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While it has been recognized that the multipath structure of the underwater acoustic (UWA) chan-

nel offers the potential for compressed sensing (CS) sparsity exploitation, the rapidly time varying

arrivals induced by highly dynamic surfaces unfortunately pose significant difficulties to channel

estimation. From the viewpoint of underwater acoustic propagation, with the exception of the

highly time varying arrivals caused by dynamic surface, generally there exist relatively stationary

or slowly changing arrivals caused by direct path or bottom reflection, which imply the adoption of

a discriminate estimation method to handle sparse components with different time variation scale.

By modeling the time varying UWA channels as a sparse set consisting of constant and time-

varying supports, in this paper, estimation of time varying UWA channel is transformed into a

problem of dynamic compressed sensing sparse recovery. The combination of a Kalman filter and

compressed sensing is adopted to pursue the solution of it. Numerical simulations demonstrate the

superiority of the proposed algorithm. In the form of a channel-estimation-based decision-feedback

equalizer, the experimental results with the field data obtained in a shallow water acoustic commu-

nication experiment indicate that the proposed dynamic compressed sensing algorithm outperforms

classic algorithms as well as CS algorithms. VC 2018 Acoustical Society of America.
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I. INTRODUCTION

The technology of underwater acoustic communication

has drawn extensive attention from rapidly growing marine

missions such as underwater sensor network, environmental

monitoring, bottom engineering, and resource exploita-

tion.1,2 The nature of the ocean environment unfortunately

creates a complicated multi-path communication channel,

which simultaneously exhibits large delay spreads as well as

fast time variations and thus poses significant difficulties to

the estimation and equalization of the underwater acoustic

(UWA) channel.3–5 It has been well recognized by the

research community that the sparse structure of the UWA

channel—i.e., there only exist a few multipath arrivals

within the large time delay spread—can be used to improve

the estimation performance.6,7

Compressed sensing (CS) has found rapidly increasing

applications in areas of applied mathematics, computer sci-

ence, and signal processing.8 Most of the conventional com-

pression perception reconstruction algorithms are designed

to address the static sparse signal reconstruction;9–11 namely,

the coordinates and amplitudes of non-zero elements in the

signal and the measurement matrix do not change with time.

Among them, the smoothed l0-norm approach12,13 has been

popularly investigated to explore the sparse feature of multi-

path channel.

However, in the sparse estimation of time varying UWA

channel, both amplitude and delay of the arrivals experience

time variations. As a result, under the classic CS framework

the corresponding support set and measurement matrix also

exhibits dynamic change.1 Nonetheless, existing solutions

for the dynamic problem14,15 treat the entire time sequence

as a single spatiotemporal signal and perform CS to recon-

struct it. It is a batch solution (it is necessary to wait to get

the entire observation sequence), and thus suffers from a

high computational complexity.16

Another type of sparse estimation strategy performs the

thresholding operation on the channel coefficients obtained

with a classic channel estimation algorithm such as Least

Square (LS)17–19 to directly set small taps to zero. However,

the exact threshold for distinguishing the non-zero taps is

difficult to determine for the time varying channels.

Greedy methods, such as matching pursuit (MP)20 and

orthogonal matching pursuit (OMP)21 algorithms are impor-

tant sub-branches of the l1-norm CS method. While the MP

algorithm computes adaptive signal representations with a

dictionary of Gabor functions, the OMP algorithm is designed

to project the orthogonal component of the signal onto the set

of atoms selected to achieve better results.21 It is recognized

that the OMP algorithm provides similar recovery perfor-

mance but with less complexity when compared to the basis

pursuit (BP) method.22

However, the OMP algorithm is subject to performance

degradation caused by time varying sparsity, as the timea)Electronic mail: ftong@xmu.edu.cn

J. Acoust. Soc. Am. 143 (6), June 2018 VC 2018 Acoustical Society of America 39970001-4966/2018/143(6)/3997/11/$30.00

https://doi.org/10.1121/1.5042355
mailto:ftong@xmu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1121/1.5042355&domain=pdf&date_stamp=2018-06-01


variation will significantly deteriorate the correlation

between the signal vectors and the required atoms. As the

dynamic propagation phenomena such as scattering from

rough surfaces will cause diffuse multipath patterns, which

can be properly modeled by a block sparse channel instead

of a purely sparse one, the block-orthogonal matching pur-

suit (BOMP) algorithm has been proposed to address this

type of dynamic sparsity.23,24

As the Delay-Doppler spread function is capable of con-

verting the time varying sparse structure at time domain into

a more stable Delay-Doppler representation,25 channel esti-

mation approaches based on the Delay-Doppler spread func-

tion are attractive for estimating rapidly time varying

channels. Previous investigations that addressed the optimi-

zation of Delay-Doppler channel model with OMP algo-

rithm25 or basis expansion models26 have been reported.

