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ABSTRACT
We present RIFFA 2.0, a reusable integration framework

for FPGA accelerators. RIFFA 2.0 provides communication

and synchronization for FPGA accelerated applications us-

ing simple interfaces for hardware and software. Our goal is

to expand the use of FPGAs as an acceleration platform by

releasing, as open source, a framework that easily integrates

software running on commodity CPUs with FPGA cores.

RIFFA 2.0 uses PCIe to connect FPGAs to a CPU’s system

bus. RIFFA 2.0 extends the original RIFFA project by sup-

porting more classes of Xilinx FPGAs, multiple FPGAs in

a system, more PCIe link configurations, higher bandwidth,

and Linux and Windows operating systems. This release

also supports C/C++, Java, and Python bindings. Tests show

that data transfers between hardware and software can satu-

rate the PCIe link to achieve the highest bandwidth possible.

1. INTRODUCTION

FPGAs and GPUs have become popular parallel computing

platforms for application acceleration. Both have been suc-

cessfully applied to accelerate numerous vision [1], physics

[2], and other compute intensive applications [3]. They are

even used in heterogenous computing environments for high

performance computing [4]. Both hardware devices are ca-

pable of running highly parallel operations faster than their

CPU counterparts. However, many differences exist between

the hardware platforms. The focus of this paper is on the dif-

ference we feel is most critical to FPGAs continued success

in application acceleration; the ability for FPGAs to easily

integrate with the CPU workstation environment.

Workstation CPUs are still the dominate platform for

most compute intensive applications. They are easy to pro-

gram, offer considerable memory, many processing cores,

and support countless software libraries. GPUs are inher-

ently part of this environment as their primary purpose is

to accelerate video rendering. The advent of OpenCL and

NVIDIA’s CUDA language and tool chains has made GPUs

even easier to access for the purposes of general application

acceleration. The literature shows a surge of applications

accelerated by GPUs since these developments. In contrast,

FPGAs have not seen as much developments in accessibility.

FPGAs are flexible enough to emulate custom circuit de-

signs and connect to virtually any device. However, this

flexibility also makes it challenging to connect to virtually

any device. The protocol standards that make other devices

easily interoperable must be included in the FPGA’s user de-

sign in order for it to interface with external devices. This

can be a large obstacle to overcome for application design-

ers. In many cases, implementing the interface logic can

match or exceed the effort required for implementing the

application logic. As a result, many if not most, FPGA uses

involve standalone designs.

This is the motivation that led to the development of

RIFFA [5]. RIFFA 2.0 is a reusable interface for FPGA ac-

celerators. Like the original release, RIFFA 2.0 is an open

source framework that provides a simple to use interface for

software and hardware. It implements the PCIe protocol on

both endpoints so that designers can focus on implementing

application logic instead of basic connectivity interfaces.

In the sections that follow, we discuss previous work and

existing solutions. We also present a detailed description of

the RIFFA 2.0 design, example uses, and an analysis of the

architecture and performance. This paper’s chief contribu-

tions are:

• An open source, reusable, integration framework for

multi-family FPGAs and workstations.

• An improved hardware and software interface, higher

bandwidth, and multi-FPGA support.

• Detailed design for PCIe based DMA bus mastering.

2. RELATED WORK

RIFFA is not the first attempt to integrate FPGAs into tra-

ditional software environments. Many research applications

exist that solve this problem. However, these solutions are

typically highly customized and do not port well to other

projects without considerable rework.
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Industry offers many solutions for this situation. Im-

pulse Accelerated Technologies, Pico Computing, Convey,

Maxeler, and Xillybus all offer products that connect soft-

ware to FPGAs via a proprietary interface. Their solutions

come with software, cores, and some include their own lan-

guages, development environments, and tool chains. Many

of these solutions exist to drive the purchase of the vendor’s

goods and services. They are not open source solutions. Nor

do they allow users to use their solutions with off-the-shelf

components. Moreover, they can be quite expensive. Espe-

cially compared to the price of commodity hardware.

