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Preface

“When someone says, ’I want a programming language in which I need only say what I
wish done’, give him a lollipop.” -Alan Perlis

This book focuses on the use of algorithmic high-level synthesis (HLS) to build application-specific
FPGA systems. Our goal is to give the reader an appreciation of the process of creating an
optimized hardware design using HLS. Although the details are, of necessity, different from parallel
programming for multicore processors or GPUs, many of the fundamental concepts are similar.
For example, designers must understand memory hierarchy and bandwidth, spatial and temporal
locality of reference, parallelism, and tradeoffs between computation and storage.

This book is a practical guide for anyone interested in building FPGA systems. In a university
environment, it is appropriate for advanced undergraduate and graduate courses. At the same time,
it is also useful for practicing system designers and embedded programmers. The book assumes
the reader has a working knowledge of C/C++ and includes a significant amount of sample code.
In addition, we assume familiarity with basic computer architecture concepts (pipelining, speedup,
Amdahl’s Law, etc.). A knowledge of the RTL-based FPGA design flow is helpful, although not
required.

The book includes several features that make it particularly valuable in a classroom envi-
ronment. It includes questions within each chapter that will challenge the reader to solidify
their understanding of the material. There are associated projects that were developed and
used in the HLS class taught at UCSD (CSE 237C). We will make the files for these projects
available to instructors upon request. These projects teach concepts in HLS using examples
in the domain of digital signal processing with a focus on developing wireless communication
systems. Each project is more or less associated with one chapter in the book. The projects
have reference designs targeting FPGA boards distributed through the Xilinx University Program
(http://www.xilinx.com/support/university.html). The FPGA boards are available for com-
mercial purchase. Any reader of the book is encouraged to request an evaluation license of Vivado R©

HLS at http://www.xilinx.com.

This book is not primarily about HLS algorithms. There are many excellent resources that
provide details about the HLS process including algorithms for scheduling, resource allocation,
and binding [51, 29, 18, 26]. This book is valuable in a course that focuses on these concepts as
supplementary material, giving students an idea of how the algorithms fit together in a coherent
form, and providing concrete use cases of applications developed in a HLS language. This book is
also not primarily about the intricacies of FPGA architectures or RTL design techniques. However,
again it may be valuable as supplementary material for those looking to understand more about
the system-level context.

This book focuses on using Xilinx tools for implementing designs, in particular Vivado R© HLS
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to perform the translation from C-like code to RTL. C programming examples are given that are
specific to the syntax used in Vivado R© HLS. In general, the book explains not only Vivado R© HLS
specifics, but also the underlying generic HLS concepts that are often found in other tools. We
encourage readers with access to other tools to understand how these concepts are interpreted in
any HLS tool they may be using.

Good luck and happy programming!
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Chapter 1

Introduction

1.1 High-level Synthesis (HLS)

The hardware design process has evolved significantly over the years. When the circuits were
small, hardware designers could more easily specify every transistor, how they were wired together,
and their physical layout. Everything was done manually. As our ability to manufacture more
transistors increased, hardware designers began to rely on automated design tools to help them in
the process of creating the circuits. These tools gradually become more and more sophisticated and
allowed hardware designers to work at higher levels of abstraction and thus become more efficient.
Rather than specify the layout of every transistor, a hardware designer could instead specify digital
circuits and have electronic design automation (EDA) tools automatically translate these more
abstract specifications into a physical layout.

The Mead and Conway approach [50] of using a programming language (e.g., Verilog or VHDL)
that compiles a design into physical chips took hold in the 1980s. Since that time, the hardware
complexity has continued to increase at an exponential rate, which forced hardware designers to
move to even more abstract hardware programming languages. register-transfer level (RTL) was
one step in abstraction, enabling a designer to simply specify the registers and the operations
performed on those registers, without considering how the registers and operations are eventually
implementation. EDA tools can translate RTL specifications into a digital circuit model and then
subsequently into the detailed specification for a device that implements the digital circuit. This
specification might be the files necessary to manufacture a custom device or might be the files
necessary to program an off-the-shelf device, such as an field-programmable gate array (FPGA).
Ultimately, the combination of these abstractions enables designers to build extraordinarily complex
systems without getting lost in the details of how they are implemented. A non-technical perspective
on the value of these abstractions can be found in [42].

high-level synthesis (HLS) is yet another step in abstraction that enables a designer to focus on
larger architectural questions rather than individual registers and cycle-to-cycle operations. Instead
a designer captures behavior in a program that does not include specific registers or cycles and an
HLS tool creates the detailed RTL micro-architecture. One of the first tools to implement such
a flow was based on behavioral Verilog and generated an RTL-level architecture also captured in
Verilog[35]. Many commercial tools now use C/C++ as the input language. For the most part
the language is unimportant, assuming that you have a tool that accepts the program you want to
synthesize!

Fundamentally, algorithmic HLS does several things automatically that an RTL designer does
manually:

11



INTRODUCTION

• HLS analyzes and exploits the concurrency in an algorithm.

• HLS inserts registers as necessary to limit critical paths and achieve a desired clock frequency.

• HLS generates control logic that directs the data path.

• HLS implements interfaces to connect to the rest of the system.

• HLS maps data onto storage elements to balance resource usage and bandwidth.

• HLS maps computation onto logic elements performing user specified and automatic opti-
mizations to achieve the most efficient implementation.

Generally, the goal of HLS is to make these decisions automatically based upon user-provided
input specification and design constraints. However, HLS tools greatly differ in their ability to do
this effectively. Fortunately, there exist many mature HLS tools (e.g., Xilinx Vivado R© HLS, LegUp
[13], and Mentor Catapult HLS) that can make these decisions automatically for a wide range
of applications. We will use Vivado R© HLS as an exemplar for this book; however, the general
techniques are broadly applicable to most HLS tools though likely with some changes in input
language syntax/semantics.

In general, the designer is expected to supply the HLS tool a functional specification, describe the
interface, provide a target computational device, and give optimization directives. More specifically,
Vivado R© HLS requires the following inputs:

• A function specified in C, C++, or SystemC

• A design testbench that calls the function and verifies its correctness by checking the results.

• A target FPGA device

• The desired clock period

• Directives guiding the implementation process

In general, HLS tools can not handle any arbitrary software code. Many concepts that are com-
mon in software programming are difficult to implement in hardware. Yet, a hardware description
offers much more flexibility in terms of how to implement the computation. It typically requires
additional information to be added by the designers (suggestions or #pragmas) that provide hints
to the tool about how to create the most efficient design. Thus, HLS tools simultaneously limit
and enhance the expressiveness of the input language. For example, it is common to not be able to
handle dynamic memory allocation. There is often limited support for standard libraries. System
calls are typically avoided in hardware to reduce complexity. The ability to perform recursion
is often limited. On the other hand, HLS tools can deal with a variety of different interfaces
(direct memory access, streaming, on-chip memories). And these tools can perform advanced opti-
mizations (pipelining, memory partitioning, bitwidth optimization) to create an efficient hardware
implementation.

We make the following assumptions about the input function specification, which generally
adheres to the guidelines of the Vivado R© HLS tool:

• No dynamic memory allocation (no operators like malloc(), free(), new, and delete())

• Limited use of pointers-to-pointers (e.g., may not appear at the interface)

12



INTRODUCTION

• System calls are not supported (e.g., abort(), exit(), printf(), etc. They can be used in the
code, e.g., in the testbench, but they are ignored (removed) during synthesis.

• Limited use of other standard libraries (e.g., common math.h functions are supported, but
uncommon ones are not)

• Limited use of function pointers and virtual functions in C++ classes (function calls must be
compile-time determined by the compiler).

• No recursive function calls.

• The interface must be precisely defined.

The primary output of an HLS tool is a RTL hardware design that is capable of being synthesized
through the rest of the hardware design flow. Additionally, the tool may output testbenches to
aid in the verification process. Finally, the tool will provide some estimates on resource usage and
performance. Vivado R© HLS generates the following outputs:

• Synthesizable Verilog and VHDL

• RTL simulations based on the design testbench

• Static analysis of performance and resource usage

• Metadata at the boundaries of a design, making it easier to integrate into a system.

Once an RTL-level design is available, other tools are usually used in a standard RTL design
flow. In the Xilinx Vivado R©Design Suite, logic synthesis is performed, translating the RTL-level
design into a netlist of primitive FPGA logical elements. The netlist (consisting of logical elements
and the connections between them) is then associated with specific resources in a target device,
a process called place and route (PAR). The resulting configuration of the FPGA resources is
captured in a bitstream, which can be loaded onto the FPGA to program its functionality. The
bitstream contains a binary representation of the configuration of each FPGA resource, including
logic elements, wire connections, and on-chip memories. A large Xilinx UltraScale FPGAs will have
over 1 billion configuration bits and even the “smaller” devices have hundreds of millions of bits
[64].

1.2 FPGA Architecture

It is important to understand the modern FPGA architectures since many of the HLS optimiza-
tions specifically target these features. Over the decades, FPGAs have gone from small arrays of
programmable logic and interconnect to massive arrays of programmable logic and interconnect
with on-chip memories, custom data paths, high speed I/O, and microprocessor cores all co-located
on the same chip. In this section, we discuss the architectural features that are relevant to HLS.
It is not our intention (nor do we think it is necessary) to provide substantial details of the FPGA
architecture. Rather we aim to give the reader enough information to understand the HLS reports
and successfully use and leverage the HLS directives, many of which very specifically target modern
FPGA architectural features.

FPGAs are an array of programmable logic blocks and memory elements that are connected
together using programmable interconnect. Typically these logic blocks are implemented as a
lookup table (LUT) – a memory where the address signal are the inputs and the outputs are stored

13
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Figure 1.1: Part a) shows a 2 input LUT, i.e., a 2-LUT. Each of the four configuration bits can
be programmed to change the function of the 2-LUT making it a fully programmable 2 input logic
gate. Part b) provides a sample programming to implement an AND gate. The values in the “out”
column from top to bottom correspond directly to configuration bits 0 through 3. Part c) shows a
simple slice that contains a slightly more complex 3-LUT with the possibility of storing the output
into a flip-flop (FF). Note that there are nine configuration bits: eight to program the 3-LUT and
one to decide whether the output should be direct from the 3-LUT or the one stored in the FF.
More generally, a slice is defined as a small number of LUTs and FFs combined with routing logic
(multiplexers) to move inputs, outputs, and internal values between the LUTs and FFs.

in the memory entries. An n-bit LUT can be programmed to compute any n-input Boolean function
by using the function’s truth table as the values of the LUT memory.

Figure 1.1 a) shows a 2 input LUT. It has 22 = 4 configuration bits. These bits are the ones that
are programmed to determine the functionality of the LUT. Figure 1.1 b) shows the truth table
for a 2 input AND gate. By using the four values in the “out” column for configuration bits 0-3,
we can program this 2 input LUT to be a 2 input AND gate. The functionality is easily changed
by reprogramming the configuration bits. This is a flexible and fairly efficient method for encoding
smaller Boolean logic functions. Most FPGAs use a LUTs with 4-6 input bits as their base element
for computation. Larger FPGAs can have millions of these programmable logic elements.

How would you program the 2-LUT from Figure 1.1 to implement an XOR gate? An OR
gate? How many programming bits does an n input (n-LUT) require?

How many unique functions can a 2-LUT be programmed to implement? How many unique
functions can a n input (n-LUT) implement?

The FF is the basic memory element for the FPGA. They are typically co-located with a
LUTs. LUTs can be replicated and combined with FFs and other specialized functions (e.g., a
full adder) to create a more complex logic element called a configurable logic block (CLB), logic
array block (LAB), or slice depending on the vendor or design tool. We use the term slice since it
is the resource reported by the Vivado R© HLS tool. A slice is a small number of LUTs, FFs and
multiplexers combined to make a more powerful programmable logic element. The exact number
and combination of LUTs, FFs and multiplexers varies by architecture, but generally a slice has
only few of each of these elements. Figure 1.1 c) shows a very simple slice with one 3-LUT and
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Figure 1.2: A slice contains a small number of LUTs and FF. We show a very simple slice with
one LUT and one FF though generally these have two or more of each. Slices are connected to one
another using a routing channel and switchbox. These two provide a programmable interconnect
that provide the data movement between the programmable logic elements (slices). The switch-
box has many switches (typically implemented as pass transistors) that allow for arbitrary wiring
configurations between the different routing tracks in the routing tracks adjacent to the switchbox.

one FF. A slice may also use some more complex logic functions. For example, it is common to
embedded a full adder into a slice. This is an example of “hardening” the FPGA; this full adder is
not programmable logic – it can only be used as a full adder, but it is common to use full adders
(to make addition operations) and it is more efficient to use the custom full adder as opposed to
implementing a full adder on the programmable logic (which is also an option). And thus, overall
it is beneficial to have a hard full adder in the slice.

Programmable interconnect is the other key element of an FPGA. It provides a flexible network
of wires to create connections between the slices. The inputs and outputs of the slice are connected
to a routing channel. The routing channel contains a set configuration bits can be programmed to
connect or disconnect the inputs/outputs of the slice to the programmable interconnect. Routing
channels are connected to switchboxes. A switchbox is a collection of switches that are implemented
as pass transistors. These provide the ability to connect the routing tracks from one routing channels
to another.

Figure 1.2 provides an example of how a slice, routing channel, and switchbox are connected.
Each input/output to the slice can be connected to one of many routing tracks that exist in a routing
channel. You can think of routing tracks as single bit wires. The physical connections between
the slice and the routing tracks in the routing channel are configured using a pass transistor that
is programmed to perform a connect or disconnect from the input/output of the slice and the
programmable interconnect.

The switchboxes provides a connection matrix between routing tracks in adjacent routing chan-
nels. Typically, an FPGA has a logical 2D representation. That is, the FPGA is designed in a
manner that provides a 2D abstraction for computation. This is often called an “island-style” ar-
chitecture where the slices represent “logic islands” that are connected using the routing channels
and switchboxes. Here the switchbox connects to four routing channels to the north, east, south,
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I/O Block

Routing Channel

Slice

Switchbox

Figure 1.3: The two-dimensional structure of an FPGA showing an island style architecture. The
logic and memory resources in the slices are interconnected using routing channels and switchboxes.
The input/output (I/O) blocks provide an external interface, e.g., to a memory, microprocessor,
sensor, and/or actuator. On some FPGAs, the I/O directly connects to the chip pins. Other FPGAs
use the I/O to connect the programmable logic fabric to on-chip resources (e.g., a microprocessor
bus or cache).

and west directions. The exact programming of the switches in the routing channels and switch-
boxes determines how the inputs and outputs of the programmable logic blocks are connected. The
number of channels, the connectivity of the switchboxes, the structure of the slice, and other logic
and circuit level FPGA architectural techniques are very well studied; we refer the interested reader
to the following books and surveys on this topic for more information [12, 10, 30]. Generally, it
is not necessary to understand all of the nitty-gritty details of the FPGA architecture in order to
successfully use the HLS tools, rather it is more important to have a general understanding of the
various FPGA resources and how the HLS optimizations effect the resource usage.

Figure 1.3 provides an even more abstract depiction of an FPGA programmable logic and
interconnect. This provides a larger view of the 2D dimensional layout of the programmable logic
(e.g., slices), routing channels, and switchboxes. The FPGA programmable logic uses I/O blocks
to communicate with an external device. This may be a microcontroller (e.g., an on-chip ARM
processor using an AXI interface), memory (e.g., an on-chip cache or an off-chip DRAM memory
controller), a sensor (e.g., an antenna through an A/D interface), or a actuator (e.g., a motor
through an D/A interface). More recently, FPGAs have integrated custom on-chip I/O handlers,
e.g., memory controllers, transceivers, or analog-to-digital (and vice versa) controllers directly into
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Figure 1.4: Modern FPGAs are becoming more heterogenous with a mix of programmable logic
elements and “hardened” architectural elements like register files, custom datapaths, and high speed
interconnect. The FPGA is often paired with one or more microprocessors, e.g., ARM or x86 cores,
that coordinates the control of the system.

the fabric in order to increase performance.
As the number of transistors on the FPGA has continued to increase, FPGA architectures

have begun to incorporate more and more “hard” resources. These are custom resources designed
specifically to perform a task. For example, many applications make heavy use of addition and
multiplication operations. Thus, the FPGA fabric added custom resources targeted at these oper-
ations. An example of this is the DSP48 custom datapaths, which efficiently implement a series
of arithmetic operations including multiplication, addition, multiply-accumulate, and word level
logical operations. These DSP48 blocks have some programmability, but are not as flexible as the
programmable logic. Yet, implementing a multiply or MAC operation on these DSP48s is much
more efficient than performing the same operation on the programmable logic. Thus, there is a fun-
damental tradeoff of efficiency versus flexibility. Modern FPGAs will have hundreds to thousands
of these DSP48 distributed throughout the logic fabric as shown in Figure 1.4.

Compare the performance of a multiply accumulate operation using the programmable logic
versus the DSP48s. What is the maximum frequency that one can obtain in both cases? How
does the FPGA resource usage change?

A block RAM (BRAM) is another example of a hardened resource. BRAMs are configurable
random access memory modules that support different memory layouts and interfaces. For example,
they can be changed to have byte, half-word, word, and double word transfers and connected to a
variety of different interfaces including local on-chip buses (for talking to the programmable fabric)
and processor buses (to communicate with on-chip processors). Generally, these are used to transfer
data between on-chip resources (e.g., the FPGA fabric and microprocessor) and store large data
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External
Memory BRAM FFs

count 1-4 thousands millions
size GBytes KBytes Bits

total size GBytes MBytes 100s of KBytes
width 8-64 1-16 1

total bandwidth GBytes/sec TBytes/sec 100s of TBytes/sec

Figure 1.5: A comparison of three different on- and off-chip memory storage options. External
memory provides the most density but has limited total bandwidth. Moving on-chip there are two
options: FFs and BRAMs. FFs have the best total bandwidth but only a limited amount of total
data storage capability. BRAMs provide an intermediate value between external memory and FFs.

sets on chip. We could choose to store the data set in the slices (using the FFs) but this would
incur overheads in performance and resource usage.

A typical BRAM has around 32 Kbit of memory storage which can be configured as 32K x 1 bit,
16K x 2 bits, 8K x 4 bits, etc. They can be cascaded together to create larger memories. All of this
configuration is done by the Vivado tools; this is a major advantage of Vivado R© HLS: the designer
does not need to worry about these low level details. The BRAMs are typically co-located next
to the DSP48. For HLS, it may be beneficial to think of the BRAMs as configurable register files.
These BRAMs can directly feed the custom datapaths (DSP48s), talk to on-chip microprocessors,
and transfer data to custom datapaths implemented on the programmable logic.

Implement a design that stores a large (e.g., thousand item) array in BRAMs and pro-
grammable logic. How does the performance change? What about the resource usage?

Figure 1.5 provides a comparison between different on-chip and off-chip memory resources.
There are millions of FFs on-chip and these provide hundreds of Kbytes of bit level storage. These
can be read to and written to on every cycle and thus provide a tremendous amount of total
bandwidth. Unfortunately, they do not provide the most efficient storage capacity. BRAMs provide
a bit more storage density at the cost of limited total bandwidth. Only one or two entries of the
BRAMs can be accessed during every cycle which is the major limiting factor for the bandwidth.
Going even further in this direction, we can use very high density off-chip external memory, but
the bandwidth is even further reduced. The decision about where to place your application’s data
is crucial and one that we will consider extensively throughout this book. The Vivado R© HLS tool
has many options that allow the designer to specify exactly where and how to store data.

As on-chip transistors have become more plentiful, we have the ability to consider integrating
even more complex hardened resources. On-chip microprocessors are a prime example of this. High-
end modern FPGAs can include four or more on-chip microprocessors (e.g., ARM cores). While
only the largest FPGAs include four microprocessors, it is very common to see one microprocessor
included in even the smaller FPGA devices. This provides the ability to run an operating system
(e.g., Linux) and quickly leverage all of its facilities, e.g., to communicate with devices through
drivers, run larger software packages like OpenCV, and use more common high level programming
languages like Python to get the system up and running quickly. The microprocessor is often the
controller for the system. It orchestrates data movement between off-chip memories, sensors, and
actuators to on-chip resources like the BRAMs. And the microprocessor can coordinate between the
custom IP cores developed with the HLS tools, third party IP cores, and the board level resources.
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Figure 1.6: A block diagram showing a hypothetical embedded FPGA design, consisting of I/O
interface cores (shown in blue), standard cores (shown in green), and application specific accelerator
cores (shown in purple). Note that accelerator cores might have streaming interfaces (Accelerator
2), memory-mapped interfaces (Accelerator 3), or both (Accelerator 1).

1.3 FPGA Design Process

Given the complexity and size of modern FPGA devices, designers have looked to impose a higher-
level structure on building designs. As a result, FPGA designs are often composed of components
or IP cores, structured something like Figure 1.6. At the periphery of the design, close to the
I/O pins, is a relatively small amount of logic that implements timing-critical I/O functions or
protocols, such as a memory controller block, video interface core or analog-to-digital converter.
This logic, which we will refer to as an I/O interface core, is typically implemented as structural
RTL, often with additional timing constraints that describe the timing relationships between signals
and the variability of these signals. These constraints must also take into account interference of
signals propagating through traces in a circuit board and connectors outside of the FPGA. In
order to implement high speed interfaces, these cores typically make use of dedicated logic in the
FPGA architecture that is close to the I/O pins for serializing and deserializing data, recovering
and distributing clock signals, and delaying signals with picosecond accuracy in order to repeatably
capture data in a register. The implementation of I/O interface cores is often highly customized for
a particular FPGA architecture and hence are typically provided by FPGA vendors as reference
designs or off-the-shelf components, so for the purposes of this book, we can ignore the detailed
implementation of these blocks.

Away from I/O pins, FPGA designs often contain standard cores, such as processor cores, on-
chip memories, and interconnect switches. Other standard cores include generic, fixed-function
processing components, such as filters, FFTs, and codecs. Although instances of these cores are
often parameterized and assembled in a wide variety of ways in a different designs, they are not
typically the differentiating element in a customers design. Instead, they represent commodity, hor-
izontal technology that can be leveraged in designs in many different application areas. As a result,
they are often provided by an FPGA vendor or component provider and only rarely implemented
by a system designer. Unlike interface I/O cores, standard cores are primarily synchronous circuits
that require few constraints other than basic timing constraints specifying the clock period. As a
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result, such cores are typically portable between FPGA families, although their circuit structure
may still be highly optimized.

Lastly, FPGA designs typically contain customized, application-specific accelerator cores. As
with standard cores, accelerator cores are primarily synchronous circuits that can be characterized
by a clock period timing constraint. In contrast, however, they are almost inevitably constructed
for a specific application by a system designer. These are often the “secret sauce” and used to
differentiate your system from others. Ideally a designer can quickly and easily generate high-
performance custom cores, perform a design space exploration about feasible designs, and integrate
these into their systems in a short timeframe. This book will focus on the development of custom
cores using HLS in a fast, efficient and high performance manner.

When integrating a design as in Figure 1.6, there are two common design methodologies. One
methodology is to treat HLS-generated accelerator cores just like any other cores. After creating
the appropriate accelerator cores using HLS, the cores are composed together (for instance, in a
tool such as Vivado R©IP Integrator) along with I/O interface cores and standard cores to form a
complete design. This core-based design methodology is similar to the way that FPGA designs are
developed without the use of HLS. A newer methodology focuses on standard design templates
or platforms, which combine a stable, verified composition of standard cores and I/O interface
cores targeting a particular board. This platform-based design methodology enables a high-level
programmer to quickly integrate different algorithms or roles within the interfaces provided by a
single platform or shell . It can also make it easier to port an accelerator from one platform to
another as long as the shells support the same standardized interfaces.

1.4 Design Optimization

1.4.1 Performance Characterization

Before we can talk about optimizing a design, we need to discuss the key criterion that are used to
characterize a design. The computation time is a particularly important metric for design quality.
When describing synchronous circuits, one often will use the number of clock cycles as a measure
of performance. However, this is not appropriate when comparing designs that have different
clock rates, which is typically the case in HLS. For example, the clock frequency is specified as
an input constraint to the Vivado R© HLS, and it is feasible to generate different architectures for
the same exact code by simply changing the target clock frequency. Thus, it is most appropriate
to use seconds, which allows an apples-to-apples comparison between any HLS architecture. The
Vivado R© HLS tool reports the number of cycles and the clock frequency. These can be used to
calculate the exact amount of time that some piece of code requires to compute.

It is possible to optimize the design by changing the clock frequency. The Vivado R© HLS
tool takes as input a target clock frequency, and changing this frequency target will likely
result in the tool generating different implementations. We discuss this throughout the book.
For example, Chapter 2.4 describes the constraints the are imposed on the Vivado R© HLS tool
depending on the clock period. Chapter 2.5 discusses how increasing the clock period can
increase the throughput by employing operation chaining.

We use the term task to mean a fundamental atomic unit of behavior; this corresponds to a
function invocation in Vivado R© HLS. The task latency is the time between when a task starts and
when it finishes. The task interval is the time between when one task starts and the next starts
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Task Interval = 1 Task Interval = 13

Task Latency = 10 Task Latency = 13

Figure 1.7: The task interval and task latency for two different designs. The left design is pipelined
while the right one uses a more sequential implementation.

or the difference between the start times of two consecutive tasks. All task input, output, and
computation is bounded by the task latency, but the start of a task may not coincide with the
reading of inputs and the end of a task may not coincide with writing of outputs, particularly if
the task has state that is passed from one task to the next. In many designs, data rate is a key
design goal, and depends on both the task interval and the size of the arguments to the function.

Figure 1.7 shows two different designs of some hypothetical application. The horizontal axis
represents time (increasing to the right) and the vertical axis represents different functional units in
the design. Input operations are shaded red and and output operations are shaded orange. Active
operators are represented in dark blue and inactive operators are represented in light blue. Each
incoming arrow represents the start of a task and each outgoing arrow represents the completion
of a task. The diagram on the left represents four executions of an architecture that starts a new
task every cycle. This corresponds to a ‘fully-pipelined’ implementation. On the right, there is
task with a very different architecture, reading a block of four pieces of input data, processing it,
and then producing a block of four output samples after some time. This architecture has the
same latency and interval (13 cycles) and can only process one task at a time. This behavior is in
contrast to the behavior of the pipelined design on the left, which has multiple tasks executing at
any given instant of time. Pipelining in HLS is very similar to the concept of instruction pipelines
in a microprocessor. However, instead of using a simple 5-stage pipeline where the results of an
operation are usually written back to the register file before being executed on again, the Vivado R©

HLS tool constructs a circuit that is customized to run a particular program on a particular FPGA
device. The tool optimizes the number of pipeline stages, the initiation interval (the time between
successive data provided to the pipeline – similar to the task interval), the number and types of
functional units and their interconnection based on a particular program and the device that is
being targeted.

The Vivado R© HLS tool counts cycles by determining the maximum number of registers between
any input and output of a task. Thus, it is possible for a design to have a task latency of zero cycles,
corresponding to a combinational circuit which has no registers in any path from input to output.
Another convention is to count the input and/or output as a register and then find the maximum
registers on any path. This would result in a larger number of cycles. We use the Vivado R© HLS
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convention throughout this book.

Note that many tools report the task interval as “throughput”. This terminology is some-
what counterintuitive since a longer task interval almost inevitably results in fewer tasks being
completed in a given time and thus lower data rates at the interfaces. Similarly, many tools
use “latency” to describe a relationship between reading inputs and writing outputs. Unfor-
tunately, in designs with complex behavior and multiple interfaces, it is hard to characterize
tasks solely in terms of inputs and outputs, e.g., a task may require multiple reads or writes
from a memory interface.

1.4.2 Area/Throughput Tradeoffs

In order to better discuss some of the challenges that one faces when using an HLS tool, let’s
consider a simple yet common hardware function – the finite impulse response (FIR) filter. An
FIR performs a convolution on an input sequence with a fixed set of coefficients. An FIR is quite
general – it can be used to perform different types of filter (high pass filter, low pass, band pass,
etc.). Perhaps the most simple example of an FIR is a moving average filter. We will talk more
background on FIR in Chapter 2 and describe many specific optimizations that can be done using
HLS. But in the meantime just consider its implementation at a high level.

The C code in Figure 1.8 provides a functional or task description for HLS; this can be directly
used as input to the Vivado R© HLS tool, which will analyze it and produce a functionally equivalent
RTL circuit. This is a complex process, and we will not get into much detail about this now, but
think of it as a compiler like gcc. Yet instead of outputting assembly code, the HLS “compiler”
creates an RTL hardware description. In both cases, it is not necessary to understand exactly how
the compiler works. This is exactly why we have the compiler in the first place – to automate
the design process and allow the programmer/designer to work at a higher level of abstraction.
Yet at the same time, someone that knows more about how the compiler works will often be able
to write more efficient code. This is particularly important for writing HLS code since there are
many options for synthesizing the design that are not typically obvious to one that only knows
the “software” flow. For example, ideas like custom memory layout, pipelining, and different I/O
interfaces are important for HLS, but not for a “software compiler”. These are the concepts that
we focus on in this book.

A key question to understand is: “What circuit is generated from this code?”. Depending on
your assumptions and the capabilities of a particular HLS tool, the answer can vary widely. There
are multiple ways that this could be synthesized by an HLS tool.

One possible circuit would execute the code sequentially, as would a simple RISC microprocessor.
Figure 1.9 shows assembly code for the Xilinx Microblaze processor which implements the C code
in Figure 1.8. Although this code has been optimized, many instructions must still be executed to
compute array index expressions and loop control operations. If we assume that a new instruction
can be issued each clock cycle, then this code will take approximately 49 clock cycles to compute
one output sample of the filter. Without going into the details of how the code works, we can see
that one important barrier to performance in this code is how many instructions can be executed
in each clock cycle. Many improvements in computer architecture are fundamentally attempts
to execute more complex instructions that do more useful work more often. One characteristic
of HLS is that architectural tradeoffs can be made without needing to fit in the constraints of
an instruction set architecture. It is common in HLS designs to generate architectures that issue
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#define NUM TAPS 4

void fir(int input, int ∗output, int taps[NUM TAPS])
{

static int delay line[NUM TAPS] = {};

int result = 0;
for (int i = NUM TAPS − 1; i > 0; i−−) {

delay line[i] = delay line[i − 1];
}
delay line[0] = input;

for (int i = 0; i < NUM TAPS; i++) {
result += delay line[i] ∗ taps[i];
}

∗output = result;
}

Figure 1.8: Code for a four tap FIR filter.

hundreds or thousands of RISC-equivalent instructions per clock with pipelines that are hundreds
of cycles deep.

By default, the Vivado R© HLS tool will generate an optimized, but largely sequential archi-
tecture. In a sequential architecture, loops and branches are transformed into control logic that
enables the registers, functional units, and the rest of the data path. Conceptually, this is similar
to the execution of a RISC processor, except that the program to be executed is converted into a
finite state machine in the generated RTL rather than being fetched from the program memory. A
sequential architecture tends to limit the number of functional units in a design with a focus on re-
source sharing over massive parallelism. Since such an implementation can be generated from most
programs with minimal optimization or transformation, this makes it easy for users to get started
with HLS. One disadvantage of a sequential architecture is that analyzing and understanding data
rates is often difficult since the control logic can be complex. The control logic dictates the number
of cycles for the task interval and task latencies. The control logic can be quite complex, making
it difficult to analyze. In addition, the behavior of the control logic may also depend on the data
being processed, resulting in performance that is data-dependent.

However, the Vivado R© HLS tool can also generate higher performance pipelined and paral-
lel architectures. One important class of architectures is called a function pipeline. A function
pipeline architecture is derived by considering the code within the function to be entirely part of a
computational data path, with little control logic. Loops and branches in the code are converted
into unconditional constructs. As a result, such architectures are relatively simple to characterize,
analyze, and understand and are often used for simple, high data rate designs where data is pro-
cessed continuously. Function pipeline architectures are beneficial as components in a larger design
since their simple behavior allows them to be resource shared like primitive functional units. One
disadvantage of a function pipeline architecture is that not all code can be effectively parallelized.

The Vivado R© HLS tool can be directed to generate a function pipeline by placing the
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fir:
.frame r1,0,r15 # vars= 0, regs= 0, args= 0
.mask 0x00000000
addik r3,r0,delay line.1450
lwi r4,r3,8 # Unrolled loop to shift the delay line
swi r4,r3,12
lwi r4,r3,4
swi r4,r3,8
lwi r4,r3,0
swi r4,r3,4
swi r5,r3,0 # Store the new input sample into the delay line
addik r5,r0,4 # Initialize the loop counter
addk r8,r0,r0 # Initialize accumulator to zero
addk r4,r8,r0 # Initialize index expression to zero
$L2:
muli r3,r4,4 # Compute a byte offset into the delay line array
addik r9,r3,delay line.1450
lw r3,r3,r7 # Load filter tap
lwi r9,r9,0 # Load value from delay line
mul r3,r3,r9 # Filter Multiply
addk r8,r8,r3 # Filter Accumulate
addik r5,r5,−1 # update the loop counter
bneid r5,$L2
addik r4,r4,1 # branch delay slot, update index expression

rtsd r15, 8
swi r8,r6,0 # branch delay slot, store the output
.end fir

In

Out

load
store

branch

Figure 1.9: RISC-style assembly generated from the C code in Figure 1.8, targetting the Xilinx
Microblaze processor. This code is generated using microblazeel-xilinx-linux-gnu-gcc -O1

-mno-xl-soft-mul -S fir.c
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Figure 1.10: A “one tap per clock” architecture for an FIR filter. This architecture can be imple-
mented from the code in Figure 1.8.
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Figure 1.11: A “one sample per clock” architecture for an FIR filter. This architecture can be
implemented from the code in Figure 1.8 using function pipeline.
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#pragma HLS pipeline directive in the body of a function. This directive takes a parameter
that can be used to specify the initiation interval of the the pipeline, which is the same as a
task interval for a function pipeline. Figure 1.10 shows one potential design – a “one tap per
clock” architecture, consisting of a single multiplier and single adder to compute the filter. This
implementation has a task interval of 4 and a task latency of 4. This architecture can take a
new sample to filter once every 4 cycles and will generate a new output 4 cycles after the input
is consumed. The implementation in Figure 1.11 shows a “one sample per clock” architecture,
consisting of 4 multipliers and 3 adders. This implementation has a task interval of 1 and a task
latency of 1, which in this case means that the implementation accept a new input value every
cycle. Other implementations are also possible, such as architectures with “two taps per clock”
or “two samples per clock”, which might be more appropriate for a particular application. We
discuss more ways to optimize the FIR function in depth in Chapter 2.

In practice, complex designs often include complicated tradeoffs between sequential architectures
and parallel architectures, in order to achieve the best overall design. In Vivado R© HLS, these
tradeoffs are largely controlled by the user, through various tool options and code annotations,
such as #pragma directive.

What would the task interval of a “two taps per clock” architecture for a 4 tap filter be?
What about for a “two samples per clock” architecture?

1.4.3 Restrictions on Processing Rate

As we have seen, the task interval of a design can be changed by selecting different kinds of
architectures, often resulting in a corresponding increase in the processing rate. However, it is
important to realize that the task interval of any processing architecture is fundamentally limited
in several ways. The most important limit arises from recurrences or feedback loops in a design.
The other key limitation arises from resource limits.

A recurrence is any case where a computation by a component depends on a previous computa-
tion by the same component. A key concept is that recurrences fundamentally limit the throughput
of a design, even in the presence of pipelining [56, 43]. As a result, analyzing recurrences in algo-
rithms and generating hardware that is guaranteed to be correct is a key function of an HLS tool.
Similarly, understanding algorithms and selecting those without tight recurrences is a important
part of using HLS (and, in fact, parallel programming in general).

Recurrences can arrive in different coding constructs, such as static variables (Figure 1.8), se-
quential loops (Figure 1.10). Recurrences can also appear in a sequential architecture and disappear
when pipelining is applied (as in Figures 1.10 and 1.11). In other cases, recurrences can exist with-
out limiting the throughput of a sequential architecture, but can become problematic when the
design is pipelined.

Another key factor that can limit processing rate are resource limitations. One form of resource
limitation is associated with the wires at the boundary of a design, since a synchronous circuit
can only capture or transmit one bit per wire per clock cycle. As a result, if a function with the
signature int32 t f(int32 t x); is implemented as a single block at 100 MHz with a task interval of 1,
then the most data that it can process is 3.2 Gbits/sec. Another form of resource limitation arises
from memories since most memories only support a limited number of accesses per clock cycle. Yet
another form of resource limitation comes from user constraints. If a designer limits the number of
operators that can instantiated during synthesis, then this places a limit on the processing rate of
the resulting design.
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#include ”block fir.h”

void block fir(int input[256], int output[256], int taps[NUM TAPS],
int delay line[NUM TAPS]) {

int i, j;
for (j = 0; j < 256; j++) {

int result = 0;
for (i = NUM TAPS − 1; i > 0; i−−) {

#pragma HLS unroll
delay line[i] = delay line[i − 1];

}
delay line[0] = input[j];

for (i = 0; i < NUM TAPS; i++) {
#pragma HLS pipeline
result += delay line[i] ∗ taps[i];

}
output[j] = result;

}
}

Figure 1.12: Alternative code implementing an FIR filter.

1.4.4 Coding Style

Another key question you should ask yourself is, “Is this code the best way to capture the algo-
rithm?”. In many cases, the goal is not only the highest quality of results, but maintainable and
modifiable code. Although this is somewhat a stylistic preference, coding style can sometimes limit
the architectures that a HLS tool can generate from a particular piece of code.

For instance, while a tool might be able to generate either architecture in Figure 1.11 or 1.10
from the code in Figure 1.8, additing additional directives as shown in Figure 1.12 would result in a
specific architecture. In this case the delay line is explicitly unrolled, and the multiply-accumulate
for loop is stated to be implemented in a pipelined manner. This would direct the HLS tool to
produce an architecture that looks more like the pipelined one in Figure 1.11.

The chapter described how to build filters with a range of different processing rates, up to
one sample per clock cycle. However, many designs may require processing data at a higher
rate, perhaps several samples per clock cycle. How would you code such a design? Implement
a 4 samples per clock cycle FIR filter. How many resources does this architecture require (e.g.,
number of multipliers and adders)? Which do you think will use more FPGA resources: the 4
samples per clock or the 1 sample per clock cycle design?

We look further into the optimization of an FIR function in more detail in Chapter 2. We
discuss how to employ different optimizations (pipelining, unrolling, bitwidth optimization, etc.),
and describe their effects on the performance and resource utilization of the resulting generated
architectures.
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1.5 Restructured Code

Writing highly optimized synthesizable HLS code is often not a straightforward process. It involves
a deep understanding of the application at hand, the ability to change the code such that the
Vivado R© HLS tool creates optimized hardware structures and utilizes the directives in an effective
manner.

Throughout the rest of the book, we walk through the synthesis of a number of different appli-
cation domains – including digital signal processing, sorting, compression, matrix operations, and
video processing. In order to get the most efficient architecture, it is important to have a deep
understanding of the algorithm. This enables optimizations that require rewriting the code rather
than just adding synthesis directives – a processing that we call code restructuring.

Restructured code maps well into hardware, and often represents the eccentricities of the tool
chain, which requires deep understanding of micro-architectural constructs in addition to the al-
gorithmic functionality. Standard, off-the-shelf code typically yields very poor quality of results
that are orders of magnitude slower than CPU designs, even when using HLS directives such as
pipelining, unrolling, and data partitioning. Thus, it is important to understand how to write code
that the Vivado R© HLS will synthesize in an optimal manner.

Restructured code typically differs substantially from a software implementation – even one
that is highly optimized. A number of studies suggest that restructuring code is an essential
step to generate an efficient FPGA design [46, 47, 15, 14, 39]. Thus, in order to get an efficient
hardware design, the user must write restructured code with the underlying hardware architecture
in mind. Writing restructured code requires significant hardware design expertise and domain
specific knowledge.

Throughout the rest of this book, we go through a number of different applications, and show
how to restructure the code for a more efficient hardware design. We present applications such
as finite impulse response (FIR), discrete Fourier transform (DFT), fast Fourier transform (FFT),
sparse matrix vector multiply (SpMV), matrix multiplication, sorting, and Huffman encoding. We
discuss the impact of restructured code on the final hardware generated from high-level synthesis.
And we propose a restructuring techniques based on best practices. In each chapter, we aim to:

1. Highlight the importance of restructuring code to obtain FPGA designs with good quality of
result, i.e., a design that has high performance and low area usage;

2. Provide restructured code for common applications;

3. Discuss the impact of the restructuring on the underlying hardware; and

4. Perform the necessary HLS directives to achieve the best design

Throughout the book, we use example applications to show how to move from a baseline imple-
mentation and restructure the code to provide more efficient hardware design. We believe that the
optimization process is best understood through example. Each chapter performs a different set of
optimization directives including pipelining, dataflow, array partitioning, loop optimizations, and
bitwidth optimization. Additionally, we provide insight on the skills and knowledge necessary to
perform the code restructuring process.

1.6 Book Organization

We organized this book to teach by example. Each chapter presents an application (or application
domain) and walks through its implementation using different HLS optimizations. Generally, each
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chapter focuses on a limited subset of optimization techniques. And the application complexity
generally increases in the later chapters. We start with a relatively simple to understand finite
impulse response (FIR) filter in Chapter 2 and move on to implement complete video processing
systems in Chapter 9.

There are of course benefits and drawbacks to this approach. The benefits are: 1) the reader
can see how the optimizations are directly applicable to an application, 2) each application provides
an exemplar of how to write HLS code, and 3) while simple to explain, toy examples can be hard
to generalize and thus do not always make the best examples.

The drawbacks to the teach by example approach are: 1) most applications requires some
background to give the reader a better understanding of the computation being performed. Truly
understanding the computation often necessitates an extensive discussion on the mathematical
background on the application. For example, implementing the best architecture for the fast
Fourier transform (FFT) requires that the designer have deep understanding of the mathematical
concepts behind a discrete Fourier transform (DFT) and FFT. Thus, some chapters, e.g., Chapter
4 (DFT) and Chapter 5 (FFT), start with a non-trivial amount of mathematical discussion. This
may be off-putting to a reader simply looking to understand the basics of HLS, but we believe that
such a deep understanding is necessary to understand the code restructuring that is necessary to
achieve the best design. 2) some times a concept could be better explained by a toy example that
abstracts away some of the non-important application details.

The organization for each chapter follows the same general pattern. A chapter begins by provid-
ing a background on the application(s) under consideration. In many cases, this is straightforward,
e.g., it is not too difficult to explain matrix multiplication (as in Chapter 7) while the DFT requires
a substantial amount of discussion (Chapter 4). Then, we provide a baseline implementation – a
functionally correct but unoptimized implementation of the application using Vivado R© HLS. After
that, we perform a number of different optimizations. Some of the chapters focus on a small number
of optimizations (e.g., Chapter 3 emphasizes bitwidth optimizations) while others look at a broad
range of optimizations (e.g., Chapter 2 on FIR filters). The key optimizations and design meth-
ods are typically introduced in-depth in one chapter and then used repeatedly in the subsequent
chapters.

The book is made to be read sequentially. For example, Chapter 2 introduces most of the
optimizations and the later chapters provide more depth on using these optimizations. The ap-
plications generally get more complex throughout the book. However, each chapter is relatively
self-contained. Thus, a more advanced HLS user can read an individual chapter if she only cares
to understand a particular application domain. For example, a reader interested in generating a
hardware accelerated sorting engine can look at Chapter 10 without necessarily have to read all of
the previous chapters. This is another benefit of our teach by example approach.

Table 1.1 provides an overview of the types of optimization and the chapters where they are
covered in at least some level of detail. Chapter 2 provides a gentle introduction the HLS design
process. It overviews several different optimizations, and shows how they can be used in the
optimization of a FIR filter. The later chapters go into much more detail on the benefits and usage
of these optimizations.

The next set of chapters (Chapters 3 through 5) build digital signal processing blocks (CORDIC,
DFT, and FFT). Each of these chapters generally focuses on one optimization: bitwidth optimiza-
tion (Chapter 3), array optimizations (Chapter 4, and task pipelining (Chapter 5). For example,
Chapter 3 gives an in-depth discussion on how to perform bitwidth optimizations on the CORDIC
application. Chapter 4 provides an introduction to array optimizations, in particular, how to per-
form array partitioning in order to increase the on-chip memory bandwidth. This chapter also talks
about loop unrolling and pipelining, and the need to perform these three optimizations in concert.
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Table 1.1: A map describing the types of HLS optimizations and the chapters that discuss the
concepts beyond them.
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Loop Unrolling X X X X X X
Loop Pipelining X X X X X X X X

Bitwidth Optimization X X X
Function Inlining X X

Hierarchy X X X X X X
Array Optimizations X X X X X X X X

Task Pipelining X X X X X
Testbench X X X X

Co-simulation X
Streaming X X X
Interfacing X

Chapter 5 describes the optimizations of the FFT, which itself is a major code restructuring of
the DFT. Thus, the chapter gives a background on how the FFT works. The FFT is a staged
algorithm, and thus highly amenable to task pipelining. The final optimized FFT code requires a
number of other optimizations including loop pipelining, unrolling, and array optimizations. Each
of these chapters is paired with a project from the Appendix. These projects lead the design
and optimization of the blocks, and the integration of these blocks into wireless communications
systems.

Chapters 6 through 11 provide a discussion on the optimization of more applications. Chapter
6 describes how to use a testbench and how to perform RTL co-simulation. It also describes array
and loop optimizations; these optimizations are common and thus are used in the optimization
of many applications. Chapter 7 introduces the streaming optimization for data flow between
tasks. Chapter 8 presents two applications (prefix sum and histogram) that are relatively simple,
but requires careful code restructuring in order to create the optimal architecture. Chapter 9
talks extensively about how to perform different types interfacing, e.g., with a video stream using
different bus and memory interfaces. As the name implies, the video streaming requires the use of
the stream primitive, and extensive usage of loop and array optimizations. Chapter 10 goes through
a couple of sorting algorithms. These require a large number of different optimizations. The final
chapter creates a complex data compression architecture. It has a large number of complex blocks
that work on a more complex data structure (trees).
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Chapter 2

Finite Impulse Response (FIR) Filters

2.1 Overview

Finite Impulse Response (FIR) filters are commonplace in digital signal processing (DSP) applica-
tions – they are perhaps the most widely used operation in this domain. They are well suited for
hardware implementation since they can be implemented as a highly optimized architecture. A key
property is that they are a linear transform on contiguous elements of a signal. This maps well to
data structures (e.g., FIFOs or tap delay lines) that can be implemented efficiently in hardware.
In general, streaming applications tend to map well to FPGAs, e.g., most of the examples that we
present throughout the book have some sort of streaming behavior.

Two fundamental uses for a filter are signal restoration and signal separation. Signal separation
is perhaps the more common use case: here one tries to isolate the input signal into different parts.
Typically, we think of these as different frequency ranges, e.g., we may want perform a low pass
filter in order remove high frequencies that are not of interest. Or we may wish to perform a band
pass filter to determine the presence of a particular frequency in order to demodulate it, e.g., for
isolating tones during frequency shift keying demodulation. Signal restoration relates to removing
noise and other common distortion artifacts that may have been introduced into the signal, e.g.,
as data is being transmitted across the wireless channel. This includes smoothing the signal and
removing the DC component.

Digital FIR filters often deal with a discrete signal generated by sampling a continuous signal.
The most familiar sampling is performed in time, i.e., the values from a signal are taken at discrete
instances. These are most often sampled at regular intervals. For instance, we might sample the
voltage across an antenna at a regular interval with an analog-to-digital converter. Alternatively we
might sample the current created by a photo-diode to determine the light intensity. Alternatively,
samples may be taken in space. For instance, we might sample the value of different locations in
an image sensor consisting of an array of photo-diodes to create a digital image. More in-depth
descriptions of signals and sampling can be found in [41].

The format of the data in a sample changes depending upon the application. Digital communi-
cations often uses complex numbers (in-phase and quadrature or I/Q values) to represent a sample.
Later in this chapter we will describe how to design a complex FIR filter to handle such data. In
image processing we often think of a pixel as a sample. A pixel can have multiple fields, e.g., red,
green, and blue (RGB) color channels. We may wish to filter each of these channels in a different
way again depending upon the application.

The goal of this chapter is to provide a basic understanding of the process of taking an algorithm
and creating a good hardware design using high-level synthesis. The first step in this process
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is always to have a deep understanding of the algorithm itself. This allows us to make design
optimizations like code restructuring much more easily. The next section provides an understanding
of the FIR filter theory and computation. The remainder of the chapter introduces various HLS
optimizations on the FIR filter. These are meant to provide an overview of these optimizations.
Each of them will described in more depth in subsequent chapters.

2.2 Background

The output signal of a filter given an impulse input signal is its impulse response. The impulse
response of a linear, time invariant filter contains the complete information about the filter. As
the name implies, the impulse response of an FIR filter (a restricted type of linear, time invariant
filter) is finite, i.e., it is always zero far away from zero. Given the impulse response of an FIR filter,
we can compute the output signal for any input signal through the process of convolution. This
process combines samples of the impulse response (also called coefficients or taps) with samples of
the input signal to compute samples of the output signal. The output of filter can be computed
in other ways (for instance, in the frequency domain), but for the purposes of this chapter we will
focus on computing in the time domain.

The convolution of an N-tap FIR filter with coefficients h[] with an input signal x[] is described
by the general difference equation:

y[i] =
N−1∑
j=0

h[j] · x[i− j] (2.1)

Note that to compute a single value of the output of an N-tap filter requires N multiplies and N-1
additions.

Moving average filters are a simple form of lowpass FIR filter where all the coefficients are
identical and sum to one. For instance in the case of the three point moving filter, the coefficients
are h = [1

3 ,
1
3 ,

1
3 ]. It is also called a box car filter due to the shape of its convolution kernel.

Alternatively, you can think of a moving average filter as taking the average of several adjacent
samples of the input signal and averaging them together. We can see that this equivalence by
substituting 1/N for h[j] in the convolution equation above and rearranging to arrive at the familiar
equation for an average of N elements:

y[i] =
1

N

N−1∑
j=0

x[i− j] (2.2)

Each sample in the output signal can be computer by the above equation using N −1 additions
and one final multiplication by 1/N . Even the final multiplication can often be regrouped and
merged with other operations. As a result, moving average filters are simpler to compute than a
general FIR filter. Specifically, when N = 3 we perform this operation to calculate y[12]:

y[12] =
1

3
· (x[12] + x[11] + x[10]) (2.3)

This filter is causal , meaning that the output is a function of no future values of the input. It is
possible and common to change this, for example, so that the average is centered on the current
sample, i.e., y[12] = 1

3 · (x[11] + x[12] + x[13]). While fundamentally causality is an important
property for system analysis, it is less important for a hardware implementation as a finite non-
causal filter can be made causal with buffering and/or reindexing of the data.
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Moving average filters can be used to smooth out a signal, for example to remove random (mostly
high frequency) noise. As the number of taps N gets larger, we average over a larger number of
samples, and we correspondingly must perform more computations. For a moving average filter,
larger values of N correspond to reducing the bandwidth of the output signal. In essence, it is acting
like a low pass filter (though not a very optimal one). Intuitively, this should make sense. As we
average over larger and larger number of samples, we are eliminating higher frequency variations
in the input signal. That is, “smoothing” is equivalent to reducing higher frequencies. The moving
average filter is optimal for reducing white noise while keeping the sharpest step response, i.e., it
creates the lowest noise for a given edge sharpness.

Note that in general, filter coefficients can be crafted to create many different kinds of filters:
low pass, high pass, band pass, etc.. In general, a larger value of number of taps provides more
degrees of freedom when designing a filter, generally resulting in filters with better characteristics.
There is substantial amount of literature devoted to generating filter coefficients with particular
characteristics for a given application. When implementing a filter, the actual values of these
coefficients are largely irrelevant and we can ignore how the coefficients themselves were arrived
at. However, as we saw with the moving average filter, the structure of the filter, or the particular
coefficients can have a large impact on the number of operations that need to be performed. For
instance, symmetric filters have multiple taps with exactly the same value which can be grouped to
reduce the number of multiplications. In other cases, it is possible to convert the multiplication by
a known constant filter coefficient into shift and add operations [34]. In that case, the values of the
coefficients can drastically change the performance and area of the filter implementation [52]. But
we will ignore that for the time being, and focus on generating architectures that have constant
coefficients, but do not take advantage of the values of the constants.

2.3 Base FIR Architecture

Consider the code for an 11 tap FIR filter in Figure 2.1. The function takes two arguments, an
input sample x, and the output sample y. This function must be called multiple times to compute
an entire output signal, since each time that we execute the function we provide one input sample
and receive one output sample. This code is convenient for modeling a streaming architecture,
since we can call it as many times as needed as more data becomes available.

The coefficients for the filter are stored in the c[] array declared inside of the function. These
are statically defined constants. Note that the coefficients are symmetric. i.e., they are mirrored
around the center value c[5] = 500. Many FIR filter have this type of symmetry. We could take
advantage of it in order to reduce the amount of storage that is required for the c[] array.

The code uses typedef for the different variables. While this is not necessary, it is convenient
for changing the types of data. As we discuss later, bit width optimization – specifically setting
the number of integer and fraction bits for each variable – can provide significant benefits in terms
of performance and area.

Rewrite the code so that it takes advantage of the symmetry found in the coefficients. That
is, change c[] so that it has six elements (c[0] through c[5]). What changes are necessary in
the rest of the code? How does this effect the number of resources? How does it change the
performance?

The code is written as a streaming function. It receives one sample at a time, and therefore
it must store the previous samples. Since this is an 11 tap filter, we must keep the previous 10
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#define N 11
#include ”ap int.h”

typedef int coef t;
typedef int data t;
typedef int acc t;

void fir(data t ∗y, data t x) {
coef t c[N] = {

53, 0, −91, 0, 313, 500, 313, 0, −91, 0, 53
};
static
data t shift reg[N];

acc t acc;
int i;

acc = 0;
Shift Accum Loop:
for (i = N − 1; i >= 0; i−−) {

if (i == 0) {
acc += x ∗ c[0];
shift reg[0] = x;

} else {
shift reg[i] = shift reg[i − 1];
acc += shift reg[i] ∗ c[i];

}
}
∗y = acc;

}

Figure 2.1: A functionally correct, but highly unoptimized, implementation of an 11 tap FIR filter.
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samples. This is the purpose of the shift reg[] array. This array is declared static since the data
must be persistent across multiple calls to the function.

The for loop is doing two fundamental tasks in each iteration. First, it performs the multiply
and accumulate operation on the input samples (the current input sample x and the previous input
samples stored in shift reg[]). Each iteration of the loop performs a multiplication of one of the
constants with one of the sample, and stores the running sum in the variable acc. The loop is
also shifting values through shift array, which works as a FIFO. It stores the input sample x into
shift array[0], and moves the previous elements “up” through the shift array:

shift array[10] = shift array[9]
shift array[9] = shift array[8]
shift array[8] = shift array[7]
· · ·
shift array[2] = shift array[1]
shift array[1] = shift array[0]
shift array[0] = x

The label Shift Accum Loop: is not necessary. However it can be useful for debugging. The
Vivado R© HLS tool adds these labels into the views of the code.

After the for loop completes, the acc variable has the complete result of the convolution of the
input samples with the FIR coefficient array. The final result is written into the function argument
y which acts as the output port from this fir function. This completes the streaming process for
computing one output value of an FIR.

This function does not provide an efficient implementation of a FIR filter. It is largely sequential,
and employs a significant amount of unnecessary control logic. The following sections describe a
number of different optimizations that improve its performance.

2.4 Calculating Performance

Before we get into the optimizations, it is necessary to define precise metrics. When deriving
the performance of a design, it is important to carefully state the metric. For instance, there
are many different ways of specifying how “fast” your design runs. For example, you could say
that it operates at X bits/second. Or that it can perform Y operations/sec. Other common
performance metrics specifically for FIR filters talk about the number of filter operations/second.
Yet another metric is multiply accumulate operations: MACs/second. Each of these are related
to one another, in some manner, but when comparing different implementations it is important to
compare apples to apples. For example, directly comparing one design using bits/second to another
using filter operations/second can be misleading; fully understanding the relative benefits of the
designs requires that we compare them using the same metric. And this may require additional
information, e.g., going from filter operations/second to bits/second requires information about the
size of the input and output data.