However, as the whole channel response needs to be formu-

lated with the Delay-Doppler model, for channels with large

delay spread, this type of estimation algorithm will suffer

from huge computational complexity in order to resolve the

sparse solution over an extremely large two-dimensional

searching space. Moreover, it has been recognized that, with

the exception of highly time varying arrivals caused by

dynamic surface, generally there exist relatively stationary

or slowly changing arrivals caused by direct path or bottom

reflection, which imply the adoption of discriminate estima-

tion methods to address sparse components with different

time variations instead of Delay-Doppler searching for all

the multipath arrivals.

Dynamic compressed sensing (DCS) is a novel branch

of CS theory for recovery of a compressible—possibly with

a slowly varying sparsity pattern—signal from a time

sequence of noisy observations.16 It has found extensive

application in the area of video signal processing, dynamic

nuclear magnetic resonance imaging, dynamic target detec-

tion, and sensor data fusion.27–30 Nevertheless, until now,

limited efforts have been reported in using DCS for the esti-

mation of time varying UWA channel.27

In recent works,16,28 the problem of causally recon-

structing time sequences of spatially sparse signals with

unknown and slow time varying sparsity patterns from a lim-

ited number of linear “incoherent” measurements were stud-

ied by a solution called Kalman Filtered Compressed

Sensing (KF-CS). The key idea here is to run a reduced order

Kalman filter27 (KF) only for the current signal’s estimated

nonzero coefficients’ set, while performing CS on the error

of Kalman filtering error to estimate new additions, if any, to

the set. Note that, while it is common to use a KF to fit chan-

nel variation with the optimum linear recursion, the classic

KF is unfortunately not capable of utilizing the sparse fea-

ture of multipath channel.31

In Ref. 32, the Dantzig selector (DS)33–35 is applied to

estimate new additions by transforming the selection of the

best subset of variables into the solving of a very simple con-

vex program, which, in fact, can easily be recast as a conve-

nient linear program (LP). However, solving the linear

programming problem requires a high computational com-

plexity,36 which is greatly limiting its practical application.

Motivated by the successful applications of DCS

method,16,28 in this paper, KF-CS estimation of the time vary-

ing underwater acoustic channel is investigated. Different

from the previous DCS work in which the DS is transformed

into a linear programming problem,16,28 in this paper, the

Primal Dual Pursuit (PD-pursuit)37,38 method is adopted for

the DS to solve the complex-valued convex optimization

problem. Finally, for performance evaluation and comparison,

we applied the KF-CS channel estimation algorithm to drive

a channel estimate based decision feedback equalizer

(CE-DFE)39 in the context of an experimental UWA commu-

nication system for performance evaluation and comparison.

The contributions of this study are listed as follows. First,

by converting the estimation of time varying UWA channel

into a DCS problem, the dynamic compressed sensing algo-

rithm is designed for the UWA channel that simultaneously

exhibits large delay spread and fast time variations. Second,

based on numerical simulations, we provide performance

comparisons among the OMP, smoothed l0 estimation

(SL0),12,13 BOMP,23,24 linear Kalman estimation (Kalman),31

Least Square QR-factorization (LSQR)19 algorithm, as well

as the proposed KF-CS algorithm. Furthermore, field data

obtained from a physical shallow water channel is adopted to

assess the impacts of different channel estimation algorithms

on the UWA communication performance.

The paper is organized as follows. Section II formulates

the sparse acoustic channel model and poses the problem of

compressive sensing channel estimation. Section III presents

the proposed KF-CS algorithm and its theoretical perfor-

mance analysis. Section IV provides the numerical simula-

tions. Section V contains the results and an analysis of the

field experiment. Finally, we provide conclusions in Sec. VI.