There are freely available solutions such as OpenCPI

[6] and Microsoft Research’s SIRC [7]. OpenCPI is the

Open Component Portability Infrastructure project designed

to simplify heterogeneous computing. It supports CPUs,

DSPs, FPGAs, and other real time embedded devices. As

a consequence of this broad support, the setup and configu-

ration of OpenCPI can be challenging. The interface is also

overly complex for what is needed for FPGA connectivity.

SIRC, a Simple Interface for Reconfigurable Computing, is

a Microsoft Research project designed to connect C++ ap-

plications to FPGA cores. It is also an open source solution

and has been an inspiration for RIFFA. But while SIRC is

free, it is only supported on Windows. It also uses a Gigabit

Ethernet connection which limits the bandwidth between the

host computer and the FPGA. RIFFA uses a PCIe link which

offers more scalable performance and is better suited to inte-

grate into workstation, supercomputing, and other high per-

formance computing environments.

Lastly, there are a multitude of FPGA designs that in-

clude integrated CPUs. There are also approaches to sim-

plify and allow applications to make better use of FPGA

cores such as: Hthreads [8], HybridOS [9] and BORPH

[10]. However these solutions utilize custom operating sys-

tem kernels and often only support CPUs running on the

FPGA fabric.

3. DESIGN

RIFFA 2.0 is based on the concept of communication chan-
nels between software threads on the CPU and user cores on

the FPGA. A channel is similar to a network socket in that

it must first be opened, can be read and written, and then

closed. However, unlike a network socket, reads and writes

can happen simultaneously (if using two threads). Addition-

ally, all writes must declare a length so the receiving side

knows how much to expect. Each channel is independent

and thread safe. RIFFA 2.0 supports up to 12 channels. Up

to 12 different user cores can be accessed directly by soft-

ware threads on the CPU. Designs with more than 12 cores

can share channels.

Before a channel can be accessed, the FPGA must be

opened. RIFFA 2.0 supports multiple FPGAs per system (up

to 5). Each is assigned an identifier on system start up. Once

opened, all channels on that FPGA can be accessed without

any further initialization. Data is read and written directly

from and to the channel interface. On the FPGA side, this

manifests as a first word fall through (FWFT) style FIFO

interface for each direction. On the software side, function

calls support sending and receiving data with byte arrays.

Memory/IO requests and software interrupts are used

to communicate between the workstation and FPGA. The

FPGA exports a configuration space accessible from an op-

erating system device driver. The device driver accesses this

address space when prompted by user application function

calls or when it receives an interrupt from the FPGA. This

model supports low latency communication in both direc-

tions. However, only status and control data is sent using

this model. Data transfer is accomplished with large pay-

load PCIe transactions issued by the FPGA. The FPGA acts

as a bus master DMA engine for both upstream and down-

stream transfers. In this way multiple FPGAs can operate

simultaneously in the same workstation with minimal sys-

tem load.

The details of the PCIe protocol, device driver, DMA

operation, and all hardware addressing are hidden from both

the software and hardware. This means some level of flexi-

bility is lost. For example, users cannot setup custom PCIe

base address register (BAR) address spaces and map them

directly to a user core. Nor can they implement quality

Function Name & Descramblertion

int fpga_list(fpga_info_list * list)
Populates the fpga_info_list pointer with info on all

FPGAs installed in the system.

fpga_t * fpga_open(int id)
Initializes the FPGA specified by id. Returns a pointer to a

fpga_t struct or NULL.
void fpga_close(fpga_t * fpga)
Cleans up memory and resources for the specified FPGA.

int fpga_send(fpga_t * fpga, int chnl,
void * data, int len, int offset, int last
long timeout)

Sends len 4-byte words from data to FPGA channel chnl.
The FPGA channel will be sent len, offset, and last.
timeout defines how long to wait for the transfer. Returns

the number of 4-byte words sent.

int fpga_recv(fpga_t * fpga, int chnl,
void * data, int len, long timeout)

Receives up to len 4-byte words from the FPGA channel

chnl to the data buffer. The FPGA will specify an offset

for where in data to start storing received values. timeout
defines how long to wait for the transfer. Returns the number

of 4-byte words received.

void fpga_reset(fpga_t * fpga)
Resets the FPGA and all transfers across all channels.