All of the aforementioned metrics use seconds. High-level synthesis tools talk about the designs
in terms of number of cycles, and the frequency of the clock. The frequency is inversely proportional
to the time it takes to complete one clock cycle. Using them both gives us the amount of time
in seconds to perform some operation. The number of cycles and the clock frequency are both
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important: a design that takes one cycle, but with a very low frequency is not necessary better
than another design that takes 10 clock cycles but operates at a much higher frequency.

The clock frequency is a complicated function that the Vivado R© HLS tool attempts to optimize
alongside the number of cycles. Note that it is possible to specify a target frequency to the
Vivado R© HLS tool. This is done using the create clock tcl command. For example, the command
create clock −period 5 directs the tool to target a clock period of 5 ns and equivalently a clock
frequency of 200 MHz. Note that this is only a target clock frequency only and primarily affects
how much operation chaining is performed by the tool. After generating RTL, the Vivado R© HLS
tool provides an initial timing estimate relative to this clock target. However, some uncertainty
in the performance of the circuit remains which is only resolved once the design is fully place and
routed.

While achieving higher frequencies are often critical for reaching higher performance, increasing
the target clock frequency is not necessarily optimal in terms of an overall system. Lower frequencies
give more leeway for the tool to combine multiple dependent operations in a single cycle, a process
called operation chaining . This can sometimes allow higher performance by enabling improved
logic synthesis optimizations and increasing the amount of code that can fit in a device. Improved
operation chaining can also improve (i.e., lower) the initiation interval of pipelines with recurrences.
In general providing a constrained, but not over constrained target clock latency is a good option.
Something in the range of 5 − 10 ns is typically a good starting option. Once you optimize your
design, you can vary the clock period and observe the results. We will describe operation chaining
in more detail in the next section.

Because Vivado R© HLS deals with clock frequency estimates, it does include some margin to
account for the fact that there is some error in the estimate. The goal of this margin is to ensure
enough timing slack in the design that the generated RTL can be successfully placed and routed.
This margin can be directly controlled using the set clock uncertainty TCL command. Note that
this command only affects the HLS generated RTL and is different from the concept of clock
uncertainty in RTL-level timing constraints. Timing constraints generated by Vivado R© HLS for
the RTL implementation flow are solely based on the target clock period.

It is also necessary to put the task that you are performing in context with the performance
metric that you are calculating. In our example, each execution of the fir function results in one
output sample. But we are performing N = 11 multiply accumulate operations for each execution
of fir. Therefore, if your metric of interest is MACs/second, you should calculate the task latency
for fir in terms of seconds, and then divide this by 11 to get the time that it takes to perform the
equivalent of one MAC operation.

Calculating performance becomes even more complicated as we perform pipelining and other
optimizations. In this case, it is important to understand the difference between task interval and
task latency. It is a good time to refresh your understanding of these two metrics of performance.
This was discussed in Chapter 1.4. And we will continue to discuss how different optimizations
effect different performance metrics.

2.5 Operation Chaining

Operation chaining is an important optimization that the Vivado R© HLS performs in order to
optimize the final design. It is not something that a designer has much control over, but it is
important that the designer understands how this works especially with respect to performance.
Consider the multiply accumulate operation that is done in a FIR filter tap. Assume that the add
operation takes 2 ns to complete, and a multiply operation takes 3 ns. If we set the clock period to 1
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Figure 2.2: The performance of multiply accumulate operation changes depending upon the target
clock period. Assume the multiply operation takes 3 ns and add operation takes 2 ns. Part a)
has a clock period of 1 ns, and one MAC operation takes 5 cycles. Thus the performance is 200
million MACs/sec. Part b) has a clock period of 2 ns, and the MAC takes 3 cycles resulting in
approximately 167 million MACs/sec. Part c) has a clock period of 5 ns. By using operation
chaining, a MAC operation takes 1 cycle for a clock period of 200 million MACs/sec.

ns (or equivalently a clock frequency of 1 GHz), then it would take 5 cycles for the MAC operation
to complete. This is depicted in Figure 2.2 a). The multiply operation is executed over 3 cycles,
and the add operation is executed across 2 cycles. The total time for the MAC operation is 5 cycles
× 1 ns per cycle = 5 ns. Thus we can perform 1/5 ns = 200 million MACs/second.

If we increase the clock period to 2 ns, the multiply operation now spans over two cycles, and
the add operation must wait until cycle 3 to start. It can complete in one cycle. Thus the MAC
operation requires 3 cycles, so 6 ns total to complete. This allows us to perform approximately 167
million MACs/second. This result is lower than the previous result with a clock period of 1 ns.
This can be explained by the “dead time” in cycle 2 where no operation is being performed.

However, it is not always true that increasing the clock period results in worse performance. For
example, if we set the clock period to 5 ns, we can perform both the multiply and add operation in
the same cycle using operation chaining. This is shown in Figure 2.2 c). Thus the MAC operation
takes 1 cycle where each cycle is 5 ns, so we can perform 200 million MACs/second. This is the
same performance as Figure 2.2 a) where the clock period is faster (1 ns).

So far we have performed chaining of only two operations in one cycle. It is possible to chain
multiple operations in one cycle. For example, if the clock period is 10 ns, we could perform 5 add
operations in a sequential manner. Or we could do two sequential MAC operations.

It should start to become apparent that the clock period plays an important role in how the
Vivado R© HLS tool optimizes the design. This becomes even more complicated with all of the other
optimizations that the Vivado R© HLS tool performs. It is not that important to fully understand
the entire process of the Vivado R© HLS tool. This is especially true since the tool is constantly
being improved with each new release. However, it is important to have a good idea about how the
tool may work. This will allow you to better comprehend the results, and even allow you to write
more optimized code.

Although the Vivado R© HLS can generate different different hardware for different target clock
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Shift Accum Loop:
for (i = N − 1; i > 0; i−−) {

shift reg[i] = shift reg[i − 1];
acc += shift reg[i] ∗ c[i];

}

acc += x ∗ c[0];
shift reg[0] = x;

Figure 2.3: Removing the conditional statement from the for loop creates a more efficient hardware
implementation.

periods, overall performance optimization and determining the optimal target clock period still
requires some creativity on the part of the user. For the most part, we advocate sticking within a
small subset of clock periods. For example, in the projects we suggest that you set the clock period
to 10 ns and focus on understanding how other optimizations, such as pipelining, can be used to
create different architectures. This 100 MHz clock frequency is relatively easy to achieve, yet it
is provides a good first order result. It is certainly possible to create designs that run at a faster
clock rate. 200 MHz and faster designs are possible but often require more careful balance between
clock frequency targets and other optimization goals. You can change the target clock period and
observe the differences in the performance. Unfortunately, there is no good rule to pick the optimal
frequency.

Vary the clock period for the base FIR architecture (Figure 2.1) from 10 ns to 1 ns in
increments of 1 ns. Which clock period provides the best performance? Which gives the best
area? Why do you think this is the case? Do you see any trends?

2.6 Code Hoisting

The if/else statement inside of the for loop is inefficient. For every control structure in the code, the
Vivado R© HLS tool creates logical hardware that checks if the condition is met, which is executed
in every iteration of the loop. Furthermore, this conditional structure limits the execution of the
statements in either the if or else branches; these statements can only be executed after the if
condition statement is resolved.

The if statement checks when x == 0, which happens only on the last iteration. Therefore, the
statements within the if branch can be “hoisted” out of the loop. That is we can execute these
statements after the loop ends, and then remove the if/else control flow in the loop. Finally, we
must change the loop bounds from executing the “0th” iteration. This transform is shown in Figure
2.3. This shows just the changes that are required to the for loop.

The end results is a much more compact implementation that is ripe for further loop optimiza-
tions, e.g., unrolling and pipelining. We discuss those optimizations later.

Compare the implementations before and after the removal of the if/else condition done
through loop hoisting. What is the difference in performance? How do the number of resources
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TDL:
for (i = N − 1; i > 0; i−−) {

shift reg[i] = shift reg[i − 1];
}
shift reg[0] = x;

acc = 0;
MAC:
for (i = N − 1; i >= 0; i−−) {

acc += shift reg[i] ∗ c[i];
}

Figure 2.4: A code snippet corresponding to splitting the for loop into two separate loops.

change?

2.7 Loop Fission

We are doing two fundamental operations within the for loop. The first part shifts the data through
the shift reg array. The second part performs the multiply and accumulate operations in order to
calculate the output sample. Loop fission takes these two operations and implements each of them
in their own loop. While it may not intuitively seem like a good idea, it allows us to perform
optimizations separately on each loop. This can be advantageous especially in cases when the
resulting optimizations on the split loops are different.

The code in Figure 2.4 shows the result of manual loop fission optimization. The code snippet
splits the loop from Figure 2.3 into two loops. Note the label names for the two loops. The first
is TDL and the second is MAC. Tapped delay line (TDL) is a common DSP term for the FIFO
operation; MAC is short-hand for “multiply accumulate”.

Compare the implementations before and after loop fission. What is the difference in
performance? How do the number of resources change?

Loop fission alone often does not provide a more efficient hardware implementation. However,
it allows each of the loops to be optimized independently, which could lead to better results than
optimizing the single, original for loop. The reverse is also true; merging two (or more) for loops
into one for loop may yield the best results. This is highly dependent upon the application, which
is true for most optimizations. In general, there is not a single ‘rule of thumb’ for how to optimize
your code. There are many tricks of the trade, and your mileage may vary. Thus, it is important
to have many tricks at your disposal, and even better, have a deep understanding of how the
optimizations work. Only then will you be able to create the best hardware implementation. Let
us continue to learn some additional tricks...
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TDL:
for (i = N − 1; i > 1; i = i − 2) {

shift reg[i] = shift reg[i − 1];
shift reg[i − 1] = shift reg[i − 2];

}
if (i == 1) {

shift reg[1] = shift reg[0];
}
shift reg[0] = x;

Figure 2.5: Manually unrolling the TDL loop in the fir11 function.

2.8 Loop Unrolling

By default, the Vivado R© HLS tool synthesizes for loops in a sequential manner. The tool creates
a data path that implements one execution of the statements in the body of the loop. The data
path executes sequentially for each iteration of the loop. This creates an area efficient architecture;
however, it limits the ability to exploit parallelism that may be present across loop iterations.

Loop unrolling replicates the body of the loop by some number of times (called the factor).
And it reduces the number of iterations of the loop by the same factor. In the best case, when none
of the statements in the loop depend upon any of the data generated in the previous iterations,
this can substantially increase the available parallelism, and thus enables an architecture that runs
much faster.

The first for loop (with the label TDL) in Figure 2.4 shifts the values up through the shift reg
array. The loop iterates from largest value (N−1) to the smallest value (i = 1). By unrolling this
loop, we can create a data path that executes a number of these shift operations in parallel.

Figure 2.5 shows the result of unrolling the loop by a factor of two. This code replicates the
loop body twice. Each iteration of the loop now performs two shift operations. Correspondingly,
we must perform half of the number of iterations.

Note that there is an additional if condition after the for loop. This is required in the case when
the loop does not have an even number of iterations. In this case, we must perform the last “half”
iteration by itself. The code in the if statement performs this last “half” iteration, i.e., moving the
data from shift reg[0] into shift reg[1].

Also note the effect of the loop unrolling on the for loop header. The decrement operation
changes from i−− to i=i−2. This is due to the fact that we are doing two times the “work” in each
iteration, thus we should decrement by 2 instead of 1.

Finally, the condition for terminating the for loop changes from i > 0 to i > 1. This is related
to the fact that we should make sure that the “last” iteration can fully complete without causing
an error. If the last iteration of the for loop executes when i = 1, then the second statement would
try to read from shift reg[−1]. Rather than perform this illegal operation, we do the final shift in
the if statement after the for loop.

Write the code corresponding to manually unrolling this TDL for loop by a factor of three.
How does this change the loop body? What changes are necessary to the loop header? Is the
additional code in the if statement after the for loop still necessary? If so, how is it different?
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Loop unrolling can increase the overall performance provided that we have the ability to execute
some (or all) of the statements in parallel. In the unrolled code, each iteration requires that we
read two values from the shift reg array; and we write two values to the same array. Thus, if we
wish to execute both statements in parallel, we must be able to perform two read operations and
two write operations from the shift reg array in the same cycle.

Assume that we store the shift reg array in one BRAM, and that BRAM has two read ports and
one write port. Thus we can perform two read operations in one cycle. But we must sequentialize
the write operations across two consecutive cycles.

There are ways to execute these two statements in one cycle. For example, we could store all of
the values of the shift reg array in separate registers. It is possible to read and write to each individ-
ual register on every cycle. In this case, we can perform both of the statements in this unrolled for
loop in one cycle. You can tell the Vivado R© HLS tool to put all of the values in the shift reg array
into registers using the directive #pragma HLS array partition variable=shift reg complete. This is
an important optimization, thus we discuss the array partition directive in more detail later.

A user can tell the Vivado R© HLS tool to automatically unroll the loop using the unroll directive.
To automatically perform the unrolling done manually in Figure 2.5, we should put the directive
#pragma HLS unroll factor=2 into the body of the code, right after the for loop header. While we
can always manually perform loop unrolling, it is much easier to allow the tool to do it for us. It
makes the code easier to read; and it will result in fewer coding errors.

Unroll the TDL for loop automatically using the unroll directive. As you increase the unroll
factor, how does this change the number of resources (FFs, LUTs, BRAMs, DSP48s, etc.)? How
does it effect the throughput? What happens when you use the array partition directive in
conjunction with the unroll directive? What happens if you do not use the unroll directive?

Now, consider the second for loop (with the label MAC) in Figure 2.4. This loop multiplies a
value from the array c[] with a value from the array shift array[]. In each iteration it accesses the
ith value from both arrays. And then it adds the result of that multiplication into the acc variable.

Each iteration of this loop performs one multiply and one add operation. Each iteration performs
one read operation from array shift reg[] and array c[]. The result of the multiplication of these two
values is accumulated into the variable acc.

The load and multiplication operations are independent across all of the iterations of the for
loop. The addition operation, depending on how it is implemented, may depend upon the values
of the previous iterations. However, it is possible to unroll this loop and remove this dependency.

Figure 2.6 shows the code corresponding to unrolling the MAC for loop by a factor of four. The
first for loop is the unrolled loop. The for loop header is modified in a similar manner to when we
unrolled the TDL loop. The bound is changed to i>=3, and i is decremented by a factor of 4 for
each iteration of the unrolled loop.

While there was loop carried dependency in the original, unrolled for, it is no longer present
in the unrolled loop. The loop carried dependency came due to the acc variable; since the result
of the multiply accumulate is written to this variable ever iteration, and we read from this register
in every iteration (to perform the running sum), it creates a read-after-write (RAW) dependency
across iterations. Note that there is not a dependency on the acc variable in the unrolled for loop
due to the way this is written. Thus we are free to parallelize the four individual MAC operations
in the unrolled for loop.

There is an additional for loop after the unrolled for loop. This is necessary to perform any
partial iterations. Just like we required the if statement in the TDL, this performs any computations
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acc = 0;
MAC:
for (i = N − 1; i >= 3; i −= 4) {

acc += shift reg[i] ∗ c[i] + shift reg[i − 1] ∗ c[i − 1] +
shift reg[i − 2] ∗ c[i − 2] + shift reg[i − 3] ∗ c[i − 3];

}

for (; i >= 0; i−−) {
acc += shift reg[i] ∗ c[i];

}

Figure 2.6: Manually unrolling the MAC loop in the fir11 function by a factor of four.

on a potential last iteration. This occurs when the number of iterations in the original, unrolled
for loop is not an even multiple of 4.

Once again, we can tell the Vivado R© HLS tool to automatically unroll the loop by a factor of
4 by inserting the code #pragma HLS unroll factor=4 into the MAC loop body.

By specifying the optional argument skip exit check in that directive, the Vivado R© HLS tool
will not add the final for loop to check for partial iterations. This is useful in the case when you
know that the loop will never require these final partial iterations. Or perhaps performing this
last few iterations does not have an (major) effect on the results, and thus it can be skipped. By
using this option, the Vivado R© HLS tool does not have to create that additional for loop. Thus
the resulting hardware is simpler, and more area efficient.

The for loop is completely unrolled when no factor argument is specified. This is equivalent to
unrolling by the maximum number of iterations; in this case a complete unrolling and unrolling
by a factor of 11 is equivalent. In both cases, the loop body is replicated 11 times. And the loop
header is unnecessary; there is no need to keep a counter or check if the loop exit condition is met.
In order to perform a complete unrolling, the bounds of the loop must be statically determined, i.e.,
the Vivado R© HLS tool must be able to know the number of iterations for the for loop at compile
time.

Complete loop unrolling exposes a maximal amount of parallelism at the cost of creating an
implementation that requires a significant amount of resources. Thus, it ok to perform a complete
loop unroll on “smaller” for loops. But completely unrolling a loop with a large number of iterations
(e.g., one that iterates a million times) is typically infeasible. Often times, the Vivado R© HLS tool
will run for a very long time (and many times fail to complete after hours of synthesis) if the
resulting loop unrolling creates code that is very large.

If you design does not synthesize in under 15 minutes, you should carefully consider the
effect of your optimizations. It is certainly possible that large designs can take a significant
amount for the Vivado R© HLS tool to synthesize them. But as a beginning user, your designs
should synthesize relatively quickly. If they take a long time, that most likely means that you
used some directives that significantly expanded the code, perhaps in a way that you did not
intend.
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Synthesize a number of designs by varying the unroll factor for the MAC loop. How does
the performance change? How does the unroll factor number affect the number of resources?
Compare these results with the trends that you found by unrolling the TDL.

2.9 Loop Pipelining

By default, the Vivado R© HLS tool synthesizes for loops in a sequential manner. For example, the
for loop in Figure 2.1 will perform each iteration of the loop one after the other. That is, all of the
statements in the second iteration happen only when all of the statements from the first iteration
are complete; the same is true for the subsequent iterations. This happens even in cases when it
is possible to perform statements from the iterations in parallel. In other cases, it is possible to
start some of the statements in a later iteration before all of the statements in a former iteration
are complete. This does not happen unless the designer specifically states that it should. This
motivates the idea of loop pipelining , which allows for multiple iterations of the loop to execute
concurrently.

Consider the MAC for loop from Figure 2.4. This performs one multiply accumulate (MAC)
operation per iteration. This MAC for loop has four operations in the loop body:

• Read c[]: Load the specified data from the C array.

• Read shift reg[]: Load the specified data from the shift reg array.

• ∗: Multiply the values from the arrays c[] and shift reg[].

• +: Accumulate this multiplied result into the acc variable.

A schedule corresponding to one iteration of the MAC for loop is shown in Figure 2.7 a). The
Read operations each require 2 cycles. This is due to the fact that the first cycle provides the
address to the memory, and the data from the memory is delivered during the second cycle. These
two Read operations can be done in parallel since there are no dependencies between them. The ∗
operation can begin in Cycle 2; assume that it takes three cycles to complete, i.e., it is finished is
Cycle 4. The + operation is chained to start and complete during Cycle 4. The entire body of the
MAC for loop takes 4 cycles to complete.

There are a number of performance metrics associated with a for loop. The iteration latency is
the number of cycles that it takes to perform one iteration of the loop body. The iteration latency
for this MAC for loop is 4 cycles. The for loop latency is the number of cycles required to complete
the entire execution of the loop. This includes time to calculate the initialization statement (e.g.,
i = 0), the condition statement (e.g., i >= 0), and the increment statement (e.g., i−−). Assuming
that these three header statements can be done in parallel with the loop body execution, the
Vivado R© HLS tool reports the latency of this MAC for loop as 44 cycles. This is the number of
iterations (11) multiplied by the iteration latency (4 cycles) plus one additional cycle to determine
that the loop should stop iterating. And then you subtract one. Perhaps the only strange thing
here is the “subtract 1”. We will get to that in a second. But first, there is one additional cycle
that is required at the beginning of the next iteration, which checks if the condition statement is
satisfied (it is not) and then exits the loop. Now the “subtract 1”: Vivado R© HLS determines the
latency as the cycle in which the output data is ready. In this case, the final data is ready during
Cycle 43. This would be written into a register at the end of Cycle 43 and correspondingly the
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Figure 2.7: Part a) shows a schedule for the body of the MAC for loop. Part b) shows the schedule
for three iterations of a pipelined version of the MAC for loop.
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beginning of Cycle 44. Another way to think of this is that the latency is equal to the maximum
number of registers between the input data and the output data.

Loop pipelining is an optimization that overlaps multiple iterations of a for loop. Figure 2.7
b) provides an example of pipelining for the MAC for loop. The figure shows three iterations of
the for which are executed simultaneously. The first iteration is equivalent the the non-pipelined
version as depicted in Figure 2.7 a). The difference is the start times of the subsequent iterations.
In the non-pipelined version, the second iteration begins after the first iteration is completed, i.e.,
in Cycle 5. However, the pipelined version can start the subsequent iteration before the previous
iterations complete. In the figure, Iteration 2 starts at Cycle 2, and Iteration 3 starts at Cycle
3. The remaining iterations start every consecutive cycle. Thus, the final iteration, Iteration 11,
would start at Cycle 11 and it would complete during Cycle 14. Thus, the loop latency is 14.

The loop initiation interval (II) is another important performance metric. It is defined as the
number of clock cycles until the next iteration of the loop can start. In our example, the loop II is
1, which means that we start a new iteration of the loop every cycle. This is graphically depicted
in Figure 2.7 b). The II can be explicitly set using the directive. For example, the directive
#pragma HLS pipeline II=2 informs the Vivado R© HLS tool to attempt to set the II=2. Note that
this may not always be possible due to resource constraints and/or dependencies in the code. The
output reports will tell you exact what the Vivado R© HLS tool was able to achieve.

Explicitly set the loop initiation interval starting at 1 and increasing in increments of 1
cycle. How does increasing the II effect the loop latency? What are the trends? At some point
setting the II to a larger value does not make sense. What is that value in this example? How
do you describe that value for a general for loop?

Any for loop can be pipelined, so let us now consider the TDL for loop. This for loop as a
similar header to the MAC for loop. The body of the loop performs an element by element shift of
data through the array as described in Section 2.3. There are two operations: one Read and one
Write to the shift reg array. The iteration latency of this loop is 2 cycles. The Read operation takes
two cycles, and the Write operation is performed at the end of Cycle 2. The for loop latency for
this non-pipelined loop is 20 cycles.

We can pipeline this loop by inserting the directive #pragma HLS pipeline II=1 after the loop
header. The result of the synthesis is a loop initiation interval equal to 1 cycle. This means that
we can start a loop iteration every cycle.

By modifying the example slightly, we can demonstrate a scenario where the resource con-
straints do not allow the Vivado R© HLS tool to achieve an II=1. To do this, we explicitly set
the type of memory for the shift reg array. By not specifying the resource, we leave it up to the
Vivado R© HLS tool to decide. But we can specify the memory using a directive, e.g., the direc-
tive #pragma HLS resource variable=shift reg core=RAM 1P forces the Vivado R© HLS tool to use
a single port RAM. When using this directive in conjunction with the loop pipelining objective,
the Vivado R© HLS tool will fail to pipeline this loop with an II=1. This is due to the fact that a
pipelined version of this code requires both a Read and Write operation in the same cycle. This is
not possible using a single port RAM. This is evident in Figure 2.8 b). Looking at Cycle 2, we re-
quire a Write operation to the array shift reg in Iteration 1, and a Read operation to the same array
in Iteration 2. We can modify the directive to allow HLS more scheduling freedom by removing the
explicit request for II=1, e.g. #pragma HLS pipeline. In this case, HLS will automatically increase
the initiation interval until it can find a feasible schedule.
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Figure 2.8: Part a) shows a schedule for two iterations of the body of the TDL for loop. Part b)
shows the schedule for three iterations of a pipelined version of the TDL for loop with II=1.
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The RESOURCE directive allows the user to force the Vivado R© HLS tool to map
an operation to a hardware core. This can be done on arrays (as shown above) and
also for variables. Consider the code a = b + c;. We can use the RESOURCE directive
#pragma HLS RESOURCE variable=a core=AddSub DSP to tell the Vivado R© HLS tool that
the add operation is implemented using a DSP48. There are a wide variety of cores described
in the Vivado R© HLS documentation [63]. In general, it is advised to let the Vivado R© HLS
decide the resources. If these are not satisfactory, then the designer can use directives.

2.10 Bitwidth Optimization

The C language provides many different data types to describe different kinds of behavior. Up until
this point, we have focused on the int type, which Vivado R© HLS treats as a 32-bit signed integer.
The C language also provides floating point data types, such as float and double, and integer data
types, such as char, short, long, and long long. Integer datatypes may be unsigned. All of these
data types have a size which is a power of 2.

The actual number of bits for these C data types may vary depending upon the processor
architecture. For example, an int can be 16 bits on a micro controller and 32 bits on a general
purpose processor. The C standard dictates minimum bit widths (e.g., an int is at least 16 bits)
and relations between the types (e.g., a long is not smaller than an int which is not smaller than
a short). The C99 language standard eliminated this ambiguity with types such as int8 t, int16 t,
int32 t, and int64 t.

The primary benefits of using these different data types in software revolve around the amount
of storage that the data type requires. For large arrays, using 8 bit values instead of 16 bit values
can cut memory usage in half. The drawback is that the range of values that you can represent
is reduced. An 8 bit signed value allows numbers in the range [-128,127] while the 16 bit signed
data type has a range of [-32,768, 32,767]. Smaller operations may also require fewer clock cycles
to execute, or may allow more instructions to be executed in parallel.

The same benefits are seen in an FPGA implementation, but they are even more pronounced.
Since the Vivado R© HLS tool generates a custom data path, it will create an implementation matched
to the specified data types. For example, the statement a = b ∗ c will have different latency and
resource usage depending upon the data type. If all of the variables are 32 bits wide, then more
primitive boolean operations need to be performed than if the variables are only 8 bits wide. As
a result, more FPGA resources (or more complex resources) must be used. Additionally, more
complex logic typically requires more pipelining in order to achieve the same frequency. A 32-
bit multiplication might require 5 internal registers to meet the same frequency that an 8 bit
multiplication can achieve with only one internal register. As a result, the latency of the operation
will be larger (5 cycles instead of 1 cycle) and HLS must take this into account.

Create a simple design that implements the code a = b ∗ c. Change the data type of the
variables to char, short, int, long, and long long. How many cycles does the multiply operation
take in each case? How many resources are used for the different data types?
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What primitive boolean operations are needed to implement the multiplication of 8-bit
numbers? How does this change when implementing multiplication of 32-bit numbers? Hint:
How many primitive decimal operations are needed to implement multiplication of two 8 digit
decimal numbers?

In many cases to implement optimized hardware, it is necessary to process data where the
bitwidth is not a power of two. For example, analog to digital converters often output results in
10 bits, 12 bits, or 14 bits. We could map these to 16 bit values, but this would likely reduce
performance and increase resource usage. To more accurately describe such values, Vivado R© HLS
provides arbitrary precision data types which allow for signed and unsigned data types of any
bitwidth.

There are two separate classes for unsigned and signed data types:

• Unsigned: ap uint<width>

• Signed: ap int<width>

where the width variable is an integer between 1 and 10241. For example, ap int<8> is an 8 bit
signed value (same as char), and ap uint<32> is a 32 bit unsigned value (same as unsigned int).
This provides a more powerful data type since it can do any bitwidth, e.g., ap uint<4> or
ap int<537>. To use these data types you must use C++ and include the file ap int.h, i.e., add
the code #include ”ap int.h” in your project and use a filename ending in ‘.cpp’2.

Consider coefficients array c[] from the fir filter code in Figure 2.1. It is reprinted here for you
convenience: coef t c[N] = {53, 0, −91, 0, 313, 500, 313, 0, −91, 0, 53};. The data type coef t is
defined as an int meaning that we have 32 bits of precision. This is unnecessary for these constants
since they range from -91 to 500. Thus we could use a smaller data type for this. We will need a
signed data type since we have positive and negative values. And the maximum absolute value for
any of these 11 entries is 500, which requires dlog2 500e = 9 bits. Since we need negative numbers,
we add an additional bit. Thus coef t can be declared as ap int<10>.

What is the appropriate data type for the variable i in the fir function (see Figure 2.1)?

We can also more accurately define the data types for the other variables in the fir function,
e.g., acc and shift reg. Consider the shift reg array first. This is storing the last 11 values of the
input variable x. So we know that the shift reg values can safely have the same data type as x.
By “safe”, we mean that there will be no loss in precision, i.e., if shift reg had a data type with
a smaller bitwidth, then some significant bits of x would need to be eliminated to fit them into a
value in shift reg. For example, if x was defined as 16 bits (ap uint<16>) and shift reg was defined
as 12 bits (ap uint<12>), then we would cut off the 4 most significant bits of x when we stored it
into shift reg.

Defining the appropriate data type for acc is a more difficult task. The acc variable stores the
multiply and accumulated sum over the shift reg and the coefficient array c[] i.e., the output value
of the filter. If we wish to be safe, then we calculate the largest possible value that could be stored
in acc, and set the bitwidth as that.

11024 is the default maximum value, and this can be changed if needed. See the VivadoR© HLS user manuals for
more information on how to do this.

2Similar capabilities are also available in C using the file ap cint.h
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To accomplish this, we must understand how the bitwidth increases as we perform arithmetic
operations. Consider the operation a = b + c where ap uint<10> b and ap uint<10> c. What is
the data type for the variable a? We can perform a worst case analysis here, and assume both a
and b are the largest possible value 210 = 1024. Adding them together results in a = 2024 which
can be represented as an 11 bit unsigned number, i.e., ap uint<11>. In general we will need one
more bit than the largest bitwidth of the two number being added. That is, when ap uint<x> b
and ap uint<y> c, the data type for a is ap uint<z> where z = max(x, y) + 1. This same is also
true when adding signed integers.

That handles one part of the question for assigning the appropriate data type to acc, but we
must also deal with the multiply operation. Using the same terminology, we wish to determine the
value the bitwidth z given the bitwidths x and y (i.e., ap int<z> a, ap int<x> b, ap int<y> c) for
the operation a = b ∗ c. While we will not go into the details, the formula is z = x+ y.

Given these two formulas, determine the bitwidth of acc such that it is safe.

Ultimately we are storing acc into the variable y which is an output port of the function.
Therefore, if the bitwidth of acc is larger than the bitwidth of c, the value in acc will be truncated
to be stored into y. Thus, is it even important to insure that the bitwidth of acc is large enough so
that it can handle the full precision of the multiply and accumulate operations?

The answer to the question lies in the tolerance of the application. In many digital signal pro-
cessing applications, the data itself is noisy, meaning that the lower several bits may not have any
significance. In addition, in signal processing applications, we often perform numerical approxima-
tions when processing data which can introduce additional error. Thus, it may not be important
that we insure that the acc variable has enough precision to return a completely precise result.
On the other hand, it may be desirable to keep more bits in the accumulation and then round the
final answer again to reduce the overall rounding error in the computation. Other applications,
such as scientific computing, more dynamic range is often required, which may lead to the use of
floating point numbers instead of integer or fixed-point arithmetic. So what is the correct answer?
Ultimately it is up to the tolerance of the application designer.

2.11 Complex FIR Filter

To this point, we have solely looked at filtering real numbers. Many digital wireless communi-
cation systems deal with complex numbers using in-phase (I) and quadrature (Q) components.
Fortunately, it is possible to create a complex FIR filter using real FIR filter as we describe in the
following.

To understand how to build a complex FIR filter from real FIR filters consider Equation 2.4.
Assume that (Iin, Qin) is one sample of the input data that we wish to filter. And one of the
complex FIR filter coefficients is denoted as (Ifir, Qfir). There will be more than one input sample
and complex coefficient, but let us not worry about that for now.

(Iin + jQin)(Ifir + jQfir) = (IinIfir −QinQfir) + j(QinIfir + IinQfir) (2.4)

Equation 2.4 shows the multiplication of the input complex number by one coefficient of the
complex FIR filter. The right side of the equation shows that the real portion of the output of
complex input filtered by a complex FIR filter is IinIfir − QinQfir and the imaginary output is
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FIR I1Iin

Qin FIR Q1

FIR I2

FIR Q2

Iin I�r   

Qin Q�r   

Qin I�r   

Iin Q�r   

-

+

Iout

Qout

Complex FIR Filter

Figure 2.9: A complex FIR filter built from four real FIR filters. The input I and Q samples are
feed into four different real FIR filters. The FIR filters hold the in-phase (FIR I) and quadrature
(FIR Q) complex coefficients.
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typedef int data t;
void firI1(data t ∗y, data t x);
void firQ1(data t ∗y, data t x);
void firI2(data t ∗y, data t x);
void firQ2(data t ∗y, data t x);

void complexFIR(data t Iin, data t Qin, data t ∗Iout, data t ∗Qout) {

data t IinIfir, QinQfir, QinIfir, IinQfir;

firI1(&IinIfir, Iin);
firQ1(&QinQfir, Qin);
firI2(&QinIfir, Qin);
firQ2(&IinQfir, Iin);

∗Iout = IinIfir + QinQfir;
∗Qout = QinIfir − IinQfir;

}

Figure 2.10: The Vivado R© HLS code to hierarchically implement a complex FIR filter using four
real FIR filters.

QinIfir + IinQfir. This implies that we can separate the complex FIR filter operation into four real
filters as shown in Figure 2.9.

A complex FIR filter takes as input a complex number (Iin, Qin) and outputs a complex filtered
value (Iout, Qout). Figure 2.9 provides a block diagram of this complex filter using four real FIR
filters (FIR I1, FIR Q1, FIR I2, FIR Q2). The filters FIR I1 and FIR I2 are equivalent, i.e., they
have the exact same coefficients. FIR Q1 and FIR Q2 are also equivalent. The output of each of
these filters corresponds to a term from Equation 2.4. These output are then added or subtracted
to provide the final filtered complex output (Iout, Qout).

We used a hierarchical structure to define this complex FIR filter. Vivado R© HLS implements
hierarchy using functions. Taking the previous real FIR function void fir (data t ∗y, data t x) we
can create another function that encapsulates four versions of this fir function to create the complex
FIR filter. This code is shown in Figure 2.10.

The code defines four functions firI1, firQ1, firI2, and firQ2. Each of these functions has the exact
same code, e.g., that of the fir function from Figure 2.1. Typically, we would not need to replicate
the function; we could simply call the same function four times. However, this is not possible in
this case due to the static keyword used within the fir function for the shift reg.

The function calls act as interfaces. The Vivado R© HLS tool does not optimize across function
boundaries. That is, each fir function synthesized independently, and treated more or less as a
black box in the complexFIR function. You can use the inline directive if you want the Vivado R©

HLS tool to co-optimize a particular function within its parent function. This will add the code
from that function into the parent function and eliminate the hierarchical structure. While this can
increase the potential for benefits in performance and area, it also creates a large amount of code
that the tool must synthesize. That may take a long time, even fail to synthesize, or may result
in a non-optimal design. Therefore, use the inline directive carefully. Also note that the Vivado R©
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float mul(int x, int y) {
return x ∗ y;

}

float top function(float a, float b, float c, float d) {
return mul(a, b) + mul(c, d) + mul(b, c) + mul(a, d);

}

float inlined top function(float a, float b, float c, float d) {
return a ∗ b + c ∗ d + b ∗ c + a ∗ d;

}

Figure 2.11: A simple and trivial example to demonstrate the inline directive. The top function has
four function calls to the function mul. If we placed an inline directive on the mul function, the
result is similar to what you see in the function inlined top function.

HLS tool may choose to inline functions on its own. These are typically functions with a small
amount of code.

The inline directive removes function boundaries, which may enable additional opportunities
for the Vivado R© HLS tool at the cost of increasing the complexity of the synthesis problem,
i.e., it will likely make the synthesis time longer. It also eliminates any overhead associated
with performing the function call. It allows for different implementations while maintaining
the structure of the code, and making it hierarchical and more readable.

The code in Figure 2.11 provides an example of how the inline directive works. The function
inlined top function is the result of using the inline directive on the mul function.

The Vivado R© HLS tool will sometimes choose to inline functions automatically. For exam-
ple, it will very likely choose to inline the mul function from Figure 2.11 since it is small. You
can force the tool to keep the function hierarchy by placing an inline directive in the function
with the off argument.

The inline directive also has a recursive argument that inlines all functions called within the
inlined function to also be inlined. That is, it will recursively add the code into the parent
functions from every child function. This could create a substantial code base, so use this
function carefully.

An inlined function will not have separate entries in the report since all of the logic will be
associated with the parent function.

2.12 Conclusion

This chapter describes the specification and optimization of a FIR filter using the Vivado R© HLS
tool. The goal is to provide an overview of the HLS process. The first step in this process is
understanding the basic concepts behind the computation of the FIR filter. This does not require
a deep mathematical understanding, but certainly enough knowledge to write it in a manner that
is synthesizable by the Vivado R© HLS tool. This may require translating the code from a different
language (e.g., MATLAB, Java, C++, Python, etc.). Many times it requires rewriting to use
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simpler data structures, e.g., one that is explicitly implemented in an array. And it often involves
removing system calls and other code not supported by the HLS tool.

Creating an optimum architecture requires a basic understanding about how the HLS tool
performs its synthesis and optimization process to RTL code. It is certainly not unnecessary to
understand the exact HLS algorithms for schedule, binding, resource allocation, etc. (and many
times these are proprietary). But having a general idea of the process does aid the designer in
writing code that maps well to hardware. Throughout the chapter, we talked about some of
the key features of the HLS synthesis process that are necessary to understand when performing
various optimizations. It is especially important to understand the way that the HLS tool reports
performance, which we describe in Chapter 2.4.

Additionally, we presented some basic HLS optimizations (including loop and bitwidth op-
timizations). We highlighted their benefits and potential drawbacks using the FIR filter as an
example. These are common optimizations that can be applied across a wide range of applications.
We provide more details about these optimizations in subsequent chapters as we walk through the
implementation of other more complex applications.
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Chapter 3

CORDIC

3.1 Overview

CORDIC (Coordinate Rotation DIgital Computer) is an efficient technique to calculate trigono-
metric, hyperbolic, and other mathematical functions. It is a digit-by-digit algorithm that produces
one output digit per iteration. This allows us to tune the accuracy of the algorithm to the applica-
tion requirements; additional iterations produce a more precise output result. Accuracy is another
common design evaluation metric alongside performance and resource usage. CORDIC performs
simple computations using only addition, subtraction, bit shifting, and table lookups, which are
efficient to implement in FPGAs and more generally in hardware.

The CORDIC method was developed by Jack Volder in the 1950’s as a digital solution to
replace an analog resolver for real-time navigation on a B-58 bomber. A resolver measures
degrees of rotation. At that time hardware implementations of multiply operations were pro-
hibitively expense and CPUs had very limited amount of state. Thus the algorithm needed
to have low complexity and use simple operations. Over the years, it has been used in math
co-processors [24], linear systems [3], radar signal processing [4], Fourier transforms [21], and
many other digital signal processing algorithms. It is now commonly used in FPGA designs.
Vivado R© HLS uses a CORDIC core for calculating trigonometric functions and it is a common
element of modern FPGA IP core libraries.

The goal of this chapter is to demonstrate how to create an optimized CORDIC core using high-
level synthesis. We are gradually increasing the complexity of the types of hardware cores that we
are developing as we progress through the book. The CORDIC method is an iterative algorithm;
thus most of the computation is performed within a single for loop. The code itself is not all
that complex. However, understanding the code such that we can create an optimal hardware
implementation requires deep insight. And a good HLS designers must always understand the
computation if they wish to create the optimal design. Thus, we spend the early part of this
chapter giving the mathematical and computational background of the CORDIC method.

The major HLS optimization that we wish to highlight in this chapter is choosing the correct
number representation for the variables. As we discuss later in the chapter, the designer must
carefully tradeoff between the accuracy of the results, the performance, and resource utilization of
the design. Number representation is one big factor in this tradeoff – “larger” numbers (i.e., those
with more bits) generally provide more precision at the cost of increased resource usage (more FFs
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Target Angle φ
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x = cos φ

y = sin φ

Figure 3.1: Using the CORDIC to calculate the functions sinφ and cosφ. Here, the CORDIC
starts at the x-axis with a corresponding 0◦ angle. It then performs four iterative positive/negative
rotations in increasingly smaller rotation angle with the ultimate goal of reaching the target angle
φ. Once we finish our rotations we are close to the target angle. We take the corresponding x and y
values of the final vector which correspond to cosφ and sinφ (respectively) assuming the length of
the vector is 1. The key to the CORDIC is doing all of this in a computationally efficient manner.

and logic blocks) and reduced performance. We provide a background on number representation
and arbitrary data types in Chapter 3.5.5.

3.2 Background

The core idea behind the CORDIC is to efficiently perform a set of vector rotations in a two-
dimensional plane. By overlaying these rotations with some simple control decisions, we can perform
a variety of fundamental operations, e.g., trigonometric, hyperbolic, and logarithmic functions, real
and complex multiplication, and matrix decompositions and factorizations. CORDIC has been
used in a wide range of applications including signal processing, robotics, communications, and
many scientific computations. CORDIC is commonly used in FPGA design since it has a small
resource usage.

In the following, we walk through the process of how a CORDIC performs the sine and cosine of
a given an input angle θ. This is done using a series of vector rotations using only simple operations
which are very efficient to implement in hardware. At the high level, the algorithm works using a
series of rotations with the goal of reaching the target input angle θ. The key innovation that makes
this efficient is that the rotations can be done in a manner that requires minimal computation. In
particular, we perform the rotations using multiplications by constant powers of two. This translates
to simply moving bits around in hardware which is extremely efficient as it does not require any
sort of logic.

Figure 3.1 provides a high level overview of the CORDIC procedure for calculating cosφ and
sinφ. In this case, we start our initial rotating vector on the x-axis, i.e, at a 0◦ angle. Then,
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we perform an iterative series of rotations; in this example we only perform four rotations, but
generally this is on the order of 40 rotations. Each of the subsequent rotation uses an increasingly
smaller angle, which means that every iteration adds a bit more precision to the output value.
At each iteration, we decide between doing a positive or negative rotation by that smaller angle.
The angle values that we rotate are fixed a priori; thus, we can easily store their values in a small
memory and keep a running sum of the cumulative angle that we have rotated so far. If this
cumulative angle is larger than our target angle φ, then we perform a negative rotation. If it is
smaller, then the rotation is positive. Once we have completed a sufficient number of rotations,
we can determine the cosφ and sinφ by directly reading the x and y values from the final rotated
vector. If our final vector has a magnitude of 1, then x = cosφ and y = sinφ.

We start with some terminology. The goal is to refresh your memory about some basic trigono-
metric and vector concepts. Feel free to skim this if it is familiar. But keep in mind that one
of the most important aspects of creating an efficient hardware design is to truly understand the
application; only then can the designer effectively utilize the optimization directives and perform
code refactoring which is required to get the most efficient designs.

The fundamental goal of the CORDIC algorithm is to perform a series of rotations in an efficient
manner. Let us start by thinking about how to generally perform a rotation. In two dimensions,
the rotation matrix is:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(3.1)

The CORDIC uses an iterative algorithm that rotates a vector v to some target of angle which
depends on the function that the CORDIC is performing. One rotation is a matrix vector mul-
tiplications in the form of vi = Ri · vi−1. Thus in each iteration of the CORDIC we perform the
following operations to perform one rotation which is the matrix vector multiply:[

cos θ − sin θ
sin θ cos θ

] [
xi−1

yi−1

]
=

[
xi
yi

]
(3.2)

Writing out the linear equations, the coordinates of the newly rotated vector are:

xi = xi−1 cos θ − yi−1 sin θ (3.3)

and
yi = xi−1 sin θ + yi−1 cos θ (3.4)

This is precisely the operation that we need to simplify. We want to perform these rotations without
having to perform any multiplications.

Consider first a 90◦ rotation. In this case the rotation matrix is:

R(90◦) =

[
cos 90◦ − sin 90◦

sin 90◦ cos 90◦

]
=

[
0 −1
1 0

]
(3.5)

and thus we only have to perform the operations:

xi = xi−1 cos 90◦ − yi−1 sin 90◦

= xi−1 · 0− yi−1 · 1
= −yi−1 (3.6)

and

yi = xi−1 sin 90◦ + yi−1 cos 90◦

= xi−1 · 1 + yi−1 · 0
= xi−1 (3.7)
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Putting this altogether we get [
0 −1
1 0

] [
x
y

]
=

[
−y
x

]
(3.8)

You can see that this is requires a very minimal amount of calculation; the rotated vector simply
negates the y value, and then swaps the x and y values. A two’s complement negation requires the
hardware equivalent to an adder. Thus, we have achieved our goal of performing a 90◦ rotation
efficiently.

What if you wanted to rotation by −90◦? What is the rotation matrix R(−90◦)? What
type of calculation is required for this rotation? How would one design the most efficient circuit
that could perform a positive and negative rotation by −90◦, i.e., the direction of rotation is
an input to the circuit?

While it is great that we can rotate by ±90◦, we also need to rotate by smaller angles if we wish
to have any sort of good resolution in moving to the target angle. Perhaps the next natural angle
that we might wish to rotate would be ±45◦. Using the rotation matrix from Equation 3.1, we get

R(45◦) =

[
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

]
=

[√
2/2 −

√
2/2√

2/2
√

2/2

]
(3.9)

Calculating out the computation for performing the rotation, we get

xi = xi−1 cos 45◦ − yi−1 sin 45◦

= xi−1 ·
√

2/2− yi−1 ·
√

2/2 (3.10)

and

yi = xi−1 sin 45◦ + yi−1 cos 45◦

= xi−1 ·
√

2/2 + yi−1 ·
√

2/2 (3.11)

which when put back into matrix vector notation is[√
2/2 −

√
2/2√

2/2
√

2/2

] [
x
y

]
=

[√
2/2x−

√
2/2y√

2/2x+
√

2/2y

]
(3.12)

This certainly is not as efficient of a computation as compared to rotating by ±90◦. The ±90◦

rotation was ideal because the multiplication were by very simple constants (in this case 0, 1, and
−1). The key to the CORDIC is doing these rotations in an efficient manner, i.e., defining the
rotation matrix in a way that their multiplication is trivial to compute. That is, we wish to be
more like the previous ±90◦ and less like the much more difficult computation required for the
±45◦ rotation that we just described.

What if we “forced” the rotation matrix to be constants that were easy to multiply? For exam-
ple, a multiplication by any power of two turns into a shift operation. If we set the constants in the
rotation matrix to be powers of two, we could very easily perform rotations without multiplication.
This is the key idea behind the CORDIC – finding rotations that are very efficient to compute
while minimizing any side effects. We will discuss these “side effects” in more detail, but there is
an engineering decision that is being made here. In order to get efficient computation, we have
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to give up something; in this case we have to deal with the fact that the rotation also performs
scaling, i.e., it changes the magnitude of the rotated vector – more on that later.

To further explore the idea of “simple” rotation matrices, consider the matrix

R() =

[
1 −1
1 1

]
(3.13)

with the corresponding computation for the transformation

xi = xi−1 − yi−1 (3.14)

and
yi = xi−1 + yi−1 (3.15)

with the matrix vector form of [
1 −1
1 1

] [
x
y

]
=

[
x− y
x+ y

]
(3.16)

This is certainly easy to compute and does not require any “difficult” multiplications. But what
is the consequence of this operation? It turns out that this performs a rotation by 45◦ which is
perfect; we now have an efficient way to perform a 45◦ rotation. But, this transform also scales the
vector by a factor of

√
2. The square root of the determinant of this matrix tells us how much the

transformation scales the vector, i.e., how the length of the vector has changed. The determinant
of this matrix here is 1 · 1 − (−1) · 1 = 2. Thus, this operation rotates by 45◦ and scales by

√
2.

This is the tradeoff that the CORDIC makes; we can make the computation for the rotation easy
to compute but it has the side effect that scales the length of the vector. This may or may not be
a problem depending on the application. But for now, we put aside the scaling issue and focus on
how to generalize the idea of performing rotations that are computationally efficient to perform.

Now we generalize the notion of performing efficient matrix rotations, i.e., performing rota-
tions by only performing addition/subtraction and multiplication by a power of two (i.e., by shift
operations). Consider again the rotation matrix

Ri(θ) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
(3.17)

By using the following trigonometric identities,

cos(θi) =
1√

1 + tan2(θi)
(3.18)

sin(θi) =
tan(θi)√

1 + tan2(θi)
(3.19)

we can rewrite the rotation matrix as

Ri =
1√

1 + tan2(θi)

[
1 − tan(θi)

tan(θi) 1

]
(3.20)

If we restrict the values of tan(θi) to be a multiplication by a factor of two, the rotation can
be performed using a shifts (for the multiplication) and additions. More specifically, we use let
tan(θi) = 2−i. The rotation then becomes

vi = Ki

[
1 −2−i

2−i 1

] [
xi−1

yi−1

]
(3.21)
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where

Ki =
1√

1 + 2−2i
(3.22)

A few things to note here. The 2−i is equivalent to a right shift by i bits, i.e., a division by a
power of two. This is essentially just a simple rewiring which does not require any sort of logical
resources, i.e., it is essentially “free” to compute in hardware. This is a huge benefit, but it does not
come without some drawbacks. First, we are limited to rotate by angles θ such that tan(θi) = 2−i.
We will show that this is not much of a problem. Second, we are only showing rotation in one
direction; the CORDIC requires the ability to rotation by ±θ. This is simple to correct by adding
in σ which can have a value of 1 or −1, which corresponds to performing a positive or negative
rotation. We can have a different σi at every iteration/rotation. Thus the rotation operation
generalizes to

vi = Ki

[
1 −σi2−i

σi2
−i 1

] [
xi−1

yi−1

]
(3.23)

Finally, the rotation requires a multiplication by Ki. Ki is typically ignored in the iterative process
and then adjusted for after the series of rotations is completed. The cumulative scaling factor is

K(n) =

n−1∏
i=0

Ki =

n−1∏
i=0

1√
1 + 2−2i

(3.24)

and
K = lim

n→∞
K(n) ≈ 0.6072529350088812561694 (3.25)

The scaling factors for different iterations can be calculated in advance and stored in a table. If we
always perform a fixed number of rotations, this is simply one constant. This correction could also
be made in advance by scaling v0 appropriately before performing the rotations. Sometimes it is
ok to ignore this scaling, which results in a processing gain

A =
1

K
= lim

n→∞

n−1∏
i=0

√
1 + 2−2i ≈ 1.64676025812107 (3.26)

At each iteration, we need to know the angle θi of the rotation that was just performed. This
is derived as θi = arctan 2−i. We can precompute these values for each value of i and store them in
an on-chip memory and use them as a lookup table. Additionally, we have a control decision that
determines whether the rotation is clockwise or counterclockwise, i.e., we must determine if σ is 1
or −1. This decision depends on the desired CORDIC mode. For example, for calculating cosφ
and sinφ, we keep a running sum of the cumulative angle that we have rotated so far. We compare
this to the target angle φ and perform a positive rotation if our current angle is less than φ and a
negative rotation is our current angle is greater than φ.

Table 3.1 provides the statistics for the first seven iterations of a CORDIC. The first row is the
“zeroth” rotation (i.e., when i = 0), which is a 45◦ rotation. It performs a scaling of the vector by
a factor of 1.41421. The second row is the does a rotation by 2−1 = 0.5. This results in a rotation
by θ = arctan 2−1 = 26.565◦. This rotation scales the vector by 1.11803. The CORDIC gain is
the overall scaling of the vector. In this case, it is the scaling factor of the first two rotations,
i.e., 1.58114 = 1.41421 · 1.11803. This process continues by incrementing i which results in smaller
and smaller rotating angles and scaling factors. Note that the CORDIC gain starts to stabilize to
≈ 1.64676025812107 as described in Equation 3.26. Also, note as the angles get smaller, they have
less effect on the most significant digits.
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Describe the effect if the ith iteration on the precision of the results? That is, what bits
does it change? How does more iterations change the precision of the final result, i.e., how do
the values of sinφ and cosφ change as the CORDIC performs more iterations?

Table 3.1: The rotating angle, scaling factor, and CORDIC gain for the first seven iterations of
a CORDIC. Note that the angle decreases by approximately half each time. The scaling factor
indicates how much the length the the vector increases during that rotation. The CORDIC gain is
the overall increase in the length of the vector which is the product of all of the scaling factors for
the current and previous rotations.

i 2−i Rotating Angle Scaling Factor CORDIC Gain

0 1.0 45.000◦ 1.41421 1.41421

1 0.5 26.565◦ 1.11803 1.58114

2 0.25 14.036◦ 1.03078 1.62980

3 0.125 7.125◦ 1.00778 1.64248

4 0.0625 3.576◦ 1.00195 1.64569

5 0.03125 1.790◦ 1.00049 1.64649

6 0.015625 0.895◦ 1.00012 1.64669

3.3 Calculating Sine and Cosine

Now we describe more precisely our running example of using a CORDIC to calculate the sine and
cosine of some given angle φ. In order to do this, we start with a vector on the positive x-axis
(i.e., with an initial angle of 0◦) and perform a series of rotations until we are approximately at
the given angle φ. Then we can simply read the x and y values of the resulting rotated vector to
get the values cosφ and sinφ, respectively. This assumes that the amplitude of the final vector is
equal to 1, which as you will see is not too difficult to achieve.

Let us illustrate this with an example: calculating cos 60◦ and sin 60◦, i.e., φ = 60◦. This
process is depicted graphically in Figure 3.2. Here we perform five rotations in order to give a final
vector with an angle approximately equal to 60◦. Our initial vector has a 0◦ angle, i.e., it starts on
the positive x-axis. The first rotation corresponds to i = 0 which has a 45◦ angle (see Table 3.1).
Since we want to get to 60◦, we rotate in the positive direction. The resulting rotated vector has
a 45◦ angle; also note that its amplitude is scaled by approximately 1.414. Now, we move on to
i = 1. As we wish to get to a 60◦ angle, we rotate again in the positive direction. This rotation
results in a vector that has an angle of 45◦ + 26.565◦ = 71.565◦ and is scaled by a factor of 1.118;
the total scaling resulting from the two rotations is 1.414 × 1.118 = 1.581. This is the CORDIC
gain. Moving on to i = 2, we now determine that our current angle is larger than the 60◦ target,
so we rotate by a negative angle resulting in a vector with a 57.529◦ angle and scaled by a factor
of 1.630. This process continues by rotating the vector with incrementally larger i values, resulting
in smaller and smaller rotations that will eventually (approximately) reach the desired angle. Also,
note that the CORDIC gain begins to stabilize as the number of rotation increases.

After we perform a sufficient number of rotations, which is a function of the desired accuracy,
we get a vector with an angle close to the desired input angle. The x and y values of that vector
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1) 0°+45°=45°

2) 45°+26.565°=71.565°
3) 71.565°-14.036°=57.529°

4) 57.529°+7.125°=64.654°
5) 64.64°-3.576°=61.078°

Figure 3.2: Calculating cos 60◦ and sin 60◦ using the CORDIC algorithm. Five rotations are per-
formed using incrementally larger i values (0,1,2,3,4). The result is a vector with an angle of
61.078◦. The corresponding x and y values of that vector give the approximate desired cosine and
sine values.

correspond to approximately AR cos 60◦ and AR sin 60◦, which is exactly what we want if AR = 1.
Since we typically know a priori the number of rotations that we will perform, we can insure that
AR = 1 by setting the magnitude of the initial vector to the reciprocal of the CORDIC gain. In
the case of our example, assuming that we perform five rotations as shown in Figure 3.2, this value
is 1.64649−1 = 0.60735 (the reciprocal of the CORDIC gain when i = 5; see Table 3.1). We can
easily set the amplitude of the initial vector by starting at a vector (0.60735, 0).

How would the answer change if we performed one more rotation? How about two (three,
four, etc.) more rotations? What is the accuracy (e.g., compared to MATLAB implementation)
as we perform more rotations? How many rotations do you think is sufficient in the general
case?

