75% of the time,
which is reduced to zero in the proposed models. In addition,
the final resource utilization is overall more balanced, as more
DSPs and BRAMs are utilized to compute activations and store
weights of dense layers respectively.

F. Functional implementation on the ZCU111

While we train and report accuracies for our proposed
models on the RadioML dataset for benchmarking purposes, a
fully-functional implementation on the ZCU111 would require
an end-to-end design where we train on data captured from
the on-chip ADCs. In order to work towards this goal, we also
create a signal generator IP core that is capable of sending
modulated signals over the ZCU111’s DACs. On the receiver
end, we implement an I/Q sample collector IP block that
designed to help do the data capture. Both IP cores are run-
time configurable using the a lightweight AXI4-Lite interface
(e.g. modulation class to transmit, number of consecutive I/Q
samples to collect, etc). As of now, the modulator IP core
is capable of transmitting four different modulation classes:
BPSK, QPSK, 8PSK, and QAM16.

TrainingModel, dataset, 
optimizer, quantizer  

Common subexpression 
elimination

Tensorflow

Trained + unrolled ternary 
weights network

“TWN Generator” 
Python package

RTL Generator

RTL Netlist
(Verilog)

PS-PL / Radio interface
(Scheduler)

Synthesis / Place & Route

ZCU111 Bitstream
Vivado 2018.3

Figure 5: Completely automated toolflow for implementing a
high-speed unrolled convolutional neural network for doing
automatic modulation classification on the ZCU111 platform.

Table III: Out-of-context resource utilization. Target device:
xczu28dr-ffvg1517-2-e at 250MHz. 1 Failed to Route

Model CLBs LUTs FFs BRAMs DSPs

TW-64 28k
(53.5%)

124k
(29.1%)

217k
(25.5%)

524
(48.5%)

1496
(35%)

TW-96 47k
(89.3%)

232k
(54.7%)

369k
(43.4%)

524
(48.5%)

1207
(28.3%)

TW-1281 51k
(96.7%)

320k
(75.3%)

506k
(59.5%)

524
(48.5%)

1431
(33.5%)

TW-BA-64 11k
(21.2%)

58k
(13.7%)

92k
(10.8%)

76
(7.0%)

704
(16.5%)

TW-BA-64-
512

15k
(27.6%)

80k
(18.8%)

108k
(12.7%)

521
(48.2%)

1471
(34.4%)

TW-BA-128 43k
(80.7%)

234k
(55.1%)

333k
(39.2%)

523
(48.4%)

1408
(33.0%)

TW-INCRA-
128

42k
(80.2%)

211k
(49.6%)

324k
(38.1%)

512.2
(48.3%)

1407
(32.9%)

V. METHODOLOGY

We use Vivado 2018.3 to synthesize designs, the AXI4
communication framework to interface with the design through
AXI4-Lite and AXI4-stream protocols, and the PYNQ frame-
work to manage, visualize, and verify functional correctness
on Jupyter notebooks. For training, we use the Tensorflow
framework to train and test various models, using the Ternary
Weight Networks [6] approach for quantizing the weights.

In order to support our claim for real-time modulation
classification, we choose an I/Q sample rate of 500MHz and
design the CNN to accept 2×I/Q samples each cycle with a
250MHz clock.



VI. RESULTS

A. Resource Utilization

Table III shows the resource utilization for the various
models compared in this paper. The DSP usage is relatively
constant as the convolutions do not use any DSPs. TW-BA-
64 shows significantly lower DSP usage as the dense layers
have 128 outputs instead of 512 like in all the other models.
For binary-activation networks, the DSPs are utilized by the
batch normalization layer, which is fused at the output of the
dense layers. For both dense layers with 512 outputs, this
is 1024 multiplications, whereas for 128 outputs only 256
multiplications need to be performed. It should be noted that
this is typically multiplying a 16 bit number with a 2 bit weight
so mapping it to a DSP is optional for Vivado as this could
be computed with CLBs. The largest network, TW-128, fails
to complete routing. All other designs met timing constraints
with a 250 MHz clock.

The most interesting result in Table III is comparing TW-
BA-128 and TW-INCRA-128. The model TW-BA-128 has
binary activations throughout the network. This leads to lower
hardware usage than TW-128 but comes at the cost of a 5.8%
accuracy drop to 75.9% as seen in Table II. The model TW-
INCRA-128 differs from TW-BA-128 as it has activations with
increasing precision after each convolution layer (increasing
from 1b to 16b, in powers of 2, and capped at 16b). This
restores most of the accuracy, and is only 1.5% less accurate
on the test set than TW-128 (80.2%). However, looking at the
hardware utilization, both TW-BA-128 and TW-INCRA-128
have essentially the same resource usage. This is because of
the careful throughput matching carried out during implemen-
tation, as described in Section IV-E earlier. By designing the
precision to increase with decreasing throughput requirements,
the accuracy is restored almost for free by using hardware that
would have otherwise been idle.