Table 1. RIFFA 2.0 software (C/C++) interface.



of service policies for channels or PCIe transaction types.

However, we feel any loss is more than offset by the ease of

programming and design.

To facilitate ease of use, RIFFA 2.0 has software bind-

ings for C/C++, Java 1.4+, and Python 2.7+. Both Windows

and Linux platforms are supported. RIFFA 2.0’s cores sup-

port Xilinx Spartan 6, Virtex 6, and 7 Series FPGAs with

data bus widths of 32, 64, and 128. All PCIe Gen 1 and Gen

2 configurations up to x8 lanes are supported.

In the next sections we describe the software interface,

followed by the hardware interface.

3.1. Software Interface

The interface for the original RIFFA release attempted to

impose a call-and-return style execution paradigm for user

cores. RIFFA 2.0 does not impose such a model. As a result,

the interface on the software side supports just a few func-

tions. The complete RIFFA 2.0 software interface is listed

in Table 1 (for the C/C++ languages). We omit the Java and

Python intefaces for brevity.

There are four primary functions in the API: open, close,

send, and receive. The API supports accessing individual

FPGAs and individual channels on each FPGA. There is also

a function to list the RIFFA 2.0 capable FPGAs installed on

the system. A reset function is provided that programmat-

ically triggers the FPGA channel reset signal. This func-

tion can be useful when developing and debugging the soft-

ware application. If installed with debug flags turned on,

the RIFFA 2.0 library and device driver provide useful mes-

sages about transfer events. The messages will print to the

operating system’s kernel log.

There is only one function to send data and one to re-

ceive data. This is the basic functionality and is intention-

ally kept as simple as possible. These function calls are syn-

chronous and block until the transfer has completed. Both

take byte arrays as parameters. The byte arrays contain the

data to send or serve as the receptacle for receiving data.

In these functions, the offset parameter is used to specify

where in the byte array to start storing data. The last pa-

rameter is used to group multiple transfers. Multiple trans-

fers may be useful when the FPGA does not have sufficient

memory to store all of a computation result. Multiple partial

transfers can be issued (with increasing offsets for example)

with the last parameter set to 0. The software thread won’t

unblock until last is set to 1, which would be set on the

final transfer. FPGA cores must be written to honor these

uses of the offset and last parameters to achieve the same

behavior in the downstream direction. Lastly, the timeout

parameter specifies how many milliseconds to wait between

communications during a transfer. Setting this value will de-

pend on the timing with which the user core presents data to

the channel. Setting a zero timeout value causes the software

thread to wait for completion indefinitely.

char buf[BUF_SIZE];
int chnl = 0;
long t = 0; // Timeout
fpga_t * fpga = fpga_open(0);
int r = read_data("filename", buf, BUF_SIZE);
printf("Read %d bytes from file", r);
int s = fpga_send(fpga, chnl, buf, BUF_SIZE/4,

0, 1, t);
printf("Sent %d words to FPGA", s);
r = fpga_recv(fpga, chnl, buf, BUF_SIZE/4, t);
printf("Received %d words from FPGA", r);
// Process results ...
fpga_close(fpga);

Fig. 1. RIFFA 2.0 software example in C.

Figure 1 shows an example C application. In this exam-

ple, the software reads data into a buffer, sends the data as

payload to the FPGA, and then waits for a response. The

response is stored back into the same buffer and then pro-

cessed. This example may be trivial, but it represents the

canonical use case.

3.2. Hardware Interface

The interface on the hardware side is composed of two sets

of signals; one for receiving data and one for sending data.

These signals are listed in Table 2. The ports highlighted in

red are used for handshaking. Those not highlighted are the

FIFO ports which provide first word fall through semantics.

The value of DWIDTH is: 32, 64, or 128, depending on the

PCIe link configuration.

For upstream transactions, CHNL_TX must be set high.