Is it possible to get worse accuracy by performing more rotations? Provide an example
when this would occur.

Figure 3.3 provides code that implements sine and cosine calculation using the CORDIC algo-
rithm. It takes as input a target angle, and outputs the sine and cosine values corresponding to that
angle. The code uses an array cordic phase as a lookup table that holds the angle of rotation for each
iteration. This corresponds to the values in the “Rotating Angle” column in Table 3.1. We assume
that the cordic.h file defines the different data types (i.e., COS SIN TYPE and THETA TYPE) and
sets NUM ITERATIONS to some constant value. The data types can be changed to different fixed
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// The file cordic.h holds definitions for the data types and constant values
#include ”cordic.h”

// The cordic phase array holds the angle for the current rotation
// cordic phase[0] =˜ 0.785
// cordic phase[1] =˜ 0.463

void cordic(THETA TYPE theta, COS SIN TYPE &s, COS SIN TYPE &c)
{

// Set the initial vector that we will rotate
// current cos = I; current sin = Q
COS SIN TYPE current cos = 0.60735;
COS SIN TYPE current sin = 0.0;

COS SIN TYPE factor = 1.0;
// This loop iteratively rotates the initial vector to find the
// sine and cosine values corresponding to the input theta angle
for (int j = 0; j < NUM ITERATIONS; j++) {

// Determine if we are rotating by a positive or negative angle
int sigma = (theta < 0) ? −1 : 1;

// Multiply previous iteration by 2ˆ(−j)
COS SIN TYPE cos shift = current cos ∗ sigma ∗ factor;
COS SIN TYPE sin shift = current sin ∗ sigma ∗ factor;

// Perform the rotation
current cos = current cos − sin shift;
current sin = current sin + cos shift;

// Determine the new theta
theta = theta − cordic phase[j];

factor = factor / 2;
}

// Set the final sine and cosine values
s = current sin; c = current cos;

}

Figure 3.3: CORDIC code implementing the sine and cosine of a given angle.
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θ

r

x = r cos θ

y = r sin θ (x,y)

Figure 3.4: The figure shows a two-dimensional plane and a vector represented in both the Cartesian
form (x, y) and the polar form (r, θ) and provides the relationship between those two coordinate
systems.

or floating point types, and NUM ITERATIONS set depending on our desired accuracy, area, and
throughput.

This code is close to a “software” version. It can be optimized in many ways to increase its
performance and reduce its area. We will discuss how to optimize this code later in the chapter.

3.4 Cartesian to Polar Conversion

With some modifications, the CORDIC can perform other functions. For example, it can convert
between Cartesian and polar representations; we describe that in more detail in this section. The
CORDIC can also do many other functions, which we will leave as an exercise to the reader.

A two-dimensional vector v can be represented using a Cartesian coordinate system (x, y) or in
the polar coordinate system (r, θ) where r is the radial coordinate (length of the vector) and θ is
the angular coordinate. Both of these coordinate systems have their benefits and drawbacks. For
example, if we want to do a rotation, then it is easier to think about the polar form while a linear
transform is more easily described using the Cartesian system.

The relationship between these coordinates is shown in the following equations:

x = r cos θ (3.27)

y = r sin θ (3.28)

r =
√
x2 + y2 (3.29)
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θ = atan2(y, x) (3.30)

where atan2 is a common variation on the arctangent function defined as

atan2(y, x) =



arctan( yx) if x > 0

arctan( yx) + π if x < 0 and y ≥ 0

arctan( yx)− π if x < 0 and y < 0
π
2 if x = 0 and y > 0

−π
2 if x = 0 and y < 0

undefined if x = 0 and y = 0

(3.31)

This provides a way to translate between the two coordinate systems. However, these operations
are not easy to implement in hardware. For example, sine, cosine, square root, and arctan are not
simple operations and they require significant amount of resources. But we can use the CORDIC
to perform these operations using a series of simple iterative rotation operations.

Given a number in Cartesian form (x, y), we can calculates its radial and amplitude coordinate
(i.e., convert it to polar form) using the CORDIC. To do this, we rotate the given Cartesian number
to 0◦. Once this rotation is complete, the amplitude is the x value of the final rotated vector. To
determine the radial coordinate, we simply keep track of the cumulative angle of the rotations that
the CORDIC performs. The angles of the rotating vector (for i = 0, 1, 2, 3, . . . ) are known and can
be stored in a lookup table as done for calculating sine/cosine. Therefore, we simply need to keep
track of the total rotation angle by performing an addition or subtraction of these angles, which
depends on the direction of rotation.

The algorithm is similar to that of calculating the sine and cosine of a given angle. We perform
a set of rotations with increasing values of i such that the final vector resides on (close to) the
positive x-axis (i.e., an angle of 0◦). This can be done using positive or negative rotations which is
predicated on the y value of the vector whose amplitude and phase we wish to determine.

The first step of the algorithm performs a rotation to get the initial vector into either Quadrant
I or IV. This rotates the vector by ±90◦ depending on the sign of the y value of the initial vector. If
the y value is positive, we know that we are in either Quadrant I or II. A rotation by −90◦ will put
us into Quadrant IV or I, respectively. Once we are in either of those quadrants, we can guarantee
that we will be able to asymptotically approach the target 0◦ angle. If we are in Quadrant III or IV,
the y value of the initial vector will be negative. And a rotation by 90◦ will put us into Quadrant
IV or I, respectively. Recall that a ±90◦ rotation is done by negating either the x or y values of
the vector and then swapping those values. The concept of these ±90◦ is shown in Figure 3.5.

There is an issue with the final radial value of the rotated vector; its magnitude is not the
same as the initial magnitude before the rotations; it is scaled by the CORDIC gain. Or course,
one could calculate the precise radial value of the vector by multiplying by the reciprocal of the
appropriate CORDIC gain (approximately 1/1.647 = 0.607)1. However, this defeats the purpose
of having a CORDIC, which eliminates the need for costly multiplication. And unfortunately this
multiplication cannot be performed trivially using shifts and adds. Fortunately, this factor is often
not important. e.g., in amplitude shift keying used in modulation in wireless communications, you
only need to know a relative magnitude. Or in other times, this amplitude gain can be compensated
by other parts of the system.

1Recall that the CORDIC gain is a function of the number of rotations as show in Table 3.1.
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Figure 3.5: The first step in performing a Cartesian to polar conversion is to perform a rotation by
±90◦ in order to get the initial vector into either Quadrant I or IV. Once it is in either of these two
quadrants, subsequent rotations will allow the vector to reach a final angle of 0◦. At this point, the
radial value of the initial vector is the x value of the final rotated vector and the phase of the initial
vector is the summation of all the angles that the CORDIC performed. Parts a) and b) show an
example with the initial y value is positive, which means that the vector resides in either Quadrant
I or II. Rotating by −90◦ puts them into the appropriate quadrant. Parts c) and d) show a similar
situation when the y value of the initial vector is negative. Here we wish to rotate by 90◦ to get
the vector into Quadrant I or IV.
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3.5 Number Representation

The cordic function uses currently uses common types for the variables. For example, the vari-
able sigma is defined as an int and other variables are defined to use custom data types (e.g.,
THETA TYPE and COS SIN TYPE). It is sometimes convenient to think that such types represent
arbitrary numbers, when in actuality they don’t. In practice, it digital representation of numbers
has a huge impact on the complexity of the logic to compute with those numbers. In many cases,
HLS tools are able to optimize the representation of each value to simplify the generated hardware.
For instance, in Figure 3.3, the variable sigma is restricted to be either 1 or −1. Even though the
variable is declared as an int type of at least 32 bits, many fewer bits can be used to implement
the variable without changing the behavior of the program. In other cases, particularly function
inputs, memories, and variables that appear in recurrences, the representation cannot be automat-
ically optimized. In these cases, modifying the code to use smaller datatypes is a key optimization
to avoid unnecessary resource usage.

Although reducing the size of variables is generally a good idea, this optimization can change
the behavior of the program. A data type with fewer number of bits will not be able to express as
much information as a data type with more bits and no finite binary representation can represent all
real numbers with infinite accuracy. Fortunately, as designers we can pick numeric representations
that are tuned to accuracy requirements of particular applications and tradeoff between accuracy,
resource usage, and performance.

Before discussing these number representation optimizations further using our cordic function,
we first give a background on number representation. We provide the basics, as this is important
in understand the data type specific representations provided by Vivado R© HLS. The next section
starts with a fundamental background on number representation, and then proceeds to discuss the
arbitrary precision variables available in Vivado R© HLS.

3.5.1 Binary and Hexadecimal Numbers

Computers and FPGAs typically represent numbers using binary representation, which enables
numbers to be efficiently represented using on-off signals called binary digits, or simply bits. Binary
numbers work in most ways like normal decimal numbers, but can often be the cause of confusing
errors if you are not familiar with how they work. This is particularly true in many embedded
systems and FPGAs where minimizing the number of bits used to represent variables can greatly
increase the overall performance or efficiency of a system. In this section, we will summarize binary
arithmetic and the basic ways that computers represent numbers.

Many readers may already be familiar with these ideas. In that case, you may skim these sections
or skip them entirely. We do suggest that look at Section 3.5.5 as this provides information specific
to Vivado R© HLS on how to declare arbitrary data types. This is a key idea for optimizing the
number representation of the cordic function and any HLS code.

When we write a normal integer, such as 4062, what we really mean is implicitly (4 ∗ 1000) +
(0 ∗ 100) + (6 ∗ 10) + (2 ∗ 1) = 4062, or written in columns:

103 102 101 100 unsigned

4 0 6 2 = 4062

A binary number is similar, except instead of using digits from zero to nine and powers of ten,
we use numbers from zero to one and powers of 2:
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23 22 21 20 unsigned

1 0 1 1 = 11

since (1 ∗ 8) + (0 ∗ 4) + (1 ∗ 2) + (1 ∗ 1) = 11. To avoid ambiguity, binary numbers are often prefixed
with ”0b”. This makes it obvious that 0b1011 is the number decimal 11 and not the number 1011.
The bit associated with the highest power of two is the most significant bit , and the bit associated
with the lowest power of two is the least significant bit .

Hexadecimal numbers use the digits representing numbers from zero to 15 and powers of 16:

163 162 161 160 unsigned

8 0 3 15 = 32831

In order to avoid ambiguity, the digits from 10 to 15 are represented by the letters ”A” through
”F”, and hexadecimal numbers are prefixed with ”0x”. So the number above would normally be
written in C code as 0x803F.

Note that binary representation can also represent fractional numbers, usually called fixed-point
numbers, by simply extending the pattern to include negative exponents, so that ”0b1011.01” is
equivalent to:

23 22 21 20 2−1 2−2 unsigned

1 0 1 1 0 1 = 11.25

since 8 + 2 + 1 + 1
4 = 11.25. Unfortunately, the C standard doesn’t provide a way of specifying

constants in binary representation, although gcc and many other compilers allow integer constants
(without a decimal point) to be specified with the ”0b” prefix. The C99 standard does provide a
way to describe floating-point constants with hexadecimal digits and a decimal exponent, however.
Note that the decimal exponent is required, even if it is zero.

float p1 = 0xB.4p0; // Initialize p1 to ”11.25”
float p2 = 0xB4p−4; // Initialize p2 to ”11.25”

Notice that in general, it is only necessary to write non-zero digits and any digits not shown
can be assumed to be zero without changing the represented value of an unsigned number. As a
result, it is easy to represent the same value with more digits: simply add as many zero digits as
necessary. This process is often called zero-extension. Note that each additional digit increases the
amount of numbers that can be represented. Adding an additional bit to a binary number doubles
the amount of numbers that can be represented, while an additional hexadecimal digit increases
the amount of numbers by a factor of 16.

27 26 25 24 23 22 21 20 2−1 2−2 2−3 2−4 unsigned

0 0 0 0 1 0 1 1 0 1 0 0 = 11.25

Note that it is possible to have any number of bits in a binary number, not just 8, 16, or
32. SystemC [2], for instance, defines several template classes for handling arbitrary precision
integers and fixed-point numbers (including sc int<>, sc uint<>, sc bigint<>, sc ubigint<>,
sc fixed<>, and sc ufixed<>). These classes can be commonly used in HLS tools, although they
were originally defined for system modeling and not necessarily synthesis. Vivado R© HLS, for in-
stance, includes similar template classes (ap int<>, ap uint<>, ap fixed<>, and ap ufixed<>)
that typically work better than the SystemC template classes, both in simulation and synthesis.
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Arbitrary precision numbers are even well defined (although not terribly useful) with zero
digits. List all the numbers that are representable with zero digits.

3.5.2 Negative numbers

Negative numbers are slightly more complicated than positive numbers, partly because there are
several common ways to do it. One simple way is represent negative numbers with a sign bit,
often called signed-magnitude representation. This representation just includes an additional bit
to the front of the number to indicate whether it is signed or not. One somewhat odd thing about
signed-magnitude representation is that there is more than one way to represent zero. This tends
to make even apparently simple operations, like operator ==(), more complex to implement.

+/- 21 20 signed magnitude

0 1 1 = 3
0 1 0 = 2
0 0 1 = 1
0 0 0 = 0
1 0 0 = −0
1 0 1 = −1
1 1 0 = −2
1 1 1 = −3

Another way to represent negative numbers is with biased representation. This representation
adds a constant offset (usually equal in magnitude to the value of the largest bit) to the value,
which are otherwise treated as positive numbers:

22 21 20 biased

1 1 1 = 3
1 1 0 = 2
1 0 1 = 1
1 0 0 = 0
0 1 1 = −1
0 1 0 = −2
0 0 1 = −3
0 0 0 = −4

However by far the most common technique for implementing negative numbers is known as
two’s complement . In two’s complement representation, the most significant bit represents the
sign of the number (as in signed-magnitude representation), and also whether or not an offset is
applied. One way of thinking about this situation is that the high order bit represents a negative
contribution to the overall number.
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−22 21 20 two’s complement

0 1 1 = 3
0 1 0 = 2
0 0 1 = 1
0 0 0 = 0
1 1 1 = −1
1 1 0 = −2
1 0 1 = −3
1 0 0 = −4

−24 23 22 21 20 two’s complement

0 0 0 1 1 = 3
0 0 0 1 0 = 2
0 0 0 0 1 = 1
0 0 0 0 0 = 0
1 1 1 1 1 = −1
1 1 1 1 0 = −2
1 1 1 0 1 = −3
1 1 1 0 0 = −4

One significant difference between unsigned numbers and two’s complement numbers is that we
need to know exactly how many bits are used to represent the number, since the most significant
bit is treated differently than the remaining bits. Furthermore, when widening a signed two’s
complement number with more bits, the sign bit is replicated to all the new most significant bits.
This process is normally called sign-extension. For the rest of the book, we will generally assume
that all signed numbers are represented in two’s complement unless otherwise mentioned.

What is the largest positive number representable with N bits in two’s complement? What
is the largest negative number?

Given a positive number x, how can you find the two’s complement representation of −x?
What is −0 in two’s complement? if x is the largest negative number representable with N bits
in two’s complement, what is −x?

3.5.3 Overflow, Underflow, and Rounding

Overflow occurs when a number is larger than the largest number that can be represented in a
given number of bits. Similarly, underflow occurs when a number is smaller than the smallest
number that can be represented. One common way of handling overflow or underflow is to simply
drop the most significant bits of the original number, often called wrapping .

25 24 23 22 21 20 2−1 2−2 2−3 2−4

0 0 1 0 1 1 0 1 0 0 = 11.25
0 1 0 1 1 0 1 0 0 = 11.25

1 0 1 1 0 1 0 0 = 11.25
0 1 1 0 1 0 0 = 3.25
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Handling overflow and underflow by wrapping two’s complement numbers can even cause a
positive number to become negative, or a negative number to become positive.

−23 22 21 20 2−1 2−2 2−3 2−4 two’s complement

1 0 1 1 0 1 0 0 = −4.75

−22 21 20 2−1 2−2 2−3 2−4 two’s complement

0 1 1 0 1 0 0 = 3.25

Similarly, when a number cannot be represented precisely in a given number of fractional bits,
it is necessary to apply rounding . Again, there are several common ways to round numbers. The
simplest way is to just drop the extra fractional bits, which tends to result in numbers that are more
negative. This method of rounding is often called rounding down or rounding to negative infinity .
When rounding down to the nearest integer, this corresponds to the floor() function, although it’s
possible to round to other bit positions as well.

0b0100.00 = 4.0
0b0011.11 = 3.75
0b0011.10 = 3.5
0b0011.01 = 3.25
0b0011.00 = 3.0
0b1100.00 = −4.0
0b1011.11 = −4.25
0b1011.10 = −4.5
0b1011.01 = −4.75
0b1011.00 = −5.0

→
Round to
Negative
Infinity

→

0b0100.0 = 4.0
0b0011.1 = 3.5
0b0011.1 = 3.5
0b0011.0 = 3.0
0b0011.0 = 3.0
0b1100.0 = −4.0
0b1011.1 = −4.5
0b1011.1 = −4.5
0b1011.0 = −5.0
0b1011.0 = −5.0

It is also possible to handle rounding in other similar ways which force rounding to a more
positive numbers (called rounding up or rounding to positive infinity and corresponding to the
ceil() function), to smaller absolute values (called rounding to zero and corresponding to the
trunc() function), or to larger absolute values (called rounding away from zero or rounding to
infinity and corresponding to the round() function)). None of these operations always minimizes
the error caused by rounding, however. A better approach is called rounding to nearest even,
convergent rounding , or banker’s rounding and is implemented in the lrint() function. As you might
expect, this approach to rounding always picks the nearest representable number. In addition, If
there are two numbers equally distant, then the even one is always picked. An arbitrary-precision
number is even if the last digit is zero. This approach is the default handling of rounding with
IEEE floating point, as it not only minimizes rounding errors but also ensures that the rounding
error tends to cancel out when computing sums of random numbers.

0b0100.00 = 4.0
0b0011.11 = 3.75
0b0011.10 = 3.5
0b0011.01 = 3.25
0b0011.00 = 3.0
0b1100.00 = −4.0
0b1011.11 = −4.25
0b1011.10 = −4.5
0b1011.01 = −4.75
0b1011.00 = −5.0

→
Round to
Nearest
Even

→

0b0100.0 = 4.0
0b0100.0 = 4.0
0b0011.1 = 3.5
0b0011.0 = 3.0
0b0011.0 = 3.0
0b1100.0 = −4.0
0b1100.0 = −4.0
0b1011.1 = −4.5
0b1011.0 = −5.0
0b1011.0 = −5.0
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3.5.4 Binary arithmetic

Binary addition is very similar to decimal addition, simply align the binary points and add digits,
taking care to correctly handle bits carried from one column to the next. Note that the result of
adding or subtracting two N-bit numbers generally takes N+1 bits to represent correctly without
overflow. The added bit is always an additional most significant bit for fractional numbers

23 22 21 20 unsigned

0 1 1 = 3
+ 0 1 1 = 3

= 0 1 1 0 = 6

23 22 21 20 2−1 unsigned

1 1 1 1 = 7.5
+ 1 1 1 1 = 7.5

= 1 1 1 1 0 = 15

Note that since the result of subtraction can be negative, the ’extra bit’ becomes the sign-bit
of a two’s complement number.

23 22 21 20 unsigned

0 0 1 1 = 3
- 0 0 1 1 = 3

= 0 0 0 0 = 0

-24 23 22 21 20 unsigned

0 0 1 1 = 3
- 1 1 1 1 = 15

= 1 0 1 0 0 = −12 (two’s complement)

Multiplication for binary numbers also works similarly to familiar decimal multiplication. In
general, multiplying 2 N-bit numbers results in a 2*N bit result.

26 25 24 23 22 21 20 two’s complement

1 0 0 1 = 9
* 1 0 0 1 = 9

1 0 0 1 = 9
0 0 0 0 = 0

0 0 0 0 = 0
+ 1 0 0 1 = 72

1 0 1 0 0 0 1 = 81

Operations on signed numbers are somewhat more complex because of the sign-bit handling and
won’t be covered in detail. However, the observations regarding the width of the result still applies:
adding or subtracting two N-bit signed numbers results in an N+1-bit result, and Multiplying two
N-bit signed numbers results in an 2*N-bit result.
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What about division? Can the number of bits necessary to exactly represent the result a
division operation of 2 N-bit numbers be computed?

3.5.5 Representing Arbitrary Precision Integers in C and C++

According to the C99 language standard, the precision of many standard types, such as int and
long are implementation defined. Although many programs can be written with these types in a
way that does not have implementation-defined behavior, many cannot. One small improvement
is the inttypes.h header in C99, which defines the types int8 t,int16 t,int32 t, and int64 t repre-
senting signed numbers of a given width and the corresponding types uint8 t,uint16 t,uint32 t, and
uint64 t representing unsigned numbers. Although these types are defined to have exactly the
given bitwidths, they can still be somewhat awkward to use. For instance, even relatively simple
programs like the code below can have unexpected behavior.

#include ”inttypes.h”
uint16 t a =0x4000;
uint16 t b = 0x4000;
// Danger! p depends on sizeof(int)
uint32 t p = a∗b;

Although the values of a and b can be represented in 16 bits and their product (0x10000000) can
be represented exactly in 32 bits, the behavior of this code by the conversion rules in C99 is to first
convert a and b to type int, compute an integer result, and then to extend the result to 32 bits.
Although uncommon, it is correct for a C99 compiler to only have integers with only 16 bits of
precision. Furthermore, the C99 standard only defines 4 bitwidths for integer numbers, while FPGA
systems often use a wide variety of bitwidths for arithmetic. Also, printing these datatypes using
printf() is awkward, requiring the use of additional macros to write portable code. The situation is
even worse if we consider a fixed-point arithmetic example. In the code below, we consider a and
b to be fixed point numbers, and perform normalization correctly to generate a result in the same
format.

#include ”inttypes.h”
// 4.0 represented with 12 fractional bits
uint16 t a =0x4000;
// 4.0 represented with 12 fractional bits.
uint16 t b = 0x4000;
// Danger! p depends on sizeof(int)
uint32 t p = (a∗b) >> 12;

The correct code in both cases requires casting the input variables to the width of the result
before multiplying.

#include ”inttypes.h”
uint16 t a = 0x4000;
uint16 t b = 0x4000;
// p is assigned to 0x10000000
uint32 t p = (uint32 t) a∗(uint32 t) b;

#include ”inttypes.h”
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// 4.0 represented with 12 fractional bits.
uint16 t a =0x4000;
// 4.0 represented with 12 fractional bits.
uint16 t b = 0x4000;
// p assigned to 16.0 represented with 12 fractional bits
uint32 t p = ( (uint32 t) a∗(uint32 t) b ) >> 12;

When using integers to represent fixed-point numbers, it is very important to document the
fixed point format used, so that normalization can be performed correctly after multiplication.
Usually this is described using ”Q” formats that give the number of fractional bits. For instance,
”Q15” format uses 15 fractional bits and usually applies to 16 bit signed variables. Such a
variable has values in the interval [−1, 1). Similarly ”Q31” format uses 31 fractional bits.

For these reasons, it’s usually preferable to use C++ and the Vivado R© HLS template classes
ap int<>, ap uint<>, ap fixed<>, and ap ufixed<> to represent arbitrary precision numbers. The
ap int<> and ap uint<> template classes require a single integer template parameter that defines
their width. Arithmetic functions generally produce a result that is wide enough to contain a
correct result, following the rules in section 3.5.4. Only if the result is assigned to a narrower
bitwidth does overflow or underflow occur.

#include ”ap int.h”
ap uint<15> a =0x4000;
ap uint<15> b = 0x4000;
// p is assigned to 0x10000000.
ap uint<30> p = a∗b;

The ap fixed<> and ap ufixed<> template classes are similar, except that they require two
integer template arguments that define the overall width (the total number of bits) and the number
of integer bits.

#include ”ap fixed.h”
// 4.0 represented with 12 fractional bits.
ap ufixed<15,12> a = 4.0;
// 4.0 represented with 12 fractional bits.
ap ufixed<15,12> b = 4.0;
// p is assigned to 16.0 represented with 12 fractional bits
ap ufixed<18,12> p = a∗b;

Note that the ap fixed<> and ap ufixed<> template classes require the overall width of
the number to be positive, but the number of integer bits can be arbitrary. In particular, the
number of integer bits can be 0 (indicating a number that is purely fractional) or can be the
same as the overall width (indicating a number that has no fractional part). However, the
number of integer bits can also be negative or greater than the overall width! What do such
formats describe? What are the largest and smallest numbers that can be represented by an
ap fixed<8,−3>? ap fixed<8,12>?

74



CORDIC

3.5.6 Floating Point

Vivado R© HLS can also synthesize floating point calculations. Floating point numbers provide a large
amount of precision, but this comes at a cost; it requires significant amount of computation which in
turn translates to a large amount of resource usage and many cycles of latency. Thus, floating point
numbers should be avoided unless absolutely necessary as dictated by the accuracy requirements
application. In fact, the primary goal of this chapter is to allow the reader to understand how
to effectively move from floating point to fixed point representations. Unfortunately, this is often
a non-trivial task and there are not many good standard methods to automatically perform this
translation. This is partially due to the fact that moving to fixed point will reduce the accuracy of
the application and this tradeoff is best left to the designer.

The standard technique for high-level synthesis starts with a floating point representation during
the initial development of the application. This allows the designer to focus on getting a function-
ally correct implementation. Once that is achieved, then she can move optimizing the number
representation in order to reduce the resource usage and/or increase the performance.

Change all of the variables in the CORDIC from float to int. How does this effect the
resource usage? How does it change the latency? How about the throughput? Does the
accuracy change?

3.6 Cordic Optimizations

In this section, we provide some brief thoughts and suggestions on the best way to optimize the
CORDIC function. We focus on how the different optimizations change the precision of the result
while providing the ability tradeoff between throughput, precision, and area.

One important decision when implementing the CORDIC function is to select the type used
to represent angles and the results. While the original code can operate with either floating-point
types, e.g. float, and fixed-point types, CORDIC is most commonly used with fixed-point types with
the specific goal of eliminating multipliers. When efficient means of multiplication are available,
other methods for computing trigonometric functions are often preferred. Looking at the original
code in Figure 3.3, it contains several multiply operators related to the sigma and factor variables.
By restricting the code to only work with fixed-point types we can remove these multiplications,
converting them into shifts and adds. Code that does this is shown in Figure ??.

How do the area, throughput, and precision of the sine and cosine results change as you vary
the data type? Do you see a significant difference when THETA TYPE and COS SIN TYPE are
floating point types vs. ap fixed<> types? What about using the code from Figure 3.3 and
Figure ???

Ultimately, CORDIC produces an approximation. The error on that approximation generally
decreases as the number of iterations increases. This corresponds to the number of times that we
execute the for loop in the cordic function, which is set by NUM ITERATIONS. Even if we perform a
very large number of iterations, we may still have an approximation. One reason for this is that we
may approach but never exactly match the desired target angle. We can, however, tune precision
by choosing to perform greater or fewer iterations. All that needs to change in the algorithm is to
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// The file cordic.h holds definitions for the data types and constant values
#include ”cordic.h”

// The cordic phase array holds the angle for the current rotation
// cordic phase[0] =˜ 0.785
// cordic phase[1] =˜ 0.463

void cordic(THETA TYPE theta, COS SIN TYPE &s, COS SIN TYPE &c)
{

// Set the initial vector that we will rotate
// current cos = I; current sin = Q
COS SIN TYPE current cos = 0.60735;
COS SIN TYPE current sin = 0.0;

// This loop iteratively rotates the initial vector to find the
// sine and cosine values corresponding to the input theta angle
for (int j = 0; j < NUM ITERATIONS; j++) {

// Multiply previous iteration by 2ˆ(−j). This is equivalent to
// a right shift by j on a fixed−point number.
COS SIN TYPE cos shift = current cos >> j;
COS SIN TYPE sin shift = current sin >> j;

// Determine if we are rotating by a positive or negative angle
if(theta >= 0) {

// Perform the rotation
current cos = current cos − sin shift;
current sin = current sin + cos shift;

// Determine the new theta
theta = theta − cordic phase[j];

} else {
// Perform the rotation
current cos = current cos + sin shift;
current sin = current sin − cos shift;

// Determine the new theta
theta = theta + cordic phase[j];

}
}

// Set the final sine and cosine values
s = current sin; c = current cos;

}

Figure 3.6: Fixed-point CORDIC code implementing the sine and cosine of a given angle.
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modify the value of NUM ITERATIONS. The choice of NUM ITERATIONS depends on the number
of digits of precision required by application using this CORDIC core.

How does the constant NUM ITERATIONS affect the area, throughput, and precision? How
does this affect the initial values of current cos and current sin? Do you need to modify the array
cordic phase? Can you optimize the data types depending on the value of NUM ITERATIONS?

Ultimately, most applications imply requirements on the precision of the final result and a
designer must determine how to build the best circuit given particular precision requirements.
To achieve a given precision in the final result, what value of NUM ITERATIONS and what
data types are required?

The computations in the for loop occupy most of the overall time. How do you best
perform code transforms and/or use pragmas to optimize it?

The current code assumes that the given angle is between ±90◦. Can you add code to allow
it to handle any angle between ±180◦?

3.7 Conclusion

In this chapter, we looked the Coordinate Rotation DIgital Computer (CORDIC) method for
calculating trigonometric and hyperbolic functions based on vector rotations. We start with a
background on the computation being performed by the CORDIC method. In particular, we focus
on how to use the CORDIC method to calculate the sine and cosine values for a given angle.
Additionally, we discuss how the same CORDIC method can be used to determine the amplitude
and phase of a given complex number.

After this, we focus on the optimizations that can be done on the CORDIC method. Since it
is an iterative method, there are fundamental tradeoffs between the number of iterations that are
performed and the precision and accuracy of the resulting computation. We discuss how to reduce
the precision/accuracy and get savings in FPGA resource usage and increases in performance.

We introduce the notion of using custom arbitrary data types for the variables in our cordic
function. This provides another method to reduce the latency, increase the throughput, and min-
imize the area while changing the precision of the intermediate and final results. Vivado R© HLS
provides a method to specifically generate a large number of data types. We provide a background
on number representation and introduce these custom data types.

In general, there is a complex relationship between precision, resource utilization, and perfor-
mance. We touch on some of these tradeoffs, and provide some insights on how to best optimize
the cordic function. We leave many of the optimization as well as the analysis of these tradeoffs, as
an exercise to the reader.
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Chapter 4

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) plays a fundamental role in digital signal processing systems.
It is a method to change a discrete signal in the time domain to the same signal in the frequency
domain. By describing the signal as the sum of sinusoids, we can more easily compute some
functions on the signal, e.g., filtering and other linear time invariant functions. Therefore, it plays
an important role in many wireless communications, image processing, and other digital signal
processing applications.

This chapter provides an introduction to the DFT with a focus on its optimization for an FPGA
implementation. At its core, the DFT performs a matrix-vector multiplication where the matrix is
a fixed set of coefficients. The initial optimizations in Chapter 4.6 treat the DFT operation as a
simplified matrix-vector multiplication. Then, Chapter 4.6 introduces a complete implementation
of the DFT in Vivado R© HLS code. Additionally, we describe how to best optimize the DFT
computation to increase the throughput. We focus our optimization efforts on array partitioning
optimizations in Chapter 4.5.

There is a lot of math in the first two sections of this chapter. This may seem superfluous, but is
necessary to fully comprehend the code restructuring optimizations, particularly for understanding
the computational symmetries that are utilized by the Fast Fourier Transform (FFT) in the next
chapter. That being said, if you are more interested in the HLS optimizations, you can skip to
Chapter 4.6.

4.1 Fourier Series

In order to explain the discrete Fourier transform, we must first understand the Fourier series.
The Fourier series provides an alternative way to look at a real valued, continuous, periodic signal
where the signal runs over one period from −π to π. The seminal result from Jean Baptiste Joseph
Fourier states that any continuous, periodic signal over a period of 2π can be represented by a sum
of cosines and sines with a period of 2π. Formally, the Fourier Series is given as

f(t) ∼ a0
2 + a1 cos(t) + a2 cos(2t) + a3 cos(3t) + . . .

+b1 sin(t) + b2 sin(2t) + b3 sin(3t) + . . .

∼ a0
2 +

∞∑
n=1

(an cos(nt) + bn sin(nt))
(4.1)

where the coefficients a0, a1, . . . and b1, b2, . . . are computed as
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a0 = 1
π

∫ π
−π f(t) dt

an = 1
π

∫ π
−π f(t) cos(nt) dt

bn = 1
π

∫ π
−π f(t) sin(nt) dt

(4.2)

There are several things to note. First, the coefficients a0, a1, a2, . . . , b1, b2, . . . in Equation 4.2
are called the Fourier coefficients. The coefficient a0 is often called the direct current (DC) term
(a reference to early electrical current analysis), the n = 1 frequency is called the fundamental,
while the other frequencies (n ≥ 2) are called higher harmonics. The notions of fundamental and
harmonic frequencies originate from acoustics and music. Second, the function f , and the cos() and
sin() functions all have a period of 2π; changing this period to some other value is straightforward
as we will show shortly. The DC value a0 is equivalent to the coefficient of cos(0 · t) = 1, hence the
use of symbol a. The b0 value is not needed since sin(0 · t) = 0. Finally, the relation between the
function f and its Fourier series is approximate in some cases when there are discontinuities in f
(known as Gibbs phenomenon). This is a minor issue, and only relevant for the Fourier series, and
not other Fourier Transforms. Therefore, going forward we will disregard this “approximation” (∼)
for “equality” (=).

Representing functions that are periodic on something other than π requires a simple change
in variables. Assume a function is periodic on [−L,L] rather than [−π, π]. Let

t ≡ πt′

L
(4.3)

and

dt =
πdt′

L
(4.4)

which is a simple linear translation from the old [−π, π] interval to the desired [−L,L] interval.
Solving for t′ and substituting t′ = Lt

π into Equation 4.1 gives

f(t′) =
a0

2
+
∞∑
n=1

(an cos(
nπt′

L
) + bn sin(

nπt′

L
)) (4.5)

Solving for the a and b coefficients is similar:

a0 = 1
L

∫ L
−L f(t′) dt′

an = 1
L

∫ L
−L f(t′) cos(nπt

′

L ) dt′

bn = 1
L

∫ L
−L f(t′) sin(nπt

′

L ) dt′
(4.6)

We can use Euler’s formula ejnt = cos(nt) + j sin(nt) to give a more concise formulation

f(t) =
∞∑

n=−∞
cne

jnt. (4.7)

In this case, the Fourier coefficients cn are a complex exponential given by

cn =
1

2π

∫ π

−π
f(t)e−jntdt (4.8)

which assumes that f(t) is a periodic function with a period of 2π, i.e., this equation is equivalent
to Equation 4.1.
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The Fourier coefficients an, bn, and cn are related as

an = cn + c−n for n = 0, 1, 2, . . .
bn = j(cn − c−n) for n = 1, 2, . . .

cn =


1
2(an − jbn) n > 0
1
2a0 n = 0
1
2(a−n + jb−n) n < 0

(4.9)

Note that the equations for deriving an, bn, and cn introduce the notion of a “negative” fre-
quency. While this physically does not make much sense, mathematically we can think about as
a “negative” rotation on the complex plane. A “positive” frequency indicates that the complex
number rotates in a counterclockwise direction in the complex plane. A negative frequency simply
means that we are rotating in the opposite (clockwise) direction on the complex plane.

This idea is further illustrated by the relationship of cosine, sine, and the complex exponential.
Cosine can be viewed as the real part of the complex exponential and it can also be derived as the
sum of two complex exponentials – one with a positive frequency and the other with a negative
frequency as shown in Equation 4.10.

cos(x) = Re{ejx} =
ejx + e−jx

2
(4.10)

The relationship between sine and the complex exponential is similar as shown in Equation 4.11.
Here we subtract the negative frequency and divide by 2j.

sin(x) = Im{ejx} =
ejx − e−jx

2j
(4.11)

Both of these relationships can be visualized as vectors in the complex plane as shown in Figure
4.1. Part a) shows the cosine derivation. Here we add the two complex vectors ejx and e−jx. Note
that the sum of these two vectors results in a vector on the real (in-phase or I) axis. The magnitude
of that vector is 2 cos(x). Thus, by dividing the sum of these two complex exponentials by 2, we
get the value cos(x) as shown in Equation 4.10. Figure 4.1 b) shows the similar derivation for
sine. Here we are adding the complex vectors ejx and −e−jx. The result of this is a vector on the
imaginary (quadrature or Q) axis with a magnitude of 2 sin(x). Therefore, we must divide by 2j
in order to get sin(x). Therefore, this validates the relationship as described in Equation 4.11.

4.2 DFT Background

The previous section provided a mathematical foundation for the Fourier series, which works on
signals that are continuous and periodic. The Discrete Fourier Transform requires discrete periodic
signals. The DFT converts a finite number of equally spaced samples into a finite number of
complex sinusoids. In other words, it converts a sampled function from one domain (most often
the time domain) to the frequency domain. The frequencies of the complex sinusoids are integer
multiples of the fundamental frequency which is defined as the frequency related to the sampling
period of the input function. Perhaps the most important consequence of the discrete and periodic
signal is that it can be represented by a finite set of numbers. Thus, a digital system can be used
to implement the DFT.

The DFT works on input functions that uses both real and complex numbers. Intuitively, it is
easier to first understand how the real DFT works, so we will ignore complex numbers for the time
being and start with real signals in order to gain ease into the mathematics a bit.
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Q

I

a) Q

Ix

b)

j sin(x)

ejx

-e-jx
2j sin(x)

x

ejx e-jx

cos(x) 2 cos(x)

Figure 4.1: A visualization of the relationship between the cosine, sine, and the complex exponential.
Part a) shows the sum of two complex vectors, ejx and e−jx. The result of this summation lands
exactly on the real axis with the value 2 cos(x). Part b) shows a similar summation except this
time summing the vectors ejx and −e−jx. This summation lands on the imaginary axis with the
value 2 sin(x).

A quick note on terminology: We use lower case function variables to denote signals in the
time domain. Upper case function variables are signals in the frequency domain. We use ()
for continuous functions and [] for discrete functions. For example, f() is a continuous time
domain function and F () is its continuous frequency domain representation. Similarly g[] is a
discrete function in the time domain and G[] is that function transformed into the frequency
domain.

To start consider Figure 4.2. The figure shows on the left a real valued time domain signal g[]
with N samples or points running from 0 to N−1. The DFT is performed resulting in the frequency
domain signals corresponding to the cosine and sine amplitudes for the various frequencies. These
can be viewed as a complex number with the cosine amplitudes corresponding to the real value
of the complex number and the sine amplitudes providing the imaginary portion of the complex
number. There are N/2 + 1 cosine (real) and N/2 + 1 sine (imaginary) values. We will call this
resulting complex valued frequency domain function G[]. Note that the number of samples in
frequency domain (N/2 + 1) is due to the fact that we are considering a real valued time domain
signal; a complex valued time domain signal results in a frequency domain signal with N samples.

An N point DFT can be determined through a N ×N matrix multiplied by a vector of size N ,
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Real G[ ]: Cosine Amplitudes

Imaginary G[ ]: Sine Amplitudes

0

0

N/2

N/2

0 N-1

g[ ]

Time Domain Frequency Domain

Figure 4.2: A real valued discrete function g[] in the time domain with N points has a frequency
domain representation with N/2 + 1 samples. Each of these frequency domain samples has one
cosine and one sine amplitude value. Collectively these two amplitude values can be represented
by a complex number with the cosine amplitude representing the real part and the sine amplitude
the imaginary part.

G = S · g where

S =



1 1 1 · · · 1
1 s s2 · · · sN−1

1 s2 s4 · · · s2(N−1)

1 s3 s6 · · · s3(N−1)

...
...

...
. . .

...

1 sN−1 s2(N−1) · · · s(N−1)(N−1)


(4.12)

and s = e
−j2π
N . Thus the samples in frequency domain are derived as

G[k] =

N−1∑
n=0

g[n]skn for k = 0, . . . , N − 1 (4.13)

Figure 4.3 provides a visualization of the DFT coefficients for an 8 point DFT operation. The
eight frequency domain samples are derived by multiplying the 8 time domain samples with the
corresponding rows of the S matrix. Row 0 of the S matrix corresponds to the DC component which
is proportional to the average of the time domain samples. Multiplying Row 1 of the S matrix with
g provides the cosine and sine amplitudes values for when there is one rotation around the unit
circle. Since this is an 8 point DFT, this means that each phasor is offset by 45◦. Performing eight
45◦ rotations does one full rotation around the unit circle. Row 2 is similar except is performs two
rotations around the unit circle, i.e., each rotation is 90◦. This is a higher frequency. Row 3 does
three rotations; Row 4 four rotations and so on. Each of these row times column multiplications
gives the appropriate frequency domain sample.

Notice that the S matrix is diagonally symmetric, that is S[i][j] = S[j][i]. In addition, S[i][j] =
si ∗sj = s(i+j). There is also interesting symmetry around Row 4. The phasors in Rows 3 and 5 are
complex conjugates of each other, i.e., S[3][j] = S[5][j]∗. Similarly, Rows 2 and 6 (S[2][j] = S[6][j]∗),
and Rows 1 and 7 (S[1][j] = S[7][j]∗) are each related by the complex conjugate operation. It is
for this reason that the DFT of a real valued input signal with N samples has only N/2 + 1 cosine
and sine values in the frequency domain. The remaining N/2 frequency domain values provide
redundant information so they are not needed. However, this is not true when the input signal is
complex. In this case, the frequency domain will have N + 1 cosine and sine values.
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G[0]
G[1]

G[2]

G[6]

G[3]
G[4]
G[5]

G[7]

=

g[0]
g[1]

g[2]

g[6]

g[3]
g[4]
g[5]

g[7]

Figure 4.3: The elements of the S shown as a complex vectors.

#define SIZE 8
typedef int BaseType;

void matrix vector(BaseType M[SIZE][SIZE], BaseType V In[SIZE], BaseType V Out[SIZE]) {
BaseType i, j;
data loop:
for (i = 0; i < SIZE; i++) {

BaseType sum = 0;
dot product loop:
for (j = 0; j < SIZE; j++) {

sum += V In[j] ∗ M[i][j];
}
V Out[i] = sum;

}
}

Figure 4.4: Simple code implementing a matrix-vector multiplication.

4.3 Matrix-Vector Multiplication Optimizations

Matrix-vector multiplication is the core computation of a DFT. The input time domain vector is
multiplied by a matrix with fixed special values. The result is a vector that corresponds to the
frequency domain representation of the input time domain signal.

In this section, we look at the hardware implementation of matrix-vector multiplication. We
break this operation down into its most basic form (see Figure 4.4). This allows us to better focus
the discussion on the optimizations rather than deal with all the complexities of using functionally
correct DFT code. We will build a DFT core in the next section.

The code in Figure 4.4 provides an initial starting point for synthesizing this operation into
hardware. We use a custom data type called BaseType that is currently mapped as a float.
This may seem superfluous at the time, but this will allow us in the future to easily experiment
with different number representations for our variables (e.g., signed or unsigned fixed point with
different precision). The matrix vector function has three arguments. The first two arguments
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M

V_In * +

V_Out

V in[i]

V out[i]

Latency = 4*SIZE*SIZE

Figure 4.5: A possible implementation of matrix-vector multiplication from the code in Figure 4.4.

BaseType M[SIZE][SIZE] and BaseType V In[SIZE] are the input matrix and vector to be multiplied.
The third argument BaseType V Out[SIZE] is the resultant vector. By setting M = S and V In to a
sampled time domain signal, the V Out will contain the DFT. SIZE is a constant that determines
the number of samples in the input signal and correspondingly the size of the DFT.

The algorithm itself is simply a nested for loop. The inner loop (dot product loop) computes
the DFT coefficients starting from 0 and going to SIZE − 1. However, this relatively simple code
has many design choices that can be performed when mapping to hardware.

Whenever you perform HLS, you should think about the architecture that you wish to synthe-
size. Memory organization is one of the more important decisions. The question boils down to
where do you store the data from your code? There are a number of options when mapping vari-
ables to hardware. The variable could simply be a set of wires (if its value never needs saved across
a cycle), a register, RAM or FIFO. All of these options provide tradeoffs between performance and
area.

Another major factor is the amount of parallelism that is available within the code. Purely
sequential code has few options for implementation. On the other hand, code with a significant
amount of parallelism has implementation options that range from purely sequentially to fully
parallel. These options obviously have different area and performance. We will look at how both
memory configurations and parallelism effect the hardware implementation for the matrix-vector
implementation of the DFT.

Figure 4.5 shows a sequential architecture for matrix-vector multiplication with one multiply
and one addition operator. Logic is created to access the V In and M arrays which are stored in
BRAMs. Each element of V Out is computed and stored into the BRAM. This architecture is
essentially what will result from synthesizing the code from Figure 4.4 with no directives. It does
not consume a lot of area, but the task latency and task interval are relatively large.
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#define SIZE 8
typedef int BaseType;

void matrix vector(BaseType M[SIZE][SIZE], BaseType V In[SIZE], BaseType V Out[SIZE]) {
BaseType i, j;
data loop:
for (i = 0; i < SIZE; i++) {

BaseType sum = 0;
V Out[i] = V In[0] ∗ M[i][0] + V In[1] ∗ M[i][1] + V In[2] ∗ M[i][2] +
V In[3] ∗ M[i][3] + V In[4] ∗ M[i][4] + V In[5] ∗ M[i][5] +
V In[6] ∗ M[i][6] + V In[7] ∗ M[i][7];

}
}

Figure 4.6: The matrix-vector multiplication example with a manually unrolled inner loop.

4.4 Pipelining and Parallelism

There is substantial opportunity to exploit parallelism in the matrix-multiplication example. We
start by focusing on the inner loop. The expression sum += V In[j] ∗ M[i][j]; is executed in each
iteration of the loop. The variable sum, which is keeping a running tally of the multiplications,
is being reused in each iteration and takes on a new value. This inner loop can be rewritten as
shown Figure 4.6. In this case, the sum variable has been completely eliminated and replaced with
multiple intermediate values in the larger expression.

Loop unrolling is performed automatically by Vivado R© HLS in a pipelined context. Loop
unrolling can also be requested by using #pragma HLS unroll or the equivalent directive outside
of a pipelined context.

It should be clear that the new expression replacing the inner loop has significant amount of
parallelism. Each one of the multiplications can be performed simultaneously, and the summation
can be performed using an adder tree. The data flow graph of this computation is shown in Figure
4.7.

If we wish to achieve the minimum task latency for the expression resulting from the unrolled
inner loop, all eight of the multiplications should be executed in parallel. Assuming that the
multiplication has a latency of 3 cycles and addition has a latency of 1 cycle, then all of the
V In[j] ∗ M[i][j] operations are completed by the third time step. The summation of these eight
intermediate results using an adder tree takes log 8 = 3 cycles. Hence, the body of data loop now
has a latency of 6 cycles for each iteration and requires 8 multipliers and 7 adders. This behavior
is shown in the left side of Figure 4.8. Note that the adders could be reused across Cycle 4-6,
which would reduce the number of adders to 4. However, adders are typically not shared when
targeting FPGAs since an adder and a multiplexer require the same amount of FPGA resources
(approximately 1 LUT per bit for a 2-input operator).

If we are not willing to use 8 multipliers, there is an opportunity to reduce resource usage
in exchange for increasing the number of cycles to execute the function. For example, using 4
multipliers would result in a latency of 6 cycles for the multiplication of the eight V In[j] ∗ M[i][j]
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V In[0]
M[i][0]

V In[1]
M[i][1]

V In[2]
M[i][2]

V In[3]
M[i][3]

V In[4]
M[i][4]

V In[5]
M[i][5]

V In[6]
M[i][6]

V In[7]
M[i][7]

V Out[i]

Figure 4.7: A data flow graph of the expression resulting from the unrolled inner loop from Figure
4.6.

Interval = 6

Latency = 6

V in[]

V out[i]

Interval = 9

Latency = 9

V in[]

V out[i]

Figure 4.8: Possible sequential implementations resulting from the unrolled inner loop from Figure
4.6.
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Interval = 6

Latency = 9

V in[]

V out[i]

Interval = 3

Latency = 6

V in[]

V out[i]

Figure 4.9: Possible pipelined implementations resulting from the unrolled inner loop from Figure
4.6.

operations, and an overall latency of 9 cycles to finish the body of data loop. This behavior is
shown in the right side of Figure 4.8. You could even use fewer multipliers at the cost of taking
more cycles to complete the inner loop.

Looking at Figure 4.8, it is apparent that there are significant periods where the operators
are not performing useful work, reducing the overall efficiency of the design. It would be nice if
we could reduce these periods. In this case we can observe that each iteration of data loop is,
in fact completely independent, which means that they can be executed concurrently. Just as we
unrolled dot product loop, it’s also possible to unroll data loop and perform all of the multiplications
concurrently. However, this would require a very large amount of FPGA resources. A better choice
is to enable each iteration of the loop to start as soon as possible, while the previous execution of
the loop is still executing. This process is called loop pipelining and is achieved in Vivado R© HLS
using #pragma HLS pipeline. In most cases, loop pipelining reduces the interval of a loop to be
reduced, but does not affect the latency. Loop pipelined behavior of this design is shown in Figure
4.9.

Until now, we have only focused on operator latency. It is common for functional units to be
also be pipelined and most functional units in Vivado R© HLS are fully pipelined with an interval
of one. Even though it might take 3 cycles for a single multiply operation to complete, a new
multiply operation could start every clock cycle on a pipelined multiplier. In this way, a single
functional unit may be able to simultaneously execute many multiply operations at the same time.
For instance, a multiplier with a latency of 3 and an interval of 1 could be simultaneously executing
three multiply operations.

By taking advantage of pipelined multipliers, we can reduce the latency of the unrolled inner
loop without adding additional operators. One possible implementation using three pipelined mul-
tipliers is shown on the left in Figure 4.10. In this case, the multiplication operations can execute
concurrently (because they have no data dependencies), while the addition operations cannot be-
gin until the first multiplication has completed. In the figure on the right, a pipelined version
of this design is shown, with an interval of 3, which is similar to the results of Vivado R© HLS if
#pragma HLS pipeline II=3 is applied to the data loop. In this case, not only are individual opera-
tions executing concurrently on the same operators, but those operations may come from different
iterations of data loop.

At this point you may have observed that pipelining is possible at different levels of hierarchy,
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Latency = 8

Interval = 3

Latency = 8

Interval = 8

V in[]

V out[i]

V in[]

V out[i]

Figure 4.10: Possible implementations resulting from the unrolled inner loop from Figure 4.6 using
pipelined multipliers.

including the operator level, loop level, and function level. Furthermore, pipelining at different
levels are largely independent! We can use pipelined operators in a sequential loop, or we can use
sequential operators to build a pipelined loop. It’s also possible to build pipelined implementations
of large functions which can be shared in Vivado R© HLS just like primitive operators. In the end,
what matters most is how many operators are being instantiated, their individual costs, and how
often they are used.

4.5 Storage Tradeoffs and Array Partitioning

Up until this point, we have assumed that the data in arrays (V In[], M[][], and V Out[] are accessible
at anytime. In practice, however, the placement of the data plays a crucial role in the performance
and resource usage. In most processor systems, the memory architecture is fixed and we can only
adapt the program to attempt to best make use of the available memory hierarchy, taking care to
minimize register spills and cache misses, for instance. In HLS designs, we can also explore and
leverage different memory structures and often try to find the memory structure that best matches
a particular algorithm. Typically large amounts of data are stored in off-chip memory, such as
DRAM, flash, or even network-attached storage. However, data access times are typically long, on
the order of tens to hundreds (or more) of cycles. Off-chip storage also relatively large amounts of
energy to access, because large amounts of current must flow through long wires. On-chip storage,
in contrast can be accessed quickly and is much lower power. I contrast it is more limited in the
amount of data that can be stored. A common pattern is to load data into on-chip memory in a
block, where it can then be operated on repeatedly. This is similar to the effect of caches in the
memory hierarchy of general purpose CPUs.

The primary choices for on-chip storage on in embedded memories (e.g., block RAMs) or in
flip-flops (FFs). These two options have their own tradeoffs. Flip-flop based memories allow for
multiple reads at different addresses in a single clock. It is also possible to read, modify, and write
a Flip-flop based memory in a single clock cycle. However, the number of FFs is typically limited to
around 100 Kbytes, even in the largest devices. In practice, most flip-flop based memories should be
much smaller in order to make effective use of other FPGA resources. Block RAMs (BRAMs) offer
higher capacity, on the order Mbytes of storage, at the cost of limited accessibility. For example,
a single BRAM can store more than 1-4 Kbytes of data, but access to that data is limited to two
different addresses each clock cycle. Furthermore, BRAMs are required to have a minimum amount
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of pipelining (i.e. the read operation must have a latency of at least one cycle). Therefore, the
fundamental tradeoff boils down to the required bandwidth versus the capacity.

If throughput is the number one concern, all of the data would be stored in FFs. This would
allow any element to be accessed as many times as it is needed each clock cycle. However, as the size
of arrays grows large, this is not feasible. In the case of matrix-vector multiplication, storing a 1024
by 1024 matrix of 32-bit integers would require about 4 MBytes of memory. Even using BRAM,
this storage would require about 1024 BRAM blocks, since each BRAM stores around 4KBytes.
On the other hand, using a single large BRAM-based memory means that we can only access two
elements at a time. This obviously prevents higher performance implementations, such as in Figure
4.7, which require accessing multiple array elements each clock cycle (all eight elements of V In[]
along with 8 elements of M[][]). In practice, most designs require larger arrays to be strategically
divided into smaller BRAM memories, a process called array partitioning. Smaller arrays (often
used for indexing into larger arrays) can be partitioned completely into individual scalar variables
and mapped into FFs. Matching pipelining choices and array partitioning to maximize the efficiency
of operator usage and memory usage is an important aspect of design space exploration in HLS.

Vivado R© HLS will perform some array partitioning automatically, but as array partitioning
tends to be rather design-specific it is often necessary to guide the tool for best results. Global
configuration of array partitioning is available in the config array partition project option. In-
dividual arrays can be explicitly partitioned using the array partition directive. The directive
array partition complete will split each element of an array into its own register, resulting in
a flip-flop based memory. As with many other directive-based optimizations, the same result
can also be achieved by rewriting the code manually. In general, it is preferred to use the tool
directives since it avoids introducing bugs and keeps the code easy to maintain.

Returning to the matrix-vector multiplication code in Figure 4.4, we can achieve a highly parallel
implementation with the addition of only a few directives, as shown in Figure 4.11. The resulting
architecture is shown in Figure 4.12. Notice that the inner j loop is automatically unrolled by
Vivado R© HLS and hence every use of j is replaced with constants in the implementation. This
design demonstrates the most common use of array partitioning where the array dimensions that
are partitioned (in this case, V In[] and the second dimension of M[][]) are indexed with the constants
(in this case the loop index j of the unrolled loop). This enables an architecture where multiplexers
are not required to access the partitioned arrays.

It’s also possible to achieve other designs which use fewer multipliers and have lower perfor-
mance. For instance, in Figure 4.10, these designs use only three multipliers, hence we need only
need to read three elements of matrix M[][] and vector V in[] each clock cycle. Completely parti-
tioning these arrays would result in extra multiplexing as shown in Figure 4.13. In actuality the
arrays only need to be partitioned into three physical memories. Again, this partitioning could
be implemented manually by rewriting code or in Vivado R© HLS using the array partition cyclic
directive.