II. PROBLEM FORMULATION

A. System model

In this paper, we use bold capital (lower case) letters to

denote matrices (vectors). Superscripts �, 0, and H denote

complex conjugate, transpose, and Hermitian, respectively;

Notation 1 or 0 means all elements in the vector of appropri-

ate size are one or zero; Notation jjajj is the l2 norm

(Euclidean norm) of the vector a. Notation kak1 refers to the

l1 norm, which is the sum of the absolute value of each vec-

tor element; Notation kak0 denotes the l0 pseudo-norm,

which is the number of non-zero elements in the vector.

Notation A† represents the matrix pseudo inverse. CNða;BÞ
denotes the complex Gaussian vector with mean a and

covariance matrix B.

The discrete input-output representation of a communi-

cation system can be written as7

y i½ � ¼
XN�1

j¼0

s� i� j½ �h j½ � þ w i½ �; i ¼ 0; :::;M � 1; (1)

where s½i�, y½i�, and w½i� are the discrete transmitted signal,

received signal, and additive white noise at time i, respec-

tively, and h[j] is channel impulse response with a length

of N. In Eq. (1), M is the observation length for channel
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estimation. Note that the underwater acoustic channel is

assumed to remain static during the observation period.7,25

Equation (1) can be expressed in matrix form as

y ¼ Ahþ w; (2)

where y 2 CM�1, h 2 CN�1, and w 2 CM�1 are the vector

form of the received signal, impulse response function, and

additive white noise, respectively. The measurement matrix

or the convolution matrix, A 2 CM�N , is constructed from

the transmitted signal as shown in Eq. (3),

A ¼

s� 0½ � s� �1½ � � � � s� �N þ 1½ �
s� 1½ � s� 0½ � � � � s� �N þ 2½ �

..

. ..
. ..

.

s� M � 1½ � s� M � 2½ � � � � s� M � N½ �

2
6664

3
7775: (3)

It is straightforward that estimation of h in Eq. (2) can be

transformed to a CS problem of pursuing the sparse solutions

of h with the sparsity factor j, which is defined as the

number of non-zero elements in the channel response h.

According to Ref. 40, to obtain the unique sparse solution of

Eq. (2), the measurement matrix A should satisfy the

restricted isometry property (RIP)

ð1� d2jÞjjhjj22 � jjAhjj22 � ð1þ d2jÞjjhjj22; (4)

where d2j is a constant related to the sparsity of 2j. If

d2j � 1, the measurement matrix A has a large probability

to reconstruct the j sparse signal h stably.

B. Performance metrics

The received signal-to-noise ratio (SNR), qy, is defined as

qy ¼ 10 log10

jjAhjj22
jjwjj22

: (5)

If the impulse response is known, the performance of the

channel estimation can be quantitatively measured by the

channel recovery SNR (qCR) in dB,

qCR ¼ 10 log10

jjhjj22
jjh� ~hjj22

; (6)

where ~h is the estimated impulse response.

As the physical impulse response associated with the

field data is unknown, to further assess the performance of

the different channel estimation methods, the CE-DFE39 is

employed to recover the transmitted sequence. The bit error

rate (BER) of the equalizer acts as performance metric for

channel estimation from the viewpoint of underwater acous-

tic communication.

III. KF-CS

The idea of KF-CS16,27–30 reconstruction for a sparse

signal sequence with varying support can be briefly intro-

duced as follows.

The measurement model is

yt ¼ Aht þ wt; wt 	 CNð0; r2
obsIÞ; (7)

where yt; ht;wt are the vector form of the received signal,

impulse response function, and addictive noise. A 2 Cn�m is

the measurement matrix, with n<m. n and m are the length

of the received signal yt and impulse response ht respec-

tively. r2
obs is the variance of observation noise. Our goal is

to get the estimate ht at each t. Let ĥtjt�1; ĥt;Ptjt�1;Pt and Kt

denote the predicted and updated state estimates, the predic-

tion and updated error covariances at time t, and the Kalman

gain given by the KF in KF-CS, respectively. Let Nt denote

the support set of ht, Tt ¼ N̂ t denote its estimate, and Tc

denote the complement of T, i.e., Tc ¼ ½1 : m�nT. In addition,

let Dt denote the undetected nonzero set at time t, i.e.,

Dt ¼ NtnTt�1, and ~Dt denote its estimate.