It must be held high until the channel pulses CHNL_TX_ACK

high and all the transaction data is consumed. CHNL_TX_LEN,

CHNL_TX_OFF, and CHNL_TX_LASTmust have valid values un-

til the CHNL_TX_ACK is pulsed. The CHNL_TX_DATA_OFF value

determines where data will start being written in the thread’s

receiving byte array. This is measured in 4-byte words. As

described in the Section 3.1, CHNL_TX_LAST must be 1 for

the receiver thread to unblock at the end of the transfer. Data

values asserted on CHNL_TX_DATA are consumed when both

CHNL_TX_DATA_VALID and CHNL_TX_DATA_REN are high.

The handshaking ports are symmetric for both sets of

signals. Thus, with downstream transactions, the user core

must acknowledge the transaction and consume data from

the interface. Timing diagrams for these signals are avail-

able on the RIFFA 2.0 website:

http://cseweb.ucsd.edu/~mdjacobs.

Figure 2 shows a Verilog example matching the C ex-

ample code from Figure 1. In this example, the user core

receives data from the software thread, counts the number

4-byte words received, and then returns the count.



Signal Name I/O Description

CHNL_RX_CLK O Clock to read data from the incoming FIFO.

CHNL_RX I High signals incoming data transaction. Stays high until all data is in the FIFO.

CHNL_RX_ACK O Pulse high to acknowledge the incoming data transaction.

CHNL_RX_LAST I High signals this is the last receive transaction in a sequence.

CHNL_RX_LEN[31:0] I Length of receive transaction in 4-byte words.

CHNL_RX_OFF[30:0] I Offset in 4-byte words of where to start storing received data.

CHNL_RX_DATA[DWIDTH-1:0] I FIFO data port.

CHNL_RX_DATA_VALID I High if the data on CHNL_RX_DATA is valid.

CHNL_RX_DATA_REN O Pulse high to consume value from on CHNL_RX_DATA.

CHNL_TX_CLK O Clock to write data to the outgoing FIFO.

CHNL_TX O High signals outgoing data transaction. Keep high until all data is consumed.

CHNL_TX_ACK I Pulsed high to acknowledge the outgoing data transaction.

CHNL_TX_LAST O High signals this is the last send transaction in a sequence.

CHNL_TX_LEN[31:0] O Length of send transaction in 4-byte words.

CHNL_TX_OFF[30:0] O Offset in 4-byte words of where to start storing sent data in the CPU thread’s receive buffer.

CHNL_TX_DATA[DWIDTH-1:0] O FIFO data port.

CHNL_TX_DATA_VALID O High if the data on CHNL_TX_DATA is valid.

CHNL_TX_DATA_REN I High when the value on CHNL_TX_DATA is consumed.

Table 2. RIFFA 2.0 hardware interface.

3.3. Changes from RIFFA 1.0

RIFFA 2.0 is a complete rewrite of the original release. It

supports Xilinx Spartan 6, Virtex 6, and 7 Series FPGAs

parameter INC = DWIDTH/32;
assign CHNL_RX_ACK = (state == 1);
assign CHNL_RX_DATA_REN=(state==2||state==3);
assign CHNL_TX = (state == 4 || state == 5);
assign CHNL_TX_LAST = 1;
assign CHNL_TX_LEN = 1;
assign CHNL_TX_OFF = 0;
assign CHNL_TX_DATA = count;
assign CHNL_TX_DATA_VALID = (state == 5);
wire data_read =
(CHNL_RX_DATA_VALID & CHNL_RX_DATA_REN);

always @ (posedge CLK)
case(state)
0: state <= (CHNL_RX ? 1:0);
1: state <= 2;
2: state <= (!CHNL_RX ? 3:2);
3: state <= (!CHNL_RX_DATA_VALID ? 4:3);
4: state <= (CHNL_TX_ACK ? 5:4);
5: state <= (CHNL_TX_DATA_REN ? 0:5);
endcase

always @ (posedge CLK)
if (state == 0)
count <= 0;

else
count <= (data_read ? count+INC:count);

Fig. 2. RIFFA 2.0 hardware example in Verilog.

with all PCIe Gen 1 and Gen 2 link configurations up to

x8 lanes. The original release is supported on only the Xil-

inx Virtex 5. RIFFA 1.0 also requires the use of a Xilinx

PCIe PLB Bridge core, which has been deprecated. This

dependency limits RIFFA 1.0 to x1 lane PCIe Gen 1 config-

urations. Additionally, due to bus protocol interactions with

the PCIe PLB Bridge core, the maximum throughput for up-

stream and downstream transfers is 181 MB/s and 25 MB/s

respectively.

