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Looking at Machine Vision

B
efore we can enter a world in 
which cars and trucks drive 
themselves, autonomous air-
craft dot the skies, and robots 
pitch in to perform a virtually 

endless array of tasks, these systems will 
need to have a way of reliably and safely 
interacting with the surrounding world. 
Machine vision is the technology that 
will give future autonomous systems the 
ability to detect and react to various 
types of objects, terrains, and situations.

Signal processing lies at the heart of 
machine vision, opening ways of acquiring, 
processing, analyzing, and understanding 
images and other high-dimensional data 
from the real world. In multiple research 
areas, today’s machine vision developers 
are pioneering systems that in years ahead 
promise to make life more faster, safer, 
healthier, and more convenient in an 
almost endless number of areas.

Cutting through the CLutter
Object recognition is one of the most 
pressing challenges facing computer 
vision researchers, since a robot or other 
type of machine manipulating some-
thing in the real world needs to do more 
than simply recognize an item—it also 
must be able to perceive the object’s pre-
cise orientation. 

To enhance the ability of robots to 
determine the orientation of specific 
objects, researcher Jared Glover (Figure 1) 
turned to a lesser-known and semine-
glected statistical construct known as the 
Bingham distribution. While a graduate 
student in the Massachusetts Institute of 
Technology’s (MIT’s) Department of Elec-
trical Engineering and Computer Science, 
Glover and coresearcher Sanja Popovic 

developed a new robot vision algorithm, 
based on the Bingham distribution, that he 
says turned out to be 15% more accurate 
at identifying familiar objects in cluttered 
scenes than the best previous models. 
(Glover graduated MIT in May 2014. Popo-
vic, also an MIT graduate, currently works 
at Google.)

Glover focused his research on a single 
basic question: How can a robot detect 
objects within a cluttered environment? “I 
started working on specific object detec-
tion, meaning my system was looking for 
objects that the robot already has a model 
of in its database,” Glover says. “The robot 
knows the 3-D (three-dimensional) shape 

of the object it’s looking for, it’s just trying 
to find that shape in the clutter.”

In noisy and jumbled landscapes, accu-
rate orientation detection hinges on pre-
cise alignments using multiple cues, such 
as 3-D point positions, surface normals, 
curvature directions, edges, and image fea-
tures. Glover observed that other than 
brute force optimization, no existing align-
ment method existed that could merge all 
of this information together in a meaning-
ful way.

The researcher identified the Bingham 
distribution as a useful tool because it 

enables an algorithm to squeeze more 
information out of each ambiguous, local 
feature. By connecting the Bingham dis-
tribution to the classical least-squares 
alignment problem, the researchers were 
easily able to fuse information from both 
position and orientation information into 
a principled, Bayesian alignment system 
that they called the Bingham procrus-
tean alignment.

In his research, Glover used a Micro-
soft Kinect camera to identify locations in 
an image where color or depth values 
change abruptly—likely object edge loca-
tions. The work was then narrowed down 
to taking two sets of points—the model 
and the object—and determining whether 
one could be superimposed on the other. 

Most algorithms, including Glover’s, 
will make an initial immediate attempt at 
aligning the points. If both sets of points 
really do describe the same object, they 
can be quickly aligned by rotating one of 
them around the right axis. For any given 
pair of points—from the model and the 
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[fig1] as an Mit graduate student, 
Jared glover developed a new robot 
vision algorithm based on the Bingham 
distribution. (photo courtesy of Jared 
glover.)
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object—one can effectively determine the 
probability that rotating one point by a 
particular angle around a particular axis 
will align it with the other. The challenge 
is that the same rotation might also move 
other pairs of points farther away from 
each other. Glover, in his research, showed 
that the rotation probabilities for any 
given pair of points can be described as a 
Bingham distribution, which can then be 
merged into a single, comprehensive 
Bingham distribution.

Getting noise under control proved to 
be one of the researcher’s major challenges 
“If you have noise, say, noisy estimates on 
the object’s depth, and, if that noise is dif-
ferent from the first time you saw it to the 
second time you saw the object—because 
you see it from a different view or under 
different lighting—then the system might 
not have an accurate model for the noise, 
and so it will get confused,” he says.

Nonetheless, in experiments using 
visual data about particularly cluttered 
scenes, the algorithm identified 73% of the 
objects in a given scene, compared to 64% 
from the best existing algorithm. With fur-
ther research and sources of information, 
Glover believes the algorithm’s perfor-
mance can be improved even more.

“Besides increasing accuracy and 
robustness, the biggest challenge is rela-
tionship understanding,” he explains. “If a 

robot can understand, for example, that 
the bowls are on top of each other, or 
things are touching each other in a cer-
tain way, or wrapped around each other, 

that’s the kind of information that is going 
to be necessary for it to manipulate 
objects in the real world.”

identifying faCeS in the Crowd
Multicamera, multiobject tracking has 
been an area of intense research for over a 
decade. Yet few automated techniques 
have been tested on objects located out-
side of well-controlled lab environments. 
To make tracking technology more useful 
in a potentially wide range of commercial 
and civic applications, researchers at 
Carnegie Mellon University recently 
developed an algorithm designed to track 
the locations of multiple individuals in 

complex, indoor settings via a network of 
video cameras.