Beginning with an array x containing the values[
1 2 3 4 5 6 7 8 9

]
The directive array partition variable=x factor=2 cyclic on the array would split it into two
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#define SIZE 8
typedef int BaseType;

void matrix vector(BaseType M[SIZE][SIZE], BaseType V In[SIZE], BaseType V Out[SIZE]) {
#pragma HLS array partition variable=M dim=2 complete
#pragma HLS array partition variable=V In complete
BaseType i, j;
data loop:
for (i = 0; i < SIZE; i++) {

#pragma HLS pipeline II=1
BaseType sum = 0;
dot product loop:
for (j = 0; j < SIZE; j++) {

sum += V In[j] ∗ M[i][j];
}
V Out[i] = sum;

}
}

Figure 4.11: Matrix-vector multiplication with a particular choice of array partitioning and pipelin-
ing.

arrays which are [
1 3 5 7 9

]
and

[
2 4 6 8

]
Similarly, the directive array partition variable=x factor=2 block would split it into two arrays[

1 2 3 4 5
]

and
[
6 7 8 9

]

Study the effects of varying pipeline II and array partitioning on the performance and area.
Plot the performance in terms of number of matrix vector multiply operations per second
(throughput) versus the unroll and array partitioning factor. Plot the same trend for area
(showing LUTs, FFs, DSP blocks, BRAMs). What is the general trend in both cases? Which
design would you select? Why?

Alternatively, similar results can be achieved by pipelining and applying partial loop unrolling
to the inner dot product loop. Figure 4.14 shows the result of unrolling the inner loop of the matrix-
vector multiplication code by a factor of 2. You can see that the loop bounds now increment by 2.
Each loop iteration requires 2 elements of matrix M[][] and vector V in[] each iteration and perform
two multiplies instead of one. In this case after loop unrolling Vivado R© HLS can implement the
operations in both expressions in parallel, corresponding to two iterations of the original loop.
Note that without appropriate array partitioning, unrolling the inner loop may offer no increase
in performance, as the number of concurrent read operations is limited by the number of ports to
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Figure 4.12: Matrix-vector multiplication architecture with a particular choice of array partitioning
and pipelining. The pipelining registers have been elided and the behavior is shown at right.
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Figure 4.13: Matrix-vector multiplication architectures at II=3 with a particular choices of array
partitioning. On the left, the arrays have been partitioned more than necessary, resulting in multi-
plexers. On the right, the arrays are partitioned with factor=3. In this case, multiplexing has been
reduced, but the j loop index becomes a part of the address computations.
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#define SIZE 8
typedef int BaseType;

void matrix vector(BaseType M[SIZE][SIZE], BaseType V In[SIZE], BaseType V Out[SIZE]) {
#pragma HLS array partition variable=M dim=2 cyclic factor=2
#pragma HLS array partition variable=V In cyclic factor=2
BaseType i, j;
data loop:
for (i = 0; i < SIZE; i++) {

BaseType sum = 0;
dot product loop:
for (j = 0; j < SIZE; j+=2) {

#pragma HLS pipeline II=1
sum += V In[j] ∗ M[i][j];
sum += V In[j+1] ∗ M[i][j+1];

}
V Out[i] = sum;

}
}

Figure 4.14: The inner loop of matrix-vector multiply manually unrolled by a factor of two.

the memory. In this case, we can store the data from the even columns in one BRAM and the
data from the odd columns in the other. This is due to the fact that the unrolled loop is always
performing one even iteration and one odd iteration.

The HLS tool can automatically unroll loops using the unroll directive. The directive
takes a factor argument which is a positive integer denoting the number of times that the
loop body should be unrolled.

Manually divide M[][] and vector V in[] into separate arrays in the same manner as the
directive array partition cyclic factor=2. How do you have to modify the code in order to
change the access patterns? Now manually unroll the loop by a factor of two. How do the
performance results vary between the original code (no array partitioning and no unrolling),
only performing array partitioning, and performing array partitioning and loop unrolling?
Finally, use the directives to perform array partitioning and loop unrolling. How do those
results compare to your manual results?

In this code, we see that array partitioning often goes hand in hand with our choices of pipelining.
Array partitioning by a factor of 2 enables an increase in performance by a factor of 2, which can be
achieved either by partially unrolling the inner loop by a factor of 2 or by reducing the II of the outer
loop by a factor of 2. Increasing performance requires a corresponding amount of array partitioning.
In the case of matrix vector multiplication, this relationship is relatively straightforward since there
is only one access to each variable in the inner loop. In other code, the relationship might be more
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complicated. Regardless, the goal of a designer is usually to ensure that the instantiated FPGA
resources are used efficiently. Increasing performance by a factor of 2 should use approximately
twice as many resources. Decreasing performance by a factor of 2 should use approximately half
as many resources.

Study the effects of loop unrolling and array partitioning on the performance and area.
Plot the performance in terms of number of matrix vector multiply operations per second
(throughput) versus the unroll and array partitioning factor. Plot the same trend for area
(showing LUTs, FFs, DSP blocks, BRAMs). What is the general trend in both cases? Which
design would you select? Why?

4.6 Baseline Implementation

We just discussed some optimizations for matrix-vector multiplication. This is a core computation
in performing a DFT. However, there are some additionally intricacies that we must consider to
move from the matrix-vector multiplication in the previous section to a functionally complete DFT
hardware implementation. We move our focus to the DFT in this section, and describe how to
optimize it to make it execute most efficiently.

One significant change that is required is that we must be able to handle complex numbers.
As noted in Section 4.2 because the elements of the S matrix are complex numbers, the DFT of
a real-valued signal is almost always a complex-valued signal. It is also common to perform the
DFT of a complex-valued signal, to produce a complex-valued result. Additionally, we need to
handle fractional or possibly floating point data, rather than integers. This can increase the cost
of the implementation, particularly if floating point operations need to be performed. In addition,
floating point operators, particularly addition, have much larger latency than integer addition. This
can make it more difficult to achieve II=1 loops. A second change is that we’d like to be able to
scale our design up to large input vector sizes, perhaps N=1024 input samples. Unfortunately, if
we directly use matrix-vector multiplication, then we must store the entire S matrix. Since this
matrix is the square of the input size, it becomes prohibitive to store for large input sizes. In the
following sections, we’ll discuss techniques to address both of these complexities.

As is typical when creating a hardware implementation using high level synthesis, we start with
a straightforward or naive implementation. This provides us with a baseline code that we can
insure has the correct functionality. Typically, this code runs in a very sequential manner; it is
not highly optimized and therefore may not meet the desired performance metrics. However, it is
a necessary step to insure that the designer understand the functionality of the algorithm, and it
serves as starting point for future optimizations.

Figure 4.15 shows a baseline implementation of the DFT. This uses a doubly nested for loop.
The inner loop multiplies one row of the S matrix with the input signal. Instead of reading the S
matrix as an input, this code computes an element of S in each each iteration of the inner loop,
based on the current loop indices. This phasor is converted to Cartesian coordinates (a real part
and an imaginary part) using the cos() and sin() functions. The code then performs a complex
multiplication of the phasor with the appropriate sample of the input signal and accumulates the
result. After N iterations of this inner loop, one for each column of S, one frequency domain sample
is calculated. The outer loop also iterates N times, once for each row of S. As a result, the code
computes an expression for w N times, but computes the cos() and sin() functions and a complex
multiply-add N2 times.
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#include <math.h> //Required for cos and sin functions
typedef double IN TYPE; // Data type for the input signal
typedef double TEMP TYPE; // Data type for the temporary variables
#define N 256 // DFT Size

void dft(IN TYPE sample real[N], IN TYPE sample imag[N]) {
int i, j;
TEMP TYPE w;
TEMP TYPE c, s;

// Temporary arrays to hold the intermediate frequency domain results
TEMP TYPE temp real[N];
TEMP TYPE temp imag[N];

// Calculate each frequency domain sample iteratively
for (i = 0; i < N; i += 1) {

temp real[i] = 0;
temp imag[i] = 0;

// (2 ∗ pi ∗ i)/N
w = (2.0 ∗ 3.141592653589 / N) ∗ (TEMP TYPE)i;

// Calculate the jth frequency sample sequentially
for (j = 0; j < N; j += 1) {

// Utilize HLS tool to calculate sine and cosine values
c = cos(j ∗ w);
s = sin(j ∗ w);

// Multiply the current phasor with the appropriate input sample and keep
// running sum
temp real[i] += (sample real[j] ∗ c − sample imag[j] ∗ s);
temp imag[i] += (sample real[j] ∗ s + sample imag[j] ∗ c);

}
}

// Perform an inplace DFT, i.e., copy result into the input arrays
for (i = 0; i < N; i += 1) {

sample real[i] = temp real[i];
sample imag[i] = temp imag[i];

}
}

Figure 4.15: Baseline code for the DFT.
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This code uses a function call to calculate cos() and sin() values. Vivado R© HLS is capable of
synthesizing these functions using its built-in math library. There are several possible algorithms
[22] for implementing trigonometric functions including CORDIC, covered in Chapter 3. However,
generating precise results for these functions can be expensive. There are several possibilities for
eliminating these function calls, since the inputs aren’t arbitrary. We will discuss these tradeoffs
in more detail later. A sequential implementation of this code is show in Figure 4.16.

What changes would this code require if you were to use a CORDIC that you designed, for
example, from Chapter 3? Would changing the accuracy of the CORDIC core make the DFT
hardware resource usage change? How would it effect the performance?

Implement the baseline code for the DFT using HLS. Looking at the reports, what is the
relative cost of the implementation of the trignometric functions, compared to multiplication
and addition? Which operations does it make more sense to try to optimize? What performance
can be achieved by pipelining the inner loop?

4.7 DFT optimization

The baseline DFT implementation of the previous section uses relatively high precision double
datatypes. Implementing floating point operations is typically very expensive and requires many
pipeline stages, particularly for double precision. We can see in Figure 4.16 that this significantly
affects the performance of the loop. With pipelining, the affect of these high-latency operations is
less critical, since multiple executions of the loop can execute concurrently. The exception in this
code are the temp real[] and temp imag[] variables, which are used to accumulate the result. This
accumulation is a recurrence and limits the achievable II in this design when pipelining the inner
loop. This operator dependence is shown in Figure 4.17.

One possible solution is to reduce the precision of the computation. This is always a valuable
technique when it can be applied, since it reduces the resources required for each operation, the
memory required to store any values, and often reduces the latency of operations as well. For
instance we could use the 32-bit float type or the 16-bit half types rather than double. Many signal
processing systems avoid floating point data types entirely and use fixed point data types3.5. For
commonly used integer and fixed-point precisions, each addition can be completed in a single cycle,
enabling the loop to be pipelined at II=1.

What happens to the synthesis result of the code in Figure 4.15 if you change all of the
data types from double to float? Or from double to half? Or to a fixed point value? How does
this change the performance (interval and latency) and the resource usage? Does it change the
values of the output frequency domain samples?

A more general solution to achieve II=1 with floating point accumulations is to process the
data in a different order. Looking at Figure 4.17 we see that the recurrence exists (represented
by the arrow) because the j loop is the inner loop. If the inner loop were the i loop instead, then
we wouldn’t need the result of the accumulation before the next iteration starts. We can achieve
this in the code by interchanging the order of the two loops. This optimization is often called
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Figure 4.16: A high level architectural diagram of the DFT as specified in the code from Figure
4.15. This is not a comprehensive view of the architecture, e.g., it is missing components related
to updating the loop counters i and j. It is meant to provide an approximate notion of how this
architecture will be synthesized. Here we’ve assumed that floating point operators take 4 clock
cycles.
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Figure 4.17: Pipelined version of the behavior in Figure 4.16. In this case, the initiation interval
of the loop is limited to 4, since each floating point addition takes 4 clock cycles to complete and
the result is required before the next loop iteration begins (the dependence shown in red). The
dependencies for all iterations are summarized in the diagram on the right.

loop interchange or pipeline-interleaved processing[40]. In this case, it may not be obvious that we
can rearrange the loops because of the extra code inside the outer i loop. Fortunately, the S matrix
is diagonally symmetric, and hence i and j can be exchanged in the computation of w. The result
is that we can now achieve an II of 1 for the inner loop. The tradeoff is additional storage for the
temp real and temp imag arrays to store the intermediate values until they are needed again.

Reorder the loops of the code in Figure 4.15 and show that you can pipeline the inner loop
with an II of 1.

There are other optimizations that we can apply based on the structure of the S matrix in
the DFT to eliminate the trigonometric operations entirely. Recall that the complex vectors for
each element of the S matrix are calculated based upon a fixed integer rotation around the unit
circle. Row S[0][] of the S matrix corresponds to zero rotations around the unit circle, row S[1][]
corresponds to a single rotation, and the following rows correspond to more rotations around the
unit circle. It turns out that the vectors corresponding to the second row S[1][], which is one rotation
around the unit circle (divided into 360/8 = 45◦ individual rotations), cover all of the vectors from
every other row. This can be visually confirmed by studying Figure 9.11. Thus it is possible to
store only the sine and cosine values from this one rotation, and then index into this memory to
calculate the requisite values for the corresponding rows. This requires only 2×N = O(N) elements
of storage. This results in a O(N) reduction in storage, which for the 1024 point DFT would reduce
the memory storage requirements to 1024×2 entries. Assuming 32 bit fixed or floating point values,
this would require only 8 KB of on-chip memory. Obviously, this is a significant reduction compared
to storing the entire S matrix explicitly. We denote this one dimensional storage of the matrix S
as S′ where

S′ = S[1][·] = (1 s s2 · · · sN−1) (4.14)

Derive a formula for the access pattern for the 1D array S′ given as input the row number
i and column element j corresponding to the array S. That is, how do we index into the 1D S
array to access element S(i, j) from the 2D S array.
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To increase performance further we can apply techniques that are very similar to the matrix-
vector multiply. Previously, we observed that increasing performance of matrix-vector multiply
required partitioning the M[][] array. Unfortunately, representing the S matrix using the S′ means
that there is no longer an effective way to partition S′ to increase the amount of data that we can
read on each clock. Every odd row and column of S includes every element of S′. As a result,
there is no way to partition the values of S′ like were able to do with S. The only way to increase
the number of read ports from the memory that stores S′ is to replicate the storage. Fortunately,
unlike with a memory that must be read and written, it is relatively easy to replicate the storage
for an array that is only read. In fact, Vivado R© HLS will perform this optimization automatically
when instantiates a Read-only Memory (ROM) for an array which is initialized and then never
modified. One advantage of this capability is that we can simply move the sin() and cos() calls
into an array initialization. In most cases, if this code is at the beginning of a function and only
initializes the array, then Vivado R© HLS is able to optimize away the trigonometric computation
entirely and compute the contents of the ROM automatically.

Devise an architecture that utilizes S′ – the 1D version of the S matrix. How does this
affect the required storage space? Does this change the logic utilization compared to an imple-
mentation using the 2D S matrix?

In order to effectively optimize the design, we must consider every part of the code. The
performance can only as good as the “weakest link” meaning that if there is a bottleneck the
performance will take a significant hit. The current version of the DFT function performs an in-
place operation on the input and output data, i.e., it stores the results in the same array as the
input data. The input array arguments sample real and sample imag effectively act as a memory
port. That is, you can think of these arguments arrays as stored in the same memory location.
Thus, we can only grab one piece of data from each of these arrays on any given cycle. This can
create a bottleneck in terms of parallelizing the multiplication and summation operations within the
function. This also explains the reason why we must store all of the output results in a temporary
array, and then copy all of those results into the “sample” arrays at the end of the function. We
would not have to do this if we did not perform an in-place operation.

Modify the DFT function interface so that the input and outputs are stored in separate
arrays. How does this effect the optimizations that you can perform? How does it change the
performance? What about the area results?

4.8 Conclusion

In this chapter, we looked at the hardware implementation and optimization of the Discrete Fourier
Transform (DFT). The DFT is a fundamental operation in digital signal processing. It takes a
signal sampled in the time domain and converts it into the frequency domain. At the beginning
of this chapter, we describe the mathematical background for the DFT. This is important for
understanding the optimizations done in the next chapter (FFT). The remainder of the chapter
was focused on specifying and optimizing the DFT for an efficient implementation on an FPGA.

At its core, the DFT performs a matrix-vector multiplication. Thus, we spend some time
initially to describe instruction level optimizations on a simplified code performing matrix-vector
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multiplication. These instruction level optimizations are done by the HLS tool. We use this as an
opportunity to shed some light into the process that the HLS tool performs in the hopes that it
will provide some better intuition about the results the tool outputs.

After that, we provide an functionally correct implementation for the DFT. We discuss a number
of optimizations that can be done to improve the performance. In particular, we focus on the
problem of dividing the coefficient array into different memories in order to increase the throughput.
Array partitioning optimization are often key to achieving the highest performing architectures.
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Chapter 5

Fast Fourier Transform

Performing the Discrete Fourier Transform (DFT) directly using matrix-vector multiply requires
O(n2) multiply and add operations, for an input signal with n samples. It is possible to reduce the
complexity by exploiting the structure of the constant coefficients in the matrix. This S matrix
encodes the coefficients of the DFT; each row of this matrix corresponds to a fixed number of
rotations around the complex unit circle (please refer to Chapter 4.2 for more detailed information).
These values have a significant amount of redundancy, and that can be exploited to reduce the
complexity of the algorithm.

The ’Big O’ notation used here describes the general order of complexity of an algorithm
based on the size of the input data. For a complete description of Big O notation and its use
in analyzing algorithms, see [17].

The Fast Fourier Transform (FFT) uses a divide-and-conquer approach based on the symmetry
of the S matrix. The FFT was made popular by the Cooley-Tukey algorithm [16], which requires
O(n log n) operations to compute the same function as the DFT. This can provide a substantial
speedup, especially when performing the Fourier transform on large signals.

The divide-and-conquer approach to computing the DFT was initially developed by Karl
Friedrich Gauss in the early 19th century. However, since Gauss’ work on this was not published
during his lifetime and only appeared in a collected works after his death, it was relegated to
obscurity. Heideman et al. [32] provide a nice background on the history of the FFT.

The focus of this chapter is to provide the reader with a good understanding of the FFT
algorithm since that is an important part of creating an optimized hardware design. Thus, we start
by giving a mathematical treatment of the FFT. This discussion focuses on small FFT sizes to give
some basic intuition on the core ideas. After that, we focus on different hardware implementation
strategies.

5.1 Background

The FFT brings about a reduction in complexity by taking advantage of symmetries in the DFT
calculation. To better understand how to do this, let us look at DFT with a small number of points,
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starting with the 2 point DFT. Recall that the DFT performs a matrix vector multiplication, i.e.,
G[] = S[][] · g[], where g[] is the input data, G[] is the frequency domain output data, and S[][] are
the DFT coefficients. We follow the same notation for the coefficient matrix, and the input and
output vectors as described in Chapter 4.2.

For a 2 point DFT, the values of S are:

S =

[
W 00

2 W 01
2

W 10
2 W 11

2

]
(5.1)

Here we use the notation W = e−j2π. The superscript on W denotes values that are added to
the numerator and the subscript on the W indicates those values added in the denominator of the

complex exponential. For example, W 23
4 = e

−j2π·2·3
4 . This is similar to the s value used in the DFT

discussion (Chapter 4.2) where s = e
−j2π
N . The relationship between s and W is s = WN .

The e−j2π or W terms are often called twiddle factors. This term has its origin in the 1966
paper by Gentleman and Sande [27].

[
G[0]
G[1]

]
=

[
W 00

2 W 01
2

W 10
2 W 11

2

]
·
[
g[0]
g[1]

]
(5.2)

Expanding the two equations for a 2 point DFT gives us:

G[0] = g[0] · e
−j2π·0·0

2 + g[1] · e
−j2π·0·1

2

= g[0] + g[1]
(5.3)

due to the fact that since e0 = 1. The second frequency term

G[1] = g[0] · e
−j2π·1·0

2 + g[1] · e
−j2π·1·1

2

= g[0]− g[1]
(5.4)

since e
−j2π·1·1

2 = e−jπ = −1.
Figure 5.1 provides two different representations for this computation. Part a) is the data flow

graph for the 2 point DFT. It is the familiar view that we have used to represent computation
throughout this book. Part b) shows a butterfly structure for the same computation. This is a
typically structure used in digital signal processing, in particular, to represent the computations in
an FFT.

The butterfly structure is a more compact representation that is useful to represent large data
flow graphs. When two lines come together this indicates an addition operation. Any label on the
line itself indicates a multiplication of that label by the value on that line. There are two labels in
this figure. The ‘−’ sign on the bottom horizontal line indicates that this value should be negated.
This followed by the addition denoted by the two lines intersecting is the same as subtraction. The
second label is W 0

2 . While this is a multiplication is unnecessary (since W 0
2 = 1 this means it is

multiplying by the value ‘1’), we show it here since it is a common structure that appears in higher
point FFTs.

Now let us consider a slightly larger DFT – a 4 point DFT, i.e., one that has 4 inputs, 4 outputs,
and a 4× 4 S matrix. The values of S for a 4 point DFT are:

S =


W 00

4 W 01
4 W 02

4 W 03
4

W 10
4 W 11

4 W 12
4 W 13

4

W 20
4 W 21

4 W 22
4 W 23

4

W 30
4 W 31

4 W 32
4 W 33

4

 (5.5)
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g[1]
+

-

G[0]

G[1]

g[0]

g[1] -

G[0]

G[1]

a) b)

W0
2

Figure 5.1: Part a) is a data flow graph for a 2 point DFT/FFT. Part b) shows the same compu-
tation, but viewed as a butterfly structure. This is a common representation for the computation
of an FFT in the digital signal processing domain.

And the DFT equation to compute the frequency output terms are:
G[0]
G[1]
G[2]
G[3]

 =


W 00

4 W 01
4 W 02

4 W 03
4

W 10
4 W 11

4 W 12
4 W 13

4

W 20
4 W 21

4 W 22
4 W 23

4

W 30
4 W 31

4 W 32
4 W 33

4

 ·

g[0]
g[1]
g[2]
g[3]

 (5.6)

Now we write out the equations for each of the frequency domain values in G[] one-by-one. The
equation for G[0] is:

G[0] = g[0] · e
−j2π·0·0

4 + g[1] · e
−j2π·0·1

4 + g[2] · e
−j2π·0·2

4 + g[3] · e
−j2π·0·3

4

= g[0] + g[1] + g[2] + g[3]
(5.7)

since e0 = 1.
The equation for G[1] is:

G[1] = g[0] · e
−j2π·1·0

4 + g[1] · e
−j2π·1·1

4 + g[2] · e
−j2π·1·2

4 + g[3] · e
−j2π·1·3

4

= g[0] + g[1] · e
−j2π

4 + g[2] · e
−j4π

4 + g[3] · e
−j6π

4

= g[0] + g[1] · e
−j2π

4 + g[2] · e−jπ + g[3] · e
−j2π

4 e−jπ

= g[0] + g[1] · e
−j2π

4 − g[2]− g[3] · e
−j2π

4

(5.8)

The reductions were done based upon the fact that e−jπ = −1.
The equation for G[2] is:

G[2] = g[0] · e
−j2π·2·0

4 + g[1] · e
−j2π·2·1

4 + g[2] · e
−j2π·2·2

4 + g[3] · e
−j2π·2·3

4

= g[0] + g[1] · e
−j4π

4 + g[2] · e
−j8π

4 + g[3] · e
−j12π

4

= g[0]− g[1] + g[2]− g[3]

(5.9)

The reductions were done by simplifications based upon rotations. E.g., e
−j8π

4 = 1 and e
−12jπ

4 = −1
since in both cases use the fact that e−j2π is equal to 1. In other words, any complex exponential
with a rotation by 2π is equal.
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Finally, the equation for G[3] is:

G[3] = g[0] · e
−j2π·3·0

4 + g[1] · e
−j2π·3·1

4 + g[2] · e
−j2π·3·2

4 + g[3] · e
−j2π·3·3

4

= g[0] + g[1] · e
−j6π

4 + g[2] · e
−j12π

4 + g[3] · e
−j18π

4

= g[0] + g[1] · e
−j6π

4 − g[2] + g[3] · e
−j10π

4

= g[0] + g[1] · e
−j6π

4 − g[2]− g[3] · e
−j6π

4

(5.10)

Most of the reductions that we have not seen yet deal with the last term. It starts out as e
−j18π

4 . It is

reduced to e
−j10π

4 since these are equivalent based upon a 2π rotation, or, equivalently, e
−j10π

4 ·e
−j8π

4

and the second term e
−j8π

4 = 1. Finally, a rotation of π, which is equal to −1, brings it to e
−j6π

4 .

Another way of viewing this is e
−j6π

4 · e
−j4π

4 and e
−j4π

4 = −1. We leave this term in this unreduced
state in order to demonstrate symmetries in the following equations.

With a bit of reordering, we can view these four equations as:

G[0] = (g[0] + g[2]) + e
−j2π0

4 (g[1] + g[3])

G[1] = (g[0]− g[2]) + e
−j2π1

4 (g[1]− g[3])

G[2] = (g[0] + g[2]) + e
−j2π2

4 (g[1] + g[3])

G[3] = (g[0]− g[2]) + e
−j2π3

4 (g[1]− g[3])

(5.11)

Several different symmetries are starting to emerge. First, the input data can be partitioned
into even and odd elements, i.e., similar operations are done on the elements g[0] and g[2], and the
same is true for the odd elements g[1] and g[3]. Furthermore we can see that there are addition
and subtraction symmetries on these even and odd elements. During the calculations of the output
frequencies G[0] and G[2], the even and odd elements are summed together. The even and odd
input elements are subtracted when calculating the frequencies G[1] and G[3]. Finally, the odd
elements in every frequency term are multiplied by a constant complex exponential W i

4 where i
denotes the index for the frequency output, i.e., G[i].

Looking at the terms in the parentheses, we see that they are 2 point FFT. For example,
consider the terms corresponding to the even input values g[0] and g[2]. If we perform a 2 point
FFT on these even terms, the lower frequency (DC value) is g[0] + g[2] (see Equation 5.3), and the
higher frequency is calculated as g[0]− g[2] (see Equation 5.4). The same is true for the odd input
values g[1] and g[3].

We perform one more transformation on these equations.

G[0] = (g[0] + g[2]) + e
−j2π0

4 (g[1] + g[3])

G[1] = (g[0]− g[2]) + e
−j2π1

4 (g[1]− g[3])

G[2] = (g[0] + g[2])− e
−j2π0

4 (g[1] + g[3])

G[3] = (g[0]− g[2])− e
−j2π1

4 (g[1]− g[3])

(5.12)

The twiddle factors in the last two equations are modified from e
−j2π2

4 = −e
−j2π0

4 and e
−j2π3

4 =

−e
−j2π1

4 . This allows for a reduction in the complexity of the multiplications since we can share
multiplications across two terms.

Figure 5.2 shows the butterfly diagram for the four point FFT. We can see that the first stage
is two 2 point FFT operations performed on the even (top butterfly) and odd (bottom butterfly)
input values. The output of the odd 2 point FFTs are multiplied by the appropriate twiddle factor.
We can use two twiddle factors for all four output terms by using the reduction shown in Equation
5.12.
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g[0]

g[2]

g[1]

g[3]

W0
4

W1
4

-

-

-

G[0]

G[1]

G[2]

G[3]-

2 point FFT

2 point FFT

Stage 1 Stage 2

Figure 5.2: A four point FFT divided into two stages. Stage 1 has uses two 2 point FFTs – one 2
point FFT for the even input values and the other 2 point FFT for the odd input values. Stage 2
performs the remaining operations to complete the FFT computation as detailed in Equation 5.12.

We are seeing the beginning of trend that allows the a reduction in complexity from O(n2)
operations for the DFT to O(n log n) operations for the FFT. The key idea is building the compu-
tation through recursion. The 4 point FFT uses two 2 point FFTs. This extends to larger FFT
sizes. For example, an 8 point FFT uses two 4 point FFTs, which in turn each use two 2 point
FFTs (for a total of four 2 point FFTs). An 16 point FFT uses two 8 point FFTs, and so on.

How many 2 point FFTs are used in a 32 point FFT? How many are there in a 64 point
FFT? How many 4 point FFTs are required for a 64 point FFT? How about a 128 point FFT?
What is the general formula for 2 point, 4 point, and 8 point FFTs in an N point FFT (where
N > 8)?

Now let us formally derive the relationship, which provides a general way to describe the re-
cursive structure of the FFT. Assume that we are calculating an N point FFT. The formula for
calculating the frequency domain values G[] given the input values g[] is:

G[k] =

N−1∑
n=0

g[n] · e
−j2πkn

N for k = 0, . . . , N − 1 (5.13)

We can divide this equation into two parts, one that sums the even components and one that
sums the odd components.

G[k] =

N/2−1∑
n=0

g[2n] · e
−j2πk(2n)

N +

N/2−1∑
n=0

g[2n+ 1] · e
−j2πk(2n+1)

N (5.14)

The first part of this equation deals with the even inputs, hence the 2n terms in both g[] and in
the exponent of e. The second part corresponds to the odd inputs with 2n+ 1 in both places. Also
note that the sums now go to N/2−1 in both cases which should make sense since we have divided
them into two halves.

We transform Equation 5.14 to the following:

G[k] =

N/2−1∑
n=0

g[2n] · e
−j2πkn
N/2 +

N/2−1∑
n=0

g[2n+ 1] · e
−j2πk(2n)

N · e
−j2πk
N (5.15)

107



FAST FOURIER TRANSFORM

In the first summation (even inputs), we simply move the 2 into the denominator so that it is
now N/2. The second summation (odd inputs) uses the power rule to separate the +1 leaving two
complex exponentials. We can further modify this equation to

G[k] =

N/2−1∑
n=0

g[2n] · e
−j2πkn
N/2 + e

−j2πk
N ·

N/2−1∑
n=0

g[2n+ 1] · e
−j2πkn
N/2 (5.16)

Here we only modify the second summation. First we pull one of the complex exponentials outside
of the summation since it does not depend upon n. And we also move the 2 into the denominator
as we did before in the first summation. Note that both summations now have the same complex

exponential e
−j2πkn
N/2 . Finally, we simplify this to

G[k] = Ak +W k
NBk (5.17)

where Ak and Bk are the first and second summations, respectively. And recall that W = e−j2π.
This completely describes an N point FFT by separating even and odd terms into two summations.

For reasons that will become clear soon, let us assume that we only want to use Equation 5.17
to calculate the first N/2 terms, i.e., G[0] through G[N/2 − 1]. And we will derive the remaining
N/2 terms, i.e., those from G[N/2] to G[N − 1] using a different equation. While this may seem
counterintuitive or even foolish (why do more math than necessary?), you will see that this will
allow us to take advantage of even more symmetry, and derive a pattern as we have seen in the 4
point FFT.

In order to calculate the higher frequencies G[N/2] to G[N−1], let us derive the same equations
but this time using k = N/2, N/2 + 1, . . . , N/2− 1. Thus, we wish to calculate

G[k +N/2] =
N−1∑
n=0

g[n] · e
−j2π(k+N/2)n

N for k = 0, . . . , N/2− 1 (5.18)

This is similar to Equation 5.13 with different indices, i.e., we replace k from Equation 5.13 with
k + N/2. Using the same set of transformations that we did previously, we can move directly to
the equivalent to Equation 5.16, but replacing all instances of k with k +N/2 which yields

G[k +N/2] =

N/2−1∑
n=0

g[2n] · e
−j2π(k+N/2)n

N/2 + e
−j2π(k+N/2)

N ·
N/2−1∑
n=0

g[2n+ 1] · e
−j2π(k+N/2)n

N/2 (5.19)

We can reduce the complex exponential in the summations as follows:

e
−j2π(k+N/2)n

N/2 = e
−j2πkn
N/2 · e

−j2π(N/2)n
N/2 = e

−j2πkn
N/2 · e−j2πn = e

−j2πkn
N/2 · 1 (5.20)

The first reduction uses the power rule to split the exponential. The second reduction cancels the
term N/2 in the second exponential. The final reduction uses that fact that n is a non-negative
integer, and thus e−j2πn will always be a rotation of multiple of 2π. This means that this term is
always equal to 1.

Now let us tackle the second complex exponential

e
−j2π(k+N/2)

N = e
−j2πk
N · e

−j2πN/2
N = e

−j2πk
N · e−jπ = −e

−j2πk
N (5.21)

The first reduction splits the exponential using the power rule. The second reduction does some
simplifications on the second exponential. We get the final term by realizing that e−jπ = −1.
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Figure 5.3: Building an N point FFT from two N/2 point FFTs. The upper N/2 point FFT is
performed on the even inputs; the lower N/2 FFT uses the odd inputs.

By substituting Equations 5.20 and 5.21 into Equation 5.19, we get

G[k +N/2] =

N/2−1∑
n=0

g[2n] · e
−j2πkn
N/2 − e

−j2πk
N ·

N/2−1∑
n=0

g[2n+ 1] · e
−j2πkn
N/2 (5.22)

Note the similarity to Equation 5.16. We can put it in terms of Equation 5.17 as

G[k +N/2] = Ak −W k
NBk (5.23)

We can use Equations 5.17 and 5.23 to create an N point FFT from two N/2 point FFTs.
Remember that Ak corresponds to the even input values, and Bk is a function of the odd input
values. Equation 5.17 covers the first N/2 terms, and Equation 5.23 corresponds to the higher N/2
frequencies.

Figure 5.3 shows an N point FFT derived from two N/2 point FFTs. Ak corresponds to the
top N/2 FFT, and Bk is the bottom N/2 FFT. The output terms G[0] through G[N/2 − 1] are
multiplied by W 0

N while the output terms G[N/2] through G[N − 1] are multiplied by −W 0
N . Note

that the inputs g[] are divided into even and odd elements feeding into the top and bottom n/2
point FFTs, respectively.

We can use the general formula for creating the FFT that was just derived to recursively create
the N/2 point FFT. That is, each of the N/2 point FFTs can be implemented using two N/4 point
FFTs. And each N/4 point FFT uses two N/8 point FFTs, and so on until we reach the base case,
a 2 point FFT.

Figure 5.4 shows an 8 point FFT and highlights this recursive structure. The boxes with the
dotted lines indicate different sizes of FFT. The outermost box indicates an 8 point FFT. This is
composed by two 4 point FFTs. Each of these 4 point FFTs have two 2 point FFTs for a total of
four 2 point FFTs.
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Figure 5.4: An 8 point FFT built recursively. There are two 4 point FFTs, which each use two
2 point FFTs. The inputs must be reordered to even and odd elements twice. This results in
reordering based upon the bit reversal of the indices.
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Also note that the inputs must be reordered before they are feed into the 8 point FFT. This is
due to the fact that the different N/2 point FFTs take even and odd inputs. The upper four inputs
correspond to even inputs and the lower four inputs have odd indices. However, they are reordered
twice. If we separate the even and odd inputs once we have the even set {g[0], g[2], g[4], g[6]} and
the odd set {g[1], g[3], g[5], g[7]}. Now let us reorder the even set once again. In the even set g[0]
and g[4] are the even elements, and g[2] and g[6] are the odd elements. Thus reordering it results
in the set {g[0], g[4], g[2], g[6]}. The same can be done for the initial odd set yielding the reordered
set {g[1], g[5], g[3], g[7]}.

The final reordering is done by swapping values whose indices are in bit reversed order. Table
5.1 shows the indices and their three bit binary values. The table shows the eight indices for the
8 point FFT, and the corresponding binary value for each of those indices in the second column.
The third column is the bit reversed binary value of the second column. And the last column is
the decimal number corresponding the reversed binary number.

Table 5.1: The index, three bit binary value for that index, bit reversed binary value, and the
resulting bit reversed index.

Index Binary Reversed Reversed
Binary Index

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Looking at the first row, the initial index 0, has a binary value of 000, which when reversed
remains 000. Thus this index does not need to be swapped. Looking at Figure 5.4 we see that this
is true. g[0] remains in the same location. In the second row, the index 1 has a binary value 001.
When reversed this is 100 or 4. Thus, the data that initially started at index 1, i.e., g[1] should
end up in the fourth location. And looking at index 4, we see the bit reversed value is 1. Thus g[1]
and g[4] are swapped.

This bit reversal process works regardless of the input size of the FFT, assuming that the FFT
is a power of two. FFT are commonly a power of two since this allows them to be recursively
implemented.

In an 32 point FFT, index 1 is swapped with which index? Which index is index 2 is
swapped with?

This completes our mathematical treatment of the FFT. There are plenty of more details about
the FFT, and how to optimize it. You may think that we spent too much time already discussing the
finer details of the FFT; this is a book on parallel programming for FPGAs and not on digital signal
processing. This highlights an important part of creating an optimum hardware implementation –
the designer must have a good understanding of the algorithm under development. Without that,
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it is difficult to create a good implementation. The next section deals with how to create a good
FFT implementation.

5.2 Baseline Implementation

In the remainder of this chapter, we discuss different methods to implement the Cooley-Tukey FFT
[16] algorithm using the Vivado R© HLS tool. This is the same algorithm that we described in the
previous section. We start with a common version of the code, and then describe how to restructure
it to achieve a better hardware design.

When performed sequentially, the O(n log n) operations in the FFT require O(n log n) time
steps. Typically, a parallel implementation will perform some portion of the FFT in parallel. One
common way of parallelizing the FFT is to organize the computation into log n stages, as shown
in Figure 5.8. The operations in each stage are dependent on the operations of the previous stage,
naturally leading to a pipelining across the tasks. Such an architecture allows log n FFTs to be
computed simultaneously with a task interval determined by the architecture of each stage. We
discuss task pipelining using the dataflow directive in Section 5.4.

Each stage in the FFT also contains significant parallelism, since each butterfly computation
is independent of other butterfly computations in the same stage. In the limit, performing n/2
butterfly computations every clock cycle with a Task Interval of 1 can allow the entire stage to
be computed with a Task Interval of 1. When combined with a dataflow architecture, all of
the parallelism in the FFT algorithm can be exploited. Note, however that although such an
architecture can be constructed, it is almost never used except for very small signals, since an
entire new block of SIZE samples must be provided every clock cycle to keep the pipeline fully
utilized. For instance, a 1024-point FFT of complex 32-bit floating point values, running at 250
MHz would require 1024 points*(8 bytes/point)*250*109 Hz = 1Terabyte/second of data into the
FPGA. In practice, a designer must match the computation architecture to the data rate required
in a system.

Assuming a clock rate of 250 MHz and one sample received every clock cycle, approximately
how many butterfly computations must be implemented to process every sample with a 1024-
point FFT? What about for a 16384-point FFT?

In the remainder of this section, we describe the optimization of an FFT with the function
prototype void fft(DTYPE X R[SIZE], DTYPE X I[SIZE]) where DTYPE is a user customizable data
type for the representation of the input data. This may be int, float, or a fixed point type. For
example, #define DTYPE int defines DTYPE as an int. Note that we choose to implement the real
and imaginary parts of the complex numbers in two separate arrays. The X R array holds the real
input values, and the X I array holds the imaginary values. X R[i] and X I[i] hold the ith complex
number in separate real and imaginary parts.

There is one change in the FFT implementation that we describe in this section. Here we
perform an FFT on complex numbers. The previous section uses only real numbers. While
this may seem like a major change, the core ideas stay the same. The only differences are that
the data has two values (corresponding to the real and imaginary part of the complex number),
and the operations (add, multiply, etc.) are complex operations.
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This function prototype forces an in-place implementation. That is, the output data is stored
in the same array as the input data. This eliminates the need for additional arrays for the output
data, which reduces the amount of memory that is required for the implementation. However,
this may limit the performance due to the fact that we must read the input data and write the
output data to the same arrays. Using separate arrays for the output data is reasonable if it can
increase the performance. There is always a tradeoff between resource usage and performance; the
same is true here. The best implementation depends upon the application requirements (e.g., high
throughput, low power, size of FPGA, size of the FFT, etc.).

We start with code for an FFT that would be typical for a software implementation. Figure
5.5 shows a nested three for loop structure. The outer for loop, labeled stage loop implements one
stage of the FFT during each iteration. There are log2(N) stages where N is the number of input
samples. The stages are clearly labeled in Figure 5.4; this 8 point FFT has log2(8) = 3 stages. You
can see that each stage performs the same amount of computation, or the same number of butterfly
operations. In the 8 point FFT, each stage has four butterfly operations.

For an N point FFT, how many butterfly operations are there in each stage? How many
total butterfly operations are there for the entire FFT?

The second for loop, labeled butterfly loop, performs all of the butterfly operations for the
current stage. butterfly loop has another nested for loop, labeled dft loop. Each iteration of dft loop
performs one butterfly operation. Remember that we are dealing with complex numbers and must
perform complex additions and multiplications.

The first line in dft loop determines the offset of the butterfly. Note that the “width” of the
butterfly operations changes depending upon the stage. Looking at Figure 5.4, Stage 1 performs
butterfly operations on adjacent elements, Stage 2 performs butterfly operations on elements with
index differing by two, and Stage 3 performs butterfly operations on elements with index differing
by four. This difference is computed and stored in the i lower variable. Notice that this offset,
stored in the variable numBF, is different in every stage.

The remaining operations in dft loop perform multiplication by the twiddle factor and an ad-
dition or subtraction operation. The variables temp R and temp I hold the real and imaginary
portions of the data after multiplication by the twiddle factor W . The variables c and s are the
real and imaginary parts of W , which is calculated using the sin() and cos() builtin functions. We
could also use the CORDIC, such as the one developed in Chapter 3, to have more control over the
implementation. Twiddle factors are also commonly precomputed and stored in on-chip memory
for moderate array sizes. Lastly, elements of the X R[] and X I[] arrays are updated with the result
of the butterfly computation.

dft loop and butterfly loop each execute a different number of times depending upon the stage.
However the total number of times that the body of dft loop is executed in one stage is constant.
The number of iterations for the butterfly for loop depends upon the number of unique W twiddle
factors in that stage. Referring again to Figure 5.4, we can see that Stage 1 uses only one twiddle
factor, in this case W 0

8 . Stage 2 uses two unique twiddle factors and Stage 3 uses four different
W values. Thus, butterfly loop has only one iteration in Stage 1, 2 iterations in stage 2, and four
iterations in stage 3. Similarly, the number of iterations of dft loop changes. It iterates four times
for an 8 point FFT in Stage 1, two times in Stage 2, and only one time in stage 3. However in
every stage, the body of dft loop is executed the same number of times in total, executing a total
of four butterfly operations for each stage an 8 point FFT.
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void fft(DTYPE X R[SIZE], DTYPE X I[SIZE]) {
DTYPE temp R; // temporary storage complex variable
DTYPE temp I; // temporary storage complex variable
int i, j, k; // loop indexes
int i lower; // Index of lower point in butterfly
int step, stage, DFTpts;
int numBF; // Butterfly Width
int N2 = SIZE2; // N2=N>>1

bit reverse(X R, X I);

step = N2;
DTYPE a, e, c, s;

stage loop:
for (stage = 1; stage <= M; stage++) { // Do M stages of butterflies

DFTpts = 1 << stage; // DFT = 2ˆstage = points in sub DFT
numBF = DFTpts / 2; // Butterfly WIDTHS in sub−DFT
k = 0;
e = −6.283185307178 / DFTpts;
a = 0.0;

// Perform butterflies for j−th stage
butterfly loop:

for (j = 0; j < numBF; j++) {
c = cos(a);
s = sin(a);
a = a + e;

// Compute butterflies that use same W∗∗k
dft loop:

for (i = j; i < SIZE; i += DFTpts) {
i lower = i + numBF; // index of lower point in butterfly
temp R = X R[i lower] ∗ c − X I[i lower] ∗ s;
temp I = X I[i lower] ∗ c + X R[i lower] ∗ s;
X R[i lower] = X R[i] − temp R;
X I[i lower] = X I[i] − temp I;
X R[i] = X R[i] + temp R;
X I[i] = X I[i] + temp I;
}
k += step;
}
step = step / 2;
}
}

Figure 5.5: A common implementation for the FFT using three nested for loops. While this may
work well running as software on a processor, it is far from optimal for a hardware implementation.
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Vivado R© HLS performs significant static analysis on each synthesized function, including
computing bounds on the number of times each loop can execute. This information comes from
many sources, including variable bitwidths, ranges, and assert() functions in the code. When
combined with the loop II, Vivado R© HLS can compute bounds on the latency or interval of the
FFT function. In some cases (usually when loop bounds are variable or contain conditional
constructs), the tool is unable to compute the latency or interval of the code and returns
‘’?’. When synthesizing the code in Figure 5.5, Vivado R© HLS may not be able to determine
the number of times that butterfly loop and dft loop iterate because these loops have variable
bounds.

The tripcount directive enables the user to specify to the Vivado R© HLS tool more informa-
tion about the number of times a loop is executed which can be used by the tool to analyze the
performance of the design. It takes three optional arguments min, max, and average. In this
code, we could add a directive to dft loop. By applying this directive, the Vivado R© HLS tool
can calculate bounds on the latency and interval value for the loop and the overall design. Note
that since the Vivado R© HLS tool uses the numbers that you provide, if you give the tool an
incorrect tripcount then the reported task latency and task interval will be incorrect – garbage
in, garbage out.

What is the appropriate way to use the trip count directive for the FFT in Figure 5.5?
Should you set the max, min, and/or average arguments? Would you need to modify the
tripcount arguments if the size of the FFT changes?

5.3 Bit Reversal

We have not talked about the bit reverse function, which swaps the input data values so that we
can perform an in-place FFT. This means that the inputs values are mixed, and the result is that
the output data is in the correct order. We discuss that function in some detail now.

Figure 5.6 shows one possible implementation of the bit reverse function. It divides the code
into two functions. The first is the bit reversal function (bit reverse), which reorders data in the
given arrays so that each data is in located at a different index in the array. This function calls
another function, reverse bits, which takes an input integer and returns the bit reversed value of
that input.

Let us start with a brief overview of the reverse bits function. The function goes bit by bit
through the input variable and shifts it into the rev variable. The for loop body consists of a few
bitwise operations that reorder the bits of the input. Although these operations are individually not
terribly complex, the intention of this code is that the for loop is completely unrolled and Vivado R©

HLS can identify that the bits of the input can simply be wired to the output. As a result,
the implementation of the reverse bits function should require no logic resources at all, but only
wires. This is a case where unrolling loops greatly simplifies the operations that must be performed.
Without unrolling the loop, the individual ‘or’ operations must be performed sequentially. Although
this loop can be pipelined, the ‘or’ operation would still be implemented in logic resources in the
FPGA and executing the the loop would have a latency determined by the number of bits being
reversed (\gls{fft} BITS in this case).
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#include ”math.h”
#include ”fft.h”

unsigned int reverse bits(unsigned int input) {
int i, rev = 0;
for (i = 0; i < M; i++) {

rev = (rev << 1) | (input & 1);
input = input >> 1;

}
return rev;

}

void bit reverse(DTYPE X R[SIZE], DTYPE X I[SIZE]) {
unsigned int reversed;
unsigned int i;
DTYPE temp;

for (i = 0; i < SIZE; i++) {
reversed = reverse bits(i); // Find the bit reversed index
if (i <= reversed) {

// Swap the real values
temp = X R[i];
X R[i] = X R[reversed];
X R[reversed] = temp;

// Swap the imaginary values
temp = X I[i];
X I[i] = X I[reversed];
X I[reversed] = temp;

}
}

}

Figure 5.6: The first stage in our FFT implementation reorders the input data. This is done
by swapping the value at index i in the input array with the value at the bit reversed index
corresponding to i. The function reverse bits gives the bit reversed value corresponding to the input
argument. And the function bit reverse swaps the values in the input array.
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What is the latency of the reverse bits function when no directives are applied? What is the
latency when the loop is pipelined? What is the latency when the whole function is pipelined?

It is tempting to “blindly” apply directives in order to achieve a better design. However, this
can be counterproductive. The best designer has a deep understanding of both the application
and the available optimizations and carefully considers these together to achieve the best results.

Now let us optimize the parent bit reverse function. This function has a single for loop that
iterates through each index of the input arrays. Note that there are two input arrays X R[] and
X I[]. Since we are dealing with complex numbers, we must store both the real portion (in the
array X R[]), and the imaginary portion (in the array X I[]). X R[i] and X I[i] holds the real and
imaginary values of the i-th input. In each iteration of the for loop, we find the index reversed
value by calling the reverse bits function. Then we swap both the real and imaginary values stored
in the index i and the index returned by the function reverse bits. Note that as we go through all
SIZE indices, we will eventually hit the reversed index for every value. Thus, the code only swaps
values the first time based on the condition if(i < reversed).

5.4 Task Pipelining

Dividing the FFT algorithm into stages enables Vivado R© HLS to generate an implementation where
different stages of the algorithm are operating on different data sets. This optimization, called
task pipelining is enabled using the dataflow directive. This is a common hardware optimization,
and thus is relevant across a range of applications.

We can naturally divide the FFT algorithm into log2(N + 1) stages where N is the number of
points of the FFT. The first stage swaps each element in the input array with the element located
at the bit reversed address in the array. After this bit reverse stage, we perform log2(N) stages of
butterfly operations. Each of these butterfly stages has the same computational complexity. Figure
5.7 describes how to divide an 8 point FFT into four separate tasks. The code has separate function
call for each of the tasks: one call to bit reverse, and three calls to fft stage. Each stage has two
input arrays and two output arrays: one for the real portion and one for the imaginary portion of
the complex numbers. Assume that the DTYPE is defined elsewhere, e.g., as an int, float or a fixed
point data type.

Refactoring the FFT code allows us to perform task pipelining. Figure 5.8 gives an example
of this. In this execution, rather than wait for the first task to complete all four function calls in
the code before the second task can begin, the second task can start after the first task has only
completed the first function bit reverse. The first task continues to execute each stage in the pipeline
in order, followed by the remaining tasks in order. Once the pipeline is full, all four subfunctions
are executing concurrently, but each one is operating on different input data. Similarly, there are
four 8 point FFTs being computed simultaneously, each one executing on a different component
of the hardware. This shown in the middle portion of Figure 5.8. Each of the vertical four stages
represents one 8 point FFT. And the horizontal denotes increasing time. Thus, once we start
the fourth 8 point FFT, we have four FFTs running simultaneously. Note that for this to work,
each call to the fft stage function must be implemented with independent hardware. In addition,
enough storage is required to contain the intermediate computations of each FFT being computed
simultaneously.
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void fft stage(int stage, DTYPE X R[SIZE], DTYPE X I[SIZE],
DTYPE Out R[SIZE], DTYPE Out I[SIZE]) {

int DFTpts = 1 << stage; // DFT = 2ˆstage = points in sub DFT
int numBF = DFTpts / 2; // Butterfly WIDTHS in sub−DFT
int step = SIZE >> stage;
DTYPE k = 0;
DTYPE e = −6.283185307178 / DFTpts;
DTYPE a = 0.0;
// Perform butterflies for j−th stage

butterfly loop:
for (int j = 0; j < numBF; j++) {

DTYPE c = cos(a);
DTYPE s = sin(a);
a = a + e;
// Compute butterflies that use same W∗∗k

dft loop:
for (int i = j; i < SIZE; i += DFTpts) {

int i lower = i + numBF; // index of lower point in butterfly
DTYPE temp R = X R[i lower] ∗ c − X I[i lower] ∗ s;
DTYPE temp I = X I[i lower] ∗ c + X R[i lower] ∗ s;
Out R[i lower] = X R[i] − temp R;
Out I[i lower] = X I[i] − temp I;
Out R[i] = X R[i] + temp R;
Out I[i] = X I[i] + temp I;

}
k += step;

}
}

void fft streaming(DTYPE X R[SIZE], DTYPE X I[SIZE], DTYPE OUT R[SIZE], DTYPE OUT I[SIZE])
{

#pragma HLS dataflow
DTYPE Stage1 R[SIZE], Stage1 I[SIZE],

Stage2 R[SIZE], Stage2 I[SIZE],
Stage3 R[SIZE], Stage3 I[SIZE];

bit reverse(X R, X I, Stage1 R, Stage1 I);
fft stage(1, Stage1 R, Stage1 I, Stage2 R, Stage2 I);
fft stage(2, Stage2 R, Stage2 I, Stage3 R, Stage3 I);
fft stage(3, Stage3 R, Stage3 I, OUT R, OUT I);

}

Figure 5.7: Code implementing an 8 point FFT divided into stages, each of which is implemented
by a separate function. The bit reverse function is the first stage. Each following stage performs
implements butterfly operations.
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bit reverse fft stage 1 fft stage 2 fft stage 3
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Figure 5.8: Dividing the FFT into different stages allows for task pipelining across each of these
stages. The figure shows an example with three FFT stages (i.e., an 8 point FFT). The figure
shows four 8 point FFT executing at the same time.
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void fft streaming(DTYPE X R[SIZE], DTYPE X I[SIZE], DTYPE OUT R[SIZE], DTYPE OUT I[SIZE])
{

#pragma HLS dataflow
DTYPE Stage R[M][SIZE], Stage I[M][SIZE];
#pragma HLS array partition variable=Stage R dim=1 complete
#pragma HLS array partition variable=Stage I dim=1 complete

bit reverse(X R, X I, Stage R[0], Stage I[0]);
stage loop:

for (int stage = 1; stage < M; stage++) { // Do M−1 stages of butterflies
#pragma HLS unroll
fft stage(stage, Stage R[stage−1], Stage I[stage−1], Stage R[stage], Stage I[stage]);

}
fft stage(M, Stage R[M−1], Stage I[M−1], OUT R, OUT I);

}

Figure 5.9: Code implementing an arbitrary-sized FFT using a loop. After the loop is unrolled,
each function call in the unrolled loop becomes a dataflow process.

The dataflow directive can construct separate pipeline stages (often called processes) from both
functions and loops. The code in Figure 5.7 uses functions only, but we could achieve a similar
result with four loops instead of four functions. In fact, this result could be achieved by unrolling
the outer stage loop in the original code either explicitly or using #pragma HLS unroll. Such a code
structure has several advantages. Firstly, it is closer to the structure of the original algorithmic
code, reducing the amount of code changes which need to be made. Secondly, the code is less
verbose, making it somewhat easier to write. Thirdly, the code is again parameterized, supporting
different values of size with the same code. Code with a loop is shown in Figure ??.

The dataflow directive and the pipeline directive both generate circuits capable of pipelined
execution. The key difference is in the granularity of the pipeline. The pipeline directive constructs
an architecture that is efficiently pipelined at the cycle level and is characterized by the II of the
pipeline. Operators are statically scheduled and if the II is greater than one, then operations can be
shared on the same operator. The dataflow directive constructs an architecture that is efficiently
pipelined for operations that take a (possibly unknown) number of clock cycles, such as the the
behavior of a loop operating on a block of data. These coarse-grained operations are not statically
scheduled and the behavior is controlled dyanmically by the handshake of data through the pipeline.
In the case of the FFT, each stage is an operation on a block of data (the whole array) which takes
a large number of cycles. Within each stage, loops execute individual operations on the data in a
block. Hence, this is a case where it often makes sense to use the dataflow directive at the toplevel
to form a coarse-grained pipeline, combined with the pipeline directive within each loop to form
fine-grained pipelines of the operations on each individual data element.

The dataflow directive must implement memories to pass data between different processes.
In the case when Vivado R© HLS can determine that processes access data in sequential order, it
implements the memory using a FIFO. This requires that data is written into an array in the same
order that it is read from the array. If the is not the case, or if Vivado R© HLS can not determine
if this streaming condition is met, then the memory can be implemented using a ping-pong buffer
instead. The ping-pong buffer consists of two (or more) conceptual blocks of data, each the size of
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the original array. One of the blocks can be written by the source process while another block is
read by the destination process. The term “ping-pong” comes from the fact that the reading and
writing to each block of data alternates in every execution of the task. That is, the source process
will write to one block and then switch to the other block before beginning the next task. The
destination process reads from the block that the producer is not writing to. As a result, the source
and destination processes can never writing and reading from the same block at the same time.

A ping-pong buffer requires enough memory to store each communication array at least twice.
FIFOs can often be significantly smaller, although determining a minimal size for each fifo is often a
difficult design problem. Unlike a FIFO, however, the data in a ping-pong buffer can be written to
and read from in any order. Thus, FIFOs are generally the best choice when the data is produced
and consumed in sequential order and ping-pong buffers are a better choice when there is not such
regular data access patterns.

Using the dataflow directive effectively still requires the behavior of each individual process
to be optimized. Each individual process in the pipeline can still be optimized using techniques
we have seen previously such as code restructuring, pipelining, and unrolling. For example, we
have already discussed some optimizations for the bit reverse function in Section 5.3. In general,
it is important to optimize the individual tasks while considering overall toplevel performance
goals. Many times it is best to start with small functions and understand how to optimize them in
isolation. As a designer, it is often easier to comprehend what is going on in a small piece of code
and hopefully determine the best optimizations quickly. After optimizing each individual function,
then you can move up the hierarchy considering larger functions given particular implementations
of low level functions, eventually reaching the toplevel function.