RIFFA 1.0 requires users to setup and use Processor Lo-

cal Bus (PLB) addressing to transfer data. The hardware

interface exposes a set of DMA request signals that must

be managed by the user core. RIFFA 2.0 exposes no bus

addressing or DMA transfer request in the interface. Data is

read and written directly from and to FWFT FIFO interfaces

on the hardware end. On the software end, data is read and

written from and to byte arrays. The software interface has

also been significantly simplified.

RIFFA 1.0 supports only a single FPGA per system with

C/C++ bindings for Linux. Version 2.0 supports up to 5 FP-

GAs that can all be addressed simultaneously from differ-

ent threads. Moreover, version 2.0 has bindings for C/C++,

Java 1.4+, and Python 2.7+ on Linux and Windows. Lastly,

RIFFA 2.0 is capable of saturating the PCIe link for up-

stream and downstream transfers. RIFFA 1.0 is not able to

achieve more than 73% utilization in the upstream direction

or more than 10% in the downstream direction.

4. ARCHITECTURE

On the FPGA, the RIFFA 2.0 architecture is a bus master

DMA design connected to a Xilinx Integrated Block for PCI
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Fig. 3. RIFFA 2.0 architecture.

Express (Xilinx PCIe Endpoint) core. The Xilinx PCIe End-

point core drives the gigabit transceivers and exposes the

PCIe protocol on an AXI bus interface. The AXI bus must

be driven using PCIe formatted data packets. The RIFFA

2.0 Endpoint core drives this interface and exposes channels

with the RIFFA 2.0 hardware interface for user cores (de-

scribed in Section 3.2). The RIFFA 2.0 Endpoint is driven

by the interface clock; a clock derived from the PCIe ref-

erence clock. This clock runs fast enough to saturate the

PCIe link. User cores do not need to use this clock for their

CHNL_TX_CLK or CHNL_RX_CLK. Any clock can be used by the

user core.

User cores interface with RIFFA 2.0 via a Channel core.

The Channel core is written to handle asynchronous clock

domains. It has FIFOs for receiving and sending data re-

spectively. To avoid stalling the PCIe link, downstream re-

quests are only made when sufficient space is available in

the receive FIFO (RX). Similarly, PCIe upstream transmis-

sion is not initiated until sufficient data exists in the sending

FIFO (TX).

The RX Engine core is responsible for extracting and

demultiplexing received PCIe payload data. The TX Engine

core is responsible for formatting payload data into PCIe

packets and multiplexing access to the PCIe link. Channel

requests are processed in the order they are made. Ties are

broken by channel number. This policy prevents any one

channel from monopolizing the PCIe link.

The PCIe link configuration determines the width of the

data bus. This width can be 32, 64, or 128 bits wide. RIFFA

2.0 supports all three configurations by instantiating differ-

ent cores for each width. In simpler designs this might just

be a parameter to the HDL module. But different bus widths

require different logic when extracting and formatting PCIe

data. For example, on the 32 bit interface, header packets

can be generated one 4-byte word per cycle. Only one 4-

byte word can be sent per cycle. However on the 128 bit in-

terface, a single cycle might require formatting three header

packets and the first 32 bits of payload. This represents a

difference in logic, not just bus width.

On the workstation, the RIFFA 2.0 architecture is a com-

bination of a kernel device driver and a set of language bind-

ings. The device driver is installed into the operating system

and is loaded at system startup. It handles registering all de-

tected FPGAs configured with RIFFA 2.0 cores. Once reg-

istered, a set of memory buffers are pre-allocated from ker-

nel memory. These buffers will temporarily store data when

transferring between the workstation and FPGA. They are

allocated so as to be accessible via PCIe. This is sometimes

referred to as bounce buffers or a DMA ring. Each buffer is

4 MB in size and the number of buffers allocated depends

on how many channels are configured on the FPGAs.