As the nonzero coefficients’ set Nt changes slowly over

time, for the currently nonzero coefficients of ht, ðhtÞNt
, we

assume a spatially i.i.d. Gaussian random walk model, with

noise variance r2
sys, while the rest of the coefficients remain

constant, i.e., h0 ¼ 0; ht ¼ ht�1 þ vt; vt 	 CNð0;QtÞ;Qt

¼ r2
sysINt

. The new additions, if any, are estimated by per-

forming CS on the Kalman filtering error ~yt;res. The variance

of observation noise is assumed to be known as r2
obs

¼ ð1
3

ffiffiffiffiffiffiffiffi
k=n

p
Þ2 (taken from Refs. 16 and 32), where j is the

sparsity factor of the impulse response ht.

An approximate Maximum Likelihood (ML) is used to

estimate r2
sys from a training time sequence of signal

h1; h2:::; hLtrain
; here, Ltrain denotes the length of training

sequence. By picking a threshold a to set all coefficients of

ht below it to zero and then using the rest of the coefficients

to compute the ML estimate,16,29 for t ¼ 1 : Ltrain, if

jht;ij < a, set jht;ij ¼ 0, where ht;i is the ith entry of ht. And

set the nonzero coefficients’ set ~Nt ¼ fi 2 ½1 : m� : jht;ij

 ag. Then the ML estimate is r̂2

sys ¼
PLtrain

t¼2 jjðht

�ht�1Þ ~N t�1
jj22=

PLtrain

t¼1 j ~Ntj.
We explain the proposed KF-CS algorithm below.

(1) Running the Temporary KF: We first run a “temporary”

Kalman prediction and update step using Q̂t ¼ r̂2
sysITt–1

,

i.e., we compute

Kt;tmp ¼ ðPt�1 þ Q̂tÞA0ðAðPt�1 þ Q̂tÞA0 þ r2
obsIÞ

�1;

ĥt;tmp ¼ ðI�Kt;tmpAÞĥt�1 þKt;tmpyt:

(8)

(2) Detecting and estimating the additions via CS: Let

T ¼ Tt�1 and ĥt;tmp ¼ ĥt. The filtering error is

~yt;res¼ yt�Aĥt;tmp¼ATcðhtÞTc þATðht� ĥtÞTþwt

¼ADt
ðhtÞDt

þAðT[DtÞcð0ÞðT[DtÞcþATðht� ĥtÞTþwt

¼ADt
ðhtÞDt

þATðht� ĥtÞTþwt; (9)

where ADt
and AT denote the sub-matrix, obtained by

extracting the columns of A corresponding to the unde-

tected nonzero set at time t and the indices in T. To fur-

ther improve the performance, we apply CS on the
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residual from the KF, which is sparser than the original

signal. The previous investigations of DCS16,28 generally

adopt the DS to detect the “non-compressible” nonzero

set as

~yt;res ¼ Abt þ wt;

b̂t ¼ arg min
b
kbk1; s:t: kA0ð~yt;res � AbÞk1 � kmrobs;

~Dt ¼ fi 2 Tc
t�1 : b̂

2

t;i > aag; (10)

where km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log m
p

; bt ¼ ½ðht � ĥtÞT ; ðhtÞDt
; 0ðT[DtÞc �

and aa is the addition threshold. Thus, the estimated sup-

port set at time t is Tt ¼ T [ D̂t ¼ Tt�1 [ D̂t.

Besides the huge computational burden caused,41 as

the linear program is designed for solving DS, it cannot

handle complex-valued data.16 While there are several

methods for solving the complex data, such as DASSO

(connections between the Dantzig selector and lasso),

alternating direction method of multipliers (ADMM),

Primal Dual Pursuit (PD-Pursuit), etc.,36,42–44 compared

to DASSO, the major advantage of PD-Pursuit is the

direct computation of update directions. Meanwhile, the

convergence of the ADMM algorithm requires the exact

solution of the sub-problem.43 Moreover, while the com-

putational cost for a linear program is about Oðm3Þ,41 the

computational cost of PD-Pursuit algorithm is bounded

by Oðd�m�nÞ, where d is the total number of primal-dual

steps taken and recover an S sparse signal from com-

pressed measurements in at most S steps of primal dual

update.38 So, in terms of computational complexity the

PD-Pursuit algorithm is also better than linear program

and is thus adopted in this paper.