However, the local optimizations must be considered in the overall scope of the goals. In
particular for dataflow designs the achieved interval for the overall pipeline can never be smaller
than the interval of each individual process. Looking again at Figure 5.7, assume that bit reverse
has an interval of 8 cycles, fft stage(1,...) has an interval of 12 cycles, fft stage(2,...) has an interval
of 12 cycles, and fft stage(3,...) has an interval of 14 cycles. When using dataflow, the overal task
interval is 14, determined by the maximum of all of the tasks/functions. This means that you should
be careful in balancing optimizations across different processes with the goal of creating a balanced
pipeline where the interval of each process is approximately the same. In this example, improving
the interval of the bit reverse function cannot improve the overall interval of the fft function. In
fact, it might be beneficial to increase the latency of the bit reverse function, if it can be achieved
with significantly fewer resources.

5.5 Conclusion

The overall goal is to create the most optimal design, which is a function of your application needs.
This may be to create the smallest implementation. Or the goal could be creating something that
can perform the highest throughput implementation regardless of the size of the FPGA or the
power/energy constraints. Or the latency of delivering the results may matter if the application
has real-time constraints. All of the optimizations change these factors in different ways.

In general, there is no one algorithm on how to optimize your design. It is a complex function
of the application, design constraints, and the inherent abilities of the designer himself. Yet, it
is important that the designer have a deep understanding of the application itself, the design
constraints, and the abilities of the synthesis tool.

We attempted to illustrate these bits of wisdom in this chapter. While the FFT is a well
studied algorithm, with a large number of known hardware implementation tricks, it still serves as
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a good exemplar for high-level synthesis. We certainly did not give all of the tricks for optimization.
Regardless, we attempted to provide some insight into the key optimizations here, which we hope
serve as a guide to how to optimize the FFT using the Vivado R© HLS tool.

First and foremost, understand the algorithm. We spent a lot of time explaining the basics
of the FFT, and how it relates to the DFT. We hope that the reader understands that this is
the most important part of building optimal hardware. Certainly, the designer could translate
C/MATLAB/Java/Python code into Vivado R© HLS and get an working implementation. And that
same designer could somewhat blindly apply directives to achieve better results. But that designer
is not going to get anywhere close to optimal results without a deep understanding of the algorithm
itself.

Second, we provide an introduction to task level pipelining using the dataflow directive. This
is a powerful optimization that is not possible through code restructuring. I.e., the designer must
use this optimization to get such a design. Thus, it is important that the designer understand its
power, drawbacks, and usage.

Additionally, we give build upon some of the optimizations from previous chapters, e.g., loop
unrolling and pipelining. All of these are important to get an optimized FFT hardware design.
While we did not spend too much time on these optimizations, they are extremely important.

Finally, we tried to impress on the reader that these optimizations cannot be done in isolation.
Sometimes the optimizations are independent, and they can be done in isolation. For example,
we can focus on one of the tasks (e.g., in the bit reverse function as we did in Section 5.3). But
many times different optimizations will effect another. For example, the inline directive will effect
the way the pipelining of a function. And in particular, the way that we optimize tasks/functions
can propagate itself up through the hierarchy of functions. The takeaway is that it is extremely
important that the designer understand the effects of the optimizations on the algorithm, both
locally and globally.
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Chapter 6

Sparse Matrix Vector Multiplication

Sparse matrix vector multiplication (SpMV) takes a sparse matrix, i.e., one in which most of its
elements are zero, and multiplies it by a vector. The vector itself may be sparse as well, but often
it is dense. This is a common operation in scientific applications, economic modeling, data mining,
and information retrieval. For example, it is used as an iterative method for solving sparse linear
systems and eigenvalue problems. It is an operation in PageRank and it is also used in computer
vision, e.g., image reconstruction.

This chapter introduces several new HLS concepts, and reinforces some previously discussed
optimization. One goal of the chapter is to introduce a more complex data structure. We use a
compressed row storage (CRS) representation to hold the sparse matrix. Another goal is to show
how to perform testing. We build a simple structure for a testbench that can be used to help
determine if the code is functionally correct. This is an important aspect of hardware design, and
Vivado R© HLS makes it easy to test many aspects of the generated RTL with the same high-level
C testbench. This is one of the big advantages of HLS over RTL design. We also show how you
can perform C/RTL cosimulation using the testbench and Vivado R© HLS tool. This is necessary
to derive the performance characteristics for the different SpMV designs. Since the execution time
depends upon the number of entries in the sparse matrix, we must use input data in order to
determine the clock cycles for the task interval and task latency.

6.1 Background

Figure 6.1 shows an example of a 4 × 4 matrix M represented in two different ways. Figure 6.1
a) shows the normal representation of the matrix as a two-dimensional array of 16 elements. Each
element is store in its own location in the array. Figure 6.1 b) shows the same matrix represented
in CRS format. The CRS representation is a data structure consisting of three arrays. The values
array holds the value of each non-zero element in the matrix. The columnIndex and rowPtr arrays
encode information about the location of these non-zero elements in the matrix. columnIndex
stores the column of each element, while rowPtr contains the index in values of the first element
in each row. The CRS format avoids storing values in the matrix that are zero, although there is
nothing to prevent a zero from being explicitly represented in the values array. In the example,
however, we see that the values array does not, in fact, contain any zero elements. The tradeoff
is that some additional book-keeping information (the columnIndex and rowPtr arrays) in order
to properly interpret and manipulate the matrix. The CRS form is commonly used when large
matrices contain only a small number of non-zero elements (typically 10 percent or less), enabling
these matrices to be stored with less memory and manipulated with fewer operations. However, the
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Figure 6.1: A 4 × 4 matrix M represented in two different ways: as a ‘dense’ matrix stored in a
two-dimensional array, and as a sparse matrix stored in the compressed row storage (CRS) form,
a data structure consisting of three arrays.

CRS form has no requirements about the sparsity of the matrix and can be used for any matrix.
This makes it a general approach that can be used for any matrix, but not necessarily the most
efficient. The CRS form is also not the only efficient representation of sparse matrices. Depending
on the characteristics of the matrix and the types of operations to be performed, other sparse
representations can also be used.

More precisely, the CRS format uses a data structure consisting of three arrays: values, colIndex,
and rowPtr. The values array and the columnIndex has an entry for each of the non-zero elements
in the sparse matrix M. These arrays represent the matrix M stored in a row-wise fashion, i.e.,
left to right, and top to bottom. The data in the matrix is stored in the values array, while the
columnIndex array contains the horizontal location of the data in the matrix. If values[k] represents
Mij then colIndex[k] = j. The array rowPtr has size n+ 1 for an n-row matrix. rowPtr[k] contains
the total number of elements in all the rows in the matrix prior to row k, with the first element
rowPtr[0] = 0 and the last element rowPtr[n] always giving the total number of non-zero elements
the matrix. As a result, if values[k] represents Mij , then rowPtr[i] ≤ k <rowPtr[i+1]. If row k
contains any non-zero elements, then rowPtr[k] will contain the index of the first element in the
row. Note that if there are rows in the matrix without a non-zero element, then values in the rowPtr
array will repeat.

Looking at Figure 6.1 a), we can scan the matrix in row-major order to determine the values
array in CRS form. Whenever we find a non-zero element, its value is stored at the next available
index i in the values array and its column is stored at columnIndex[i]. In addition, whenever we
start scanning a new row, we store the next available index i in the rowPtr array. As a result, the
first element in the rowPtr array is always zero. Looking at Figure 6.1 b), we can also convert the
matrix back to a two-dimensional array representation. The first step is to determine the number
of elements in each row of the matrix from the rowPtr array. The number of elements in row i is
the difference rowPtr[i]−rowPtr[i+1]. Then the row can be reconstructed by iterating through the
values array starting at values[rowPtr[i]]. In our example matrix, the because the first two elements
of the rowPtr array are 0 and 2, then we know that there are 2 elements in the first row, i.e.,
values[0] and values[1]. The first non-zero element in the values data structure, values[0], is 3. This
value is in column 0, since columnIndex[0] = 0. Similarly, the second non-zero value is the value 4
in column 1. The second row of the matrix has elements with k ∈ [2, 4), the third row has elements
with k ∈ [4, 7), and so on. In this case, there are 9 non-zero entries, thus that last entry in the
rowPtr data structure is 9.
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#include ”spmv.h”

void spmv(int rowPtr[NUM ROWS+1], int columnIndex[NNZ],
DTYPE values[NNZ], DTYPE y[SIZE], DTYPE x[SIZE])
{

L1: for (int i = 0; i < NUM ROWS; i++) {
DTYPE y0 = 0;
L2: for (int k = rowPtr[i]; k < rowPtr[i+1]; k++) {

#pragma HLS unroll factor=8
#pragma HLS pipeline
y0 += values[k] ∗ x[columnIndex[k]];

}
y[i] = y0;

}
}

Figure 6.2: The baseline code for sparse matrix vector (SpMV) multiplication, which performs the
operation y = M · x. The variables rowPtr, columnIndex, and values hold M in CRS format. The
first for loop iterates across the rows while the second nested for loop iterates across the columns
of M by multiplying each non-zero element by the corresponding element in the vector x which
results in one element in the resulting vector y.

Given a 2-dimensional array representing a matrix, write the C code to convert the matrix
to CRS form. Write the corresponding C code to convert the matrix in CRS form back to a
2-dimensional array.

It turns out that using the CRS form, we can multiply a sparse matrix with a vector relatively
efficiently without explicitly converting the matrix back to a 2-dimensional array. In fact, for large
matrices with a small number of non-zero elements, sparse matrix-vector multiply is much more
efficient than the dense matrix-vector multiply we discussed in chapter 4. This is because we
can compute the non-zero elements of the result by only looking at the non-zero elements of the
operands.

6.2 Baseline Implementation

Figure 6.2 provides a baseline code for sparse matrix vector multiplication. The spmv function has
five arguments. The arguments rowPtr, columnIndex, and values correspond to the input matrix M
in CRS format. These are equivalent to the data structures shown in Figure 6.1. The argument
y holds the output result y and the argument x holds the input vector x to be multiplied by the
matrix. The variable NUM ROWS indicates the number of rows in the matrix M. The variable
NNZ is the number of non-zero elements in the matrix M. Finally, the variable SIZE is the number
of elements in the arrays x and y.

The outer for loop, labeled L1, iterates across each row of the matrix. Multiplying this row of
the matrix with the vector x will produce one element of y. The inner loop labeled L2 loop across
the elements in the columns of the matrix M. The L2 loop iterates rowPtr[i+1] − rowPtr[i] times,
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#ifndef SPMV H
#define SPMV H

const static int SIZE = 4; // SIZE of square matrix
const static int NNZ = 9; //Number of non−zero elements
const static int NUM ROWS = 4; // SIZE;
typedef float DTYPE;
void spmv(int rowPtr[NUM ROWS+1], int columnIndex[NNZ],
DTYPE values[NNZ], DTYPE y[SIZE], DTYPE x[SIZE]);

#endif // MATRIXMUL H not defined

Figure 6.3: The header file for spmv function and testbench.

corresponding to the number of non-zero entries in that row. For each entry, we read the value of
the non-zero element of the M matrix from the values array and multiply it by the corresponding
value of the vector x read from the x array. That value is located at columnIndex[k] since the data
structure columnIndex holds the column for the value k.

6.3 Testbench

Figure 6.4 shows a simple testbench for the spmv function. The testbench starts by defining the
matrixvector function. This is a straightforward implementation of matrix vector multiplication.
This does not assume a sparse matrix and does not use the CRS format. We will compare the
output results from this function with the results from our spmv function.

A common testbench will implement a “golden” reference implementation of the function
that the designer wishes to synthesis. The testbench will then compare the results of the
golden reference with those generated from the code that is synthesized by the Vivado R© HLS
code. A best practice for the testbench is to use alternative implementations for the golden
reference and the synthesizable code. This provides more assurance that both implementations
are correct.

The testbench continues in the main function. Here we set the fail variable equal to 0 (later code
sets this to 1 if the output data from spmv does not match that from the function matrixvector).
Then we define a set of variables that correspond to the matrix M, the input vector x and the
output vector y. In case of M, we have both the “normal” form and the CSR form (stored in the
variables values, columnIndex, and rowPtr). The values of the M matrix are the same as shown in
Figure 6.1. We have two versions of the output vector y. The y sw array stores the output from
the function matrixvector and the y array has the output from the function spmv.

After defining all of the input and output variables, we call the spmv and matrixvector functions
using the appropriate data. The following for loop compares the output results from both of the
functions by comparing the elements from y sw with those in y. If any of them are different, we set
the fail flag equal to 1. Lastly, we print out the results of the test and then return the fail variable.

This testbench is relatively simple and probably insufficient to ensure that the implementation
is correct. Primarily, it only tests one example matrix, whereas a better testbench would test
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#include ”spmv.h”
#include <stdio.h>

void matrixvector(DTYPE A[SIZE][SIZE], DTYPE ∗y, DTYPE ∗x)
{

for (int i = 0; i < SIZE; i++) {
DTYPE y0 = 0;
for (int j = 0; j < SIZE; j++)

y0 += A[i][j] ∗ x[j];
y[i] = y0;
}
}

int main(){
int fail = 0;
DTYPE M[SIZE][SIZE] = {{3,4,0,0},{0,5,9,0},{2,0,3,1},{0,4,0,6}};
DTYPE x[SIZE] = {1,2,3,4};
DTYPE y sw[SIZE];
DTYPE values[] = {3,4,5,9,2,3,1,4,6};
int columnIndex[] = {0,1,1,2,0,2,3,1,3};
int rowPtr[] = {0,2,4,7,9};
DTYPE y[SIZE];

spmv(rowPtr, columnIndex, values, y, x);
matrixvector(M, y sw, x);

for(int i = 0; i < SIZE; i++)
if(y sw[i] != y[i])

fail = 1;

if(fail == 1)
printf(”FAILED\n”);

else
printf(”PASS\n”);

return fail;
}

Figure 6.4: A simple testbench for our spmv function. The testbench generates one example
and computes the matrix vector multiplication using a sparse (spmv) and non-sparse function
(matrixvector).
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multiple matrices. It is common, for instance, to randomly generate inputs for testing, in addition
to explicitly verifying important corner-cases. In this case, we need to make sure to vary not only
the values being operated on, which which will be passed to our accelerator when it is executing,
but also to vary the compile-time parameters which might be used to create different accelerators
with different tradeoffs. The key difference is that we can randomly generate multiple data values
to operate on and test them all in the same execution of the program, using multiple function
calls. Compile-time parameters, on the other hand, require the code to be recompiled every time
parameters change.

Create a more sophisticated testbench which generates multiple sets of test data using
a random number generator. The compile-time parameters of the sparse matrix should be
modifiable (e.g., SIZE, NNZ, etc.). Create an HLS synthesis script which executes the same
code multiple times for different reasonable compile-time parameters.

6.4 Specifying Loop Properties

If you directly synthesize this code, you will get results for the clock period and utilization. However,
you will not get the number of clock cycles either in terms of task latency or initiation interval. This
is because this depends upon the input data, which is external to the spmv function itself. Primarily,
the performance depends on the number of times the body of the inner loop is executed, which is
equal to the number of non-zero elements in M. We know that the number of non-zero elements is
limited by the constant NNZ in the code, but it is possible to call the code with matrices of different
sizes, so the actual number of iterations is data-dependent. In addition, the performance may vary
depending on the location of the non-zero elements and the optimization directives utilized during
synthesis. To make matters worse, the number of iterations depends on the input in a complex way
and many potential inputs don’t actually represent valid matrices. Thus, it is very difficult for a
tool to determine the total number of clock cycles for the spmv function without complex analysis
and additional information. Vivado R© HLS is unable to perform this analysis.

What are the preconditions for the spmv function to work correctly? Prove that given these
preconditions, the body of the inner loop does, in fact, execute exactly once for each non-zero
element in the matrix.

There are several ways to leverage the tool to derive some performance estimates, however. One
method is to provide the Vivado R© HLS tool additional information about the loop bounds. This
can be done using the loop tripcount directive, which enables the designer to specify a minimum,
maximum, and/or average number of iterations for each particular loop. By providing these values,
the Vivado R© HLS tool is capable of providing an estimate on the number of clock cycles.

Use the loop tripcount directive to specify minimum, maximum, and/or average number
of iterations for a loop with a variable bound. This enables the Vivado R© HLS tool to provide
an estimate on the number of clock cycles for the design. This does not impact the results of
the synthesis; it only effects the synthesis report.
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Add a loop tripcount directive to the spmv function. The syntax for the pragma form
of the directive is #pragma HLS loop tripcount min=X, max=Y, avg=Z where X, Y, and Z are
constant positive integers. Which loops require this directive? What happens to the synthesis
report when you change the different parameters (min, max, and avg)? How does this effect
the clock period? How does it change the utilization results?

The loop tripcount directive enables the designer to get a rough idea about the performance
of a function. This can enable comparison between different implementations of the same function
either by applying different optimization directives or by restructuring the code itself. However,
it may be difficult or impossible to determine the min, max, and avg parameters. It can also be
difficult to provide tight bounds on the min and max parameters. If there is a testbench, there is
another more accurate method to calculate the total number of clock cycles required for the spmv
function. This is done by performing C/RTL cosimulation.

6.5 C/RTL Cosimulation

C/RTL cosimulation performs automatic testing of the register-transfer level (RTL) designs that
are generated by the Vivado R© HLS tool. It does this by executing the synthesized code together
with the provided testbench. The execution is instrumented to record the input and output values
for each execution of the synthesized code. The input values are converted to cycle-by-cycle input
vectors. The input vectors are used in an RTL-level simulation of the generated RTL design and the
resulting output vectors are captured. The testbench code can then be executed again replacing the
synthesized code with the captured input and output values. The testbench code can then return
a zero value (indicating success) or a non-zero value (indicating failure).

The C/RTL cosimulation flow combines the cycle-accurate RTL design generated from the
Vivado R© HLS tool with input values provided from the C testbench. As a result, it can gen-
erate accurate estimates of the performance of the generated RTL design which reflect any HLS
optimizations, even in the presence of data-dependent behavior. The minimum, maximum, and av-
erage latency and interval of the synthesized function are automatically extracted after simulation
completes.

Note that these numbers only correspond to the clock cycles derived from the input data used
by the testbench. Thus, they are only as good as the testbench itself. To put it another way, if the
testbench does not exercise the function in a manner that is consistent with how it will be used
upon deployment, the results will not be accurate. In addition, the input testvectors are generated
with idealized timing that does not accurately model the behavior of external interfaces. The
actual performance may be lower if execution stalls waiting for input data, or if there is contention
waiting for external memory access to complete. Nevertheless, it provides a convenient method
for determining clock cycles that does not require the designer to estimate the loop bounds for a
variable loop.

C/RTL cosimulation provides the latency for functions with variable loop bounds. It reports
the minimum, maximum, and average clock cycles for function latency and function interval.
These latency values are directly dependent upon the input data from the C testbench.
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Figure 6.5: Architecture and behavior of the spmv code with a pipelined inner loop.

What are the minimum, maximum, and average clock cycles for the spmv function latency
and function interval when using the testbench provided in Figure 6.4?

6.6 Loop Optimizations and Array Partitioning

Now that we have a method to gather all of the performance and utilization estimates from the
Vivado R© HLS tool, let us consider how to best optimize the function. Pipelining, loop unrolling,
and data partitioning are the most common first approaches in optimizing a design. And the typical
approach is to start with the innermost loop, and then move outwards as necessary.

In this example, pipelining the inner L2 loop is perhaps the first and easiest optimization to
consider. This overlaps the execution of the consecutive iterations of this loop, which can result is a
faster overall implementation. Without pipelining, each iteration of the L2 loop occurs sequentially.
Note that the iterations of the L1 loop are still done sequentially.

Figure 6.5 illustrates the approximate manner in which the spmv function executes when pipelin-
ing the L2 for loop. Each iteration of the inner L2 loop is pipelined with II=3. Pipelining allows
multiple iterations of the inner loop from the same iteration of the outer loop execute concurrently.
In this case, the II of the inner loop is limited by a recurrence through the accumulation. II=3 is
achieved because we’ve assumed that the adder has a latency of 3 clock cycles. Iterations of the
outer loop are not pipelined, so the inner loop must completely finish and flush the pipeline before
the next iteration of the outer L2 loop begins.
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Pipeline the innermost L2 for loop. This can be done by adding a pipeline directive to the
spmv code from Figure 6.2. What is the achieved initiation interval (II)? What happens to the
results as you specify an II argument, and increase or decrease the target II?

Looking at this behavior, we see that there are several factors limiting the performance of the
loop. One factor is the recurrence through the adder that limits the achieved loop II. A second
factor is that iterations of the outer loop are not pipelined. An efficient solution for sparse matrix-
vector multiply would likely come close to using each multiplier and adder every clock cycle. This
design is far from that.

In Section 4.3 we explored several design optimization techniques, including pipelining different
loops, loop unrolling, and array partitioning. Understanding the tradeoffs between these techniques
can be somewhat challenging, since they are often dependent on what another. We must often apply
these techniques together with a carefully chosen goal in mind in order to get a benefit and applying
one technique without applying another technique can actually make matters worse. For instance,
when performing loop unrolling, the designer must be careful to understand the effects that this has
upon memory accesses. Increasing the number of operations that can execute concurrently doesn’t
help if performance is limited by available memory ports. Similarly, providing more memory ports
if there are insufficient operations to utilize those memory ports (or if the addresses of each memory
operation can’t be easily partitioned) can also incur a resource cost without increasing performance.

To see some of the complexity in applying these combinations of transforms, we encourage you
to perform the following exercise:

Synthesize the spmv design using the directives specified in each of the ten cases from Table
6.1. Each case has different pipeline, unroll, and partitioning directives for the different loops
and arrays. These partitionings should be done across the three arrays (values, columnIndex,
and x). What sort of trends do you see? Does increasing the unroll and partitioning factors
help or hurt when it comes to utilization? How about performance? Why?

Table 6.1: Potential optimizations for sparse matrix-vector multiplication.

L1 L2

Case 1 - -
Case 2 - pipeline
Case 3 pipeline -
Case 4 unroll=2 -
Case 5 - pipeline, unroll=2
Case 6 - pipeline, unroll=2, cyclic=2
Case 7 - pipeline, unroll=4
Case 8 - pipeline, unroll=4, cyclic=4
Case 9 - pipeline, unroll=8
Case 10 - pipeline, unroll=8, cyclic=8
Case 11 - pipeline, unroll=8, block=8

If you performed the previous exercise, you should have seen that blindly applying optimization
directives may not always provide you with the expected results. It is usually more effective to
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consider the properties of an application under design, and to select optimizations with a particular
design goal in mind. Of course, this requires some intuition behind the capabilities and limitations
of a particular tool being used. While it is certainly difficult (perhaps impossible?) to understand
every detail of a complex tool like Vivado R© HLS, we can build a mental model of the most critical
aspects.

One of the options we considered in cases 3 and 4 above was to increase pipeline outer loops,
such as the L1 loop in this code, rather than inner loops. This transformation has the effect of
increasing the potential parallelism within one task. In order to perform this optimization, the
Vivado R© HLS tool must fully unroll inner loops, like the L2 loop in this code. If full unrolling is
possible, this can reduce the cost of calculating the loop bounds and can also eliminate recurrences
in the code. However, in this code, the inner loop cannot be unrolled by Vivado R© HLS because
the loop bound is not constant.

Add a directive to pipeline the outermost L1 loop, i.e., implement case 3 above. What is
the initiation interval (II) when you do not set a target II? What happens to the utilization?
How does explicitly increasing the II change the utilization results? How does this compare to
pipelining the L2 loop? How does this compare to the baseline design (no directives)? What
is happening when you attempt to pipeline this outer loop? (hint: check the synthesis log)

Another option to increase parallelism is partial loop unrolling of the inner loop, as in cases
5 through 10. This transformation exposes more parallelism by allowing more operations from
the same loop iteration to be executed concurrently. In some cases, more operations can increase
performance by enabling Vivado R© HLS to instantiate more operators when pipelining the inner
loop. However, in this case it is still difficult to improve the II of the inner loop because of the
recurrence through the inner loop. However, in this case, because we have an II greater than 1,
many of those operations can be shared on the same operators.

An partially unrolled version of the code is shown in Figure 6.6. In this code, the L2 loop has
been split into two loops labeled L2 1 and L2 2. The innermost L2 2 executes a parameterized
number of times, given by the compile-time parameter S. The body of the inner loop contains
the body of the original L2 loop, along with a condition that arises from the loop bound of the
original L2 loop. In this code, we now have an arbitrary number of multiply and add operations to
execute in the body of the L2 1 loop, given by the parameter S, and a single recurrence through
the accumulation y0 += yt.

Note that the code in Figure 6.6 is slightly different from the code that is generated from
automatic loop unrolling. Automatic loop unrolling duplicates operations, but must also preserve
the order of each operation (additions in this case). This results in a long chain of operation
dependencies in the inner loop shown on the left side of Figure 6.7. Reordering the operations
results in operation dependencies show on the right side of the figure. In this case, only the final
accumulation results in a recurrence. When using floating-point data types, this reordering of
operations can slightly change the behavior of the program, so Vivado R© HLS does not apply this
kind of operation reordering automatically.

A possible implementation of this design is shown in Figure 6.8. In this case, S = 3 to match
the best achievable II where there is a latency of 3 through the adder. In this case, we see that
all the operations have been successfully shared on a single multiplier and adder. Comparing this
behavior to the behavior in Figure 6.5, we see that there are some disadvantages. In particular,
the depth of the pipeline of the inner loop is much longer, which implies that the number of cycles
to flush the pipeline to start a new iterations of the outer L1 loop is much larger. Processing of
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#include ”spmv.h”

const static int S = 7;

void spmv(int rowPtr[NUM ROWS+1], int columnIndex[NNZ],
DTYPE values[NNZ], DTYPE y[SIZE], DTYPE x[SIZE])
{

L1: for (int i = 0; i < NUM ROWS; i++) {
DTYPE y0 = 0;
L2 1: for (int k = rowPtr[i]; k < rowPtr[i+1]; k += S) {

#pragma HLS pipeline II=S
DTYPE yt = values[k] ∗ x[columnIndex[k]];
L2 2: for(int j = 1; j < S; j++) {

if(k+j < rowPtr[i+1]) {
yt += values[k+j] ∗ x[columnIndex[k+j]];

}
}
y0 += yt;

}
y[i] = y0;

}
}

Figure 6.6: A partially unrolled version of the spmv code from Figure 6.2.

0

0

Figure 6.7: Two different partially unrolled versions of an accumulation. The version on the left
has a recurrence with three additions, whereas the version on right only has one addition in the
recurrence.
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Figure 6.8: Architecture and behavior of the spmv code based on the partially unrolled and pipelined
inner loop shown in Figure 6.6.

the non-zero elements in a row also occurs in blocks of size S. A row with 3 elements takes exactly
the same time to compute as a row with one element. The remaining operations which are still
scheduled in the loop pipeline must still ‘execute’ even though their results are discarded. In order
to rigorously compare the characteristics of the two designs, we need to understand the expected
number of non-zero elements in each row of the matrix. Fewer non-zero elements in each line would
favor the first implementation, while more non-zero elements in each line would favor the second
implementation.

Notice that there is, to some extent a chicken-and-egg problem here. We need to know the
target device and clock period to determine the number of pipeline stages required for the adder to
meet timing. Only after we know the number of pipeline stages (perhaps by running with S=1 and
investigating the Vivado R© HLS logs to identify the adder recurrence) can we select an appropriate
version of the parameter S that achieves II=1. Once we’ve determined S, we can run C/RTL
cosimulation to determine the achieved performance on a set of benchmark test data. Because of
the variable loop bounds, the achieved performance is data-dependent so we might have to explore
different values of S to determine the value that maximizes performance. Changing the target device
or clock period might affect all of these decisions! Although it may seem like high-level synthesis
provides little assistance in solving this problem, it’s still much faster (and possible to easily script)
compared to evaluating each new version with a new RTL design that must be verified!

The behavior in Figure 6.8 is achieved when S is the same as the number of pipeline stages
for the adder. What happens to the behavior when S is set larger? What happens to the
behavior when is it set smaller? What happens when the target II is smaller than S? What
happens when the target II is larger?

6.7 Conclusion

In this chapter, we looked at sparse matrix-vector multiplication (SpMV). This continues our
study of matrix operations. This operation is particularly interesting because it uses a unique data
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structure. In order to reduce the amount of storage, the matrix is stored in a compressed row
storage format. This requires a design that uses some indirect references to find the appropriate
entry in the matrix.

This chapter is the first to discuss at length the testing and simulation abilities of the Vivado R©

HLS tool. We provide a simple testbench for SpMV and describe how it can be integrated into
the HLS work-flow. Additionally, we describe the C/RTL cosimulation features of the Vivado R©

HLS tool. This is particularly important for us in order to get precise performance results. The
task interval and task latency depends upon the input data. The less sparse the matrix, the more
computation that must be performed. The cosimulation provides a precise trace of execution using
the given testbench. This allows the tool to compute the clock cycles to include in the performance
results. Finally, we discuss optimizing the code using loop optimizations and array partitioning.
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Chapter 7

Matrix Multiplication

This chapter looks at a bit more complex design – matrix multiplication. We consider two different
versions. We start with a “straightforward” implementation, i.e., one that takes two matrices as
inputs and outputs the result of their multiplication. We call this complete matrix multiplication.
Then, we look at a block matrix multiplication. Here the input matrices are feed into the function
in portions, and the function computes partial results.

7.1 Background

Matrix multiplication is a binary operation that combines two matrices into a third. The operation
itself can be described as a linear operation on the vectors that compose the two matrices. The
most common form of matrix multiplication is call the matrix product . The matrix product AB
creates an n× p matrix when matrix A has dimensions n×m and matrix B has dimensions m× p.

More precisely, we define the following:

A =


A11 A12 · · · A1m

A21 A22 · · · A2m
...

...
. . .

...
An1 An2 · · · Anm

 , B =


B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bm1 Bm2 · · · Bmp

 (7.1)

AB =


(AB)11 (AB)12 · · · (AB)1p

(AB)21 (AB)22 · · · (AB)2p
...

...
. . .

...
(AB)n1 (AB)n2 · · · (AB)np

 (7.2)

where the operation (AB)ij is defined as (AB)ij =
∑m

k=1AikBkj .

Now we provide a simple example. Let

A =

[
A11 A12 A13

A21 A22 A23

]
, B =

B11 B12

B21 B22

B31 B32

 (7.3)

The result of the matrix product is

AB =

[
A11B11 +A12B21 +A13B31 A11B12 +A12B22 +A13B32

A21B11 +A22B21 +A23B31 A21B12 +A22B22 +A23B32

]
(7.4)
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void matrixmul(int A[N][M], int B[M][P], int AB[N][P]) {
#pragma HLS ARRAY RESHAPE variable=A complete dim=2
#pragma HLS ARRAY RESHAPE variable=B complete dim=1
/∗ for each row and column of AB ∗/
row: for(int i = 0; i < N; ++i) {

col: for(int j = 0; j < P; ++j) {
#pragma HLS PIPELINE II=1
/∗ compute (AB)i,j ∗/
int ABij = 0;
product: for(int k = 0; k < M; ++k) {

ABij += A[i][k] ∗ B[k][j];
}
AB[i][j] = ABij;

}
}

}

Figure 7.1: A common three for loop structure for matrix multiplication. The outer for loops,
labeled rows and cols, iterate across the rows and columns of the output matrix AB. The innermost
loop, labeled product multiplies the appropriate elements of one row of A and one column of B and
accumulates them until it has the result for the element in AB .

Matrix multiplication is a fundamental operation in numerical algorithms. Computing the
product between large matrices can take a significant amount of time. Therefore, it is critically
important part of many of problems in numerical computing. Fundamentally, matrices repre-
sent linear transforms between vector spaces; matrix multiplication provides way to compose the
linear transforms. Applications include linearly changing coordinates (e.g., translation, rotation
in graphics), high dimensional problems in statistical physics (e.g., transfer-matrix method), and
graph operations (e.g., determining if a path exists from one vertex to another). Thus it is a well
studied problem, and there are many algorithms that aim to increase its performance, and reduce
the memory usage.

7.2 Complete Matrix Multiplication

We start our optimization process with perhaps the most common method to compute a matrix
multiplication – using three nested for loops. Figure 7.1 provides the code for such an implementa-
tion. The outer for loops, labeled rows and cols, iterate across the rows and columns of the output
matrix AB. The innermost for loop computes a dot product of one row of A and one column of
B. Each dot product is a completely independent set of computations that results in one element
of AB. Conceptually, we are performing P matrix-vector multiplications, one for each column of
B.

In this case, we’ve applied a pipeline directive to the col loop with a target initiation interval of 1.
The result is that the innermost for loop is fully unrolled, and we expect the resulting circuit include
roughly M multiply-add operators and to have an interval of roughly N ∗ P cycles. As discussed
in Chapter 4, this is only one reasonable choice. We could choose to place the pipeline directive in
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different locations in the function with the goal of achieving different resource-throughput tradeoffs.
For instance, placing the same directive at the top of the function (outside all of the for loops)
will result in all of the loops being completely unrolled, which would take roughly N ∗ M ∗ P
multiply-add operators and would have an interval of 1 cycle. Placing it inside the row loop would
result in roughly M ∗ P multiply-add operators and an interval of roughly N cycles. These design
points are relatively easy to achieve, given the corresponding array partitioning. It’s also possible to
pipeline the innermost loop with the goal of achieving a design with only one multiply-add operator,
although achieving an II=1 implementation at high clock frequencies can be difficult because of
the recurrence involved in the accumulation of variable ABij. We can also partially unroll different
loops to achieve yet more design points. The fundamental tradeoff here is between the complexity
of the resulting architecture, i.e., the number of multiply-add operators, and performance, i.e., the
number of cycles that the hardware is busy. In an ideal world, each doubling of the resource usage
should result in exactly half the number of clock cycles being required, although in practice such
‘perfect scaling’ is difficult to achieve.

Change the location of the pipeline directive. How does the location effect the resource
usage? How does it change the performance? Which alternative provides the best performance
in terms of function interval? Which provides the smallest resource usage? Where do you
think is the best place for the directive? Would increasing the size of the matrices change your
decision?

Executing large numbers of operations every cycle requires being able to supply all of the
required operands and to store the results of each operation. Previously we have used the
array partition directive to increase the number of accesses that can be performed on each memory.
As long as the partition of the array that each memory access can be determined at compile time,
then array partitioning is a simple and efficient way to increase the number of memory accesses
that can be performed each clock cycle. In this case, we use the slightly different array reshape
directive to perform array partitioning. This directive not only partitions the address space of
the memory into separate memory blocks, but then recombines the memory blocks into a single
memory. This transformation increases the data width of the memory used to store the array, but
doesn’t change the overall number of bits being stored. The difference is shown in Figure 7.2.

Both array reshape and array partition increase the number of array elements that can be read
each clock cycle. They also support the same options, enabling cyclic and block partitions or parti-
tioning along different dimensions of a multi-dimensional array. In the case of array reshape, the
elements must each have the same address in the transformed array, whereas with array partition,
the addresses in the transformed array can be unrelated. Although it may seem like one would
always want to use array partition because it is more flexible, it makes each individual memory
smaller, which can sometimes result in inefficient memory usage. The array reshape directive re-
sults in larger memory blocks, which can sometimes be mapped more efficiently into primitive
FPGA resources. In particular, the smallest granularity of block RAM (BRAM) blocks in Xilinx
Virtex Ultrascale+ devices is 18 Kbits with several different supported combination of depths and
widths. When the partitions of an array become smaller than around 18Kbits, then BRAMs are
no longer used efficiently. If we start with an original array which is a 4-bit array with dimensions
[1024][4], this array can fit in a single BRAM resource configured as a 4Kbit x 4 memory. Parti-
tioning this array completely in the second dimension would result in 4 1Kbit x 4 memories, each
of which are much smaller than one one BRAM resource. Reshaping the array instead using the
array reshape directive results in a memory which is 1Kbit x 16, a supported BRAM configuration.
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Figure 7.2: Three different implementations of a two-dimensional array. On the left is the original
array consisting of N ∗ M elements. In the middle, the array has been transformed using the
array partition directive, resulting in M memories, each with N elements. On the right, the array
has been transformed using the array reshape directive, resulting in one memory with N locations
and each location contains M elements of the original array.

Note that this partitioning is effective because the partitioned dimension (dimension 2 of
A or dimension 1 of B) is indexed by a constant. In addition, the non-partitioned dimension
is indexed by the same (variable) value. When partitioning multi-dimensional arrays, this is a
good rule of thumb to identify which dimension should be partitioned.

Remove the array reshape directives. How does this effect the performance? How does it
change the resource usage? Does it make sense to use any other array reshape directives (with
different arguments) on these arrays? In this case, how does the result differ if you use the
array reshape directive instead?

The size of the arrays can have a substantial effect on the optimizations that you wish to
perform. Some applications might use very small matrices, say 2 × 2 or 4 × 4. In this cases, it
may be desirable to implement a design with the absolute highest performance, which is generally
achieved by applying the pipeline directive on the entire function. As the size of the arrays increase,
in the range of 32 × 32, this approach quickly become infeasible because of the resource limits
available in a single device. There will simply not be enough DSP resources to implement that
many multiplications every clock cycle or enough external bandwidth to get get data on and off the
chip. Many FPGA designs are often coupled to the data rates of other components in a system,
such as an Analog to Digital (A/D) converter, or the symbol rate in a communication system.
In these designs it is common to instead apply the pipeline directive on inner loops with the
goal of matching the interval of the computation with the data rate in a system. In such cases,
we often need to explore different resource-throughput tradeoffs by moving the pipeline directive
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into an inner loop or partially unrolling loops. When dealing with very large matrices containing
thousands or millions of elements, we often need to take into account more complex architectural
considerations. The next section discusses a common approach to scaling matrix multiply to larger
designs, called blocking or tiling .

Optimize your design for the 128 × 128 matrix multiplication. Then start increasing the
size of the matrices by a factor of two (to 512× 512, 1024× 1024, 2048× 2048, etc. How does
this effect the resource usage and performance? How about the runtime of the tool? What is
the best way to optimize for large large matrix sizes?

7.3 Block Matrix Multiplication

A block matrix is interpreted as being partitioned into different submatrices. This can be visualized
by drawing different horizontal and vertical lines across the elements of the matrix. The resulting
“blocks” can be viewed as submatrices of the original matrix. Alternatively, we can view the
original matrix as a matrix of blocks. This naturally leads to many hierarchical algorithms in
Linear Algebra where we compute matrix operations, such as matrix multiply, on large block
matrices by decomposing them into smaller matrix operations on the blocks themselves.

For instance, when we talk about the matrix multiplication operation between matrix A and
B in Equations 7.3 and 7.4, we might normally think of each element of the matrices A11 or B23

as a single number or perhaps a complex number. Alternatively, we can consider each element in
these matrix operations as a block of the original matrix. In this case, as long as the sizes of the
individual blocks are compatible, we simply have to perform the correct matrix operations instead
of the original scalar operations. For instance, to compute AB11, we would need to compute two
matrix products and two matrix sums to compute A11B11 + A12B21 + A13B31.

Matrix blocking turns out to be a very useful technique for a number of reasons. One reason
is that blocking is an easy way to find more structure in the algorithm that we can explore. In
fact, some of the optimizations that we have already seen as loop transformations, such as loop
unrolling, can be viewed as specific simple forms of blocking. Another reason is that we can choose
to block a matrix according to the natural structure of the matrix. If a matrix has a large block
of zeros, then many individual products may be zero. If we want to skip these individual products
then this can be difficult in a statically schedule pipeline, whereas it may be easier to skip a large
block of zeros. Many matrices are block-diagonal where the blocks on the diagonal are non-zero
and blocks off the diagonal are zero. Yet another reason is that the blocked decomposition results
in lots of smaller problems operating on smaller sets of data. This increases the data locality of
a computation. In processor systems, it is common to choose block sizes that conveniently match
the memory hierarchy of a processor or the natural size of the vector data types supported by the
processor. Similarly, in FPGAs we can choose the blocking sizes to match the available on-chip
memory size or to the number of multiply-add operators that we can budget to support.

Until now, we have assumed that accelerators always have all of their data available before
the start of a task. However in designs dealing with large datasets, such as large matrices, this
can sometimes be an unneeded constraint. Since it is unlikely that our accelerator will be able to
process all input data immediately, we can build an accelerator that receives input data only right
before it is needed. This allows an accelerator to more efficiently use the available on-chip memory.
We call this a streaming architecture since we transfer the input data (and potentially the output
data) one portion at a time rather than all at once.
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Streaming architectures are common in many applications. In some cases this is because of
a conscious design choice that we make to decompose a large computation into multiple smaller
computations. For instance, we may design a matrix multiplication system that reads and processes
one block of data at a time from external memory. In other cases, we might process a stream of
data because the data is being sampled in real time from the physical world, for instance, from an
A/D converter. In other cases, the data we are processing may simply be created in sequence from
a previous computation or accelerator. In fact, we’ve already seen an instance of this in Section
5.4.

One potential advantage of streaming is a reduction in the memory that we can use to store
the input and output data. The assumption here is that we can operate on the data in portions,
create partial results, and then we are done with that data, thus we do not need to store it. When
the next data arrives, we can overwrite the old data resulting in smaller memories.

In the following, we develop a streaming architecture for matrix multiplication. We divide the
input arrays A and B into blocks, which are a contiguous set of rows and columns, respectively.
Using these blocks, we compute a portion of the product AB. Then we stream the next set of
blocks, compute another portion of AB until the entire matrix multiplication is complete.

Figure 7.3 provides the a description of the streaming architecture that we create. Our archi-
tecture has a variable BLOCK SIZE that indicates the number of rows that we take from the A
matrix on each execution, the number of columns taken from the B matrix, and the BLOCK SIZE
× BLOCK SIZE result matrix corresponding to the data that we compute each time for the AB
matrix.

The example in Figure 7.3 uses a BLOCK SIZE = 2. Thus we take two rows from A, and two
columns from B on each execution of the streaming architecture that we define. The result of each
call to the blockmatmul function is a 2× 2 matrix for the AB architecture.

Since we are dealing with 4× 4 matrices in the example, we need to do this process four times.
Each time we get a 2 × 2 set of results for the AB matrix. The figure shows a progression of the
rows and columns that we send. In Figure 7.3 a) we send the first two rows of A and the first two
columns of B. The function will compute a 2× 2 matrix corresponding to the first two elements in
the rows and columns of the resulting matrix AB.

In Figure 7.3 b), we use again the first two rows of A, but this time we send the last two columns
of B. We do not need to resend the data from the rows of A since they are the same as the previous
data from the previous execution. And we get the results for the 2× 2 matrix corresponding to the
data in “upper left” corner of AB.

Figure 7.3 c) sends different data for both the A and B matrices. This time we send the last
two rows of A and the first two columns of B. The results from this computation provide the
“lower left” corner of the AB matrix.

The final execution of the streaming block matrix multiply, shown in Figure 7.3 d), uses the
same last two rows of the A matrix from the previous iteration. And it sends the last two columns
of the B matrix. The result provides the elements in the “lower right” corner of the AB matrix.

Before we show the code for the block matrix multiplication, we define some data types that
we will use. Figure 7.4 shows the header file for the project. We create a custom data type DTYPE
that specifies the type of data that we will multiply in the A and B matrices, and the corresponding
AB matrix. This is currently set to an int data type.

It is good coding practice to use a custom data type in your designs. This allows you to
easily change the data type, and to have one source of information so that you do not have
errors when changing the data type in the future design iterations. And it is quite common to
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Figure 7.3: One possible blocked decomposition of the matrix multiplication of two 4× 4 matrices.
The entire AB product is decomposed into four matrix multiply operations operating on a 2 × 4
block of A and a 4× 2 block of B.
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#ifndef BLOCK MM H
#define BLOCK MM H
#include ”hls stream.h”
#include <iostream>
#include <iomanip>
#include <vector>
using namespace std;

typedef int DTYPE;
const int SIZE = 8;
const int BLOCK SIZE = 4;

typedef struct {
DTYPE a[BLOCK SIZE]; } blockvec;

typedef struct {
DTYPE out[BLOCK SIZE][BLOCK SIZE]; } blockmat;

void blockmatmul(hls::stream<blockvec> &Arows, hls::stream<blockvec> &Bcols,
blockmat & ABpartial, DTYPE iteration);
#endif

Figure 7.4: The header file for the block matrix multiplication architecture. The file defines the
data types used within the function, the key constants, and the blockmatmul function interface.
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change the data type over the course of the design. For example, first you may start out with a
float or double type while you get a functionally correct design. This also provides a baseline
for error since later you will likely change your design to use fixed point data type. Fixed point
data can reduce the number of resources, and increase the performance potentially at the cost
of a reduction in the precision of the resulting data. You will likely try many different fixed
point types until you find the right tradeoff between accuracy/error, performance, and resource
usage.

SIZE determines the number of rows and columns in the matrices to be multiplied. We limit
this to square matrices although handling arbitrary matrix sizes could be done by changing the
code in a number of different places. We leave that as an exercise for the reader.

Change the code to allow it to handle matrices of arbitrary size.

The BLOCK SIZE variable defines the number of rows from A and the number of columns from
B that we operate upon in each execution. This also defines how much data that we stream at one
time into the function. The output data that we receive from the function at each execution is an
BLOCK SIZE × BLOCK SIZE portion of the AB matrix.

The blockvec data type is used to transfer the BLOCK SIZE rows of A and columns of B to the
function on each execution. The blockmat data type is where we store the partial results for the
AB matrix.

Finally, the blockmat data type is a structure consisting of an BLOCK SIZE × BLOCK SIZE
array. This holds the resulting values from one execution of the matrmatmul function.

The function prototype itself takes the two inputs which are both of the type
hls::stream<blockvec> &. These are a sequence of blockvec data. Remember that a
blockvec is a data type that consists of an array with BLOCK SIZE elements.

The hls::stream<> template class is one way in Vivado R© HLS of creating a FIFO data structure
that works well in simulation and synthesis. The samples are sent in sequential order using the
write() function, and retrieved using the read() function. This library was developed since streaming
is a common methodology for passing data in hardware design, yet this same operation can be
modeled in many different ways using the C programming language, for instance, by using arrays.
In particular, it can be difficult for the Vivado R© HLS tool to infer streaming behaviors when
dealing complex access patterns or multi-dimensional arrays. The built-in stream library enables
the programmer to explicitly specify the order of stream accesses, avoiding any limitations of this
inference.

The hls::stream class must always be passed by reference between functions, e.g., as we have
done in the blockmatmul function in Figure 7.5.

The code for executing one part of the streaming block matrix multiplication is shown in Figure
7.5. The code has three portions denoted by the labels loadA, partialsum, and writeoutput.

The first part of the code, denoted by the loadA label, is only executed on certain conditions,
more precisely when it % (SIZE/BLOCK SIZE) == 0. This is done to save some time in the cases
when we can reuse the data from the A matrix from the previous execution of the function.
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#include ”block mm.h”
void blockmatmul(hls::stream<blockvec> &Arows, hls::stream<blockvec> &Bcols,

blockmat &ABpartial, int it) {
#pragma HLS DATAFLOW
int counter = it % (SIZE/BLOCK SIZE);
static DTYPE A[BLOCK SIZE][SIZE];
if(counter == 0){ //only load the A rows when necessary

loadA: for(int i = 0; i < SIZE; i++) {
blockvec tempA = Arows.read();
for(int j = 0; j < BLOCK SIZE; j++) {

#pragma HLS PIPELINE II=1
A[j][i] = tempA.a[j];

}
}

}
DTYPE AB[BLOCK SIZE][BLOCK SIZE] = { 0 };
partialsum: for(int k=0; k < SIZE; k++) {

blockvec tempB = Bcols.read();
for(int i = 0; i < BLOCK SIZE; i++) {

for(int j = 0; j < BLOCK SIZE; j++) {
AB[i][j] = AB[i][j] + A[i][k] ∗ tempB.a[j];

}
}

}
writeoutput: for(int i = 0; i < BLOCK SIZE; i++) {

for(int j = 0; j < BLOCK SIZE; j++) {
ABpartial.out[i][j] = AB[i][j];

}
}

}

Figure 7.5: The blockmatmul function takes a BLOCK SIZE set of rows from A matrix, a
BLOCK SIZE set of columns from the B matrix, and creates a BLOCK SIZE × BLOCK SIZE partial
result for the AB matrix. The first part of the code (denoted by the label loadA) stores the rows
from A into a local memory, the second part in the nested partialsum for performs the computation
for the partial results, and the final part (with the writeoutput label) takes these results and puts
them the proper form to return from the function.
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Remember that in each execution of this blockmatmul function we send BLOCK SIZE rows from
the A matrix and BLOCK SIZE columns from the B matrix. We send multiple BLOCK SIZE of
columns for each BLOCK SIZE of rows from A. The variable it keeps track of the number of times
that we have called the blockmatmul function. Thus, we do a check on each execution of the
function to determine if we need to load the rows from A. When we do not, this saves us some
time. When it is executed, it simply pulls data from the Arows stream and puts it into a static
local two-dimensional matrix A[BLOCK SIZE][SIZE].

Fully understanding this code requires some explanation about the stream class, and how we are
using it. The stream variable Arows has elements of the type blockvec. A blockvec is a matrix of size
BLOCK SIZE. We use this in the following manner; each element in the Arows stream has an array
that holds one element from each of the BLOCK SIZE rows of the A matrix. Thus, in each call the
the blockmatmul function, the Arows stream will have SIZE elements in it, each of those holding
one of each of the BLOCK SIZE rows. The statement tempA = Arows.read() takes one element from
the Arows stream. Then we load each of these elements into the appropriate index in the local A
matrix.

The stream class overloads the << operator to be equivalent to the read() function. Thus,
the statements tempA = Arows.read() and tempA << Arows perform the same operation.

The next part of the computation calculates the partial sums. This is the bulk of the compu-
tation in the blockmatmul function.

The Bcols stream variable is utilized in a very similar manner to the Arows variable. However,
instead of storing rows of A, it stores the data corresponding the columns of B that the current
execution of the function is computing upon. Every call of the blockmatmul function will provide
new data for the columns of the B matrix. Thus, we do not need to conditionally load this data
as we do with the A matrix. The function itself works in a very similar manner to that from the
matmul in Figure 7.1 except that we are only calculating BLOCK SIZE × BLOCK SIZE results from
the AB matrix. Thus we only have to iterate across BLOCK SIZE rows of A and BLOCK SIZE
columns of B. But each row and column has SIZE elements, hence the bounds on the outer for
loop.

The final portion of the function moves the data from the local AB array, which has dimensions
of BLOCK SIZE × BLOCK SIZE; this holds the partial results of the AB output matrix.

Of the three parts of the function, the middle part, which calculates the partial sum, requires
the most computation. By inspecting the code, we can see that this part has three nested for
loops with a total of SIZE × BLOCK SIZE × BLOCK SIZE iterations. The first part has SIZE ×
BLOCK SIZE iterations; and the last part has BLOCK SIZE × BLOCK SIZE iterations. Thus, we
should focus our optimizations on the middle part, i.e., the partialsum nested for loops.

The common starting point for optimizations of nested for loops is to pipeline the innermost
for loop. Then, if that does not require too many resources, the designer can move the pipeline
directive into higher level for loops. Whether the resulting design consume too many resource
depends upon the specified BLOCK SIZE; if this is small, then it is likely worth moving the pipeline
directive. It may even be worthwhile to move it inside the outermost for loop. This will unroll
the two inner for loops and thus very likely increase the resource usage by a substantial amount.
However, it will increase the performance.
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How does changing the BLOCK SIZE effect the performance and resource usage? How about
changing the SIZE constant? How does moving the pipeline directive across the three different
nested for loops in the partialsum portion of the function change the performance and resource
usage?

The dataflow directive at the start of the function creates a pipeline across the portions of
the function, i.e., the loadA for loop, the partialsum nested for loop, and the writeoutput for loop.
Using this directive will decrease the interval of the blockmatmul function. However, this is limited
by the largest interval of all three of the portions of the code. That is, the maximum interval
for the blockmatmul function – let us call it interval(blockmatmul) – is greater than or equal to
the the interval of the three parts which are defined as interval(loadA), interval(partialsum), and
interval(writeoutput). More formally,

interval(blockmatmul) ≥ max(interval(loadA), interval(partialsum),

interval(writeoutput)) (7.5)

We need to keep Equation 7.5 in mind as we optimize the blockmatmul function. For example,
assume that interval(partialsum) is much larger than the other two portions of the function. Any
performance optimizations that minimize interval(loadA) and interval(writeoutput) are useless since
the function interval, i.e., interval(blockmatmul) would not decrease. Thus, the designer should
focus any performance optimization effort to decrease interval(partialsum), i.e., target performance
optimizations on those three nested for loops.

It is important to note that this only applies to performance optimizations. The designer can
(and should) optimize the resource usage of these other two parts. In fact, they are ripe for such
optimizations since reducing the resource usage often increases the interval and/or latency. In this
case, it is ok to increase the interval as it will not effect the overall performance of the blockmatmul
function. In fact, the ideal case is to optimize all three parts of the function such that they all have
the same interval, assuming that we can easily tradeoff between the interval and resource usage
(which is not always the case).

The testbench for the blockmatmul function is shown in Figures 7.6 and 7.7. We split it across
two figures to make it more readable since it is a longer piece of code. Up until this point, we
have not shown the testbenches. We show this testbench for several reasons. First, it provides
insight into how the blockmatmul function works. In particular, it partitions the input matrices
into blocks and feeds them into the blockmatmul function in a block by block manner. Second, it
gives a complex usage scenario for using stream template for simulation. Finally, it gives the reader
an idea about how to properly design testbenches.

The matmatmul sw function is a simple three for loop implementation of matrix multiplication.
It takes two two-dimensional matrices as inputs, and outputs a single two-dimensional matrix. It is
very similar to what we have seen in the matrixmul function in Figure 7.1. We use this to compare
our results from the blocked matrix multiplication hardware version.

Let us focus on the first half of the testbench shown in Figure 7.6. The beginning block of
code initializes variables of the rest of the function. The variable fail keeps track of whether the
matrix multiplication was done correctly. We will check this later in the function. The variables
strm matrix1 and strm matrix2 are hls:stream<> variables that hold the rows and columns of the
A and B matrices, respectively. Each element of these stream variables is a <blockvec>. Referring
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back at the block mm.h file in Figure 7.4, we recall that a blockvec is defined as an array of data;
we will use each blockvec to store one row or column of data.

The stream variable resides in the hls namespace. Thus, we can use that namespace and
forgo the hls::stream and instead simply use stream. However, the preferred usage is to keep the
hls:: in front of the stream to insure code readers that the stream is relevant to Vivado R© HLS
and not C construct from another library. Also, it avoids having to deal with any potential
conflicts that may occur by introducing a new namespace.

The next definitions in this beginning block of code are the variables strm matrix1 element
and strm matrix2 element. These two variables are used as placeholders to populate each blockvec
variable that we write into the strm matrix1 and strm matrix2 stream variables. The block out
variable is used to store the output results from the blockmatmul function. Note that this variable
uses the data type blockmat which is a two-dimensional array of BLOCK SIZE × BLOCK SIZE as
defined in the block mm.h header file (see Figure 7.4). The final definitions are A, B, matrix swout,
andmatrix hwout. These are all SIZE × SIZE two-dimensional arrays with the DTYPE data type.

You can name the streams using an initializer. This is good practice as it gives bet-
ter error messages. Without the name, the error message provides a generic reference to
the stream with the data type. If you have multiple stream declarations with the same
data type, then you will have to figure out which stream the error is referring to. Nam-
ing the stream variable is done by giving the variable an argument which is the name, e.g.,
hls::stream<blockvec> strm matrix1(”strm matrix1”);.