A user library provides language bindings for user appli-

cations to be able to call into the driver. The user library ex-

poses the software interface described in Section 3.1. When

an application makes a call into the user library, the thread

enters the kernel driver and moves data between the pre-

allocated buffers. This is accomplished through the ioctl

function on Linux and with DeviceIoControl on Windows.

At runtime, a custom protocol is used between the ker-

nel driver and the Endpoint core. It communicates transfer

events such as: when a new transfer is initiated, when a new

buffer is needed, or when a buffer is no longer needed. To

reduce latency, the protocol uses as few memory/IO PCIe

transactions as possible. For example, only three memo-

ry/IO writes are needed to to start a downstream transaction.

Fig. 4. Downstream transfer sequence diagram.



Fig. 5. Upstream transfer sequence diagram.

The Endpoint core sends status information to the work-

station using an interrupt. Interrupts spur the driver to read

an interrupt vector from the mapped BAR configuration space

in the Endpoint. The vector contains events for all chan-

nels on the FPGA. Event specifics such as lengths or offsets

are read from the Endpoint configuration space in separate

memory/IO requests.

The workstation sends status information by writing di-

rectly to the Endpoint’s configuration space. This can trig-

ger the Endpoint to start transferring data. Data transfer is

accomplished using large payload PCIe transactions to max-

imize throughput. Once a transfer starts, the only commu-

nication between the driver and Endpoint is to request new

buffers or release used buffers. Both the driver and the End-

point keep track of how much data is to be transferred so

that both are immediately aware of when the transfer ends.

4.1. Data Transfers

A sequence diagram for a downstream transfer is shown in

Figure 4. The user application calls the user library func-

tion fpga_send. The thread enters the kernel driver and ac-

quires a pre-allocated buffer to use as a temporary store for

the user data. On the diagram, the user library and device

driver are represented by the single node labeled "RIFFA

Library". Once a buffer is acquired, data is copied into the

buffer so it can be accessed by the Endpoint core. A write

to the Endpoint configuration space triggers a new down-

stream transfer. The write contains the len, offset, and

last parameters as well as the address of the kernel buffer

containing the data.

Data is read from the buffer into the channel over nu-

merous PCIe transaction layer packets (TLPs). If the data

size exceeds a single buffer, the Endpoint core will signal to

the driver that it is ready for the next buffer. The driver will

acquire another buffer, copy data into the new buffer, and

respond with the new buffer address. To improve transfer

performance, the Endpoint core will request the next buffer

as soon as it recognizes it will need it. This allows the trans-

fer of data in the current buffer to overlap with the filling of

the next buffer. This process continues until all the data has

been transferred. The release of the last buffer by the End-

point core signals the end of the transfer to the driver. The

driver then frees the last buffer and unblocks the user thread.

A similar sequence takes place for upstream transfers.

See Figure 5. The key differences are that the Endpoint core

writes data to the kernel buffers and the driver copies the

data into the user provided byte array. Additionally, the

user core, not the software thread, is the initiator of up-

stream transfers. This means that data transfer can begin

before the user application calls fpga_recv. When this hap-

pens, the driver will use buffers to store received data un-

til it runs out of buffers or until the user application calls

fpga_recv. Once the thread enters the driver, data from the

kernel buffers can be copied into the user provided byte ar-

ray.

Lastly, although the sequence diagrams in Figures 4 and

5 use the term "allocate buffer", no runtime allocation takes

place. Kernel buffers are pre-allocated at system start up to

avoid delays from dynamic memory allocation. The term is

meant to describe the allocation of buffers from the pool.

5. PERFORMANCE

We have tested RIFFA 2.0 on three different FPGA develop-

ment boards with the following configurations.