B. System Performance

To demonstrate the effectiveness of our method in practice,
we generate a simple dataset with four modulations on the
RFSoC board. A DAC and ADC on the RFSoC board were
used in loopback fashion to generate BPSK, 8PSK, QAM16
and QPSK signals. A dataset was generated with 500k signals
for each modulation type, each 1024 I/Q samples in length
as recommended by O’Shea et. al. [9]. No noise was added
to the signals. The dataset was then randomly partitioned into
90% train and 10% test resulting in 180K train examples and
20k test examples. As the dataset was small and simple, we
chose the baseline VGG10 network with ternary weights and
fixed point activations. The network achieved zero test set error
rate in less than an epoch. This model was then put onto the
board with the entire system as: Modulator→ DAC→ Coaxial
Wiring → ADC → CNN → DMA → CPU.

Our design accepts 2×I/Q samples from the ADC in each
clock cycle and computes the prediction until 1024 I/Q sam-
ples have been provided before immediately starting the next
one. A sample rate of 500MHz generates 488K signals of

length 1024, each capturing 2.048 µs of data. Our design
is fully pipelined and matches this throughput. According
to Xilinx documentation, the ADC is zero latency. With
minor delays for some management logic, the entire network
computes a classification in less than 2000 clock cycles from
the first sample input or, with a 250MHz clock, 8µs. At a
throughput of 488K classifications/second and a latency of
8µs, we achieve real time modulation classification with high
accuracy. There is additional latency to the CPU through the
DMA, which is larger than the latency for the classification
but still on the order of µs. With the 12.8 MMACs required
to compute a single classification on the GPU, our network
computes the equivalent of 6.28 TMACs on the FPGA.

Table IV shows the utilization of different components of
the system design. This shows there are significant portions
of the FPGA unused in this design. Only 121k (30%) of
the available LUTs are used by the entire design. Most of
the resources are used by CNN model implementation (TW-
VGG. TW-VGG-Cx show the resources needed to compute
the convolutional adder trees generated by our Python package
where x refers to the layer number. Layer 2 using 16 bit adders
has the highest resource utilization. Layer 3 uses 8 bit adders,
and only requires half the resources of layer 2 but has the
same number of output channels. Subsequent layers use lower
bitwidth adders, hence use fewer resources each time, until
layer 6 and 7 which both use bit-serial adders. The first layer
is the exception as it has far fewer inputs – only 2 × 3 = 6
– compared to the 64 × 3 = 192 for layer 2-7. TW-VGG-
Dx show the usage needed by the dense layers. D1 and D2
use ternary weights and do not need DSPs to perform the
multiplication, whereas D3 uses 16b fixed-point weights to
compute, which is mapped using DSPs. The resources used
by the batch normalization layers are all the same after each
of the 7 convolutions and the first two dense layers. They
compute a 16b fixed-point multiplication, and hence require 1
DSP block for each channel.

VII. CONCLUSION

In this paper we demonstrate real-time automatic modula-
tion classification with CNNs on an FPGA. We explore the
effect of hardware design parameters on model accuracy and
on the performance/resource efficiency. We demonstrate the
benefits of incrementally increasing the precision to match
the throughput required. This improves accuracy with barely
any change in hardware utilization. We also create a freely
available Python package for easily generating convolutional
neural networks in Verilog and C. This paper also presents the
first real-time implementation, to the best of our knowledge,
of a high-speed machine learning model on a radio frequency
application that takes advantage of the Xilinx ZCU111 SoC
achieving a throughput of 488K classifications/s and a classi-
fication latency of 8µs. Finally, we also open-source IP cores
for transmitting and receiving modulated radio signals in order
to promote FPGA-based research and development into radio
applications on the Xilinx ZCU111 platform.



Table IV: Resource utilizations for ZCU111 design

Element LUTs FFs BRAMs DSPs

Top 121k 198k 162 710

TW-VGG 109k 194k 152 708

TW-VGG-C1 3k 4k 0 0

TWVGG-C2 31k 45k 0 0

TW-VGG-C3 17k 26k 0 0

TW-VGG-C4 7k 14k 0 0

TW-VGG-C5 5k 8k 0 0

TW-VGG-C6 4k 5k 0 0

TW-VGG-C7 4k 5k 0 0

TW-VGG-D1 2k 4k 0 0

TW-VGG-D2 2k 4k 0 0

TW-VGG-D3 0k 0k 0 4

BN-CLYR ×7 0k 2k 0 64

BN-DLYR ×2 0k 4k 0 128

AXI-DMA 7k 5k 0 0

MODULATION-
GEN 2k 2k 7 2

RF-CORE 3k 2k 0 0
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