The next set of nested initmatrices for loops sets the values of the four two-dimensional arrays A,
B, matrix swout, and matrix hwout. The variables A and B are input matrices. These are initialized
to a random value between [0, 512). We picked the number 512 for no particular reason other
than it can fit any 9 bit value. Keep in mind that while the DTYPE is set as an int, and thus has
significantly more range than [0,512), we often move to fixed point values with much smaller ranges
later in the design optimization process. The matrix swout and matrix hwout are both initialized to
0. These are filled in later by calls to the functions matmatmul sw and blockmatmul.

The second part of the testbench is continued in Figure 7.7. This has the last portion of the
code from the main function.

The first part of this figure has a complex set of nested for loops. The overall goal of the
computation in these for loops is to set up the data from the input matrices A and B so that it
can be streamed to the blockmatmul function. Then the results of the blockmatmul function are
stored in the matrix hwout array.

The outer two for loops are used to step across the input arrays in a blocked manner. You can
see that these both iterate by a step of BLOCK SIZE. The next two for loops write rows from A
into strm matrix1 element and the columns from B into strm matrix2 element. It does this in an
element by element fashion by using the variable k to access the individual values from the rows
(columns) and write these into the one dimensional array for each of these “elements”. Remember
that both strm matrix1 element and strm matrix2 element have the datatype blockvec, which is a
one dimensional array of size BLOCK SIZE. It is meant to hold BLOCK SIZE elements from each
row or column. The inner for loop iterates BLOCK SIZE times. The strm matrix1 and strm matrix2
stream variables are written to SIZE times. That means that has a buffer of the entire row (or
column) and each element in the buffer holds BLOCK SIZE values.
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#include ”block mm.h”
#include <stdlib.h>
using namespace std;

void matmatmul sw(DTYPE A[SIZE][SIZE], DTYPE B[SIZE][SIZE],
DTYPE out[SIZE][SIZE]){

DTYPE sum = 0;
for(int i = 0; i < SIZE; i++){

for(int j = 0; j<SIZE; j++){
sum = 0;
for(int k = 0; k < SIZE; k++){

sum = sum + A[i][k] ∗ B[k][j];
}
out[i][j] = sum;

}
}

}

int main() {
int fail = 0;
hls::stream<blockvec> strm matrix1(”strm matrix1”);
hls::stream<blockvec> strm matrix2(”strm matrix2”);
blockvec strm matrix1 element, strm matrix2 element;
blockmat block out;
DTYPE A[SIZE][SIZE], B[SIZE][SIZE];
DTYPE matrix swout[SIZE][SIZE], matrix hwout[SIZE][SIZE];

initmatrices: for(int i = 0; i < SIZE; i++){
for(int j = 0; j < SIZE; j++){

A[i][j] = rand() % 512;
B[i][j] = rand() % 512;
matrix swout[i][j] = 0;
matrix hwout[i][j] = 0;

}
}

//the remainder of this testbench is displayed in the next figure

Figure 7.6: The first part of the testbench for block matrix multiplication. The function is split
across two figures since it is too long to display on one page. The rest of the testbench is in
Figure 7.7. This has a “software” version of matrix multiplication, and variable declarations and
initializations.
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// The beginning of the testbench is shown in the previous figure
int main() {

int row, col, it = 0;
for(int it1 = 0; it1 < SIZE; it1 = it1 + BLOCK SIZE) {

for(int it2 = 0; it2 < SIZE; it2 = it2 + BLOCK SIZE) {
row = it1; //row + BLOCK SIZE ∗ factor row;
col = it2; //col + BLOCK SIZE ∗ factor col;

for(int k = 0; k < SIZE; k++) {
for(int i = 0; i < BLOCK SIZE; i++) {

if(it % (SIZE/BLOCK SIZE) == 0) strm matrix1 element.a[i] = A[row+i][k];
strm matrix2 element.a[i] = B[k][col+i];

}
if(it % (SIZE/BLOCK SIZE) == 0) strm matrix1.write(strm matrix1 element);
strm matrix2.write(strm matrix2 element);

}
blockmatmul(strm matrix1, strm matrix2, block out, it);

for(int i = 0; i < BLOCK SIZE; i++)
for(int j = 0; j < BLOCK SIZE; j++)

matrix hwout[row+i][col+j] = block out.out[i][j];
it = it + 1;

}
}

matmatmul sw(A, B, matrix swout);

for(int i = 0; i<SIZE; i++)
for(int j = 0; j<SIZE; j++)

if(matrix swout[i][j] != matrix hwout[i][j]) { fail=1; }

if(fail==1) cout << ”failed” << endl;
else cout << ”passed” << endl;

return 0;
}

Figure 7.7: The second portion of the block matrix multiply testbench. The first part is shown in
Figure 7.6. This shows the computation required to stream the data to the blockmatmul function,
and the code that tests that this function matches a simpler three for loop implementation.
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The stream class overloads the >> operator to be equivalent to the write(data) function.
This is similar to overloading the read() function to the << operator. Thus, the state-
ments strm matrix1.write(strm matrix1 element) and strm matrix1 element >> strm matrix1 per-
form the same operation.

The final part of this portion of the code to highlight is the if statements. These are correspond
to the values A matrix. Essentially, these are there so that we do not constantly write the same
values to strm matrix1. Recall that the values from the A matrix are used across several calls to
the blockmatmul function. See Figure 7.3 for a discussion on this. These if statements are placed
there to highlight the fact that you should not continually write the same data over and over. This
is important because the internal code of the blockmatmul only does a read of this data when it is
necessary. So if we continued to write this consistently, the code would not function correctly do
to the fact that this stream is written to more than it is read from.

Now that the input data, the testbench calls the blockmatmul function. After the function call,
it receives the partial computed results in the block out variable. The next two for loops but these
results into the appropriate locations in the matrix hwout array.

After this complex set of for loops, the block matrix multiplication is complete. And the
testbench continues to insure that the code is written correctly. It does this by comparing the
results from the multiple calls to the blockmatmul function to results that were computed in the
matmatmul sw, which is a much simpler version of matrix matrix multiplication. After this function
call, the testbench iterates through both two-dimensional matrices matrix hwout and matrix swout
and makes sure that all of the elements are equivalent. If there is one or more element that is not
equal, it sets the fail flag equal to 1. The testbench completes by printing out failed or passed.

It is important that note that you cannot directly compare the performance of the function
blockmatmul with that of code for matrix multiplication, such as the code in Figure 7.1. This
is because it takes multiple calls to the blockmatmul function in order to perform the entire
matrix multiplication. It is important to always compare apples to apples.

Derive a function to determine the number of times that blockmatmul must be called in
order to complete the entire matrix multiplication. This function should be generic, e.g.,
it should not be assume a specific value of BLOCK SIZE or size of the matrix (i.e., SIZE).

Compare the resource usage of block matrix multiplication versus matrix multiplication.
How do the resources change as the size of the matrices increases? Does the block size play
a role in the resource usage? What are the general trends, if any?

Compare the performance of block matrix multiplication versus matrix multiplication.
How does the performance change as the size of the matrices increases? Does the block
size play a role in the performance? Pick two architectures with similar resource usage.
How does the performance for those architectures compare?
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7.4 Conclusion

Block matrix multiplication provides a different way to compute matrix multiplication. It computes
partial results of the result matrix by streaming a subset of the input matrices to a function. This
function is then computed multiple times in order to complete the entire matrix multiplication
computation.
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Chapter 8

Prefix Sum and Histogram

8.1 Prefix Sum

Prefix sum is a common kernel used in many applications, e.g., recurrence relations, compaction
problems, string comparison, polynomial evaluation, histogram, radix sort, and quick sort [11].
Prefix sum requires restructuring in order to create an efficient FPGA design.

The prefix sum is the cumulative sum of a sequence of numbers. Given a sequence of inputs
inn, the prefix sum outn is the summation of the first n inputs, namely outn = in0 + in1 + in2 +
· · · + inn−1 + inn. The following shows the computation for the first four elements of the output
sequence out.

out0 = in0

out1 = in0 + in1

out2 = in0 + in1 + in2

out3 = in0 + in1 + in2 + in3

· · ·

Of course, in practice we don’t want to store and recompute the sum of all of the previous
inputs, so the prefix sum is often computed by the recurrence equation:

outn = outn−1 + inn (8.1)

The disadvantage of the recurrence equation is that we must compute outn−1 before computing
outn, which fundamentally limits the parallelism and throughput that this computation can be
performed. In contrast, the original equations have obvious parallelism where each output can be
computed independently at the expense of a significant amount of redundant computation. C code
implementing the recurrence equation is shown in Figure 8.1. Ideally, we’d like to achieve II = 1
for the loop in the code, but this can be challenging even for such simple code. Implementing this
code with Vivado R© HLS results in behavior like that shown in Figure 8.1.

The way this code is written, each output is written into the output memory out[] and then in
the next iteration is read back out of the memory again. Since the memory read is has a latency of
one, data read from memory cannot be processed until the following clock cycle. As a result, such
a design can only achieve a loop II of 2. In this case there is a relatively easy way to rewrite the
code: we can simply perform the accumulation on a separate local variable, rather than reading
the previous value back from the array. Avoiding extra memory accesses in favor of register storage
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#define SIZE 128
void prefixsum(int in[SIZE], int out[SIZE]) {

out[0]=in[0];
for(int i = 1; i < SIZE; i++) {

#pragma HLS PIPELINE
out[i] = out[i−1] + in[i];

}
}

Loop Interval = 2

In

Out

Out

Figure 8.1: Code for implementing prefix sum, and its accompanying behavior.

#define SIZE 128
void prefixsum(int in[SIZE], int out[SIZE]) {

int A = in[0];
for(int i=0; i < SIZE; i++) {

#pragma HLS PIPELINE
A = A + in[i];
out[i] = A;

}
}

Loop Interval = 1

In

Out

Figure 8.2: Code for implementing an optimized prefix sum, and its accompanying behavior.

is often advantageous in processor code, but in HLS designs it is often more significant since other
operations are rarely a performance bottleneck. Code that does this is shown in Figure 8.2.

You might ask why the compiler is not able to optimize the memory loads and stores auto-
matically in order to improve the II of the design. It turns out that Vivado R© HLS is capable of
optimizing loads and stores to array, but only for reads and writes within the scope of a single
basic block. You can see this if we unroll the loop, as shown in Figure 8.3. Note that we also have
to add appropriate array partition s in order to be able to read and write multiple values at the
interfaces. In this case, Vivado R© HLS is able to eliminate most of the read operations of the out[]
array within the body of the loop, but we still only achieve a loop II of 2. In this case the first load
in the body of the loop is still not able to be removed. We can, however, rewrite the code manually
to use a local variable rather than read from the out[] array.

Ideally, when we unroll the inner loop, we the perform more operations per clock and reduce
the interval to compute the function. If we unroll by a factor of two, then the performance doubles.
A factor of four would increase the performance by factor four, i.e., the performance scales in a
linear manner as it is unrolled. While this is mostly the case, as we unroll the inner loop there
are often some aspects of the design that don’t change. Under most circumstances, such as when
the iteration space of loops execute for a long time, these aspects represent a small fixed overhead
which doesn’t contribute significantly to the performance of the overall function. However, as the
number of loop iterations decreases, these fixed portions of the design have more impact. The
largest fixed component of a pipelined loop is the depth of the pipeline itself. The control logic
generate by Vivado R© HLS for a pipelined loop requires the pipeline to completely flush before code
after the loop can execute.
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#define SIZE 128
void prefixsum(int in[SIZE], int out[SIZE]) {

#pragma HLS ARRAY PARTITION variable=out cyclic factor=4 dim=1
#pragma HLS ARRAY PARTITION variable=in cyclic factor=4 dim=1
int A = in[0];
for(int i=0; i < SIZE; i++) {

#pragma HLS UNROLL factor=4
#pragma HLS PIPELINE
out[i] = out[i−1] + in[i];

}
}

Loop Interval = 2

In[i*4+0]

Out[i*4+0]

Out[i*4+3]

In[i*4+1]
In[i*4+2]
In[i*4+3]

Out[i*4+1]
Out[i*4+2]
Out[i*4+3]

Figure 8.3: Optimizing the prefixsum code using unroll, pipeline, and array partition directives.

+  

a) b)
in[]

+  

out[]

A

in[]

out[]

Figure 8.4: Part a) displays an architecture corresponding to the code in Figure 8.1. The depen-
dence on the out[] array can prevent achieving a loop II of 1. Computing the recurrence with a
local variable, as shown in the code in Figure 8.2, is able to reduce the latency in the recurrence
and achieve a loop II of 1.

Unroll the for loop corresponding to the prefix sum code in Figure 8.2 by different factors in
combination with array partitioning to achieve a loop II of 1. How does the prefixsum function
latency change? What are the trends in the resource usages? Why do you think you are seeing
these trends? What happens when the loop becomes fully unrolled?

Figure 8.4 shows the hardware architecture resulting from synthesizing the code from Figure
8.1 and Figure 8.2. In part a), we can see that the ‘loop’ in the circuit includes the output memory
that stores the out[] array, whereas in part b), the loop in the circuit includes only a register that
stores the accumulated value and the output memory is only written. Simplifying recurrences and
eliminating unnecessary memory accesses is a common practice in optimizing HLS code.

The goal of this section is to show that even a small changes in the code can sometimes have a
significant effect on the hardware design. Some changes may not necessarily be intuitive, but can
be identified with feedback from the tool.
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Figure 8.5: An example of a histogram.

void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) {
int val;
for(int i = 0; i < INPUT SIZE; i++) {

#pragma HLS PIPELINE
val = in[i];
hist[val] = hist[val] + 1;

}
}

Figure 8.6: Original code for calculating the histogram. The for loop iterates across the input array
and increments the corresponding element of the hist array.

8.2 Histogram

A Histogram models the probability distribution of a discrete signal. Given a sequence of discrete
input values, the histogram counts the number of times each value appears in the sequence. When
normalized by the total number of input values, the histogram becomes the probability distribution
function of the sequence. Creating a histogram is a common function used in image processing,
signal processing, database processing, and many other domains. In many cases, it is common
to quantize high-precision input data into a smaller number of intervals or bins as part of the
histogram computation. For the purpose of this section, we will skip the actual process by which
this is done and focus on what happens with the binned data.

Figure 8.5 provides a simple example of a histogram. The data set consists of a sequence of
binned values, in this case represented by an integer in [0, 4]. The corresponding histogram, consist-
ing of a count for each bin, is shown below along with a graphical representation of the histogram,
where the height of each bar corresponding to the count of each separate value. Figure 8.6 shows
baseline code for the histogram function.

The code ends up looking very similar to the prefix sum in the previous section. The difference is
that the prefix sum is essentially only performing one accumulation, while in the histogram function
we compute one accumulation for each bin. The other difference is that in the prefix sum we added
the input value each time, in this case we only add 1. When pipelining the inner loops using the
pipeline directive, we return to the same problem as with the code in Figure 8.1, where we can
only achieve a loop II of 2 due to the recurrence through the memory. This is due to the fact that
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Figure 8.7: An architecture resulting from the code in Figure 8.6. The val data from the in array is
used to index into the hist array. This data is incremented and stored back into the same location.

we are reading from the hist array and writing to the same array in every iteration of the loop.
Figure 8.7 shows the hardware architecture for the code in Figure 8.6. You can see that the hist
array has a read and write operation. The val variable is used as the index into the hist array, and
the variable at that index is read out, incremented, and written back into the same location.

8.3 Histogram Optimization and False Dependencies

Let’s look deeper at the recurrence here. In the first iteration of the loop, we read the hist array
at some location x0 and write back to the same location x0. The read operation has a latency of
one clock cycle, so the write has to happen in the following clock. Then in the next iteration of the
loop, we read at another location x1. Both x0 and x1 are dependent on the input and could take
any value, so we consider the worst case when generating the circuit. In this case, if x0 == x1,
then the read at location x1 cannot begin until the previous write has completed. As a result, we
must alternate between reads and writes.

It turns out that we must alternate between reads and writes as long as x0 and x1 are indepen-
dent. What if they are not actually independent? For instance, we might know that the source of
data never produces two consecutive pieces of data that actually have the same bin. What do we
do now? If we could give this extra information to the HLS tool, then it would be able to read at
location x1 while writing at location x0 because it could guarantee that they are different addresses.
In Vivado R© HLS, this is done using the dependence directive.

The modified code is shown in Figure 8.8. Here we’ve explicitly documented (informally) that
the function has some preconditions. In the code, we’ve added an assert() call which checks the
second precondition. in Vivado R© HLS, this assertion is enabled during simulation to ensure that
the simulation testvectors meet the required precondition. The dependence directive captures the
effect of this precondition on the circuit, generated by the tool. Namely, it indicates to Vivado R©

HLS that reads and writes to the hist array are dependent only in a particular way. In this case,
inter-iteration dependencies consisting of a read operation after a write operation (RAW) have a
distance of 2. In this case a distance of n would indicate that read operations in iteration i + n
only depend on write operations in iteration i. In this case, we assert that in[i+1] != in[i], but it
could be the case that in[i+2] == in[i] so the correct distance is 2.
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#include <assert.h>
#include ”histogram.h”

// Precondition: hist[] is initialized with zeros.
// Precondition: for all x, in[x] != in[x+1]
void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) {

#pragma HLS DEPENDENCE variable=hist inter RAW distance=2
int val;
int old = −1;
for(int i = 0; i < INPUT SIZE; i++) {

#pragma HLS PIPELINE
val = in[i];
assert(old != val);
hist[val] = hist[val] + 1;
old = val;

}
}

Figure 8.8: An alternative function for computing a histogram. By restricting the inputs and
indicating this restriction to Vivado R© HLS via the dependence directive, II=1 can be achieved
without significantly altering the code.

In Figure 8.8, we added a precondition to the code, checked it using an assertion, and
indicated the effect of the precondition to the tool using the dependence directive. What
happens if your testbench violates this precondition? What happens if you remove the assert()
call? Does Vivado R© HLS still check the precondition? What happens if the precondition is
not consistent with the dependence directive?

Unfortunately, the dependence directive doesn’t really help us if we are unwilling to accept the
additional precondition. It’s also clear that we can’t directly apply same optimization as with the
prefixsum function, since we might need to use all of the values stored in the hist array. Another
alternative is implement the hist array with a different technology, for instance we could partition
the hist array completely resulting in the array being implemented with flip-flop (FF) resources.
Since the data written into a FF on one clock cycle is available immediately on the next clock
cycle, this solves the recurrence problem and can be a good solution when a small number of bins
are involved. The architecture resulting from such a design is shown in Figure 8.9. However, it
tends to be a poor solution when a large number of bins are required. Commonly histograms are
constructed with hundreds to thousands of bins and for large data sets can require many bits of
precision to count all of the inputs. This results in a large number of FF resources and a large mux,
which also requires logic resources. Storing large histograms in block RAM (BRAM) is usually a
much better solution.

Returning to the code in Figure 8.6, we see that there are really two separate cases that the
architecture must be able to handle. One case is when the input contains consecutive values in the
same bin. In this case, we’d like to use a simple register to perform the accumulation with a minimal
amount of delay. The second case is when the input does not contain consecutive values in the
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Figure 8.9: An architecture resulting from the code in Figure 8.6 when the hist array is completely
partitioned.

same bin, in which case we need to read, modify, and write back the result to the memory. In this
case, we can guarantee that the read operation of the hist array can not be affected by the previous
write operation. We’ve seen that both of these cases can be implemented separately, perhaps we
can combine them into a single design. The code to accomplish this is shown in Figure 8.10. This
code uses a local variable old to store the bin from the previous iteration and another local variable
accu to store the count for that bin. Each time through the loop we check to see if we are looking
at the same bin as the previous iteration. If so, then we can simply increment accu. If not, then
we need to store the value in accu in the hist array and increment the correct value in the hist
array instead. In either case, we update old and accu to contain the current correct values. The
architecture corresponding to this code is shown in Figure 8.11.

In this code, we still need a dependence directive, just as in Figure 8.8, however the form is
slightly different. In this case the read and write accesses are to two different addresses in the same
loop iteration. Both of these addresses are dependent on the input data and so could point to any
individual element of the hist array. Because of this, Vivado R© HLS assumes that both of these
accesses could access the same location and as a result schedules the read and write operations to
the array in alternating cycles, resulting in a loop II of 2. However, looking at the code we can
readily see that hist[old] and hist[val] can never access the same location because they are in the
else branch of the conditional if(old == val). Within one iteration (an intra-dependence) a read
operation after a write operation (RAW) can never occur and hence is a false dependence. In this
case we are not using the dependence directive to inform the tool about a precondition of the
function, but instead about a property of the code itself.

Synthesize the code from Figure 8.6 and Figure 8.10. What is the initiation interval (II) in
each case? What happens when you remove the dependence directive from the code in Figure
8.10? How does the loop interval change in both cases? What about the resource usage?

For the code in Figure 8.10, you might question why a tool like Vivado R© HLS cannot
determine this property. In fact, while in some simple cases like this one better code analysis
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#include ”histogram.h”
void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) {

int acc = 0;
int i, val;
int old = in[0];
#pragma HLS DEPENDENCE variable=hist intra RAW false
for(i = 0; i < INPUT SIZE; i++) {

#pragma HLS PIPELINE II=1
val = in[i];
if(old == val) {

acc = acc + 1;
} else {

hist[old] = acc;
acc = hist[val] + 1;

}
old = val;

}
hist[old] = acc;

}

Figure 8.10: Removing the read after write dependency from the for loop. This requires an if/else
structure that may seem like it is adding unnecessary complexity to the design. However, it allows
for more effective pipelining despite the fact that the datapath is more complicated.

could propagate the if condition property into each branch, we must accept that there are
some pieces of code where properties of memory accesses are actually undecidable. The highest
performance in such cases will only be achieved in a static schedule with the addition of user
information. Several recent research works have looked to improve this by introducing some
dynamic control logic into the design[60, 44, 19].

A pictorial description of the restructured code from Figure 8.10 is shown in Figure 8.11. Not all
of the operations are shown here, but the major idea of the function is there. You can see the two
separate if and else regions (denoted by dotted lines). The acc variable is replicated twice in order
to make the drawing more readable; the actual design will only have one register for that variable.
The figure shows the two separate datapaths for the if and the else clause with the computation
corresponding to the if clause on the top and the else clause datapath on the bottom.

8.4 Increasing Histogram Performance

With some effort, we’ve achieved a design with a loop II of 1. Previously we have seen how further
reducing the execution time of a design can be achieved by partial unrolling of the inner loop.
However, with the histogram function this is somewhat difficult for several reasons. One reason is
the challenging recurrence, unless we can break up the input data in some fashion, the computation
of one iteration of the loop must be completed with the computation of the next iteration of the
loop. A second reason is that with a loop II of 1, the circuit performs a read and a write of the
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Figure 8.11: A depiction of the datapath corresponding to the code in Figure 8.10. There are two
separate portions corresponding to the if and else clauses. The figure shows the important portions
of the computation, and leaves out some minor details.

hist array each clock cycle, occupying both ports of a BRAM resource in the FPGA. Previously we
have considered array partitioning to increase the number of memory ports for accessing an array,
but there’s not a particularly obvious way to partition the hist array since the access order depends
on the input data.

All is not lost, however, as there is a way we can expose more parallelism by decomposing
the histogram computation into two stages. In the first stage, we divide the input data into a
number of separate partitions. The histogram for each partition can be computed independently
using a separate instance, often called a Processing Element (PE), of the histogram solution we’ve
developed previously. In the second stage, the individual histograms are combined to generate the
histogram of the complete data sets. This partitioning (or mapping) and merging (or reducing)
process is very similar to that adopted by the MapReduce framework [20] and is a common pattern
for parallel computation. The map-reduce pattern is applicable whenever there is recurrence which
includes a commutative and associative operation, such as addition in this case. This idea is shown
in Figure 8.12.

The code for implementing this architecture is shown in Figure 8.13. The histogram map func-
tion implements the ‘map’ portion of the map-reduce pattern and will be instantiated multiple
times. The code is very similar to the code in Figure 8.10. The main difference is that we have
added the additional code to initialize the hist array. The histogram map function takes an input
array in which will contain a partition of the data being processed and computes the histogram of
that partition in the hist array. The histogram reduce function implements the ‘reduce’ portion of
the pattern. It takes as input a number of partial histograms and combines them into complete
histogram by adding together the count for each histogram bin. In our code example in Figure
8.13, we have only two processing elements, thus the merge has two input arrays hist1 and hist2.
This can easily be extended to handle more processing elements.
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Figure 8.12: The histogram computation implemented using a map-reduce pattern. The processing
element (PE) in Part a) is the same architecture as shown in Figure 8.11. The in array is parti-
tioned and each partition is processed by a separate PE. The merge block combines the individual
histograms to create the final histogram.

The new histogram function takes as an input two partitions of the input data, stored in the
inputA and inputB arrays. It computes the histogram of each partition using the histogram map
function, which are then stored in the hist1 and hist2 arrays. These are feed into the histogram reduce
function which combines them and stores the result in the hist array, which is the final output of
the top level function histogram.

Modify the code in Figure 8.13 to support a parameterizable number NUM PE of PEs?
Hint: You’ll need to combine some of the arrays into a single array that is correctly partitioned
and add some loops that depend on NUM PE. What happens to the throughput and task
interval as you vary the number of PEs?

We use the dataflow directive in the histogram function in order to enable a design with
task pipelining. In this case there are three processes: two instances of the partial histogram function
and one instance of the histogram reduce function. Within a single task, the two partial histogram
processes can execute concurrently since they work on independent data, while the histogram reduce
function must execute after since it uses the results from the partial histogram processes. Thus, the
dataflow directive essentially creates a two stage task pipeline with the partial histogram functions
in the first stage and the histogram reduce function in the second stage. As with any dataflow
design, the interval of the entire histogram function depends upon the maximum initiation in-
terval of the two stages. The two partial histogram functions in the first stage are the same
and will have the same interval (IIhistogram map). The histogram reduce function will have an-
other interval (IIhistogram reduce). The interval of the toplevel histogram function IIhistogram is then
max(IIhistogram map, IIhistogram reduce).
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#include ”histogram parallel.h”
void histogram map(int in[INPUT SIZE/2], int hist[VALUE SIZE]) {

#pragma HLS DEPENDENCE variable=hist intra RAW false
for(int i = 0; i < VALUE SIZE; i++) {

#pragma HLS PIPELINE II=1
hist[i] = 0;

}
int old = in[0];
int acc = 0;
for(int i = 0; i < INPUT SIZE/2; i++) {

#pragma HLS PIPELINE II=1
int val = in[i];
if(old == val) {

acc = acc + 1;
} else {

hist[old] = acc;
acc = hist[val] + 1;

}
old = val;

}
hist[old] = acc;

}

void histogram reduce(int hist1[VALUE SIZE], int hist2[VALUE SIZE], int output[VALUE SIZE]) {
for(int i = 0; i < VALUE SIZE; i++) {

#pragma HLS PIPELINE II=1
output[i] = hist1[i] + hist2[i];

}
}

//Top level function
void histogram(int inputA[INPUT SIZE/2], int inputB[INPUT SIZE/2], int hist[VALUE SIZE]){

#pragma HLS DATAFLOW
int hist1[VALUE SIZE];
int hist2[VALUE SIZE];

histogram map(inputA, hist1);
histogram map(inputB, hist2);
histogram reduce(hist1, hist2, hist);

}

Figure 8.13: Another implementation of histogram that uses task level parallelism and pipelining.
The histogram operation is split into two sub tasks, which are executed in the two histogram map
functions. These results are combined in the final histogram result using the histogram reduce
function. The histogram function is the top level function that connects these three functions
together.
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What happens when you add or change the locations of the pipeline directives? For exam-
ple, is it beneficial to add a pipeline directive to the for loop in the histogram reduce function?
What is the result of moving the pipeline directive into the histogram map function, i.e., hoisting
it outside of the for loop where it currently resides?

The goal of this section was to walk through the optimization the histogram computation,
another small but important kernel of many applications. The key takeaway is that there are often
limits to what tools can understand about our programs. In some cases we must take care in how
we write the code and in other cases we must actually give the tool more information about the code
or the environment that the code is executing in. In particular, properties about memory access
patterns often critically affect the ability of HLS to generate correct and efficient hardware. In
Vivado R© HLS, these properties can be expressed using the dependence directive. Sometimes these
optimizations might even be counter-intuitive, such as the addition of the if/else control structure
in 8.10. In other cases optimizations might require some creativity, as in applying the map-reduce
pattern in Figures 8.12 and 8.13).

8.5 Conclusion

In this section, we’ve looked at the prefix sum and histogram kernels. Although these functions
seem different, they both contain recurrences through a memory access. These recurrences can
limit throughput if the memory access is not pipelined. In both cases, by rewriting the code we can
remove the recurrence. In the case of the prefix sum, this is much easier since the access patterns
are deterministic. In the case of the histogram we must rewrite the code to address the recurrence
or ensure that recurrence never happens in practice. In either case we needed a way to describe to
Vivado R© HLS information about the environment or about the code itself that the tool was unable
to determine for itself. This information is captured in the dependence directive. Lastly, we looked
at ways of parallelizing both algorithms yet further, so that they could process a number of data
samples each clock cycle.
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Chapter 9

Video Systems

9.1 Background

Video Processing is a common application for FPGAs. One reason is that common video data rates
match well the clock frequencies that can achieved with modern FPGAs. For instance, the common
High-Definition TV format known as FullHD or 1080P60 video requires 1920pixels

line
∗ 1080lines

frame
∗

60frames
second

= 124, 416, 000pixels
second

.

When encoded in a digital video stream, these pixels are transmitted along with some blank
pixels at 148.5 MHz, and can be processed in a pipelined FPGA circuit at that frequency. Higher
data rates can also be achieved by processing multiple samples per clock cycle. Details on how
digital video is transmitted will come in Section 9.1.2. Another reason is that video is mostly
processed in scanline order line-by-line from the top left pixel to the lower right pixel, as shown in
Figure 9.1. This predictable order allows highly specialized memory architectures to be constructed
in FPGA circuits to efficiently process video without excess storage. Details on these architectures
will come in Section 9.2.1

Video processing is also a good target application for HLS. Firstly, video processing is typically
tolerant to processing latency. Many applications can tolerate several frames of processing delay,
although some applications may limit the overall delay to less than one frame. As a result, highly
pipelined implementations can be generated from throughput and clock constraints in HLS with
little concern for processing latency. Secondly, video algorithms are often highly non-standardized
and developed based on the personal taste or intuition of an algorithm expert. This leads them
to be developed in a high-level language where they can be quickly developed and simulated on

(0, 0) (0, width-1)

(height-1, 0) (height-1, width-1)

Figure 9.1: Scanline processing order for video frames.
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sequences of interest. It is not uncommon for FullHD video processing algorithms to run at 60
frames per second in an FPGA system, one frame per second in synthesizable C/C++ code running
on a development laptop, but only one frame per hour (or slower) in an RTL simulator. Lastly,
video processing algorithms are often easily expressed in a nested-loop programming style that is
amenable to HLS. This means that many video algorithms can be synthesized into an FPGA circuit
directly from the C/C++ code that an algorithm developer would write for prototyping purposes
anyway

9.1.1 Representing Video Pixels

Many video input and output systems are optimized around the way that the human vision system
perceives light. One aspect of this is that the cones in the eye, which sense color, are sensitive
primarily to red, green, and blue light. Other colors are perceived as combinations of red, green,
and blue light. As a result, video cameras and displays mimic the capabilities of the human vision
system and are primarily sensitive or capable of displaying red, green, and blue light and pixels
are often represented in the RGB colorspace as a combination of red, green, and blue components.
Most commonly each component is represented with 8 bits for a total of 24 bits per pixel, although
other combinations are possible, such as 10 or even 12 bits per pixel in high-end systems.

A second aspect is that the human visual system interprets brightness with somewhat higher
resolution than color. Hence, within a video processing system it is common to convert from the
RGB colorspace to the YUV colorspace, which describes pixels as a combination of Luminance
(Y) and Chrominance (U and V). This allows the color information contained in the U and V
components to be represented independently of the brightness information in the Y component.
One common video format, known as YUV422, represents two horizontally adjacent pixels with
two Y values, one U value and one V value. This format essentially includes a simple form of video
compression called chroma subsampling . Another common video format, YUV420, represents four
pixels in a square with 4 Y values, one U value and one V value, further reducing the amount of
data required. Video compression is commonly performed on data in the YUV colorspace.

A third aspect is that the rods and codes in eye are more sensitive to green light than red or
blue light and that the brain primarily interprets brightness primarily from green light. As a result,
solid-state sensors and displays commonly use a mosaic pattern, such as the Bayer pattern[7] which
consists of 2 green pixels for every red or blue pixel. The end result is that higher resolution images
can be produced for the same number of pixel elements, reducing the manufacturing cost of sensors
and displays.

Video systems have been engineered around the human visual system for many years. The
earliest black and white video cameras were primarily sensitive to blue-green light to match the
eye’s sensitivity to brightness in that color range. However, they were unfortunately not very
sensitive to red light, as a result red colors (such as in makeup) didn’t look right on camera.
The solution was decidedly low-tech: actors wore garish green and blue makeup.

9.1.2 Digital Video Formats

In addition to representing individual pixels, digital video formats must also encode the organization
of pixels into video frames. In many cases, this is done with synchronization or sync signals that
indicate the start and stop of the video frame in an otherwise continuous sequence of pixels. In some
standards (such as the Digital Video Interface or DVI ) sync signals are represented as physically
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Figure 9.2: Typical synchronization signals in a 1080P60 high definition video signal.

separate wires. In other standards (such as the Digital Television Standard BTIR 601/656) the
start and stop of the sync signal is represented by special pixel values that don’t otherwise occur
in the video signal.

Each line of video (scanned from left to right) is separated by a Horizontal Sync Pulse. The
horizontal sync is active for a number of cycles between each video line. In addition, there are
a small number of pixels around the pulse where the horizontal sync is not active, but there are
not active video pixels. These regions before and after the horizontal sync pulse are called the
Horizontal Front Porch and Horizontal Back Porch, respectively. Similarly, each frame of video
(scanned from top to bottom) is separated by a Vertical Sync Pulse. The vertical sync is active for
a number of lines between each video frame. Note that the vertical sync signal only changes at the
start of the horizontal sync signal. There are also usually corresponding Vertical Front Porch and
Vertical Back Porch areas consisting of video lines where the vertical sync is not active, but there
are not active video pixels either. In addition, most digital video formats include a Data Enable
signal that indicates the active video pixels. Together, all of the video pixels that aren’t active are
called the Horizontal Blanking Interval and Vertical Blanking Interval . These signals are shown
graphically in Figure 9.2.

The format of digital video signals is, in many ways, an artifact of the original analog
television standards, such as NTSC in the United States and PAL in many European countries.
Since the hardware for analog scanning of Cathode Ray Tubes contained circuits with limited
slew rates, the horizontal and vertical sync intervals allowed time for the scan recover to the
beginning of the next line. These sync signals were represented by a large negative value in the
video signal. In addition, since televisions were not able to effectively display pixels close to
the strong sync signal, the front porches and the back porches were introduced to increase the
amount of the picture that could be shown. Even then, many televisions were designed with
overscan, where up to 20% of the pixels at the edge the frame were not visible.

The typical 1080P60 video frame shown in Figure 9.2 contains a total of 2200 ∗ 1125 data
samples. At 60 frames per second, this corresponds to an overall sample rate of 148.5 Million
samples per second. This is quite a bit higher than the average rate of active video pixels in a

169



VIDEO SYSTEMS

#include ”video common.h”

unsigned char rescale(unsigned char val, unsigned char offset, unsigned char scale) {
return ((val − offset) ∗ scale) >> 4;

}

rgb pixel rescale pixel(rgb pixel p, unsigned char offset, unsigned char scale) {
#pragma HLS pipeline
p.R = rescale(p.R, offset, scale);
p.G = rescale(p.G, offset, scale);
p.B = rescale(p.B, offset, scale);
return p;

}

void video filter rescale(rgb pixel pixel in[MAX HEIGHT][MAX WIDTH],
rgb pixel pixel out[MAX HEIGHT][MAX WIDTH],
unsigned char min, unsigned char max) {

#pragma HLS interface ap hs port = pixel out
#pragma HLS interface ap hs port = pixel in
row loop:
for (int row = 0; row < MAX WIDTH; row++) {

col loop:
for (int col = 0; col < MAX HEIGHT; col++) {

#pragma HLS pipeline
rgb pixel p = pixel in[row][col];
p = rescale pixel(p,min,max);
pixel out[row][col] = p;

}
}

}

Figure 9.3: Code implementing a simple video filter.

frame, 1920 ∗ 1080 ∗ 60 = 124.4 Million pixels per second. Most modern FPGAs can comfortably
process at this clock rate, often leading to 1 sample-per-clock cycle architectures. Systems that
use higher resolutions, such as 4K by 2K for digital cinema, or higher frame rates, such as 120
or even 240 frames per second often require more the one sample to be processed per clock cycle.
Remember that such architectures can often be generated by unrolling loops in HLS (see Section
1.4.2). Similarly, when processing lower resolutions or frame rates, processing each sample over
multiple clocks may be preferable, enabling operator sharing. Such architectures can often be
generated by increasing the II of loops.

For instance, the code shown in Figure 9.3 illustrates a simple video processing application that
processes one sample per clock cycle with the loop implemented at II=1. The code is written with
a nested loop over the pixels in the image, following the scanline order shown in 9.1. An II=3
design could share the rescale function computed for each component, enabling reduced area usage.
Unrolling the inner loop by a factor of 2 and partitioning the input and the output arrays by an

170



VIDEO SYSTEMS

Accelerator 1BRAM

Dataflow

address

data BRAM
address

data

WE

address

data

WE
data

address

void video filter(rgb pixel pixel in[MAX HEIGHT][MAX WIDTH],
rgb pixel pixel out[MAX HEIGHT][MAX WIDTH]) {

#pragma HLS interface ap memory port = pixel out // The default
#pragma HLS interface ap memory port = pixel in // The default

Figure 9.4: Integration of a video design with BRAM interfaces.

appropriate factor of 2 could enable processing 2 pixels every clock cycle in an II=1 design. This
case is relatively straightforward, since the processing of each component and of individual pixels
is independent. More complicated functions might not benefit from resource sharing, or might not
be able to process more than one pixel simultaneously.

A high-speed computer vision application processes small video frames of 200 * 180 pixels
at 10000 frames per second. This application uses a high speed sensor interfaced directly to
the FPGA and requires no sync signals. How many samples per clock cycle would you attempt
to process? Is this a good FPGA application? Write the nested loop structure to implement
this structure using HLS.

9.1.3 Video Processing System Architectures

Up to this point, we have focused on building video processing applications without concern for
how they are integrated into a system. In many cases, such as the example code in Figure 9.12,
the bulk of the processing occurs within a loop over the pixels and can process one pixel per clock
when the loop is active. In this section we will discuss some possibilities for system integration.

By default, Vivado R© HLS generates a simple memory interface for interface arrays. This inter-
face consists of address and data signals and a write enable signal in the case of a write interface.
Each read or write of data is associated with a new address and the expected latency through the
memory is fixed. It is simple to integrate such an interface with on-chip memories created from
Block RAM resources as shown in Figure 9.4. However Block RAM resources are generally a poor
choice for storing video data because of the large size of each frame, which would quickly exhaust
the Block RAM resources even in large expensive devices.
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void video filter(pixel t pixel in[MAX HEIGHT][MAX WIDTH],
pixel t pixel out[MAX HEIGHT][MAX WIDTH]) {

#pragma HLS interface m axi port = pixel out
#pragma HLS interface m axi port = pixel in

Figure 9.5: Integration of a video design with external memory interfaces.

For 1920x1080 frames with 24 bits per pixel, how many Block RAM resources are required
to store each video frame? How many frames can be stored in the Block RAM of the FPGA
you have available?

A better choice for most video systems is to store video frames in external memory, typically
some form of double-data-rate (DDR) memory. Typical system integration with external memory
is shown in Figure 9.5. An FPGA component known as external memory controller implements the
external DDR interface and provides a standardized interface to other FPGA components through
a common interface, such as the ARM AXI4 slave interface [6]. FPGA components typically
implement a complementary master interface which can be directly connected to the slave interface
of the external memory controller or connected through specialized AXI4 interconnect components.
The AXI4 interconnect allows multiple multiple master components to access a number of slave
components. This architecture abstracts the details of the external memory, allowing different
external memory components and standards to be used interchangeably without modifying other
FPGA components.

Although most processor systems are built with caches and require them for high performance
processing, it is typical to implement FPGA-based video processing systems as shown in 9.5 without
on-chip caches. In a processor system, the cache provides low-latency access to previously accessed
data and improves the bandwidth of access to external memory by always reading or writing
complete cache lines. Some processors also use more complex mechanisms, such as prefetching
and speculative reads in order to reduce external memory latency and increase external memory
bandwidth. For most FPGA-based video processing systems simpler techniques leveraging line
buffers and window buffers are sufficient to avoid fetching any data from external memory more
than once, due to the predictable access patterns of most video algorithms. Additionally, Vivado R©

HLS is capable of scheduling address transactions sufficiently early to avoid stalling computation
due to external memory latency and is capable of statically inferring burst accesses from consecutive
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void video filter(pixel t pixel in[MAX HEIGHT][MAX WIDTH],
pixel t pixel out[MAX HEIGHT][MAX WIDTH]) {

#pragma HLS interface s axi port = pixel out
#pragma HLS interface s axi port = pixel in

Figure 9.6: Integration of a video design with external memory interfaces through a DMA compo-
nent.

void video filter(pixel t pixel in[MAX HEIGHT][MAX WIDTH],
pixel t pixel out[MAX HEIGHT][MAX WIDTH]) {

#pragma HLS interface ap hs port = pixel out
#pragma HLS interface ap hs port = pixel in

void video filter(hls::stream<pixel t> &pixel in,
hls::stream<pixel t> &pixel out) {

Figure 9.7: Coding styles for modelling streaming interfaces in HLS.

memory accesses.

An alternative external memory architecture is shown in Figure 9.6. In this architecture, an
accelerator is connected to an external Direct Memory Access (DMA) component that performs
the details of generating addresses to the memory controller. The DMA provides a stream of data
to the accelerator for processing and consumes the data produced by the accelerator and writes it
back to memory. In Vivado R© HLS, there are multiple coding styles that can generate a streaming
interface, as shown in Figure 9.7. One possibility is to model the streaming interfaces as arrays. In
this case, the C code is very similar to the code seen previously, but different interface directives
are used. An alternative is to model the streaming interface explicitly, using the hls::stream<>

class. In either case, some care must be taken that the order of data generated by the DMA engine
is the same as the order in which the data is accessed in the C code.

One advantage of streaming interfaces is that they allow multiple accelerators to be composed
in a design without the need to store intermediate values in external memory. In some cases, FPGA
systems can be built without external memory at all, by processing pixels as they are received on
an input interface (such as HDMI) and sending them directly to an output interface, as shown in
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void video filter(pixel t pixel in[MAX HEIGHT][MAX WIDTH],
pixel t pixel out[MAX HEIGHT][MAX WIDTH]) {

#pragma HLS interface ap hs port = pixel out
#pragma HLS interface ap hs port = pixel in

Figure 9.8: Integration of a video design with streaming interfaces.

Figure 9.8. Such designs typically have accelerator throughput requirements that must achieved in
order to meet the strict real-time constraints at the external interfaces. Having at least one frame
buffer in the system provides more flexibility to build complex algorithms that may be hard to
construct with guaranteed throughput. A frame buffer can also simplify building systems where
the input and output pixel rates are different or potentially unrelated (such as a system that receives
an arbitrary input video format and outputs an different arbitrary format).

9.2 Implementation

When actually processing video in a system it is common to factor out the system integration
aspects from the implementation of video processing algorithms. For the remainder of this chapter
we will assume that input pixels are arriving in a stream of pixels and must be processed in scanline
order. The actual means by which this happens is largely unimportant, as long as HLS meets the
required performance goals.

9.2.1 Line Buffers and Frame Buffers

Video processing algorithms typically compute an output pixel or value from a nearby region of
input pixels, often called a window . Conceptually, the window scans across the input image,
selecting a region of pixels that can be used to compute the corresponding output pixel. For
instance, Figure 9.9 shows code that implements a 2-dimensional filter on a video frame. This code
reads a window of data from the input video frame (stored in an array) before computing each
output pixel.

In Figure 9.9, there is the code int wi = row+i−1; int wj = col+j−1;. Explain why these
expressions include a ’-1’. Hint: Would the number change if the filter were 7x7 instead of 3x3?
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rgb pixel filter(rgb pixel window[3][3]) {
const char h[3][3] = {{1, 2, 1}, {2, 4, 2}, {1, 2, 1}};
int r = 0, b = 0, g = 0;

i loop: for (int i = 0; i < 3; i++) {
j loop: for (int j = 0; j < 3; j++) {

r += window[i][j].R ∗ h[i][j];
g += window[i][j].G ∗ h[i][j];
b += window[i][j].B ∗ h[i][j];
}
}
rgb pixel output;
output.R = r / 16;
output.G = g / 16;
output.B = b / 16;
return output;
}

void video 2dfilter(rgb pixel pixel in[MAX HEIGHT][MAX WIDTH],
rgb pixel pixel out[MAX HEIGHT][MAX WIDTH]) {

rgb pixel window[3][3];
row loop: for (int row = 0; row < MAX HEIGHT; row++) {

col loop: for (int col = 0; col < MAX WIDTH; col++) {
#pragma HLS pipeline

for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {

int wi = row + i − 1;
int wj = col + j − 1;
if (wi < 0 || wi >= MAX HEIGHT || wj < 0 || wj >= MAX WIDTH) {

window[i][j].R = 0;
window[i][j].G = 0;
window[i][j].B = 0;
} else

window[i][j] = pixel in[wi][wj];
}
}
if (row == 0 || col == 0 || row == (MAX HEIGHT − 1) || col == (MAX WIDTH − 1)) {

pixel out[row][col].R = 0;
pixel out[row][col].G = 0;
pixel out[row][col].B = 0;
} else

pixel out[row][col] = filter(window);
}
}
}

Figure 9.9: Code implementing a 2D filter without an explicit line buffer.
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Note that in this code, multiple reads of pixel in must occur to populate the window memory
and compute one output pixel. If only one read can be performed per cycle, then this code is
limited in the pixel rate that it can support. Essentially this is a 2-Dimensional version of the
one-tap-per-cycle filter from Figure 1.8. In addition, the interfacing options are limited, because
the input is not read in normal scan-line order. (This topic will be dealt with in more detail in
Section 9.1.3.

A key observation about adjacent windows is that they often overlap, implying a high locality
of reference. This means that pixels from the input image can be buffered locally or cached and
accessed multiple times. By refactoring the code to read each input pixel exactly once and store the
result in a local memory, a better result can be achieved. In video systems, the local buffer is also
called a line buffer , since it typically stores several lines of video around the window. Line buffers
are typically implemented in block RAM (BRAM) resources, while window buffers are implemented
using flip-flop (FF) resources. Refactored code using a line buffer is shown in Figure 9.10. Note
that for an NxN image filter, only N-1 lines need to be stored in line buffers.

The line buffer and window buffer memories implemented from the code in Figure 9.10 are
shown in Figure 9.11. Each time through the loop, the window is shifted and filled with one pixel
coming from the input and two pixels coming from the line buffer. Additionally, the input pixel
is shifted into the line buffer in preparation to repeat the process on the next line. Note that in
order to process one pixel each clock cycle, most elements of the window buffer must be read from
and written to every clock cycle. In addition, after the ’i’ loop is unrolled, each array index to
the window array is a constant. In this case, Vivado R© HLS will convert each element of the array
into a scalar variable (a process called scalarization). Most of the elements of the window array
will be subsequently implemented as Flip Flops. Similarly, each row of the line buffer is accessed
twice (being read once and written once). The code explicitly directs each row of the line buffer
array to be partitioned into a separate memory. For most interesting values of MAX WIDTH the
resulting memories will be implemented as one or more Block RAMs. Note that each Block RAM
can support two independent accesses per clock cycle.

Line buffers are a special case of a more general concept known as a reuse buffer , which is
often used in stencil-style computations. High-level synthesis of reuse buffers and line buffers
from code like Figure 9.9 is an area of active research. See, for instance [8][31].

Vivado R© HLS includes hls::line buffer<> and hls::window buffer<> classes that simplify the
management of window buffers and line buffers.

For a 3x3 image filter, operating on 1920x1080 images with 4 bytes per pixel, How many
FPGA Block RAMs are necessary to store each video line?

9.2.2 Causal Filters

The filter implemented in Figure 9.10 reads a single input pixel and produces a single output pixel
each clock cycle, however the behavior is not quite the same as the code in Figure 9.9. The output
is computed from the window of previously read pixels, which is ’up and to the left’ of the pixel
being produced. As a result, the output image is shifted ’down and to the right’ relative to the
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void video 2dfilter linebuffer(rgb pixel pixel in[MAX HEIGHT][MAX WIDTH],
rgb pixel pixel out[MAX HEIGHT][MAX WIDTH]) {

#pragma HLS interface ap hs port=pixel out
#pragma HLS interface ap hs port=pixel in

rgb pixel window[3][3];
rgb pixel line buffer[2][MAX WIDTH];

#pragma HLS array partition variable=line buffer complete dim=1
row loop: for (int row = 0; row < MAX HEIGHT; row++) {

col loop: for (int col = 0; col < MAX WIDTH; col++) {
#pragma HLS pipeline

for(int i = 0; i < 3; i++) {
window[i][0] = window[i][1];
window[i][1] = window[i][2];
}

window[0][2] = (line buffer[0][col]);
window[1][2] = (line buffer[0][col] = line buffer[1][col]);
window[2][2] = (line buffer[1][col] = pixel in[row][col]);

if (row == 0 || col == 0 ||
row == (MAX HEIGHT − 1) ||
col == (MAX WIDTH − 1)) {
pixel out[row][col].R = 0;
pixel out[row][col].G = 0;
pixel out[row][col].B = 0;
} else {

pixel out[row][col] = filter(window);
}
}
}
}

Figure 9.10: Code implementing a 2D filter with an explicit line buffer.
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Figure 9.11: Memories implemented by the code in Figure 9.10. These memories store a portion of
the input image shown in the diagram on the right at the end of a particular iteration of the loop.
The pixels outlined in black are stored in the line buffer and the pixels outlined in red are stored
in the window buffer.

input image. The situation is analogous to the concept of causal and non-causal filters in signal
processing. Most signal processing theory focuses on causal filters because only causal filters are
practical for time sampled signals (e.g. where x[n] = x(n*T) and y[n] = y(n*T)).

A causal filter h[n] is a filter where ∀k < 0, h[k] = 0. A finite filter h[n] which is not causal
can be converted to a causal filter ĥ[n] by delaying the taps of the filter so that ĥ[n] = h[n−D].
The output of the new filter ŷ = x⊗ ĥ is the same as a delayed output of the old filter y = x⊗h.
Specifically, ŷ[n] = y[n−D].

Prove the fact in the previous aside using the definition of the convolution for

y = x⊗ h: y[n] =
∞∑

k=−∞
x[k] ∗ h[n− k]

For the purposes of this book, most variables aren’t time-sampled signals and the times that
individual inputs and outputs are created may be determined during the synthesis process. For
systems involving time-sampled signals, we treat timing constraints as a constraint during the HLS
implementation process. As long as the required task latency is achieved, then the design is correct.

In most video processing algorithms, the spatial shift introduced in the code above is undesirable
and needs to be eliminated. Although there are many ways to write code that solves this problem,
a common way is known as extending the iteration domain. In this technique, the loop bounds are
increased by a small amount so that the first input pixel is read on the first loop iteration, but
the first output pixel is not written until later in the iteration space. A modified version of the
filter code is shown in Figure 9.12. The behavior of this code is shown in Figure 9.14, relative to
the original linebuffer code in Figure 9.10. After implementation with HLS, we see that the data
dependencies are satisfied in exactly the same way and that the implemented circuit is, in fact,
implementable.

178



VIDEO SYSTEMS

void video 2dfilter linebuffer extended(
rgb pixel pixel in[MAX HEIGHT][MAX WIDTH],
rgb pixel pixel out[MAX HEIGHT][MAX WIDTH]) {

#pragma HLS interface ap hs port=pixel out
#pragma HLS interface ap hs port=pixel in

rgb pixel window[3][3];
rgb pixel line buffer[2][MAX WIDTH];

#pragma HLS array partition variable=line buffer complete dim=1
row loop: for(int row = 0; row < MAX HEIGHT+1; row++) {

col loop: for(int col = 0; col < MAX WIDTH+1; col++) {
#pragma HLS pipeline II=1

rgb pixel pixel;
if(row < MAX HEIGHT && col < MAX WIDTH) {

pixel = pixel in[row][col];
}

for(int i = 0; i < 3; i++) {
window[i][0] = window[i][1];
window[i][1] = window[i][2];
}

if(col < MAX WIDTH) {
window[0][2] = (line buffer[0][col]);
window[1][2] = (line buffer[0][col] = line buffer[1][col]);
window[2][2] = (line buffer[1][col] = pixel);
}
if(row >= 1 && col >= 1) {

int outrow = row−1;
int outcol = col−1;
if(outrow == 0 || outcol == 0 ||

outrow == (MAX HEIGHT−1) || outcol == (MAX WIDTH−1)) {
pixel out[outrow][outcol].R = 0;
pixel out[outrow][outcol].G = 0;
pixel out[outrow][outcol].B = 0;
} else {

pixel out[outrow][outcol] = filter(window);
}
}
}
}
}

Figure 9.12: Code implementing a 2D filter with an explicit line buffer. The iteration space is
extended by 1 to allow the filter to be implemented without a spatial shift.
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a) Original input b) Reference output c) Shifted output d) Corrected output

Figure 9.13: Results of different filter implementations. The reference output in image b is produced
by the code in Figure 9.9. The shifted output in image c is produced by the code in Figure 9.10.
The output in image d is produced by the code in Figure 9.12 and is identical to image b.
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Figure 9.14: Timeline of execution of code implemented with line buffers. The top timeline shows
the behavior of the code in Figure 9.10. The bottom timeline shows the behavior of the code in
Figure 9.12. The pixel marked in red is output on the same cycle in both implementations. In the
first case it is interpreted to be the second pixel of the second line and in the second case, it is
interpreted as the first pixel of the first line.
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a) Original input b) Zero extension c) Constant extension d) Reflect extension

Figure 9.15: Examples of the effect of different kinds of boundary conditions.

9.2.3 Boundary Conditions

In most cases, the processing window contains a region of the input image. However, near the
boundary of the input image, the filter may extend beyond the boundary of the input image.
Depending on the requirements of different applications, there are many different ways of accounting
for the behavior of the filter near the boundary. Perhaps the simplest way to account for the
boundary condition is to compute a smaller output image that avoids requiring the values of input
pixels outside of the input image. However, in applications where the output image size is fixed,
such as Digital Television, this approach is generally unacceptable. In addition, if a sequence of
filters is required, dealing with a large number images with slightly different sizes can be somewhat
cumbersome. The code in Figure 9.10 creates an output with the same size as the input by
padding the smaller output image with a known value (in this case, the color black). Alternatively,
the missing values can be synthesized, typically in one of several ways.

• Missing input values can be filled with a constant

• Missing input values can be filled from the boundary pixel of the input image.

• Missing input values can be reconstructed by reflecting pixels from the interior of the input
image.

Of course, more complicated and typically more computationally intensive schemes are also used.

One way of writing code to handle boundary conditions is shown in Figure 9.16. This code
computes an offset address into the window buffer for each pixel in the window buffer. However,
there is a significant disadvantage in this code since each read from the window buffer is at a
variable address. This variable read results in multiplexers before the filter is computed. For an
N-by-N tap filter, there will be approximately N*N multiplexers with N inputs each. For simple
filters, the cost of these multiplexers (and the logic required to compute the correct indexes) can
dominate the cost of computing the filter.

An alternative technique is to handle the boundary condition when data is written into the
window buffer and to shift the window buffer in a regular pattern. In this case, there are only N
multiplexers, instead of N*N, resulting in significantly lower resource usage.