• AVNet Spartan 6 LX150T

PCIe x1 Gen 1 link, 32 bit wide data path, 62.5 MHz

• Xilinx ML605 with a Virtex 6 LX240T

PCIe x8 Gen 1 link, 64 bit wide data path, 250 MHz

• Xilinx VC707 with a Virtex 7 VX485T

PCIe x8 Gen 2 link, 128 bit wide data path, 250 MHz

RIFFA 2.0 has been installed on Linux kernels 2.6 and

3.1, as well as on Microsoft Windows 7. Our experiments

were run on a Linux workstation with quad 3.6 GHz Intel i7

cores using a 12 channel RIFFA 2.0 FPGA design. The user

core on each channel was functionally similar to the module

in Figure 2. The software was operationally similar to the

example listed in Figure 1.

Latency times of key operations are listed in Table 3.

Latencies were measured using cycles counted on the FPGA

and are the same across all tested boards and configurations.

The interrupt latency is the time from the FPGA signaling



of an interrupt until the device driver receives it. The read

latency measures the round trip time of a request from the

driver to the Endpoint core, and back. The time to resume

a user thread after it has been woken by an interrupt is the

only value that stands out. At 10.4 μs it is the longest delay

and is wholly dependent on the operating system.

Bandwidths for downstream data transfers are shown in

Figure 6. The figure shows the bandwidth achieved as the

transfer size varies for the three PCIe link configurations.

The solid horizontal bars mark the difference between the

theoretical maximum for the PCIe link and the maximum

achievable bandwidth. PCIe Gen 1 and 2 employ 8 bit/10

bit encoding. This limits the maximum bandwidth achiev-

able to 80% of the theoretical maximum. Our experiments

show that we are able to achieve this 80% maximum with

sufficiently large transfers on the 32 bit and 64 bit interfaces.

The 128 bit interface peaks at 76% utilization.

In Figure 6 you may notice the dip in bandwidths at the

4, 32, and 64 KB transfer sizes for the 32 bit, 64 bit, and 128

bit interfaces respectively. This corresponds to the receive

buffer sizes in the Xilinx PCIe Endpoint cores. Looking at

the 64 bit interface, we see that bandwidth actually decreases

when going from 16 KB transfers to 32 KB transfers. The

Xilinx PCIe Endpoint core for the Virtex 6 64 bit interface

has a 16 KB receive buffer. Transfers smaller than or equal

to 16 KB can actually perform better than transfers with pay-

loads just over 16 KB because there is always buffer space

available at the smaller transfer sizes. This artifact becomes

negliable when moving larger amounts of data.

The bandwidth figure also shows a slight jump at the 4

MB transfer size for both the 64 bit and 128 bit interfaces

(the 32 bit interface is already saturated). This is due to the

size of the RIFFA 2.0 kernel buffer being 4 MB. Transfers

larger than 4 MB require more than one kernel buffer to hold

the data. The time to copy the first 4 MB is seen in the

bandwidth curves. However, requests for subsequent 4 MB

chunks overlap with the transfer of data from the previous

chunk. Thus the copy latency is hidden after the first kernel

buffer and bandwidth improves.

While not shown on Figure 6, RIFFA 1.0 was only able

to achieve 24 MB/s (10% of max) downstream bandwidth

and 181 MB/s (73% of max) upstream bandwidth. This was

one of the strongest motivators for RIFFA 2.0.

Resource utilizations for a RIFFA 2.0 Endpoint with a

single channel are listed in Table 4. The cost for each ad-

ditional channel is also listed. Resource values are from

Table 3. RIFFA 2.0 latencies.
Description Value

FPGA to host interrupt time 3 μs ± 0.06

Host read from FPGA round trip time 1.8 μs ± 0.09

Host thread wake after interrupt time 10.4 μs ± 1.16
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Fig. 6. Downstream transfer bandwidths as a function of

transfer size. Upstream bandwidths are nearly identical.

the corresponding FPGA devices and configurations listed

above. Wider data bus widths require additional resources

for storage and PCIe processing. Single channel designs use

less than 1% of the FPGA on all our devices. Even on our

most resource limited FPGA, a 12 channel design uses only

18% of the device. The utilizations listed do not include re-

sources used by the Xilinx PCIe Endpoint core. The Xilinx

core utilization can vary depending on the configuration val-

ues specified during generation. However, the configuration

with the highest resource utilization only uses 2237 Slice

Registers, 1283 Slice LUTs and 4 BRAMs.