Alexander Hauptmann (Figure 2), prin-
cipal systems scientist in the Carnegie Mel-
lon Computer Science Department, notes 
that developing an effective motion track-
ing system required overcoming a number 
of challenges. Something as apparently 
simple as tracking a person based on the 
color of the clothing worn proved to be 
frustratingly difficult because the apparel 
color can appear different to cameras in 
assorted locations due to lighting varia-
tions. Likewise, a camera’s view of an indi-
vidual can be blocked by people passing in 
hallways, by furniture or other stationary 
objects, or when someone enters a room 
or other area not covered by cameras. All 
of these situations, and others, make it 
necessary for individuals to be regularly 
reidentified by the system.

Hauptmann’s research team developed 
mathematical models that let them com-
bine critical information, such as appear-
ance, facial recognition, and motion 
trajectories. Using all of this information 
is key to successful tracking, Hauptmann 
says, but facial recognition provided the 
greatest help. “The core tracking was a 
particle filter tracker, based on appear-
ance,” Hauptman remarks. When the 
researchers removed facial recognition 
data from the tracking, accuracy col-
lapsed from 88% to 58%, not significantly 
better than existing tracking algorithms.

“The idea of particle filter tracking is 
that you don’t commit to any one thing, 
so what you’re tracking could be anywhere 
in the space, yet it’s more likely to be here 
and less likely to be there,” Hauptmann 
says. “So you always have these distribu-
tions of possible places for each particle 
that you’re tracking and in the end you 
find that, overall, this is the most likely 
place for a particular person,” he adds.

The algorithm’s input consists of a set 
of person detection results at each time 
instant. “The person detection results from 
different camera views mapped to a com-
mon 3-D coordinate system using camera 
calibration and ground plane parameters 
provided,” Hauptman says. Each person 
detection result is described by a color his-
togram. “Our algorithm’s main task is to 
predict a label for each result,” Hauptmann 
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[fig2] alexander hauptmann, principal systems scientist in the Carnegie Mellon 
Computer Science department (right), and a student view motion-tracking system 
images. (photo courtesy of Carnegie Mellon university.)
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explains. “To perform the prediction task, 
our algorithm incorporates two main 
innovative components, which are mani-
fold learning in appearance space, with 
spatiotemporal constraints, and trajectory 
inference by nonnegative discretization.

The algorithm was able to automati-
cally follow 13 individuals within a nurs-
ing home, with the residents’ consent, 
despite the fact that people occasionally 
moved out of camera range. The research-
ers used 6 min of footage recorded by 15 
cameras in a nursing home in 2005 to 
develop the algorithms and test the sys-
tem. The team took advantage of multiple 
cues within the video, including trajec-
tory, clothing color, person detection, and, 
most critically, facial recognition. “We 
thought it would be easy,” Hauptmann 
said of multicamera tracking, “but it 
turned out to be incredibly challenging.” 

After working on the project for nearly 
a decade, Hauptmann notes that a series of 
relatively small technology and technique 
advancements can have as big an impact 
in an area like object tracking as a major 
breakthrough. “There’s a big disconnect in 
computer vision between things that are 
published and things that work,” he says. 
“What tends to get published are really 
novel ways of thinking about it—novel 
theories and novel algorithms.”

But real life isn’t quite that simple. 
Camera angle, for instance, can make a big 
difference in results. “Most research is 
done in a lab with a good camera position, 
so if a person eating is directly facing the 
camera, you’ve got high enough resolution 
to see their mouth moving, track points 
around the corners of their mouth and so 
on,” Hauptmann says. “This approach is 
really impressive in that sort of laboratory 
situation, but when you take it into the 
real world it’s a different story, and that’s 
why this project took us so long.”

After years of hard work, Hauptmann 
regards the project as a success. “Our 
algorithm exhibited the robust localiza-
tion and tracking of persons-of-interest 
not only in outdoor scenes, but also in a 
complex indoor real-world nursing 
home environment,” he says.

Hauptmann acknowledges, however, 
that the algorithm still has some limita-
tions. “Our objective function does not 

have a spatial locality constraint on a tra-
jectory,” he says. “Therefore, our algorithm 
is not effective in very crowded sequences 
where each person wears the same color 
clothes.” Another challenge is that optimi-
zation converging to a severe local optima, 
making initialization crucial. “Bad initial-
ization may cause the performance to 
degrade,” Hauptmann says.

While real-world deployment of the 
technology is still years away, Hauptman 
sees identification applications in venues 
beyond nursing homes, ranging from 
casinos to prisons. “We’re still improving 
the accuracy,” he says. “We’re trying to 
get it so that we can easily apply it to 
other places.”