Modify the code in Figure 9.16 to read from the window buffer using constant addresses.
How many hardware resources did you save?
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void video 2dfilter linebuffer extended constant(
rgb pixel pixel in[MAX HEIGHT][MAX WIDTH], rgb pixel pixel out[MAX HEIGHT][MAX WIDTH]) {

#pragma HLS interface ap hs port=pixel out
#pragma HLS interface ap hs port=pixel in

rgb pixel window[3][3];
rgb pixel line buffer[2][MAX WIDTH];

#pragma HLS array partition variable=line buffer complete dim=1
row loop: for(int row = 0; row < MAX HEIGHT+1; row++) {

col loop: for(int col = 0; col < MAX WIDTH+1; col++) {
#pragma HLS pipeline II=1

rgb pixel pixel;
if(row < MAX HEIGHT && col < MAX WIDTH) {

pixel = pixel in[row][col];
}
for(int i = 0; i < 3; i++) {

window[i][0] = window[i][1];
window[i][1] = window[i][2];
}
if(col < MAX WIDTH) {

window[0][2] = (line buffer[0][col]);
window[1][2] = (line buffer[0][col] = line buffer[1][col]);
window[2][2] = (line buffer[1][col] = pixel);
}
if(row >= 1 && col >= 1) {

int outrow = row−1;
int outcol = col−1;
rgb pixel window2[3][3];
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 3; j++) {
int wi, wj;
if (i < 1 − outrow) wi = 1 − outrow;
else if (i >= MAX HEIGHT − outrow + 1) wi = MAX HEIGHT − outrow;
else wi = i;
if (j < 1 − outcol) wj = 1 − outcol;
else if (j >= MAX WIDTH − outcol + 1) wj = MAX WIDTH − outcol;
else wj = j;
window2[i][j] = window[wi][wj];
}
}
pixel out[outrow][outcol] = filter(window2);
}
}
}
}

Figure 9.16: Code implementing a 2D filter with an explicit line buffer and constant extension to
handle the boundary condition. Although correct, this code is relatively expensive to implement.
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9.3 Conclusion

Video processing is a common FPGA application and are highly amenable to HLS implementation.
A key aspect of most video processing algorithms is a high degree of data-locality enabling either
streaming implementations or applications with local buffering and a minimum amount of external
memory access.
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Chapter 10

Sorting Algorithms

10.1 Introduction

Sorting is a common algorithm in many systems. It is a core algorithm for many data structures
because sorted data can be efficiently searched in O(log n) time using binary search. For example,
given an sequence of elements:

A = {1, 4, 17, 23, 31, 45, 74, 76} (10.1)

We can find whether a number exists in this set of data without comparing it against all 8 elements.
Because the data is sorted we can start by picking an element in the middle of the array and checking
to see whether our number is greater than or less than the element. For example, if we were looking
to find the element 45, we could start by comparing with A(4) = 31. Since 45 > 31 we can eliminate
A(0..4) from further comparison and only consider A(5..7).

A = {1 , 4 , 17 , 23 , 31 , 45, 74, 76} (10.2)

Next if we compare with A(6) = 74, we see that 45 < 74, so we can eliminate all but A(5) from
consideration.

A = {1 , 4 , 17 , 23 , 31 , 45, 74 , 76} (10.3)

One additional comparison with A(5) allows us to determine that 45 is indeed contained in the
sequence.

In our example, the sequence A could represent a variety of different concepts. A could represent
a mathematical set and searching for an element in the sequence could tell us whether a value exists
in the set. A could also represent only a portion of the data, often called a key , which is useful
for indexing the rest of the information. For instance, the key could be a person’s name. After
searching based on the key then we know the position where the rest of the data about the person,
such as their birthdate, is stored. In yet other cases, the key could be something more abstract,
such as a cryptographic hash of some data or a key. In this case, the order that the data is stored
is likely to be randomized, but we can still find it if we know the right cryptographic hash to search
for. In each case, the fundamental operations of required for sorting and searching are pretty much
the same, primarily we need to have the ability to compare two different values. For the remainder
of this chapter we will mostly ignore these differences.

There are a wide variety of different sorting techniques that have been studied in processor
systems[36]. These different algorithms vary in terms of their fundamental O() complexity, but
many require O(n log n) comparisons to sort n elements. Conceptually, this is intuitive since we

185



SORTING ALGORITHMS

could search for the right location to insert a new value in a sorted data set with O(log n) com-
parisons using binary search. To insert n elements this process would need to be repeated n times,
once for each element.

In practice, the cost of inserting an element can be significant, depending on the data structure
being sorted. In processor systems a variety of factors influence overall performance, such as
memory locality when processing large data sets or their ability to easily parallelize across multiple
cores. In HLS, we have similar considerations where it is common to trade off increased resource
usage for reduced processing time. In many cases, this might require a variety of algorithms and
implementation techniques in order to obtain the best design. The best techniques for making these
tradeoffs are an area of active research[45, 54, 49].

Characteristics other than performance also affect the choice of sorting algorithms. For instance,
we might consider:

• Stability: A sort is a stable if when two items in the input data have the same key, then
they will appear in the same order on the output. For example, we might sort a set of records
containing people’s names and ages using the ages as the sort key. In the input data, John
appears before Jane, and both are 25 years old. A stable sort will ensure that John and Jane
remain in the same order after sorting.

• Online: The algorithm allows for data to be sorted as it is received. This can be particularly
valuable when data is not accessible when the sort starts or must be read in sequence from
external storage.

• In-place: A list with n elements can be sorted using n memory elements. Some algorithms
require additional storage during the sorting process.

• Adaptive: It is efficient for data that is already relatively sorted. For example, if data is
already sorted, then some algorithms might run faster, e.g. in linear O(n) time.

10.2 Insertion Sort

Insertion sort is one of the basic sorting algorithms. It works by iteratively placing the items of an
array into sorted order and builds the sorted array one element at a time. Each iteration selects
an unsorted element and places it in the appropriate order within the previously sorted elements.
It then moves onto the next element. This continues until all of the elements are considered, and
the entire array is sorted.

To make this more formal, assume that we are given an input array A that should be put into
sorted order. The base case is the first element of that array A[0], which by default is a sorted
subarray (since it is only one element). The next step is to consider element A[1], and place it into
the sorted subarray such that the new subarray (with two elements) is also sorted. We continue
this process for each element A[i] until we have iterated across all of the elements of A. At each
step, we take the new element A[i] and insert it into the proper location such that the subarray
A[0..i−1] remains sorted. Figure 10.1 gives a step by step view of insertion sort operating on an
array. The first line is trivial. We consider only the first value 3 which makes a subarray with one
element. Any subarray with one element is in sorted order. The second line places the second value
2 into the sorted subarray. The end result is that the value 2 is placed into the first element of
the sorted subarray, which shifts the previous sorted element 3 to the right. The third line moves
the third entry of the initial array into its appropriate place in the sorted subarray. In this case,
since A[2] = 5, it is already in its correct location. Thus, nothing needs to happen. The fourth line
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{3, 2, 5, 4, 1}
{3, 2, 5, 4, 1}
{2, 3, 5, 4, 1}
{2, 3, 5, 4, 1}
{2, 3, 4, 5, 1}
{1, 2, 3, 4, 5}

Figure 10.1: The Insertion Sort algorithm operating on an array. The initial array is shown at the
top. In each step of the algorithm, the underlined algorithm is considered and placed into sorted
order of the elements to it’s left. At each stage, the shaded elements are in sorted order.

#include ”insertion sort.h”
void insertion sort(DTYPE A[SIZE]) {

L1:
for(int i = 1; i < SIZE; i++) {

DTYPE item = A[i];
int j = i;
DTYPE t = A[j−1];
L2:
while(j > 0 && A[j−1] > item && j > 0) {

#pragma HLS pipeline II=1
A[j] = A[j−1];
j−−;

}
A[j] = item;

}
}

Figure 10.2: The complete code for insertion sort. The outer for loop iterates across the elements
one at a time. The inner while loop moves the current element into sorted place.

considers the value 4. This is moved into its appropriate place, shifting 5 to the right. Finally, the
fifth line considers the placement of the value 1. This is placed into the first location of the array,
and all of the previous sorted values are shifted by one location.

Insertion sort is a stable, online, in-place, adaptive sorting algorithm. Because of these prop-
erties, insertion sort is often preferred when sorting small arrays or as a base case in a recursive
sorting algorithm. For example, more complex algorithms might decompose a large data set into a
number of smaller arrays and then these small arrays will be sorted using insertion sort. The result
is that formed by combining the sorted arrays.

10.2.1 Basic Insertion Sort Implementation

Figure 10.2 shows basic C code for insertion sort. The outer loop, labeled L1, iterates from elements
A[1] to A[SIZE − 1] where SIZE denotes the number of elements in the array A. We do not need
to start at element A[0] since any one element is already in sorted order. Each iteration of the L1
loop starts by copying the current element that we wish to insert into the sorted subarray (i.e.,
A[i]) into the item variable and then executes the inner L2 loop. The inner loop walks down the
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sorted portion of A[] looking for the appropriate location to place the value index. The inner loop
executes as long as it has not arrived at the end of the array (the condition j > 0) and the array
elements are greater than the item being inserted (the condition A[j−1] > index). As long as the
loop condition is satisfied, elements of the sorted subarray are shifted by one element (the statement
A[j] = A[j−1]). This will make room for the insertion of index when we eventually find its correct
location. When the loop exits, we have found the correct location for index and store it there. After
the completion of iteration i, the elements from A[0] to A[i] are in sorted order.

The code in Figure 10.2 is a straightforward implementation without any optimizations. We can
optimize it using different Vivado R© HLS directives, such as pipeline, unroll, and array partition.
The simplest optimization would be to pipeline the inner loop, by applying the pipeline directive to
the body of the inner loop. In this case, even though the inner loop is accessing different elements
of A[] there are no data dependencies in these array accesses, so we could expect to achieve a loop
II of 1. The resulting accelerator would perform roughly N2/4 data comparisons[58] on average
and have a latency of roughly N2/4 cycles, since it performs one comparison per clock cycle. In
actuality, an accelerator generated from Vivado R© HLS will have slightly higher latency to account
for the sequential execution of the outer loop. In order to achieve higher performance, we could
also attempt to move the pipeline directive to the outer L1 loop or to the function body itself. We
could also combine these options with partial loop unrolling. Some of these options are shown in
Table 10.1.

Table 10.1: Possible options to optimize the basic insertion sort function in Figure 10.2 through
directives.

Directives II Period Slices

1 L2: pipeline II=1 ? ? ?

2 L2: pipeline II=1 ? ? ?
L2: unroll factor=2
array partition variable=A cyclic factor=2

3 L1: pipeline II=1 ? ? ?

4 L1: pipeline II=1 ? ? ?
L1: unroll factor=2
array partition variable=A complete

5 function pipeline II=1 ? ? ?
array partition variable=A complete

Explore the options in Table 10.1. Synthesize each of these designs and determine the
initiation interval (II), clock period, and required number of slices. Which options are successful
in improving latency and/or throughput? What would happen if you combined the directives
from multiple rows into one design?

Unfortunately, although this code seems similar to other nested loop programs we’ve looked
at previously, it does have some aspects that can make it difficult to optimize. Even Option 1,
which simply attempts to pipeline the inner loop, can fail to achieve II=1. Although there are no
significant data recurrences, there is a recurrence in the control path that affects whether or not
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#include ”insertion sort.h”
void insertion sort(DTYPE A[SIZE]) {

L1:
for(i = 1; i < SIZE; i++) {

DTYPE item = A[i];
j = i;
DTYPE t = A[j−1];
L2:
while(j > 0 && t > item) {

#pragma HLS pipeline II=1
A[j] = t;
t = A[j−2];
j−−;

}
A[j] = item;

}
}

Figure 10.3: Refactored insertion sort for Option 1 in Table 10.1.

the pipeline can execute. In this case, the code must read A[i−1] in order to determine whether the
loop should actually execute. Vivado R© HLS incorporates this read into the loop pipeline, but if the
read of A is pipelined then the loop exit check cannot be made in the first stage of the pipeline. This
is an example of a recurrence which includes the HLS-generated control logic for the loop. If such
recurrences exist, then Vivado R© HLS will issue a message indicating that the loop exit condition
cannot be scheduled in the first II clock cycles. This situation can also occur a break or continue
statement exists under a complex control condition. One solution is to explicitly speculate the read
of A[i−1] out of the loop. This enables the loop exit check to be scheduled with II=1 at the expense
of an additional array access on the last iteration. This code is shown in Figure 10.3.

Option 2 in the Table unrolls the inner loop by a factor of 2, attempting to perform two shift
operations every clock cycle. This could potentially reduce the latency to compute insertion sort
by a factor of two. Unfortunately, Vivado R© HLS cannot achieve a loop II of 1 for this code using
array partitioning, because each array access cannot be assigned to a different memory partition.

In Vivado R© HLS, the array partition directive results in implementing a number of com-
pletely separate memories. For instance, array partition variable=A cyclic factor=4 would re-
sult in generating four separate memories from array A[], each of which contains a portion of
the array contents. We can often think that this optimization provides four times the number
of memory accesses each clock, but this is only the case if each memory access can be assigned
to exactly one of the memory partitions. For example an array access A[i] for unknown i could
reference data stored in any partition, while an array access A[4∗i+2] would only access data in
the third partition. More complex logic, often called memory banking , can resolve a number of
independent accesses A[i], A[i+1], A[i+6], A[i+7] and perform these accesses in the same clock
cycle. Memory banking requires additional crossbar logic to route these simultaneous accesses
in a circuit, since i can be arbitrary. At compile time, we can guarantee that the constant offsets
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of these accesses will hit in different banks, but the actual banks cannot be determined until i
is known. Yet more complex logic could implement stalling logic, enabling a set of unrelated
accesses to complete in a single clock cycle if they hit in different banks. If the accesses happen
to all hit in the same bank, then the stalling logic can delay the progress of the circuit for a
number of clocks until all of the accesses have completed. Lastly, multiport architectures have
designed that can allow a number of accesses guaranteed completion every clock cycle[62, 1, 37]
by replicating data across normal memories with one or two physical ports.

Option 3 in the table also fails to achieve significant improvement. Since the inner L2 loop
does not have a statically computable loop bound Vivado R© HLS is unable to construct a pipeline
from the body of the L1 loop. Unfortunately, this is a case where exploring the design space of
interesting alternatives requires code restructuring in addition to the use of directives. Finding the
best code restructuring requires not only understanding the algorithm, but also having a sense of
the architecture that will be generated by the HLS process[28, 48]. For example, we discuss one
such code restructuring for insertion sort in the following section. You will see that that code is
significantly different from the code in Figure 10.2.

In the following, we attempt to demonstrate several concepts. First, writing efficient high-
level synthesis code requires that the designer must understand hardware concepts like unrolling
and partitioning. Second, the designer must be able to diagnose any throughput problems, which
requires substantial knowledge about both the application and the hardware implementation of that
design. Third, and most importantly, in order to achieve the best results, i.e. high performance and
low-area, it is often required to rewrite the code in a manner that will create an efficient hardware
architecture. This can be very different from code that results in the most efficient software.

10.2.2 Parallelizing Insertion Sort

In order to significantly increase the performance of insertion sort, we’d like to get to the point
where we can insert a new element every clock cycle. When inserting the last element into the
sorted list, this might require shifting all of the elements in the array. For the code in Figure 10.2,
this means that the inner while loop could actually execute over all of the elements in the array.
Intuitively, we realize that inserting a new element into the sorted list every clock cycle requires
enough hardware operators to perform a comparison on every element of the array in a single clock
cycle. To enable pipelining of the outer loop, we can convert the inner L2 loop with variable loop
bounds into a fixed-bound loop, enabling it to be unrolled and integrated into the L1 loop pipeline.
Code that does this is shown in Figure 10.4.

This code contains the exit condition of the original loop (L2 in Figure 10.2) as an if condition
in the body of the new L2 loop. The other branches of the conditional are added to handle the
expanded iteration space of the loop, essentially performing no operations when the original loop
would not be executing. In addition, the loop now contains the final assignment of item in the
array, rather than performing the assignment outside of the loop. When the inner loop is unrolled,
remember that j will become a constant in all of the unrolled instances of the loop. As a result,
each read and write from B[] will be performed at a constant index and comparisons between j and
a constant will be completely optimized away. The item variable, on the other hand, is possibly
assigned in every copy of the inner loop. During compilation, Vivado R© HLS creates a separate
copy of this variable for each separate possible assignment and each possible assignment results in
multiplexer in the implemented circuit.
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#include ”insertion sort parallel.h”
#include ”assert.h”
void insertion sort parallel(DTYPE A[SIZE], DTYPE B[SIZE]) {

#pragma HLS array partition variable=B complete
L1:
for(int i = 0; i < SIZE; i++) {

#pragma HLS pipeline II=1
DTYPE item = A[i];
L2:
for(int j = SIZE−1; j >= 0; j−−) {

DTYPE t;
if(j > i) {

t = B[j];
} else if(j > 0 && B[j−1] > item) {

t = B[j−1];
} else {

t = item;
if (j > 0)
item = B[j−1];

}
B[j] = t;

}
}

}

Figure 10.4: Refactored insertion sort for Option 3 in Table 10.1.

191



SORTING ALGORITHMS

The conversion of a single variable into multiple versions is a common internal transforma-
tion used by compilers. The resulting internal representation is called static single assignment
(SSA). To merge values coming from different points in the code, the SSA internal represen-
tation include artificial ‘phi-functions’ represented by the greek letter φ. These phi-functions
often result in multiplexers in the circuit generated by Vivado R© HLS and you’ll probably find
the related resources in the tool reports if you look carefully.

The parallelized insertion sort in Figure 10.4 essentially results in a number of copies of the
body of the inner loop. The contents of this inner loop consists of a few multiplexers, a comparator
to determine the smallest of two elements, and a register to store an element of B[]. Incidentally,
each stage might also include pipeline registers, if needed, to ensure that the resulting circuit runs
at an effective clock frequency. We’ll call the contents of the inner loop a sorting cell. The whole
insertion sort function consists of a one-dimensional array of sorting cells, combined with a small
amount of additional logic to feed data in the input and capture the output at the right time, in this
case after SIZE elements have been processed by the outer loop. This array of sorting cells has an
interesting property where each sorting cell only communicates with it’s neighboring sorting cells,
rather than with all cells. Designs like this are called systolic arrays and are a common technique
for parallelizing algorithms. In many cases, including sorting, systolic array implementations can
naturally arise when we unroll inner loops, as long as the communication between different loop
iterations is limited. We call this type of design an implicit systolic array.

10.2.3 Explicit Systolic Array For Insertion Sort

Systolic arrays have been well researched and many parallel algorithms are published as systolic
arrays. In particular, the idea of using a linear array of sorting cells to implement insertion sort
is well understood[55, 9, 45, 5]. However, rather than being described as an unrolled loop, systolic
arrays are often described as components communicating by streams of data. This section describes
an alternative coding style based on explicit streams and the dataflow directive that can be a more
intuitive way to describe a systolic array.

Figure 10.5 shows a systolic array implementing insertion sort. Each cell is identical and com-
pares its input (in) with the value in current register local. The smaller value is passed to the output
out, while the larger value is stored back in local. In other words, out = min(in,local). The output
of cell i is passed as input to the next cell i + 1 in the linear array. As a new input arrives it will
be compared against elements stored in the array until it finds it’s correct place. If a new input is
larger than all of the values in the array, then the sorted values will shift one cell to the right. If a
new input is smaller than all of the values in the array, then it will propagate through the array,
and eventually become stored in the furthest right cell. After all the data has moved through the
array, the smallest data element will be sorted in cell N − 1 and can be read from the output.

The code for one insertion cell is shown in Figure 10.6. The code uses a streaming interface
by declaring the input and output variables as an hls::stream type. DTYPE is a type parameter
enabling different types to be operated on. The local variable stores one element of the array being
sorted. It is static because we want to preserve its value across multiple function calls. This does
create a problem since we must replicate this cell function N times. Using the same function (e.g.,
calling the same cell function N times) would cause a problem since each cell must have a separate
static variable. One static variable cannot be shared across N functions.

Linking the insertion cells together is straightforward. The function insertion cell sort in Figure
10.7 shows the code for sorting eight elements. Expanding this to a larger number of elements
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cell 0 cell i cell N-1 Sorted
Output

...

in out

Unsorted
Output

Comparison
Logic

local

...

Figure 10.5: The architecture of one insertion cell. Each cell holds exactly one value in the register
local. On each execution it receives an input value in, compares that to its local value, and writes
the smaller of the two to output. Sorting N values requires N cells.

void cell0(hls::stream<DTYPE> & in, hls::stream<DTYPE> & out)
{

static DTYPE local = 0;
DTYPE in copy = in.read();
if(in copy > local) {

out.write(local);
local = in copy;

}
else
{

out.write(in copy);
}

}

Figure 10.6: The Vivado R© HLS C code corresponding to one insertion cell cell0. The other cells have
the exact same code except with a different function name (cell1, cell2, etc.). The code performs
the same functionality as shown in the architectural diagram in Figure 10.5. It uses the hls:stream
interface for the input and output variables. hls::stream provides a convenient method to create
FIFOs that work both for synthesis and simulation.
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void insertion cell sort(hls::stream<DTYPE> & in, hls::stream<DTYPE> & out)
{

#pragma HLS DATAFLOW
hls::stream<DTYPE> out0(”out0 stream”);
hls::stream<DTYPE> out1(”out1 stream”);
hls::stream<DTYPE> out2(”out2 stream”);
hls::stream<DTYPE> out3(”out3 stream”);
hls::stream<DTYPE> out4(”out4 stream”);
hls::stream<DTYPE> out5(”out5 stream”);
hls::stream<DTYPE> out6(”out6 stream”);

// Function calls;
cell0(in, out0);
cell1(out0, out1);
cell2(out1, out2);
cell3(out2, out3);
cell4(out3, out4);
cell5(out4, out5);
cell6(out5, out6);
cell7(out6, out);

}

Figure 10.7: Insertion cell sorting for eight elements. The function takes an input hls::stream and
outputs the elements in sorted order one at a time through the variable out. The order starts with
the smallest element first, and then continues on to increasingly larger elements.

simply requires replicating more cell functions, additional hls::stream variables, instantiating these
functions, and connecting their input and output function arguments in the appropriate manner.

The existing implementation of insertion cell sort outputs the data starting with the smallest
element and continues outputting increasingly larger elements. What changes are required in
order to reverse this order, i.e., to output the largest element first, and then the decreasingly
smaller outputs?

The insertion cell sort function must be called multiple times in order to sort the entire data.
Each call to insertion cell sort provides one data element to the array for sorting. The first call places
the input data in its appropriate place. Where would this data be placed? To answer that question,
we should point out that we make an assumption on the input data since we are initializing the
local variable to 0. This is done in all of the cell functions.

Initializing the static variable local to 0 makes an assumption on the type of data that
will be provided for sorting. What is this assumption? In other words, what is the range of
values for the input data that will be properly handled? What would happen if input data
from outside of this range was given to the insertion cell sort function? Is there a better way to
initialize the local variable?
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After making eight calls to the insertion cell sort function, all of the data will be put into the
eight local variables in each of the cell functions.

How many times must we call the insertion cell sort function in order to get the first sorted
element? How many calls are necessary in order to all of the sorted data? What if we in-
creased the array to N cells? Can you generalize these two functions (number of times to
call insertion cell sort to load N elements, and the number of calls required to output all N
elements)?

To achieve a task-pipelined architecture consisting of the eight cell functions, the code specifies
the dataflow directive. Each execution of the toplevel function processes a new input sample and
inserts it into the sorted sequence. The actual insertion is pipelined, with one pipeline stage for
each call to the cell function. With eight calls to the cell function, we can only sort sequences with
eight values, but this can be extended almost arbitrarily since the code contains no recurrences
between the cells.

How many cycles are required to sort an entire array? We define the sorting to be com-
pleted when all of the sorted data is output from the array of cell function inside of the
insertion cell sort, i.e., all eight elements have been output from argument out in the function
insertion cell sort? How does the cycle count change if we remove the dataflow directive? How
does change the resource utilization?

Figure 10.8 shows the code for the testbench. The testbench generates random data to be sorted
in input[]. This array is sorted by calling the insertion cell sort() function multiple times, with the
result appearing in cell output[]. Next, the same data is sorted in place using the insertion sort
function from Figure 10.2. Finally, the testbench compares the results of these two sort implemen-
tations. The testbench passes if the sorted order from both implementations is the same.

In the testbench, the SIZE constant is set to the number of elements being sorted. This would
be 8 in the running example throughout this chapter. The DEBUG constant is used to provided
output detailing the execution of the testbench. This should be set to a non-zero value if you wish
to see the debugging data, and 0 if you want the output to be quiet. The input data is randomly
generated using the rand() function and stored in the input[] array. You can change the data by
modifying the argument in the call to srand(). The argument sets the seed for the random number
generator to a specific value to ensure the generation of the same sequence of random numbers on
each execution. Changing this value to a different integer will result in a different, but predictable,
random sequence.

Note again that the testbench calls the insertion cell sort() function a total of SIZE∗2 times.
Each of the first SIZE function calls feeds a single input element into function, but produce no
useful output. The next SIZE calls provide dummy input data and produce one sorted element
each function call. The data is produced one at a time starting with the smallest element.

After executing a sort, the code in Figure 10.6 leaves the local variable in a different state
than when it started. Unfortunately, this means that we can only sort one array! In most
cases, we not only want to sort more than one array, but we’d like to process each array back
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#include ”insertion cell sort.h”
#include <iostream>
#include <stdlib.h>

const static int DEBUG=1;
const static int MAX NUMBER=1000;
int main () {

int fail = 0;
DTYPE input[SIZE];
DTYPE cell output[SIZE] = {0};
hls::stream<DTYPE> in, out;

//generate random data to sort
if(DEBUG) std::cout << ”Random Input Data\n”;
srand(20); //change me if you want different numbers
for(int i = 0; i < SIZE; i++) {

input[i] = rand() % MAX NUMBER + 1;
if(DEBUG) std::cout << input[i] << ”\t”;
}

//process the data through the insertion cell sort function
for(int i = 0; i < SIZE∗2; i++) {

if(i < SIZE) {
//feed in the SIZE elements to be sorted
in.write(input[i]);
insertion cell sort(in, out);
cell output[i] = out.read();
} else {

//then send in dummy data to flush pipeline
in.write(MAX NUMBER);
insertion cell sort(in, out);
cell output[i−SIZE] = out.read();
}
}

//sort the data using the insertion sort function
insertion sort(input);

//compare the results of insertion sort to insertion cell sort; fail if they differ
if(DEBUG) std::cout << ”\nSorted Output\n”;
for(int i = 0; i < SIZE; i++) {

if(DEBUG) std::cout << cell output[i] << ”\t”;
}
for(int i = 0; i < SIZE; i++) {

if(input[i] != cell output[i]) {
fail = 1;
std::cout << ”golden=” << input[i] << ”hw=” << cell output[i] << ”\n”;
}
}

if(fail == 0) std::cout << ”PASS\n”;
else std::cout << ”FAIL\n”;
return fail;
}

Figure 10.8: The testbench for the insertion cell sort function.
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width = 1, A[] = {3,7,6,4,5,8,2,1}
width = 2, A[] = {3, 7,4, 6,5, 8,1, 2}
width = 4, A[] = {3, 4, 7, 6,1, 2, 5, 8}
width = 8, A[] = {1, 2, 3, 4, 5, 6, 7, 8}

Figure 10.9: The Merge Sort algorithm operating on an array. The initial state where each element
is considered to be a sorted subarray of length one is shown at the top. At each step of the
algorithm, subarrays are merged placing the shaded elements are in sorted order.

in1[] = {3, 4, 6, 7} in2[] = {1, 2, 5, 8} out[] = { }
in1[] = {3, 4, 6, 7} in2[] = {1, 2, 5, 8} out[] = {1}
in1[] = {3, 4, 6, 7} in2[] = {1, 2, 5, 8} out[] = {1, 2}
in1[] = {3, 4, 6, 7} in2[] = {1, 2, 5, 8} out[] = {1, 2, 3}
in1[] = {3, 4, 6, 7} in2[] = {1, 2, 5, 8} out[] = {1, 2, 3, 4}
in1[] = {3, 4, 6, 7} in2[] = {1, 2, 5, 8} out[] = {1, 2, 3, 4, 5}
in1[] = {3, 4, 6, 7} in2[] = {1, 2, 5, 8} out[] = {1, 2, 3, 4, 5, 6}
in1[] = {3, 4, 6, 7} in2[] = {1, 2, 5, 8} out[] = {1, 2, 3, 4, 5, 6, 7}
in1[] = {3, 4, 6, 7} in2[] = {1, 2, 5, 8} out[] = {1, 2, 3, 4, 5, 6, 7, 8}

Figure 10.10: The process of merging two sorted arrays. The initial state is shown at the top. In
each step of the algorithm, the underlined elements are considered and one is placed into sorted
order in the output array.

to back with no bubbles in the pipeline. Modify the code and the testbench to enable this and
demonstrate that your modified code can sort multiple arrays.

10.3 Merge Sort

Merge sort is a stable, divide and conquer algorithm invented by John von Neumann in 1945 [36].
The basic idea of the merge sort algorithm is that combining two sorted arrays into a larger sorted
array is a relatively simple operation, which can be completed in O(n) time. Conceptually, we
divide the array into two subarrays, sort each subarray, and then combine the sorted subarrays into
the final result.

Since we focus on sorting arrays of data, it turns out that the ‘divide’ operation is actually
trivial. It requires no arithmetic or data movement and we can simply consider each individual
element of the input array as a trivially sorted subarray. All of the computation is involved with
merging subarrays into larger sorted subarrays. With other data representations, such as a linked-
list, dividing an input array into subarrays can require traversing the data structure. The merge
sort process is shown in Figure 10.9.

The process of combining two sorted arrays into one larger sorted array is sometimes called the
“two finger algorithm”. Figure 10.10 describes the process using two sorted input arrays, named
in1[] and in2[]. These are merged into a sorted output array, named out[].

The process starts with a “finger” pointing to the first element of each array. This conceptual
finger is just an index into the array storing the data. As the algorithm proceeds, the fingers will
point to different elements of the arrays. We underline these elements in order to show where the
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fingers are placed. To begin with, the fingers point to the first element of each array, elements 3
and 1 in arrays in1[] and in2[], respectively.

The first line of Figure 10.10 shows the initial state. There are four elements in each of the two
input arrays and zero elements in the output array. We compare the first two elements of the input
arrays, and move the smaller of these two to the output array. In this case, we compare 3 and 1,
and move 1 into out[]. This reduces the number of elements in in2[], and our “finger” moves to the
next element in in2[] which is the next smallest element since the array is sorted. Once again, we
compare the two elements from each of the input arrays, and move the smaller of the two elements
to out[]. In this case, we compare 3 and 2, and move the element from in2[] to out[]. This process
continues until all of the elements in one of the arrays is empty. In that case, we copy the remaining
elements from the non-empty array into the output array.

Although the merge sort algorithm is a common textbook example of recursive function calls,
most high-level synthesis tools do not support recursion or only support it in a limited manner.
Thus, we will focus on a non-recursive implementation of the algorithm. The code might look
substantially different from what you are used to, but the core of the algorithm is exactly the same.

10.3.1 Basic Merge Sort

Figure 10.11 shows basic code implementing a non-recursive merge sort. This code sorts an array
by performing roughly N logN comparisons, but requires a temporary array to store the partially
sorted data. The code starts by considering each element of the array as a length one sorted
subarray. Each iteration of the outer loop merges pairs of sorted subarrays into larger sorted
subarrays. After the first iteration we have sorted subarrays with maximum size 2, after the second
iteration the sorted subarrays have maximum size 4, then 8 and so on. Note that if the size of the
input array is not a power of two, then it is possible that we might end up with some subarrays
which are smaller than the maximum size.

The sorting process starts in the merge sort() function. The function primarily operates on
the input A[] array, but leverages internal storage in temp[]. The size of both of these arrays is
determined by the SIZE parameter. The parameter DTYPE determines the type of data being
sorted.

The computation of the function consists of two nested for loops. The outer stage loop keeps
track of the number of elements in each sorted subarray in the width variable. The function starts
by considering each element as a separate subarray; hence width is initialized as 1. Every iteration of
the stage loop results in the generation of longer sorted subarrays. These new subarrays potentially
have twice as many elements, which is why width doubles on each iteration of the stage loop. The
stage loop terminates when width is greater than or equal to SIZE, indicating that all elements of
A[] are in a single sorted subarray.

Each iteration of the inner for loop, labeled merge arrays merges two consecutive subarrays.
These subarrays each consist of up to width elements, starting at index i1 and i2. These two
subarrays are merged and copied into a single subarray stored in temp[] using the merge() function.
The main complexity here is dealing with the boundary condition at the end of the loop if SIZE is
not exactly a power of two. In this case the subarrays might contain less than width elements. After
merging subarrays into temp[], the final loop copies the data back into A[] for the next iteration of
the loop.

The code in Figure 10.11 attempts to handle a wide variety of values for the parameter
SIZE. What values are allowed? When the merge() function is called, whare are the possible
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#include ”merge sort.h”
#include ”assert.h”

// subarray1 is in[i1..i2−1], subarray2 is in[i2..i3−1], result is in out[i1..i3−1]
void merge(DTYPE in[SIZE], int i1, int i2, int i3, DTYPE out[SIZE]) {

int f1 = i1, f2 = i2;
// Foreach element that needs to be sorted...
for(int index = i1; index < i3; index++) {

// Select the smallest available element.
if(f2 == i3 || (f1 < i2 && in[f1] <= in[f2])) {

out[index] = in[f1];
f1++;

} else {
assert(f2 < i3);
out[index] = in[f2];
f2++;

}
}

}

void merge sort(DTYPE A[SIZE]) {
DTYPE temp[SIZE];
// Each time through the loop, we try to merge sorted subarrays of width elements
// into a sorted subarray of 2∗width elements.
stage:
for (int width = 1; width < SIZE; width = 2 ∗ width) {

merge arrays:
for (int i1 = 0; i1 < SIZE; i1 = i1 + 2 ∗ width) {

// Try to merge two sorted subarrays:
// A[i1..i1+width−1] and A[i1+width..i1+2∗width−1] to temp[i1..2∗width−1]
int i2 = i1 + width;
int i3 = i1 + 2∗width;
if(i2 >= SIZE) i2 = SIZE;
if(i3 >= SIZE) i3 = SIZE;
merge(A, i1, i2, i3, temp);

}

// Copy temp[] back to A[] for next iteration
copy:
for(int i = 0; i < SIZE; i++) {

A[i] = temp[i];
}

}
}

Figure 10.11: A non-recursive implementation of merge sort. The merge sort() function iteratively
merges subarrays until the entire array has been sorted.
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relationships between i1, i2, and i3? If we restrict the allowed values of the parameter SIZE can
the code be simplified? What is the affect on the resulting HLS generated circuit?

The merge() function performs the “two finger” algorithm on two subarrays within the in[] array.
The function takes input in the in[] array and produces output in the out[] array. The function also
takes as input variables i1, i2, and i3 which describe the extent of the two subarrays to be merged.
One subarray starts at index i1 and includes all the elements before i2 and the second subarray
starts at index i2 and includes the elements up to i3. The merged output subarray will be stored
from index i1 up to i3 in out[].

The merge() function consists of a single loop which iterates over the elements being stored into
out[]. Each iteration places an element into its correctly sorted location in out[]. The variables
f1 and f2 within the function correspond to the position of the fingers for each subarray. The if
condition selects the smaller of in[f1] or in[f2] to copy to the next sorted position in out[]. However,
the if condition is more complex since it has to deal with several special cases. One case is where
f1 == i2 and we have run out of elements to consider for in[f1], in which case we must select in[f2]
as the smallest element. Alternatively, if f2 == i3, then we have run out of elements to consider
for in[f2], in which case we must select in[f1] as the smallest element.

What happens to the in[] array over the course of the computation? Describe the state of
the elements in the in[] array after each iteration of the outer for loop. What is the final order
of the elements in the in[] array when merge sort() returns?

The performance report after synthesis may not be able to determine the number of cycles
for the latency and interval. Why is that the case? What are appropriate min, max, and avg
values to provide in a loop tripcount directive(s)?

The code is not particularly optimized for any particular high-level synthesis (HLS) implemen-
tation. The best starting point for optimization is by adding directives. Given that we have several
nested for loops, we generally look first at optimizing the inner loops. Optimizations of inner loops
are usually much more significant than optimizations of outer loops, which are executed relatively
rarely. By this point, you should be familiar with the common pipeline and unroll directives for
loop optimization.

Perform different optimizations using the pipeline and unroll directives on the for loops.
What provides the best performance? Which gives the best tradeoff between resource utilization
and performance? What aspects of the code prevent higher performance? Are these aspects
fundamental to the algorithm, or only because of the way the algorithm is captured in the
code?

Pipelining and unrolling can be hindered by resource constraints; in particular, we must carefully
consider the number of memory ports for the arrays. The arrays in this code seem relatively
straightforward as they are both one-dimensional. Yet, the designer must carefully consider the
access patterns to insure that performance optimizations match with the resource constraints.
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Optimize the code using loop optimizations and array partitioning, i.e., create a set of
designs using the array partition, pipeline, and unroll directives. Were you able to achieve
better results than by using the pipeline and unroll directives alone? What was the best
strategy for performing design space exploration using these directives? What was your best
design in terms of performance? What was the best design that provides a good tradeoff
between resource utilization and performance?

Many times the best designs are only possible by performing code restructuring. Although
Vivado R© HLS provides many directives to enable common code optimizations, it is impractical
to provide directives for every optimization. Sometimes we must resort to rewriting the code in
addition to providing directives in order to achieve a design that meets our requirements. In the
next section we describe one way to significantly restructure the merge sort code in order to increase
throughput.

10.3.2 Restructured Merge Sort

Looking first at the inner loop of the merge() function, you might have found that it was difficult
to achieve a loop II of 1. One challenge is that there are actually four reads of in[], but only at
two different addresses. The HLS tool must recognize that these reads are redundant, since block
RAM (BRAM) memories can only support two accesses each clock. However because these reads
are in different basic blocks, it is more difficult for a compiler to eliminate the redundant loads. By
eliminating the redundant reads, the compiler needs to do less optimization to achieve a loop II of
1. The restructured code is shown in Figure 10.12. In addition, there is a recurrence through the
f1 and f2 variables. These variables are incremented in one of the branches of the if conditional,
which must be used in the next iteration to determine which locations in in[] to compare and
subsequently which branch of the conditional to take. Because the floating point comparison is
relatively complex, this recurrence can also limit the achievable II and clock period.

The behavior of this code is shown in Figure 10.13. Although the inner loop achieves a loop II
of 1, this inner loop often has a very small number of loop iterations. When the inner loop finishes,
the pipeline must empty before code executing after the pipeline can execute. Although the loop
pipeline is relatively short in this case, the bubble caused by the loop completing is significant, since
the number of iterations is also small. Unfortunately, because of the limits of static loop analysis,
the performance of this particular code is somewhat hard to visualize. In this case, the number of
iterations of the inner loop is data dependent.

A common approach is to flatten loop nests like these into a single loop, reducing the number
of times that the pipeline must flush when exiting a loop. In fact, Vivado R© HLS will automatically
flatten perfect loop nests. In this case, however, since the code does not contain a perfect loop
nest, we can resort to flattening the loops manually. Code resulting from manually flattening the
merge arrays loop with the loop inside the merge() function is shown in Figure 10.14. Note that one
advantage of this code is that the merge arrays loop also has a constant number of loop iterations,
making understanding performance much easier.

Estimate the performance of the code in Figure 10.14. Even though the inner loops have
achieved a loop II of 1, is the design using hardware efficiently? Is there a way to further reduce
the latency of the merge sort() function to the point where it is using approximately N logN
clock cycles?
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#include ”merge sort.h”
#include ”assert.h”

// subarray1 is in[ii..i2−1]; subarray2 is in[i2..i3−1]
// sorted merge is stored in out[i1..i3−1]
void merge(DTYPE in[SIZE], int i1, int i2, int i3, DTYPE out[SIZE]) {

int f1 = i1, f2 = i2;
// Foreach element that needs to be sorted...
for(int index = i1; index < i3; index++) {

#pragma HLS pipeline II=1
DTYPE t1 = in[f1];
DTYPE t2 = (f2 == i3) ? 0 : in[f2];
// Select the smallest available element.
if(f2 == i3 || (f1 < i2 && t1 <= t2)) {

out[index] = t1;
f1++;

} else {
assert(f2 < i3);
out[index] = t2;
f2++;

}
}

}

Figure 10.12: Restructured code for the merge() function, which can achieve a loop II of 1 in
Vivado R© HLS.

merge

merge arrays merge arrays

width = 2

merge

copy

width=1

copy

mergemergemerge merge

Figure 10.13: Behavior of the restructured code in Figure 10.12.
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#include ”merge sort.h”
#include ”assert.h”

void merge sort(DTYPE A[SIZE]) {
DTYPE temp[SIZE];

stage:
for (int width = 1; width < SIZE; width = 2 ∗ width) {

int f1 = 0;
int f2 = width;
int i2 = width;
int i3 = 2∗width;
if(i2 >= SIZE) i2 = SIZE;
if(i3 >= SIZE) i3 = SIZE;

merge arrays:
for (int i = 0; i < SIZE; i++) {

#pragma HLS pipeline II=1
DTYPE t1 = A[f1];
DTYPE t2 = (f2 == i3) ? 0 : A[f2];
if(f2 == i3 || (f1 < i2 && t1 <= t2)) {

temp[i] = t1;
f1++;

} else {
assert(f2 < i3);
temp[i] = t2;
f2++;

}
if(f1 == i2 && f2 == i3) {

f1 = i3;
i2 += 2∗width;
i3 += 2∗width;
if(i2 >= SIZE) i2 = SIZE;
if(i3 >= SIZE) i3 = SIZE;
f2 = i2;

}
}

copy:
for(int i = 0; i < SIZE; i++) {

#pragma HLS pipeline II=1
A[i] = temp[i];

}
}

}

Figure 10.14: Restructured code for Merge Sort which can achieve a loop II of 1 with fewer pipeline
bubbles in Vivado R© HLS.
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merge arrays temp[0] temp[1]A[] B[]temp[2]merge arrays merge arrays merge arrays

Figure 10.15: Dataflow pipelined architecture for implementing 4 stages of Merge Sort. This
architecture can sort up to 16 elements.

So far we have focused on optimizing the merge sort() function to reduce the latency of the
computation without significantly increasing the number of resources. As a result, the accelerator
is becoming more efficient. However, after achieving a reasonably efficient design, the only way to
further reduce latency and/or increase throughput is increase parallelism. Previously we have seen
ways of unrolling inner loops and partitioning arrays as a way to perform more work each clock
cycle. An alternative way to increase parallelism is leverage pipelining. In addition to operator-level
pipelinling we can also look for coarser-granularity task-level pipelining.

With Merge Sort it turns out that we can make a dataflow pipeline out of each iteration of the
stage loop, assuming that we have a fixed size array to sort. In Vivado R© HLS this implementation
can be conceptually achieved by unrolling the stage loop and using the dataflow directive. Each
instance of the merge arrays loop then becomes an independent process which can operate on a
different set of data. The resulting architecture is shown in Figure 10.15.

The code to implement this is shown in Figure 10.16. This code is similar in many ways to the
original code, but has several important differences. One key difference is that the merge arrays loop
has been extracted into a function, making it easier simpler to rewrite the toplevel code. A second
key difference is that the output of merge sort parallel() is produced in a separate array than the
input, enabling Vivado R© HLS to build an architecture that pipelined architecture processing using
the dataflow directive. Additionally, the temp[][] array is now used to model the dataflow ping-pong
channels between the processes implemented by the merge arrays() function, making extra array
copies unnecessary. This two-dimensional array is partitioned in the first dimension, making it easy
to represent a parameterized number of channels.

The merge sort parallel() function consists of STAGES calls to the merge arrays() function. Each
The first call reads from the input and writes to temp[0]. The loop performs the intermediate stages
and writes to the remaining partitions of temp[]. The final call writes to the output array B[]. The
code is parameterized in terms of SIZE and STAGES and supports array lengths 4 or greater.

Estimate the performance of the code in Figure 10.16. What is the interval and latency of
the implementation? How much memory is required to support that processing rate? Is all of
the memory necessary?

10.4 Conclusion

This chapter introduced a number of basic sorting algorithms with fundamentally different algo-
rithmic tradeoffs. Insertion sort operating on an array performs on average N2/4 comparisons, but
requires much fewer (approximately N comparisons) when operating on sorted data. We showed
several ways of parallelizing Insertion sort which can increase performance at the expense of us-
ing more hardware resources. Because of bubbles in the statically scheduled pipeline, we end up
needing roughly N comparators with an interval of N cycles to perform insertion sort. Merge
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#include ”merge sort parallel.h”
#include ”assert.h”

void merge arrays(DTYPE in[SIZE], int width, DTYPE out[SIZE]) {
int f1 = 0;
int f2 = width;
int i2 = width;
int i3 = 2∗width;
if(i2 >= SIZE) i2 = SIZE;
if(i3 >= SIZE) i3 = SIZE;
merge arrays:
for (int i = 0; i < SIZE; i++) {

#pragma HLS pipeline II=1
DTYPE t1 = in[f1];
DTYPE t2 = (f2 == i3) ? 0 : in[f2];
if(f2 == i3 || (f1 < i2 && t1 <= t2)) {

out[i] = t1;
f1++;

} else {
assert(f2 < i3);
out[i] = t2;
f2++;

}
if(f1 == i2 && f2 == i3) {

f1 = i3;
i2 += 2∗width;
i3 += 2∗width;
if(i2 >= SIZE) i2 = SIZE;
if(i3 >= SIZE) i3 = SIZE;
f2 = i2;

}
}

}

void merge sort parallel(DTYPE A[SIZE], DTYPE B[SIZE]) {
#pragma HLS dataflow

DTYPE temp[STAGES−1][SIZE];
#pragma HLS array partition variable=temp complete dim=1
int width = 1;

merge arrays(A, width, temp[0]);
width ∗= 2;

for (int stage = 1; stage < STAGES−1; stage++) {
#pragma HLS unroll
merge arrays(temp[stage−1], width, temp[stage]);
width ∗= 2;

}

merge arrays(temp[STAGES−2], width, B);
}

Figure 10.16: Restructured code for Merge Sort which can be implemented as a dataflow pipeline
by Vivado R© HLS.
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sort operating on an array performs generally fewer comparisons, roughly N logN , but requires
additional memory to store partially sorted results. The more complex loop structure of Merge
Sort means that we required additional refactoring to reach an efficient solution that took roughly
N logN cycles with one comparator. We also showed a task-pipelined implementation which per-
forms logN comparisons every clock cycle with an interval of N cycles to perform merge sort. In
contrast with insertion sort, this requires much fewer comparisons to achieve the same interval, but
requires more memory (in the form of dataflow channels) and has much higher latency.

In practice, many FPGA-based implementations of sorting will have to address these funda-
mental tradeoffs in order to achieve the best integration with other aspects of a system. Another
sort with a fundamentally different tradeoff is the Radix Sort, which focuses on data that exists
within a bounded range, unlike the more general sorting algorithms in this chapter which only
require comparison between items. Radix sort will be implemented as part of the Huffman Coding
in Chapter 11.

Parallel implementations of sorting algorithms are often described as sorting networks. Sorting
networks are sometimes described as systolic arrays and other times as pipelines. We can often
gain inspiration for HLS designs by looking investigating these existing parallel implementations
and then capturing them as C code. In Vivado R© HLS, these networks can be described using either
loop pipelines, dataflow pipelines, or a combination of both.
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Chapter 11

Huffman Encoding

11.1 Background

Lossless data compression is a key ingredient for efficient data storage, and Huffman coding is
amongst the most popular algorithms for variable length coding [33]. Given a set of data symbols
and their frequencies of occurrence, Huffman coding generates codewords in a way that assigns
shorter codes to more frequent symbols to minimize the average code length. Since it guarantees
optimality, Huffman coding has been widely adopted for various applications [25]. In modern multi-
stage compression designs, it often functions as a back-end of the system to boost compression
performance after a domain-specific front-end as in GZIP [23], JPEG [57], and MP3 [59]. Although
arithmetic encoding [61] (a generalized version of Huffman encoding which translates an entire
message into a single number) can achieve better compression for most scenarios, Huffman coding
has often been the algorithm of choice for many systems because of patent concerns with arithmetic
encoding [38].

Canonical Huffman coding has two main benefits over traditional Huffman coding. In basic
Huffman coding, the encoder passes the complete Huffman tree structure to the decoder. Therefore,
the decoder must traverse the tree to decode every encoded symbol. On the other hand, canonical
Huffman coding only transfers the number of bits for each symbol to the decoder, and the decoder
reconstructs the codeword for each symbol. This makes the decoder more efficient both in memory
usage and computation requirements. Thus, we focus on canonical Huffman coding.

In basic Huffman coding, the decoder decompresses the data by traversing the Huffman tree
from the root until it hits the leaf node. This has two major drawbacks: it requires storing the entire
Huffman tree which increases memory usage. Furthermore, traversing the tree for each symbol is
computationally expensive. Canonical Huffman encoding addresses these two issues by creating
codes using a standardized canonical format. The benefit of using a canonical encoding is that
we only need to transmit the length of each Huffman codeword. A Canonical Huffman code has
two additional properties. Firstly, longer length codes have a higher numeric value than the same
length prefix of shorter codes. Secondly, codes with the same length increase by one as the symbol
value increases. This means if we know the starting symbol for each code length, we can easily
reconstruct the canonical Huffman code. The Huffman tree is essentially equivalent to a ‘sorted’
version of the original Huffman tree so that longer codewords are on the right-most branch of the
tree and all of the nodes at the same level of the tree are sorted in order of the symbols.

Figure 11.1 shows the process of creating a canonical Huffman code. The filter module only
passes symbols with non-zero frequencies. The sort module rearranges the symbols in ascending
order based upon their frequencies. Next, the create tree module builds the Huffman tree using
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Figure 11.1: The Canonical Huffman Encoding process. The symbols are filtered and sorted, and
used to build a Huffman tree. Instead of passing the entire tree to the decoder (as is done in
“basic” Huffman coding), the encoding is done such that only the length of the symbols in the
tree is required by the decoder. Note that the final canonical tree is different from the initial tree
created near the beginning of the process.
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three steps: 1) it uses the two minimum frequency nodes as an initial sub-tree and generates a
new parent node by summing their frequencies; 2) it adds the new intermediate node to the list
and sorts them again; and 3) it selects the two minimum elements from the list and repeats these
steps until one element remains. The result is a Huffman tree where each leaf node in the tree
represents a symbol that can be coded and each internal node is labeled with the frequency of the
nodes in that sub-tree. By associating the left and right edges in the tree with bits 0 and 1, we
can determine the unique codeword for each symbol based on the path to reach it from the root
node. For example, the codeword for A is 00 and codeword for B is 1110. This completes the basic
Huffman encoding process, but does not necessarily create the canonical Huffman tree.

To create the canonical Huffman tree, we perform several additional transformations. First, the
compute bit len module calculates the bit length of each codeword and then counts the frequency
of each length. The result is a histogram of the codeword lengths (see Section 8.2). In the example
case, we have three symbols (A,D,E) with the code length of 2. Therefore, the computed histogram
maps contains value 3 in location 2. Next, the truncate tree module rebalances the Huffman tree
in order to avoid excessively long codewords. This can improve decoder speed at the cost of a
slight increase in encoding time. This is not necessary in the example in Figure 11.1. We set the
maximum height of the tree to 27. Lastly, the canonize tree module creates two sorted tables. The
first table contains symbols and lengths sorted by symbol. The second table contains symbols and
lengths sorted by lengths. These tables simplify the creation of the canonical Huffman codewords
for each symbol.

The create codeword module creates a table of canonical Huffman codewords by traversing the
sorted tables. Beginning with the first codeword in the sorted table, it is assigned the all-zero
codeword with the appropriate length. Each following symbol with the same bit length is assigned
the following codeword, which is formed by simply adding 1 to the previous code word. In our
example, symbols A, D, and E all have bit length l = 2 and are assigned the codewords A = 00,
D = 01, and E = 10. Note that the symbols are considered in alphabetical order, which is necessary
to make the tree canonical. This process continues until we get to a codeword that requires a
larger length, in which case we not only increment the previous codeword, but also shift left to
generate a codeword of the correct length. In the example, the next symbol is C with a length of
3, which receives the codeword C = (10 + 1) << 1 = 11 << 1 = 110. Continuing on, the next
symbol is B with a length of 4. Once again we increment and shift by one. Thus the codeword for
B = (110 + 1) << 1 = 1110. The final codeword for symbol F = 1110 + 1 = 1111. We explain this
in more detail in Chapter 11.2.7.

The creation of a canonical Huffman code includes many complex and inherently sequential com-
putations. For example, the create tree module needs to track the correct order of the created sub
trees, requiring careful memory management. Additionally, there is very limited parallelism that
can be exploited. In the following, we discuss the hardware architecture and the implementation
of the canonical Huffman encoding design using Vivado R© HLS.

Figure 11.2 shows the entire “top” huffman encoding function. This sets up the arrays and other
variables that are passed between the various subfunctions. And it instantiates these functions.

There is some additional copying of data that may seem unnecessary. This is due to our use
of the dataflow directive. This imparts some restrictions on the flow of the variables between the
subfunctions. In particular, there are some strict rules on producer and consumer relationships
of data between the parts of the function. This requires that we replicate some of the data. For
example, we create two copies of the arrays parent, left and right. We also do the same with the
array truncated bit length. The former is done in a for loop in the top huffman encoding function;
the latter is done inside of the canonize tree function.
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#include ”huffman.h”
#include ”assert.h”
void huffman encoding(

/∗ input ∗/ Symbol symbol histogram[INPUT SYMBOL SIZE],
/∗ output ∗/ PackedCodewordAndLength encoding[INPUT SYMBOL SIZE],
/∗ output ∗/ int ∗num nonzero symbols) {
#pragma HLS DATAFLOW

Symbol filtered[INPUT SYMBOL SIZE];
Symbol sorted[INPUT SYMBOL SIZE];
Symbol sorted copy1[INPUT SYMBOL SIZE];
Symbol sorted copy2[INPUT SYMBOL SIZE];
ap uint<SYMBOL BITS> parent[INPUT SYMBOL SIZE−1];
ap uint<SYMBOL BITS> left[INPUT SYMBOL SIZE−1];
ap uint<SYMBOL BITS> right[INPUT SYMBOL SIZE−1];
int n;

filter(symbol histogram, filtered, &n);
sort(filtered, n, sorted);

ap uint<SYMBOL BITS> length histogram[TREE DEPTH];
ap uint<SYMBOL BITS> truncated length histogram1[TREE DEPTH];
ap uint<SYMBOL BITS> truncated length histogram2[TREE DEPTH];
CodewordLength symbol bits[INPUT SYMBOL SIZE];

int previous frequency = −1;
copy sorted:

for(int i = 0; i < n; i++) {
sorted copy1[i].value = sorted[i].value;
sorted copy1[i].frequency = sorted[i].frequency;
sorted copy2[i].value = sorted[i].value;
sorted copy2[i].frequency = sorted[i].frequency;
// std::cout << sorted[i].value << ” ” << sorted[i].frequency << ”\n”;
assert(previous frequency <= (int)sorted[i].frequency);
previous frequency = sorted[i].frequency;

}

create tree(sorted copy1, n, parent, left, right);
compute bit length(parent, left, right, n, length histogram);

#ifndef SYNTHESIS
// Check the result of computing the tree histogram
int codewords in tree = 0;
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merge bit length:
for(int i = 0; i < TREE DEPTH; i++) {

#pragma HLS PIPELINE II=1
if(length histogram[i] > 0)

std::cout << length histogram[i] << ” codewords with length ” << i << ”\n”;
codewords in tree += length histogram[i];

}
assert(codewords in tree == n);

#endif

truncate tree(length histogram, truncated length histogram1, truncated length histogram2);
canonize tree(sorted copy2, n, truncated length histogram1, symbol bits);
create codeword(symbol bits, truncated length histogram2, encoding);

∗num nonzero symbols = n;
}

Figure 11.2: The “top” huffman encoding function. It defines the arrays and variables between the
various subfunctions. These are described graphically in Figures 11.1 and 11.4.