5.1. Factors Affecting Performance

Many factors go into attaining maximum throughput. There

is enough confusion on the topic that Xilinx has published

a whitepaper [11]. The key components affecting RIFFA

2.0 performance are: transfer size, maximum payload lim-

its, completion credits and receive buffers, user core clock

frequency, and data copying.

Table 4. RIFFA 2.0 resource utilization.
RIFFA 2.0 Endpoint Slice Slice Block DSP

with 1 channel Reg LUT RAM 48e

32 bit Endpoint 1657 1814 4 0

addl. 32 bit channel 1092 1458 4 0

64 bit Endpoint 2465 2388 4 0

addl. 64 bit channel 1557 1795 4 0

128 bit Endpoint 3410 3474 8 0

addl. 128 bit channel 1870 2458 8 0



As Figure 6 clearly illustrates, sending data in smaller

transfer sizes reduces effective throughput. There is over-

head in setting up the transfer. Round trip communication

between the Endpoint core and the device driver can take

thousands of cycles. During which time, the FPGA can be

idle. It is therefore best to send data in as large a transfer size

as resources will allow to achieve maximum bandwidth.

When generating the Xilinx PCIe Endpoint core, it is

beneficial to configure the Xilinx Coregen Wizard to with

the maximum values for payload size, read request size,

completion credits, and receive buffers.

The payload size defines the maximum payload for sin-

gle upstream PCIe transaction. The read request size defines

the same for the downstream direction. At system startup,

the PCIe link will negotiate a rate that does not exceed these

values. The larger the payloads, the higher the bandwidth.

Completion credits and receive buffers are used in the

PCIe Endpoint to hold PCIe transaction headers and data.

During downstream transfers, completion credits limit the

number of in-flight requests that can be made. Receive buffer

size limits the amount of data that can be temporarily held.

RIFFA 2.0 respects these limits when issuing downstream

requests to avoid data corruption and loss. Higher limits

provide greater margins for moving data from the worksta-

tion to the user core at maximum bandwidth.

Speed of filling and draining the channel FIFOs is also a

factor. The user core can be clocked by any source. It need

not be the same clock that drives the Endpoint. However, to

keep up with the data transfer rate of the Endpoint, it is best

for the user core to use the same clock frequency as is used

by the Endpoint. Using the same clock is ideal.

Lastly, end-to-end throughput performance can be di-

minished by excessive data copying. Making a copy of a

large buffer of data in software before sending it to the FPGA

takes time and can severely impact throughput. The RIFFA

2.0 software APIs accept byte arrays as data transfer recep-

tacles. Depending on the language bindings, this may mani-

fest as a pointer, reference, or object. However, the bindings

have been designed carefully to use data types that can be

easily cast as memory address pointers and be written or

read contiguously.

6. CONCLUSION

We have presented RIFFA 2.0, a reusable integration frame-

work for FPGA accelerators. RIFFA 2.0 provides commu-

nication and synchronization for FPGA accelerated applica-

tions using simple interfaces for hardware and software. It

is an open source framework that easily integrates software

running on commodity CPUs with FPGA cores. RIFFA

2.0 extends the original RIFFA project by supporting Xil-

inx FPGA families: Spartan 6, Virtex 6, and 7 Series. It

supports multiple FPGAs in a system, all PCIe link config-

urations up to x8 for PCIe Gen 1 and 2, and considerably

higher bandwidths. It also supports Linux and Windows op-

erating systems with software bindings for C/C++, Java, and

Python. We have also provided a detailed analysis of RIFFA

2.0 as a FPGA bus master design and an analysis of its per-

formance. Tests show that data transfers between hardware

and software can saturate the PCIe link to achieve the high-

est bandwidth possible. We hope that users will use RIFFA

2.0 to further the growth of FPGA accelerated applications.

RIFFA 2.0 can be downloaded from the RIFFA website at

http://cseweb.ucsd.edu/~mdjacobs.
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