Speedy CeLL Sorting
Machine vision can also be used to rec-
ognize and differentiate objects as small 
as a biological cell. Researchers at the 
University of California, San Diego 
(UCSD), say that with the assistance of 
computer vision and hardware optimiza-
tion they are now able to analyze and 
sort cells up to 38 times faster than with 
previous methods.

The approach, based on research origi-
nated at the University of California, Los 
Angeles (UCLA), improves imaging flow 
cytometry, a technique that uses a micro-
scope-mounted camera to capture the 
morphological features of up to thousands 
of cells per second. The technology sorts 
cells into different categories, such as 
benign or malignant cells, based on their 
shape and structure. “The idea is, can we, at 
50,000 frames per second, accurately iden-
tify each cell?” says Ryan Kastner, a UCSD 
professor of computer science (Figure 3).

Algorithms currently used take any-
where from 10 s to 0.4 s to analyze a single 
frame, making imaging flow cytometry  
far too slow for routine clinical use. The re-
searchers’ new approach promises to speed 
processing rates up to between 11.94 ms 
and 151.7 ms, depending on the hardware 
used. For enhanced performance, the 
team created a custom field-gate program-
mable array (FPGA). Low-range perfor-
mance results, still significantly faster 
than currently achievable rates, were ob-
tained by using an off-the-shelf graphics 
processing unit (GPU).

Four stages are necessary to perform 
the morphological analysis necessary for 
high-speed cell sorting: Blob Search, 
Image Interpolation and Adjustment, Find 
Center, and Coordinate Conversion/Radius 
Extraction. “Each module had to be care-
fully designed to achieve our performance 
targets,” Kastner says. Yet reaching for 
maximum speed also required making 
some tradeoffs. “For example, at the end 
of the process, histogram equalization 
works better than image adjustment for 
contrast enhancement,” Kastner explains. 
“Histogram equalization requires more 
complex processing leading to a lower 
throughput. Therefore, we sacrificed qual-
ity for performance.”

The Blob Search module analyzes the 
images to detect the cell’s area. The 
module then transforms the mono-
chrome cell image into a binary digital 
image (only the pixels representing the 
cell are highlighted). The module then 
creates a histogram and crops a 20 # 20 
pixel image around the cell.

To improve the fidelity of the analysis, 
the selected cell area from the Blob 
Search module is resized by a factor of 
ten. The Interpolation step also generates 
a higher contrast image by linearly 
adjusting the brightness level. The resized 
200 # 200 image is input to the Find 

[fig3] ryan Kastner, a uCSd professor 
of computer science, leads a project 
aimed at speeding cell analysis and 
sorting. (photo courtesy of uCSd.)
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Center module. The outputs of this mod-
ule are two images, the initial image inter-
polated and the linearly adjusted image 
after interpolation.

The Find Center module attempts to 
more accurately locate the cell’s center. It 
finds the center of the cell by converting 
input images into binary image and count-
ing the number of nonzero pixels in each 
row and column. The module processes 
the two output images from the Interpola-
tion module and averages both to identify 
the center point. This is done to improve 
accuracy as specular noise can affect the 
results of either in-put. The Find Center 
module transforms these images into 
binary images by adaptively thresholding 
at different intensity values to separate the 
inner cell area and cell wall.

At the last stage, the system determines 
morphological properties of the cell using 
the interpolated image and its correspond-
ing center point. It converts the resized 
image from Cartesian coordinates into 

polar coordinates. The darkest pixels found 
on a line from the cell center at each angle 
are considered the cell wall.

The researchers found that they 
obtained significantly faster performance 
with the FPGA than with GPU. The 
result didn’t come as a total surprise, 
since FPGAs, unlike GPUs, can be cus-
tom-tailored to match the algorithm. 

While designing the FPGA the 
researchers carefully studied each step 
and made changes designed to enhance 
efficiency and performance. Kastner 
notes that when mapping to custom 
hardware, it’s important to balance algo-
rithm complexity against result accu-
racy. “Algorithms incorporating a large 
number of decisions points, or that have 
to make multiple passes over the data, 
can lead to a slow and inefficient FPGA,” 
he says. 

Still, when correctly implemented, an 
FPGA can be used to perform operations 
at stunning speeds (the UCSD algorithm 

needs fewer than 500 μs to detect a cell 
and calculate its radius).

The researchers’ ultimate goal is to 
analyze cell properties in real time and 
then use the information to accurately sort 
the cells. To achieve this capability, the 
sorting decision must be made in fewer 
than 10 ms. With the new approach prom-
ising sorting rates as low as 11.94 ms that 
target is now tantalizingly close. 

Kastner is optimistic that the new tech-
nology will eventually be used in wide range 
of clinical applications. “This has to poten-
tial to lead to numerous breakthroughs,” he 
says. “We are collaborating with UCLA and 
their industrial partners to commercialize 
the technology.”

AUTHOR
John Edwards (jedwards@johnedwards 
media.com) is a technology writer based in 
the Phoenix, Arizona, area.

 [SP]

[special RepoRts] (continued from page 11)