The dataflow directive imposes restrictions on the flow of information in the function. Many
of the restrictions enforce a strict producer and consumer relationship between the subfunctions.
One such restriction is that an array should be written to by only one function and it should
be read by only one function. i.e., it should only serve as an output from one function and an
input to another function. If multiple functions read from the same array, Vivado R© HLS will
synthesize the code but will issue a warning and not use a dataflow pipelined architecture. As
a result, using dataflow mode often requires replicating data into multiple arrays. A similar
problem occurs if a function attempts to read from and write to an array which is also accessed
by another function. In this case it is necessary to maintain an additional internal copy of
the data inside the function. We will discuss both of these requirements and how to adhere to
them as we go through the code in the remainder of this chapter.

11.2 Implementation

The canonical Huffman encoding process is naturally divided into subfunctions. Thus, we can work
on each of these subfunctions on a one-by-one basis. Before we do that, we should consider the
interface for each of these functions.

Figure 11.4 shows the functions and their input and output data. For the sake of simplicity,
it only shows the interfaces with arrays, which, since they are large, we can assume are stored in
block rams (BRAMs). Before we describe the functions and their inputs and outputs, we need to
discuss the constants, custom data types, and the function interface that are defined in huffman.h.
Figure 11.3 shows the contents of this file.

The INPUT SYMBOL SIZE parameter specifies the maximum number of symbols that will be
given as input for encoding. In this case, we’ve set it to 256, enabling the encoding of 8-bit ASCII
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#include ”ap int.h”

// input number of symbols
const static int INPUT SYMBOL SIZE = 256;

// upper bound on codeword length during tree construction
const static int TREE DEPTH = 64;

// maximum codeword tree length after rebalancing
const static int MAX CODEWORD LENGTH = 27;

// Should be log2(INPUT SYMBOL SIZE)
const static int SYMBOL BITS = 10;

// Should be log2(TREE DEPTH)
const static int TREE DEPTH BITS = 6;

// number of bits needed to record MAX CODEWORD LENGTH value
// Should be log2(MAX CODEWORD LENGTH)
const static int CODEWORD LENGTH BITS = 5;

// A marker for internal nodes
const static ap uint<SYMBOL BITS> INTERNAL NODE = −1;

typedef ap uint<MAX CODEWORD LENGTH> Codeword;
typedef ap uint<MAX CODEWORD LENGTH + CODEWORD LENGTH BITS> PackedCodewordAndLength;
typedef ap uint<CODEWORD LENGTH BITS> CodewordLength;
typedef ap uint<32> Frequency;

struct Symbol {
ap uint<SYMBOL BITS> value;
ap uint<32> frequency;

};

void
huffman encoding (

Symbol in[INPUT SYMBOL SIZE],
PackedCodewordAndLength encoding[INPUT SYMBOL SIZE],
int ∗num nonzero symbols
);

Figure 11.3: The parameters, custom data type, and function interface for the top level function
huffman encoding.
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Figure 11.4: The block diagram for our hardware implementation of canonical Huffman encoding.
The gray blocks represent the significant input and output data that is generated and consumed
by the different subfunctions. The white blocks correspond to the functions (computational cores).
Note that the array initial bit length appears twice to allow the figure to be more clear.

data. The TREE DEPTH parameter specifies the upper bound for the length of an individual code-
word during the initial Huffman tree generation. The CODEWORD LENGTH parameter specifies
the target tree height when the Huffman tree is rebalanced in the function truncate tree. Finally, the
CODEWORD LENGTH BITS constant determines the number of bits required to encode a codeword
length. This is equal to log2dCODEWORD LENGTHe, which in this case is 5.

We create a custom data type Symbol to hold the data corresponding the input values and their
frequencies. This datatype is used in the filter, sort, and other functions in the encoding process
that require access to such information. The data type has two fields value and frequency. In this
case we’ve assumed that the block of data being encoded contains no more than 232 symbols.

Finally, the huffman.h file has the huffman encoding function interface. This is the specified top
level function for the Vivado R© HLS tool. It has three arguments. The first argument is an array of
Symbols of size INPUT SYMBOL SIZE. This array represents a histogram of the frequencies of the
data in the block being encoded. The next two arguments are outputs. The encoding argument
outputs the codeword for each possible symbol. The num nonzero symbols argument is the number
of non-zero symbols from the input data. This is the same as the number of symbols that remain
after the filter operation.

The input to the system is an array of Symbol. This holds the symbol value and frequencies in
the array in. Each symbol holds a 10-bit value and a 32-bit frequency. The size of this array is set
as the constant INPUT SYMBOL SIZE which is 256 in our example. The filter module reads from
the in array and writes its output to the filtered array. This is an array of Symbols which holds
the number of non-zero elements which is the input to the sort module. The sort module writes
the symbols sorted by frequency into two different arrays – one is used for the create tree module
and the other for the canonize tree module. The create tree module creates a Huffman tree from
the sorted array and stores it into three arrays (parent, left, and right); these arrays hold all the

213



HUFFMAN ENCODING

#include ”huffman.h”
// Postcondition: out[x].frequency > 0
void filter(
/∗ input ∗/ Symbol in[INPUT SYMBOL SIZE],
/∗ output ∗/ Symbol out[INPUT SYMBOL SIZE],
/∗ output ∗/ int ∗n) {

#pragma HLS INLINE off
ap uint<SYMBOL BITS> j = 0;
for(int i = 0; i < INPUT SYMBOL SIZE; i++) {

#pragma HLS pipeline II=1
if(in[i].frequency != 0) {

out[j].frequency = in[i].frequency;
out[j].value = in[i].value;
j++;

}
}
∗n = j;

}

Figure 11.5: The filter function iterates across the input array in and add any Symbol entry with
a non-zero frequency field to the output array out. Additionally, it records the number of non-zero
frequency elements and passes that in the output argument n.

info for each node of the Huffman tree. Using the Huffman tree information, the compute bit len
module calculates the bit length of each symbol and stores this information to a initial bit len array.
We set the maximum number of entries to 64, covering up to maximum 64-bit frequency number,
which is sufficient for most applications given that our Huffman tree creation rebalances its height.
The truncate tree module rebalances the tree height and copies the bit length information of each
codeword into two separate truncated bit length arrays. They each have the exact same information,
but they must be copied to ensure that the Vivado R© HLS tool can perform functional pipelining;
we will talk about that in more detail later. The canonize tree module walks through each symbol
from the sort module and assigns the appropriate bit length using the truncated bit length array.
The output of the canonize module is an array that contains the bit lengths for the codeword of each
symbol. Finally, the create codeword module generates the canonical codewords for each symbol.

11.2.1 Filter

The first function for the Huffman encoding process is filter, which is shown in Figure 11.5. This
function takes as input a Symbol array. The output is another Symbol array that is a subset of the
input array in. The filter function removes any entry with a frequency equal to 0. The function
itself simply iterates across the in array, storing each element to the out array if its frequency field
is non-zero. In addition, the function counts the number of non-zero entries to the output. This is
passed as the output argument n, enabling further functions to only process the ‘useful’ data.

Vivado R© HLS can decide to automatically inline functions in order to generate a more
efficient architecture. Most often, this happens for small functions. The directive inline allows
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the user to explicitly specify whether or not Vivado R© HLS should inline particular functions.
In this case, INLINE off ensures that this function will not be inlined and will appear as a
module in the generated register-transfer level (RTL) design. In this case, disabling inlining
allows us to get a performance and resource usage for this function and to ensure that it will
be implemented as a process in the toplevel dataflow design.

11.2.2 Sort

The sort function, shown in Figure 11.6, orders the input symbols based on their frequency values.
The function itself consists of two for loops, labeled copy in to sorting and radix sort.

The copy in to sorting loop moves input data from the in array into the sorting array. This
ensures that the in array is read-only to meet the requirements of the dataflow directive used at
the toplevel. The sorting function reads and writes to the sorting array throughout its execution.
Even for simple loops like this, it is important to use the pipeline directive to generate the most
efficient result and accurate performance estimates.

The radix sort loop implements the core radix-sorting algorithm. In general, radix sorting algo-
rithms sort data by considering one digit or group of bits at a time. The size of each digit determines
the radix of the sort. Our algorithm considers 4 bits at a time of the 32-bit Symbol.frequency vari-
able. Hence we are using radix r = 24 = 16 sort. For each 4-bit digit in the 32-bit number, we
perform a counting sort. The radix sort loop performs these 8 counting sort operations, iterating
to 32 in steps of 4. Radix-sorting algorithms can also operate from left to right (least significant
digit first) or right to left (most significant digit first). The algorithm implemented here works from
least significant digit to most significant digit. In the code, the radix can be configured by setting
the RADIX and BITS PER LOOP parameters.

What would happen if we increased or decreased the radix? How would this effect the
number of counting sort operations that are performed? How would this change the resource
usage, e.g., the size of the arrays?

The code stores the current state of the sort in sorting[] and previous sorting[]. Each iteration of
radix sort loop, the current value of sorting[] is copied to previous sorting[] and then the values are
sorted as they are copied back into sorting[]. The digit histogram[] and digit location[] arrays are
used in radix sort loop to implement the counting sort on a particular digit. The two array partition
s declare that these two arrays should be completely partitioned into registers. These arrays are
small and used frequently, thus this does not use many resources and can provide performance
benefits. Finally, current digit[] stores the digit being sorted for each item in the current iteration
of the radix sort.

This code also contains two assert() calls which check assumptions about the input num symbols.
Since this variable determines the number of valid elements in the in array, it must be bounded by
the size of that array. Such assertions are good defensive programming practice in general to ensure
that the assumptions of this function are met. In Vivado R© HLS they serve an additional purpose as
well. Since num symbols determines the number of times that many of the internal loops execute,
Vivado R© HLS can infer the tripcount of the loop based on these assertions. In addition, Vivado R©

HLS also uses these assertions to minimize the bitwidth of the variables used in the implemented
circuit.

215



HUFFMAN ENCODING

#include ”huffman.h”
#include ”assert.h”
const unsigned int RADIX = 16;
const unsigned int BITS PER LOOP = 4; // should be log2(RADIX)
typedef ap uint<BITS PER LOOP> Digit;

void sort(
/∗ input ∗/ Symbol in[INPUT SYMBOL SIZE],
/∗ input ∗/ int num symbols,
/∗ output ∗/ Symbol out[INPUT SYMBOL SIZE]) {
Symbol previous sorting[INPUT SYMBOL SIZE], sorting[INPUT SYMBOL SIZE];
ap uint<SYMBOL BITS> digit histogram[RADIX], digit location[RADIX];

#pragma HLS ARRAY PARTITION variable=digit location complete dim=1
#pragma HLS ARRAY PARTITION variable=digit histogram complete dim=1

Digit current digit[INPUT SYMBOL SIZE];

assert(num symbols >= 0);
assert(num symbols <= INPUT SYMBOL SIZE);

copy in to sorting:
for(int j = 0; j < num symbols; j++) {

#pragma HLS PIPELINE II=1
sorting[j] = in[j];

}

radix sort:
for(int shift = 0; shift < 32; shift += BITS PER LOOP) {
init histogram:

for(int i = 0; i < RADIX; i++) {
#pragma HLS pipeline II=1

digit histogram[i] = 0;
}

compute histogram:
for(int j = 0; j < num symbols; j++) {

#pragma HLS PIPELINE II=1
Digit digit = (sorting[j].frequency >> shift) & (RADIX − 1); // Extrract a digit
current digit[j] = digit; // Store the current digit for each symbol
digit histogram[digit]++;
previous sorting[j] = sorting[j]; // Save the current sorted order of symbols
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}

digit location[0] = 0;
find digit location:

for(int i = 1; i < RADIX; i++)
#pragma HLS PIPELINE II=1

digit location[i] = digit location[i−1] + digit histogram[i−1];

re sort:
for(int j = 0; j < num symbols; j++) {

#pragma HLS PIPELINE II=1
Digit digit = current digit[j];
sorting[digit location[digit]] = previous sorting[j]; // Move symbol to new sorted location
out[digit location[digit]] = previous sorting[j]; // Also copy to output
digit location[digit]++; // Update digit location

}
}

}

Figure 11.6: The sort function employs a radix sort on the input symbols based upon their frequency
values.

Previously we’ve seen the loop tripcount directive used to give Vivado R© HLS information
about the tripcount of loops. Using assert() statements serves many of the same purposes,
with some advantages and disadvantages. One advantage of using assert() statements is that
they are checked during simulation and this information can be used to further optimize the
circuit. In contrast, the loop tripcount directive only affects performance analysis and is not
used for optimization. On the other hand, assert() statements can only be used to give bounds
on variable values, but can’t be used to set expected or average values, which can only be
done through the loop tripcount directive. In most cases, it is recommended to first provide
worst case bounds through assert() statements, and then if necessary also add loop tripcount
directives.

The body of the radix sort loop is divided into four subloops, labeled init histogram,
compute histogram, find digit location, and re sort. init histogram and compute histogram loops
combine to compute the histogram of the input, based on the current digit being considered.
This produces a count of the number of each times each digit occurs in digit histogram[]. The
compute histogram loop also stores the current digit being sorted for each symbol in current digit[].
Next, the find digit location loop computes a prefix sum of the resulting histogram values, placing
the result in digit location[]. In the context of the counting sort, digit location[] contains the
location of the first symbol with each digit in the newly sorted array. Lastly, the re sort loop
reorders the symbols based upon these results, placing each element in its correct place in the
newly sorted array. It uses the key stored in current digit[] to select the right location from
digit location[]. This location is incremeted each time through the re sort loop to place the next
element with the same digit in the next location in the sorted array. Overall, each iteration
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through the radix sort loop implements a counting sort on one digit. The counting sort is a stable
sort, so that elements with the same digit remain in the same order. After stable-sorting based on
each digit, the array is returned in the correct final order.

We have previous discussed the histogram and prefix sum algorithms in Chapter 8.2 and 8.1.
In this case, with simple code and complete partitioning of digit histogram[] and digit location[], we
can achieve a loop II of 1 to compute the histogram and prefix sum, since the number of bins is
relatively small. The optimization of the re sort loop is similar. Since the only recurrence is through
the relatively small digit location[] array, achieving a loop II of 1 is also straightforward. Note
that this approach works primarily because we’ve configured RADIX to be relatively small. With
larger values of RADIX, it would be preferable to implement digit histogram[] and digit location[] as
memories, which might require additional optimization to achieve a loop II of 1.

Another alternative that may make sense in the context of this code is to combine complete
partitioning of digit histogram[] and digit location[] with complete unrolling of the init histogram
and find digit location loops. These loops access each location in these small arrays and perform
operations with a minimal amount of logic. In this case, although unrolling loops would likely
result in replicating the circuit for each loop body, fewer resources would be required to implement
this circuit since the array accesses would be at constant indexes. However, for larger values of the
BITS PER LOOP parameter this change becomes prohibitive, since each additional bit doubles the
RADIX parameter, doubling the cost of these unrolled loops. This is a somewhat common situation
with parameterized code where different optimizations make sense with different parameter values.

What happens to the performance and utilization results when you perform the optimiza-
tions on the prefix sum and histogram loops as specified in Chapter 8.2 and 8.1? Are these
optimizations necessary in this case?

Is the re sort for loop able to achieve the specified initiation interval of one cycle? Why or
why not?

For a large dataset (n > 256), what is the approximate latency, in terms of n, of the code
in Figure 11.6. What portions of the code dominate the number of cycles? How would this
change as the RADIX parameter changes?

Note that the re sort loop not only stores the sorted arrray in sorting[] but also stores the sorted
array in out[]. While this may seem redundant, we need to ensure that out[] is only written to
in order to obey the requirements of the toplevel dataflow directive. In this case, out[] will be
overwritten multiple times with partially sorted results, but only the final result will be passed on
the following function.

The dataflow directive has several requirements in order to perform the task level pipelining
optimization. One of them is the need for single producer and consumer of data between the
tasks. Since we would like to perform task level pipelining for the Huffman encoding process as
shown in Figure 11.4, we must insure that each of these tasks follow this requirement. In the
case of this sort function, which is one of the tasks, it must only consume (read from but not
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write to) the input argument data and only produce (write to but not read from) the output
argument data. In order to met this requirement, we create the internal array sorting, which is
read from and written to throughout the function. We copy the input data from the argument
in at the beginning of the function and write the final results to the output argument out at
the end of the function. This insures that we follow the producer/consumer requirements for
the dataflow directive.

11.2.3 Create Tree

The next function in the Huffman encoding process forms the binary tree representing the Huff-
man code. This is implemented in the create tree function shown in Figure 11.8. in[] contains
num symbols Symbol elements, sorted from lowest to highest frequency. The function creates a
binary tree of those symbols which is stored into three output arrays named parent, left, and right.
The left and right arrays represent the left and right children of each intermediate node in the tree.
If the child is a leaf node, then the corresponding element of the left or right array will contain the
symbol value of the child, otherwise it contains the special flag INTERNAL NODE. Similarly, the
parent array holds the index of the parent node of each intermediate node. The parent of the root
node of the tree is defined to be index zero. The tree is also ordered, in the sense that a parent
always has a higher index than its children. As a result, we can efficiently implement bottom-up
and top-down traversals of the tree.

Figure 11.7 shows an example of these data structures. Six symbols sorted by their frequencies
are stored in the in array. The resulting Huffman tree is stored in three arrays parent, left, and
right. In addition, the frequency of each intermediate node is stored in the frequency array. We
directly denote the node numbers for the left and right arrays (e.g., n0, n1, etc.) for the sake of
illustration. These will hold a special internal node value in reality.

While it may be odd to think of storing a complex data structure in a tree like this, it is
actually very common in embedded programming where data allocation is not allowed[53]. In
fact, the C library implementations of malloc() and free() often implement low-level memory
management in this way to enable small allocations to be created from larger memory alloca-
tions, usually called pages, returned from the operating system. This enables the operating
system to efficiently manage large allocations of memory efficiently and to coordinate virtual
memory using the processor page table and disk storage which usually handle large blocks of
data. 4 Kilo-bytes is a typical size for these pages. For more ideas about implementing data
structures using arrays, see [58].

In the Huffman tree, each symbol is associated with a leaf node in the tree. Intermediate nodes
in the tree are created by grouping the two symbols with the smallest frequency and using them as
the left and right nodes of a new intermediate node. That intermediate node has a frequency which
is the sum of the frequencies of each child node. This process continues by iteratively creating
intermediate nodes from the two nodes with the smallest frequencies, which may include other
intermediate nodes or leaf nodes. The tree building process completes when all of the intermediate
nodes have been incorporated into the binary tree.

There are many ways to represent this process in code. For instance, we might explicitly create
an array representing every node in the tree which is sorted by frequency. In this case selecting
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Figure 11.7: The Symbol array in is used to create the Huffman tree. The tree is shown graphically
along with the corresponding values for the four arrays used to represent the tree (intermediate,
left, right, and parent).

nodes to add to the tree is simple, since they will always be in the same locations of the sorted
array. On the other hand, inserting a newly created node into the list is relatively complex because
the array must again be sorted, which would require moving elements around. Alternatively, we
might add pointer-like array indexes to the data structure in our array to enable the data to be
logically sorted without actually moving the data around. This would reduce data copying, but
would increase the cost of accessing each element and require extra storage. Many of the normal
algorithmic tradeoffs in the design of data structures apply in the context of HLS just as well as
they apply to processors.

In this case, however, we can make some additional simplifying observations. The most im-
portant observation is that new intermediate nodes are always created in order of frequency. We
might create an intermediate node with a frequency that is less than the frequency of some leaf
node, but we will never create an intermediate node with a frequency less than an already created
intermediate node. This suggests that we can maintain a sorted data structure by storing the nodes
in two separate arrays: a sorted array of symbols and a sorted array of intermediate nodes. As we
‘use’ the lowest frequency elements of each list, we only need to append to the end of the list of
intermediate nodes. There is a small extra complexity because we might need to remove zero, one,
or two elements from either array, but this turns out to be much less complex than resorting the
node array.

Conceptually this algorithm is very similar to the mergesort algorithm discussed in Section
10.3. The key difference is what operation is done as elements are removed from the sorted
arrays. In mergesort, the least element is simply inserted at the appropriate position in the
array. In this case, the two least elements are identified and then merged into a new tree node.

This code to implement the create tree function is shown in Figure 11.8. The first block of code
defines the local variables that we use in the function. frequency[] stores the frequencies for each
intermediate node as it is created. in count tracks which symbols have been given a parent node in
the tree, while tree count tracks which newly created intermediate nodes have been given a parent
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#include ”huffman.h”
#include ”assert.h”
void create tree (

/∗ input ∗/ Symbol in[INPUT SYMBOL SIZE],
/∗ input ∗/ int num symbols,
/∗ output ∗/ ap uint<SYMBOL BITS> parent[INPUT SYMBOL SIZE−1],
/∗ output ∗/ ap uint<SYMBOL BITS> left[INPUT SYMBOL SIZE−1],
/∗ output ∗/ ap uint<SYMBOL BITS> right[INPUT SYMBOL SIZE−1]) {
Frequency frequency[INPUT SYMBOL SIZE−1];
ap uint<SYMBOL BITS> tree count = 0; // Number of intermediate nodes assigned a parent.
ap uint<SYMBOL BITS> in count = 0; // Number of inputs consumed.

assert(num symbols > 0);
assert(num symbols <= INPUT SYMBOL SIZE);
for(int i = 0; i < (num symbols−1); i++) {

#pragma HLS PIPELINE II=5
Frequency node freq = 0;

// There are two cases.
// Case 1: remove a Symbol from in[]
// Case 2: remove an element from intermediate[]
// We do this twice, once for the left and once for the right of the new intermediate node.
assert(in count < num symbols || tree count < i);
Frequency intermediate freq = frequency[tree count];
Symbol s = in[in count];
if((in count < num symbols && s.frequency <= intermediate freq) || tree count == i) {

// Pick symbol from in[].
left[i] = s.value; // Set input symbol as left node
node freq = s.frequency; // Add symbol frequency to total node frequency
in count++; // Move to the next input symbol

} else {
// Pick internal node without a parent.
left[i] = INTERNAL NODE; // Set symbol to indicate an internal node
node freq = frequency[tree count]; // Add child node frequency
parent[tree count] = i; // Set this node as child’s parent
tree count++; // Go to next parentless internal node

}

assert(in count < num symbols || tree count < i);
intermediate freq = frequency[tree count];
s = in[in count];
if((in count < num symbols && s.frequency <= intermediate freq) || tree count == i) {
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// Pick symbol from in[].
right[i] = s.value;
frequency[i] = node freq + s.frequency;
in count++;

} else {
// Pick internal node without a parent.
right[i] = INTERNAL NODE;
frequency[i] = node freq + intermediate freq;
parent[tree count] = i;
tree count++;

}
// Verify that nodes in the tree are sorted by frequency
assert(i == 0 || frequency[i] >= frequency[i−1]);

}

parent[tree count] = 0; //Set parent of last node (root) to 0
}

Figure 11.8: The complete code for Huffman tree creation. The code takes as input the sorted
Symbol array in, the number of elements in that array n, and outputs the Huffman tree in the three
arrays left, right, and parent.

node. Each iteration through the main loop creates a new intermediate node without a parent, so
all of the intermediate nodes between tree count and i have not yet been assigned a parent in the
tree.

The main loop contains two similar blocks of code. Each block compares the frequency of the
next available symbol in[in count].frequency with the frequency of the next available intermediate
node frequency[tree count]. It then selects the lowest frequency of the two to be incorporated as the
leaf of a new intermediate node. The first block does this for the left child of the new node, storing
in left[i], while the second block selects the right child of the new node, storing in right[i]. In both
cases, we need to be careful to ensure that the comparison is meaningful. In the first iteration of
the loop, tree count == 0 and i == 0, so there is no valid intermediate node to be considered and
we must always select an input symbol. During the final iterations of the loop, it is likely that all
of the input symbols will have been consumed, so in count == num symbols and we must always
consume an intermediate node.

The number of iterations of the loop depends on the input num symbols in an interesting way.
Since each input symbol becomes a leaf node in the binary tree, we know that there will be exactly
num symbols−1 intermediate nodes to be created, since this is a basic property of a binary tree. At
the end of the loop we will have created num symbols−1 new nodes, each of which has two children.
num symbols of these children will be input symbols and num symbols−2 will be intermediate nodes.
There will be one intermediate node remaining as the root of the tree without a parent. This last
node is artificially assigned a parent index of zero in the last line of code. This completes the
building of the Huffman tree.

In the tree, the children of an intermediate node can be either a symbol or a intermediate node.
In creating the huffman tree, this information isn’t very important, although it will be important
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later when we traverse the tree later. To store this difference a special value INTERNAL NODE
is stored in left[] and right[] if the corresponding child is an internal node. Note that this storage
essentially requires one more bit to represent in the array. As a result, the left[] and right[] arrays
are one bit larger than you might expect.

For a large dataset (n > 256), what is the approximate latency, in terms of n, of the code
in Figure 11.8? What portions of the code dominate the number of cycles?

11.2.4 Compute Bit Length

The compute bit length function determines the depth in the tree for each symbol. The depth is
important because it determines the number of bits used to encode each symbol. Computing the
depth of each node in the tree is done using the recurrence:

depth(root) = 0
∀n! = root, depth(n) = depth(parent(n) + 1)

∀n, child depth(n) = depth(n) + 1
(11.1)

This recurrence can be computed by traversing the tree starting at the root node and exploring
each internal node in order. As we traverse each internal node, we can compute the depth of the
node and the corresponding depth (incremented by one) of any child nodes. It turns out that we
don’t actually care about the depth of the internal nodes, only about the depth of the child nodes.
As a result, the code actually computes the recurrence:

child depth(root) = 1
∀n! = root, child depth(n) = child depth(parent(n) + 1)

(11.2)

The code for this function is shown in Figure 11.9. The input arguments to the function
represent a Huffman tree in parent[], left[], and right[]. num symbols contains the number of input
symbols, which is one more than the number of intermediate nodes in the tree. The output
length histogram[]. Each element of that array stores the number of symbols with the given depth.
Thus, if there are five symbols with depth three, then length histogram[3] = 5.

child depth[] stores the depth of each internal node while the tree is being traversed. After the
depth of each internal node is determined in the traverse tree loop, length histogram[] is updated.
internal length histogram[] is used to ensure that our function adheres the requirements for the
dataflow directive, where the output array length histogram[] is never read. The init histogram loop
initializes these two arrays.

The init histogram loop has a pipeline directive with II = 1. Is it possible to meet this II?
What happens if we increase the II to something larger? What happens if we do not apply this
directive?

Internal nodes in the tree are traversed from the root node, which has the largest index, down
to index zero. Since the array of nodes were created in bottom-up order, this reverse order results
in a top-down traversal of the tree enabling the computation of the recurrence for each node in
a single pass through the nodes. For each node, we determine the depth of its children. Then if
the node actually does have any children which are symbols, we figure out how many children and
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#include ”huffman.h”
#include ”assert.h”
void compute bit length (

/∗ input ∗/ ap uint<SYMBOL BITS> parent[INPUT SYMBOL SIZE−1],
/∗ input ∗/ ap uint<SYMBOL BITS> left[INPUT SYMBOL SIZE−1],
/∗ input ∗/ ap uint<SYMBOL BITS> right[INPUT SYMBOL SIZE−1],
/∗ input ∗/ int num symbols,
/∗ output ∗/ ap uint<SYMBOL BITS> length histogram[TREE DEPTH]) {
assert(num symbols > 0);
assert(num symbols <= INPUT SYMBOL SIZE);
ap uint<TREE DEPTH BITS> child depth[INPUT SYMBOL SIZE−1];
ap uint<SYMBOL BITS> internal length histogram[TREE DEPTH];

init histogram:
for(int i = 0; i < TREE DEPTH; i++) {

#pragma HLS pipeline II=1
internal length histogram[i] = 0;

}

child depth[num symbols−2] = 1; // Depth of the root node is 1.

traverse tree:
for(int i = num symbols−3; i >= 0; i−−) {

#pragma HLS pipeline II=3
ap uint<TREE DEPTH BITS> length = child depth[parent[i]] + 1;
child depth[i] = length;
if(left[i] != INTERNAL NODE || right[i] != INTERNAL NODE){

int children;
if(left[i] != INTERNAL NODE && right[i] != INTERNAL NODE) {

// Both the children of the original node were symbols
children = 2;

} else {
// One child of the original node was a symbol
children = 1;

}
ap uint<SYMBOL BITS> count = internal length histogram[length];
count += children;
internal length histogram[length] = count;
length histogram[length] = count;

}
}

}

Figure 11.9: The complete code for determining the number of symbols at each bit length.
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update the histogram accordingly. Child nodes which are internal nodes are represented by the
special value INTERNAL NODE.

For a large dataset (n > 256), what is the approximate latency, in terms of n, of the code
in Figure 11.9? What portions of the code dominate the number of cycles?

This code has several recurrences. For example, one recurrence occurs because of the
histogram computation. In this case, the loop is synthesized with an II of 3. What happens
if you target a lower II in the pipeline directive? Can you rewrite the code to eliminate the
recurrences and achieve a lower II?

11.2.5 Truncate Tree

The next part of the Huffman encoding process reorganizes nodes with a depth that is larger than
that specified in MAX CODEWORD LENGTH. This is done by finding any symbols with a greater
depth, and moving them to a level that is smaller than that specified target. Interestingly, this
can be done entirely by manipulating the histogram of symbol depths, as long as the histogram is
modified in a way that is consistent with the same modifications on the original tree.

The input histogram is contained in input length histogram, which was derived by the
compute bit length() function described in the previous section. There are two identical output
arrays truncated length histogram1 and truncated length histogram2. These arrays are passed to
two separate functions later in the process (canonize tree and create codewords), and thus we must
have two arrays to adhere to the single producer, single consumer constraint of the dataflow
directive.

The code is shown in Figure 11.10. The copy input loop copies the data from the input array
input length histogram. The move nodes loop contains the bulk of the processing to modify the
histogram. Lastly, the input length histogram function copies the internal result to other output at
the end of the function.

The copy in for loop is not optimized. What happens to the latency and initiation interval
of the truncate tree function if we use a pipeline or unroll directive on this loop. What happens
to the overall latency and initiation interval of the design (i.e., the huffman encoding function)?

The function continues in the second move nodes for loop, which performs the bulk of the
computation. This for loop starts by iterating through the truncated length histogram array from
the largest index (TREE DEPTH - the specified maximum depth for a tree). This continues down
through the array until there is a non-zero element or i reaches the MAX CODEWORD LENGTH.
If we do not find a non-zero element, that means the initial input Huffman tree does not have any
nodes with a depth larger than the target depth. In other words, we can exit this function without
performing any truncation. If there is a value larger than the target depth, then the function
continues by reorganizing the tree so that all of the nodes have depth smaller than the target
depth. This is done by the operations in the reorder while loop. When there are nodes to move,
the move nodes for loop goes through them from those with the largest depth, and continues to
smaller depths until all nodes are rearranged with a depth smaller than the target. Each iteration
of this move nodes for loops works on moving nodes from one depth at a time.
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#include ”huffman.h”
#include ”assert.h”
void truncate tree(
/∗ input ∗/ ap uint<SYMBOL BITS> input length histogram[TREE DEPTH],
/∗ output ∗/ ap uint<SYMBOL BITS> output length histogram1[TREE DEPTH],
/∗ output ∗/ ap uint<SYMBOL BITS> output length histogram2[TREE DEPTH]
) {

// Copy into temporary storage to maintain dataflow properties
copy input:
for(int i = 0; i < TREE DEPTH; i++) {

output length histogram1[i] = input length histogram[i];
}

ap uint<SYMBOL BITS> j = MAX CODEWORD LENGTH;
move nodes:
for(int i = TREE DEPTH − 1; i > MAX CODEWORD LENGTH; i−−) {

// Look to see if there is any nodes at lengths greater than target depth
reorder:
while(output length histogram1[i] != 0) {

#pragma HLS LOOP TRIPCOUNT min=3 max=3 avg=3
if (j == MAX CODEWORD LENGTH) {

// Find deepest leaf with codeword length < target depth
do {

#pragma HLS LOOP TRIPCOUNT min=1 max=1 avg=1
j−−;

} while(output length histogram1[j] == 0);
}

// Move leaf with depth i to depth j+1.
output length histogram1[j] −= 1; // The node at level j is no longer a leaf.
output length histogram1[j+1] += 2; // Two new leaf nodes are attached at level j+1.
output length histogram1[i−1] += 1; // The leaf node at level i+1 gets attached here.
output length histogram1[i] −= 2; // Two leaf nodes have been lost from level i.

// now deepest leaf with codeword length < target length
// is at level (j+1) unless j+1 == target length
j++;

}
}
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// Copy the output to meet dataflow requirements and check the validity
unsigned int limit = 1;

copy output:
for(int i = 0; i < TREE DEPTH; i++) {

output length histogram2[i] = output length histogram1[i];
assert(output length histogram1[i] >= 0);
assert(output length histogram1[i] <= limit);
limit ∗= 2;

}
}

Figure 11.10: The complete code for rearranging the Huffman tree such that the depth of any node
is under the target specified by the parameter MAX CODEWORD LENGTH.

The reorder while loop moves one node in each iteration. The first if statement is used to find
the leaf node with the largest depth. We will then alter this node by making it an intermediate
node, and adding it and the leaf node with a depth larger than than target as children. This if
clause has a do/while loop that iterates downward from the target looking for a non-zero entry
in the truncated length histogram array. It works in a similar manner as the beginning of the
move nodes for loop. When it has found the deepest leaf node less than the target depth, it stops.
The depth of this node is stored in j.

Now we have a node with a depth i larger than the target, and a node with a depth smaller than
the target stored in j. We move the node from depth i and a node from j into child nodes at depth
j + 1. Therefore, we add two symbols to truncated length histogram[j+1]. We are making a new
intermediate node a depth j thus, we subtract a symbol from that level. We move the other leaf
node from depth i to depth i − 1. And we subtract two from truncated length histogram[i] since one
of the nodes went to level j + 1 and the other when to level i − 1. These operations are performed
in the four statements on the array truncated length histogram. Since we added a symbol to level
j + 1, we update j, which holds the highest level under the target level, and then we repeat the
procedure. This is done until there are no additional symbols with a depth larger than the target.

The function completes by creating an additional copy of the new bit lengths. This is
done by storing the updated bit lengths in the array truncated length histogram1 into the array
truncated length histogram2. We will pass these two arrays to the final two functions in the
huffman encoding top function; we need two arrays to insure that the constraints of the dataflow
directive are met.

11.2.6 Canonize Tree

The next step in the encoding process is to determine the number of bits for each of the symbols.
We do this in the canonize tree function shown in Figure 11.11. The function takes as input an array
of symbols in sorted order, the total number of symbols (num symbols), and a histogram of lengths
describing the Huffman tree. The output symbol bits[] contains the number of encoded bits used
for each symbol. Thus, if the symbol with value 0x0A is encoded in 4 bits, then symbol bits[10] = 4.

The canonization process consists of two loops, labeled init bits and process symbols. The init bits
loop executes first, initializing symbol bits[] array to 0. The process symbols loop then processes the
symbols in sorted order from smallest frequency to largest frequency. Naturally, the least frequent
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#include ”huffman.h”
#include ”assert.h”
void canonize tree(
/∗ input ∗/ Symbol sorted[INPUT SYMBOL SIZE],
/∗ input ∗/ ap uint<SYMBOL BITS> num symbols,
/∗ input ∗/ ap uint<SYMBOL BITS> codeword length histogram[TREE DEPTH],
/∗ output ∗/ CodewordLength symbol bits[INPUT SYMBOL SIZE] ) {

assert(num symbols <= INPUT SYMBOL SIZE);

init bits:
for(int i = 0; i < INPUT SYMBOL SIZE; i++) {

symbol bits[i] = 0;
}

ap uint<SYMBOL BITS> length = TREE DEPTH;
ap uint<SYMBOL BITS> count = 0;

// Iterate across the symbols from lowest frequency to highest
// Assign them largest bit length to smallest
process symbols:
for(int k = 0; k < num symbols; k++) {

if (count == 0) {
//find the next non−zero bit length
do {

#pragma HLS LOOP TRIPCOUNT min=1 avg=1 max=2
length−−;
// n is the number of symbols with encoded length i
count = codeword length histogram[length];

}
while (count == 0);

}
symbol bits[sorted[k].value] = length; //assign symbol k to have length bits
count−−; //keep assigning i bits until we have counted off n symbols

}
}

Figure 11.11: The complete code for canonizing the Huffman tree, which determins the number of
bits for each symbol.
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int k = 0;
process symbols:
for(length = TREE DEPTH; length >= 0; length−−) {

count = codeword length histogram[length];
for(i = 0; i < count; i++) {

#pragma HLS pipeline II=1
symbol bits[sorted[k++].value] = length;

}
}

Figure 11.12: Alternate loop structure for the process symbols loop in Figure 11.11.

symbols are assigned the longest codes while the most frequent symbols are assigned the shortest
code. Each time through the process symbols loop, we assign the length of one symbol. The length
of the symbol is determined by the the inner do/while loop, which steps through the histogram
of lengths. This loop finds the largest bit length that has not yet had codewords assigned and
stores the number of codewords in that length in count. Each time through the outer loop, count
is decremented until we run out of codewords. When count becomes zero, the inner do/while loop
executes again to find a length with codewords to assign.

Note that the process symbols loop cannot be pipelined because the inner do/while loop cannot
be unrolled. This is somewhat awkward as the inner loop will usually execute exactly once, stepping
to the next length in the histogram. Only in somewhat rare cases will the inner loop need to execute
more than once if we happen to get to a length which does not have any codewords assigned. In
this case, there’s not too much of a loss since all the operations in the loop are simple operations
that are unlikely to be pipelined, with the exception of the memory operations. There are other
ways to structure this loop, however, which can be pipelined. One possibility is to use an outer for
loop to iterate over codeword length histogram[] and an inner loop to count each symbol, as shown
in Figure 11.12.

Implement the code in Figure 11.11 and the alternate code structure in Figure 11.12. Which
results in higher performance? Which coding style is more natural to you?

11.2.7 Create Codeword

The final step in the encoding process is to create the codeword for each symbol. This process
simply assigns each symbol in order according to the properties of a Canonical Huffman code. The
first property is that longer length codes have a higher numeric value than the same length prefix
of shorter codes. The second property is that codes with the same length increase by one as the
symbol value increases. In order to achieve these properties while keeping the code simple, it is
useful to determine the first codeword of each length. If we know the number of codewords of each
length given by codeword length histogram, then this can be found using the following recurrence:

first codeword(1) = 0
∀i > 1, first codeword(i) = (first codeword(i− 1) + codeword length histogram(i− 1)) << 1

(11.3)

229



HUFFMAN ENCODING

Essentially, rather than actually assigning the codewords one after another, this recurrence allocates
all the codewords first. This allows us to actually assign the codewords in order of symbol value
without being concerned about also ordering them by length or frequency.

In addition to assigning codewords to symbols, we also need to format the codewords so that
they can be easily used for encoding and decoding. Systems that use Huffman encoding often store
codewords in bit-reversed order. This can make the decoding process easier since the bits are stored
in the same order that the tree is traversed during decoding, from root node to leaf node.

The code implementing the create codewords function is shown in Figure 11.13. symbol bits[]
contains the length of the codeword for each symbol and codeword length histogram[] contains the
number of codewords with each length. The output encoding[] represents the encoding for each
symbol. Each element consists of the actual codeword and the length of each codeword packed
together. The maximum length of a codeword is given by the MAX CODEWORD LENGTH param-
eter. In turn, this determines the number of bits required to hold the codeword, which is given by
CODEWORD LENGTH BITS. The CODEWORD LENGTH BITS least significant bits of each ele-
ment in the encoding array contains the same value received from the input array symbol bits. The
high order MAX CODEWORD LENGTH bits of each encoding element contains the actual codeword.
Using 27 bits for MAX CODEWORD LENGTH resulting in CODEWORD LENGTH BITS of 5 is a
particularly useful combination, since each element of encoding[] fits in a single 32-bit word.

The code consists primarily of two loops, labeled first codewords and assign codewords. The
first codewords loop finds the first codeword with each length, implementing the recurrence in
Equation 11.3. The assign codewords loop finally associates each symbol with a codeword. The
codeword is found using the length of each codeword and indexing into the correct element of
first codeword[]. The main complexity of this code is in the bit reversal process, which is based on
the bit reverse32 function. We have talked about this function previously in the FFT chapter (see
Chapter 5.3), so we will not discuss it here again. After reversing the bits in the codeword, the
next statement removes the least significant ’0’ bits leaving only the bit-reversed codeword. The
bit-reversed codeword is then packed in the high-order bits together with the length of the symbol
in the low-order bits and stored in encoding[]. Lastly, the value in first codeword[] is incremented.

In the code in Figure 11.13, the inputs actually contain some redundant information.
In particular, we could compute the number of symbols for each bit length stored in
codeword length histogram[] from the length of each codeword symbol bits[] using a histogram
computation. Instead, in this code we’ve chosen to reuse the histogram originally computed in
the truncate tree() function. Instead we could save the storage by recomputing the histogram.
Do you think this is a good tradeoff? How many resources are required to compute the his-
togram in this function? How many resources are required to communicate the histogram
through the pipeline?

Estimate the latency of the code in Figure 11.13

Let us now go through our running example and show how this is used to derive the initial
codewords. In the example, the symbols A, D, and E have two bits for their encoding; symbol C has

230



HUFFMAN ENCODING

#include ”huffman.h”
#include ”assert.h”
#include <iostream>
void create codeword(
/∗ input ∗/ CodewordLength symbol bits[INPUT SYMBOL SIZE],
/∗ input ∗/ ap uint<SYMBOL BITS> codeword length histogram[TREE DEPTH],
/∗ output ∗/ PackedCodewordAndLength encoding[INPUT SYMBOL SIZE]
) {

Codeword first codeword[MAX CODEWORD LENGTH];

// Computes the initial codeword value for a symbol with bit length i
first codeword[0] = 0;
first codewords:
for(int i = 1; i < MAX CODEWORD LENGTH; i++) {

#pragma HLS PIPELINE II=1
first codeword[i] = (first codeword[i−1] + codeword length histogram[i−1]) << 1;
Codeword c = first codeword[i];
// std::cout << c.to string(2) << ” with length ” << i << ”\n”;

}

assign codewords:
for (int i = 0; i < INPUT SYMBOL SIZE; ++i) {

#pragma HLS PIPELINE II=5
CodewordLength length = symbol bits[i];
//if symbol has 0 bits, it doesn’t need to be encoded
make codeword:
if(length != 0) {

// std::cout << first codeword[length].to string(2) << ”\n”;
Codeword out reversed = first codeword[length];
out reversed.reverse();
out reversed = out reversed >> (MAX CODEWORD LENGTH − length);
// std::cout << out reversed.to string(2) << ”\n”;
encoding[i] = (out reversed << CODEWORD LENGTH BITS) + length;
first codeword[length]++;

} else {
encoding[i] = 0;

}
}

}

Figure 11.13: The complete code for generating the canonical Huffman codewords for each of the
symbols. The codewords can be computed with knowledge of number of bits that each sym-
bol uses (stored in the input array symbol bits[]). Additionally, we have another input array
codeword length histogram[] which stores at each entry the number of symbols with codewords
at that bit length. The output is the code word for each symbol stored in the encoding[] array.
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three bits; and symbols B and F have four bits. Thus, we have:

bit length(1) = 0
bit length(2) = 3
bit length(3) = 1
bit length(4) = 2

(11.4)

Using Equation 11.3 to calculate the values of first codeword, we determine:

first codeword(1) = 0 = 0b0
first codeword(2) = (0 + 0) << 1 = 0b00
first codeword(3) = (0 + 3) << 1 = 6 = 0b110
first codeword(4) = (6 + 1) << 1 = 14 = 0b1110

(11.5)

Once we have determined these values, then consider each symbol in order from smallest to
largest. For each symbol, we determine the length of its codeword and assign the next codeword
of the appropriate length. In the running example, we consider symbols A, B, C, D, E, and F

in alphabetical order. The symbol A has two bits for its encoding. We perform a lookup into
first codeword[2] = 0. Thus we assign the codeword for A to 0b00. We increment the value at
first codeword[2] to 1. The symbol B has four bits. Since first codeword[4] = 14 = 0b1110, it gets
assigned the codeword 0b1110. Symbol C has three bits. The value of first codeword[3] = 6 = 0b110,
thus it gets the codeword 110. Symbol D has two bits so it gets first codeword[2] = 1 = 0b01;
remember that we incremented this value after we assigned the codeword to symbol A. Symbol E
has two bits so it gets the codeword 0b01 + 1 = 0b10. And F has four bits so it gets the codeword
0b1110 + 1 = 0b1111.

The final codewords for all of the symbols are:

A → 00
B → 1110
C → 110
D → 01
E → 10
F → 1111

(11.6)

11.2.8 Testbench

The final part of the code is the testbench. This is shown in Figure 11.14. The general structure is
to read the input frequency values from a file, process them using the huffman encoding function,
and compare the resulting codewords with an existing golden reference that is stored in a file.

The main() function starts by setting up the variables required to read the frequencies from a
file (in this case the file is huffman.random256.txt) and puts them into in[]. This is done in the
file to array function, which takes as input the filename for the input data and the length of the
data (array length), and stores the entries in that file into array[] variable. This file contains the
frequency of each symbol. Frequency values are stored in symbol order, thus the first value of the
file represents the frequency of symbol ’0’, and so on.

The main() function continues by initializing in[] using the frequencies from the file. It then calls
the top huffman encoding function. The function returns the encoded symbol values in encoding[].
Since the result of processing should be a prefix code, we check that the properties of a prefix
code are actually satisfied. The result is then compared to the codewords stored in a golden
reference, which is stored in the file huffman.random256.gold. We do this by writing the result
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#include ”huffman.h”
#include <stdio.h>
#include <stdlib.h>

void file to array(const char ∗filename, ap uint<16> ∗&array, int array length) {
printf(”Start reading file [%s]\n”, filename);
FILE ∗file = fopen(filename, ”r”);
if(file == NULL) {

printf(”Cannot find the input file\n”);
exit(1);

}

int file value = 0;
int count = 0;
array = (ap uint<16> ∗) malloc(array length∗sizeof(ap uint<16>));

while(1) {
int eof check = fscanf(file, ”%x”, &file value);
if(eof check == EOF) break;
else {

array[count++] = (ap uint<16>) file value ;
}

}
fclose(file);

if(count != array length) exit(1);
}

int main() {
printf(”Starting canonical Huffman encoding testbench\n”);
FILE ∗output file;
int return val = 0;
ap uint<16> ∗frequencies = NULL;
file to array(”huffman.random256.txt”, frequencies, INPUT SYMBOL SIZE);

Symbol in[INPUT SYMBOL SIZE];
for (int i = 0 ; i < INPUT SYMBOL SIZE; i++) {

in[i].frequency = frequencies[i];
in[i].value = i;

}

int num nonzero symbols;
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PackedCodewordAndLength encoding[INPUT SYMBOL SIZE];
huffman encoding(in, encoding, &num nonzero symbols);

output file = fopen(”huffman.random256.out”, ”w”);
for(int i = 0; i < INPUT SYMBOL SIZE; i++)

fprintf(output file, ”%d, %x\n”, i, (unsigned int) encoding[i]);
fclose(output file);

printf (”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Comparing against output data∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ \n\n”);
if (system(”diff huffman.random256.out huffman.random256.golden”)) {

fprintf(stdout, ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);
fprintf(stdout, ”FAIL: Output DOES NOT match the golden output\n”);
fprintf(stdout, ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);
return val = 1;

} else {
fprintf(stdout, ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);
fprintf(stdout, ” PASS: The output matches the golden output\n”);
fprintf(stdout, ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);
return val = 0;

}

printf(”Ending canonical Huffman encoding testbench\n”);
return return val;

}

Figure 11.14: The complete code for the canonical Huffman encoding testbench. The code initializes
the in array with data from an input file. It passes that into the top huffman encoding function.
Then it stores the resulting codewords into a file, and compares that with another golden reference
file. It prints out the results of the comparison, and returns the appropriate value.
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to a file named random256.out and performing a file comparison using the diff tool. The diff

tool returns ’0’ if the files are identical and non-zero if the files are different. Thus, the if condition
occurs when the files are different, and the else condition is executed when the files are the same.
In both cases, we print out a message and set the return val to the appropriate value. This return
value is used by the Vivado R© HLS tool during cosimulation to check the correctness of results. The
return value should be ’0’ if it passes, and non-zero if it does not pass.

11.3 Conclusion

Huffman Coding is a common type of data compression used in many applications. While encoding
and decoding using a Huffman code are relatively simple operations, generating the Huffman code
itself can be a computationally challenging problem. In many systems it is advantageous to have
relatively small blocks of data, implying that new Huffman codes must be created often, making it
worthwhile to accelerate.

Compared to other algorithms we’ve studied in this book, creating a Huffman code contains a
number of steps with radically different code structures. Some are relatively easy to parallelize,
while others are more challenging. Some portions of the algorithm naturally have higher O(n)
complexity, meaning that they must be more heavily parallelized to achieve a balanced pipeline.
However, using the dataflow directive in Vivado R© HLS, these different code structures can be
linked together relatively easily
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Glossary

array partitioning Dividing a single logical array into multiple physical memories.. 87, 152, 177

bitstream The configuration data used to program the functionality of an FPGA. 13

BRAM A block RAM is a configurable random access memory that is embedded throughout an
FPGA for data storage and communication.. 17, 131, 150, 164, 189, 232

C/RTL cosimulation The process of verifying an RTL design generated by HLS using testvectors
captured from the C testbench.. 128

Compressed Row Storage Compressed Row Storage is a technique for representing a sparse
matrix. It allows large matrices with a small number of elements to be stored and operated
on efficiently.. 117

data rate The frequency at which a task can process the input data. This is often expressed in
bits/second and thus also depends on the size of the input data. 20

Discrete Fourier Transform An transformation that takes a discrete signal and converts it to
a freqeuncy-domain representation.. 4, 77, 99, 231

EDA Electronic design automation (EDA) are a set of software tools used to aid the hardware
design process. . 11

Fast Fourier Transform An optimized version of the Discrete Fourier Transform (DFT) which
requires fewer operations.. 77, 99

FF A flip-flop (FF) is a circuit that can store information. We typically think of it as storing one
bit of data and are a fundamental building block for creating memories in digital circuits..
14, 150, 164, 232

finite impulse response A common digital signal processing task that performs a convolution
on the input signal with a fixed signal that is defined by its coefficients. The FIR is often
performed in hardware and can be efficiently implemented. 22

FPGA A field-programmable gate array (FPGA) is an integrated circuit that can be customized
or programmed after it is manufactured (“in the field”). . 11, 232

HLS High-level synthesis is a hardware design process that translates an algorithmic description
(which is decoupled from the cycle to cycle behavior) into a register transfer level (RTL)
hardware description language which specifies the exact behavior of the circuit on a cycle-by-
cycle basis. 11, 188
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I/O block An I/O block provides the interface between the FPGA fabric and the remainder of
the system. I/O blocks can talk to memories (e.g., on-chip caches and off-chip DRAM,
microprocessors (using AXI or other protocols), sensors, actuators, etc.. . 16, 233

IP core An RTL-level component with well-defined interfaces enabling it to be incorporated into a
larger design. Often used as a way of hiding the ‘intellectual property’ from another company,
hence the name.. 18

logic synthesis The process of converting an glsrtl design into a netlist of device-level primitives..
13

loop interchange A code transformation that changes the order of loop operations. This trans-
formation is often a useful approach to addressing recurrences in code.. 94

loop pipelining Enabling multiple iterations of a loop to run concurrently sharing the same func-
tional units.. 84

LUT A lookup table (LUT) is a memory where the address signal are the inputs and the corre-
sponding outputs are contained in the memory entries. It is a key computational component
of modern field-programmable gate array (FPGA)s.. 13, 232

netlist An intermediate design artifact consisting of device-level primitive elements and the con-
nections between them. In FPGA designs, the primitive elements include lookup table
(LUT)s,flip-flop (FF)s, and block RAM (BRAM)s.. 13

partial loop unrolling A transformation where the body of a loop is replicated multiple times.
This is often used in processor systems to reduce loop condition overhead or to provide
opportunities for vectorization. In HLS, it can have a similar effect, enabling more operations
from the same loop nest to be considered in scheduling. This can improve the performance
of a design.. 90, 126

place and route The process of converting a netlist of device-level primitives into the configura-
tion of a particular device.. 13

process An individual component in a dataflow architecture. 114

processing element A coarse-grained concurrently executing component in a design. In HLS,
this is often used in the context of a dataflow design.. 153

recurrence A code structure that results in a feedback loop when implemented in a circuit. Re-
currences limit the throughput of the circuit.. 26, 94

ROM A Read-only Memory is a memory which is initialized to a particular value and then read
but never written. In many cases the storage for ROMs can be highly optimized because
their value never changes.. 96

routing channel A routing channel provides a flexible set of connections between the FPGA
programmable logic elements. . 15, 16, 15, 16, 233

RTL Register-transfer level (RTL) is a hardware design abstraction which models a synchronous
digital circuit using logical operations that occur between between hardware registers. It is
common design entry for modern digital design. 11, 123, 202
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slice A (typically small) set of LUTs, FFs and multiplexors. These are often reported in FPGA
resource utilization reports. . 14, 15, 14, 15, 16

sorting cell An simple stateful component that forms part of a larger sorting network or algorithm.
Commonly a cell performs a compare-and-swap operation between two elements.. 180

stable sort A sorting algorithm that keeps different elements with the same sorting key in their
original sequence after sorting.. 174, 205

Static Single Assignment Static Single Assignment is an intermediate representation in compil-
ers where each variable is assigned only once. This form makes many common optimizations
simpler to write.. 180

switchbox A switchbox connects routing channels to provide a flesible routing structure for data
routed between the programmable logic and I/O block. . 15, 16, 15, 16

systolic array An array of processing elements that coordinate to perform a more complex al-
gorithm. Systolic arrays are usually designed so that each processing element encapsulates
some local information and only communicates with its local neighbors. This often enables
systolic arrays to easily scale to large problem sizes by increasing the size of the array.. 180,
194

task A fundamental atomic unit of behavior or high-level synthesis computation; this corresponds
to a function invocation in high-level synthesis. 20

task pipelining Being able to execute more than one task concurrently on the same accelerator
in a pipelined fashion.. 113, 114, 154

task interval The time between when one task starts and the next starts or the difference between
the start times of two consecutive tasks. 20

task latency The time between when a task starts and when it finishes. 20
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Acronyms

ASIC application-specific integrated circuit. Glossary: ASIC

BRAM block RAM. Glossary: BRAM, 17, 18, 131, 150, 152, 164, 189, 232

CRS compressed row storage. Glossary: Compressed Row Storage, 117, 118, 119, 120

DFT Discrete Fourier Transform. Glossary: Discrete Fourier Transform, 4, 77, 79, 80, 81, 82, 83,
92, 94, 92, 96, 97, 99, 100, 102, 116, 231

EDA electronic design automation. Glossary: EDA, 11

FF flip-flop. Glossary: FF, 14, 15, 18, 17, 18, 150, 164, 232

FFT Fast Fourier Transform. Glossary: Fast Fourier Transform, 77, 97, 99, 100, 102, 103, 104,
105, 107, 108, 109, 111, 113, 114, 113, 114, 116

FPGA field-programmable gate array. Glossary: FPGA, 11, 13, 14, 15, 16, 17, 232

HLS high-level synthesis. Glossary: HLS, 11, 12, 13, 15, 18, 188

LUT lookup table. Glossary: LUT, 13, 14, 13, 14, 15, 232

PAR place and route. Glossary: place and route, 13

PE Processing Element. Glossary: processing element, 153, 154

ROM Read-only Memory. Glossary: ROM, 96

RTL register-transfer level. Glossary: RTL, 11, 13, 123, 128, 202, 231

SSA static single assigment. Glossary: Static Single Assignment, 180
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