Under a primal-dual homotopy approach,38 the imple-

mentation of the PD-Pursuit algorithm can be decomposed

into two procedures: primal update and dual update. The

DS solves the following primal program as

min
b
kbk1; s:t: kA0ð~yt;res � AbÞk1 < e: (11)

The equivalent dual program representation of

Eq. (11) is

arg max
c
�ðekck1 þ hc;A0~yt;resiÞ; s:t: kA0Ack1 � 1;

(12)

where c 2 Rn is dual vector. In primal update phase, it

updates the primal vector and primal constraints which

give the support and sign of dual vector. In dual update

phase, it updates the dual vector and dual constraints

which give the support and sign of the primal vector to be

used in next primal update phase. We successively update

the primal and dual variables at every step until we reach

the solution point. And at every step, the update requires

just a few matrix-vector multiplications.38

(3) KF-update: With the initialization of P0 ¼ 0½1:m�;½1:m�;
ĥ0 ¼ 0½1:m�, we run the Kalman prediction/update using

Q̂t ¼ r̂2
sysITt

Ptjt�1 ¼ ðPt�1 þ Q̂tÞ;
Kt ¼ Ptjt�1A0ðAPtjt�1A0 þ r2

obsIÞ
�1;

Pt ¼ ðI�KtAÞPtjt�1;

ĥt ¼ ðI�KtAÞĥt�1 þKtyt: (13)

(4) Deleting zero coefficients: If the addition threshold aa is

not large enough, alternatively some coefficients may be

wrongly added due to CS error, which may be deleted as

zero.

Finally the proposed KF-CS algorithm is described in

Table I.

IV. NUMERICAL SIMULATION

In this section, numerical simulations are performed to

demonstrate the effectiveness of the proposed KF-CS algo-

rithm, compared with that of the sparse type OMP, BOMP,

and SL0 algorithms, as well as the no sparsity exploitation

Kalman and LSQR algorithms. A dynamic sparse underwa-

ter acoustic channel with complex-valued taps is artificially

produced as the target channel. We consider a shallow water

channel with a depth of 10 m and a distance of 500 m. The

transmitter and the receiver are at the depth of 3 m and 5 m,

respectively. Generated from the bell-hop45 toolkit, the num-

ber of the non-zero taps is j¼ 6 to present multipath arrivals

as shown in Table II, the eigenrays associated with which

are shown in Fig. 1. The length of the channel response is set

as N¼ 157 with the equivalent sampling rate of 4000 Hz.

To artificially simulate the channel time variations

induced by surface, two surface paths, i.e., path 2 and path 4,

are imposed with additional time variations while the other

four paths remain static. Specifically, delay of path 2 and

path 4 is added with zero-mean random variations, while the

corresponding magnitude is added with sinusoidal variations.

The response of the simulated UWA channel with artificial

time variations is presented in Fig. 2, from which we can see

the different dynamic pattern of two surface paths.

Quadrature phase shift keying (QPSK) symbols with ran-

dom distribution are generated to construct the measurement

matrix A. The observation length for channel estimation is set

TABLE I. The proposed KF-CS.

Set ĥ0;P0;T0; r2
obs

(1) Running the Temporary KF.

Run (8) using Q̂ t ¼ r̂2
sysITt�1

(2) Detecting and estimating the Additions (using CS).

Compute FEN ¼ ~y 0t;res

P�1

fe;t

~y t;res where ~y t;res ¼ yt � Aĥt;tmp

If it is greater than its threshold, run CS on ~y t;res, the PD-pursuit algorithm

is adopted for the DS.

Dual program is arg max
k
�ðekkk1 þ hk;A0~y t;resiÞ; s:t: kA0Akk1 � 1

The new estimated support is Tt ¼ Tt�1 [ D̂t

(3) KF-update.

Run (13) using Q̂ t ¼ r̂2
sysITt

.

(4) Deleting Zero Coefficients.

(5) Output.

solution of h.
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as M¼ 100 with the received SNR of qy¼ 30 dB. The spar-

sity factor j is assumed to be known in the KF-CS, BOMP,

OMP, and the SL0 algorithm in the numerical simulation.

The other algorithm parameters of each algorithm are

set by tuning to the best recovery SNR to facilitate perfor-

mance evaluate. Specifically, for BOMP algorithm, the block

size is 2; for SL0 algorithm, the iteration step size l is 0.5;12

for the Kalman algorithm, the noise variation is 0.002.

As the LSQR as well as the classic Kalman estimation

algorithm will produce a large number of weak taps that are

actually not existing in true impulse response, the OMP,

SL0, BOMP, and KF-CS algorithms will be expected to

achieve sparsity exploitation.

Shown in Fig. 3 is the recovery SNR achieved by differ-

ent estimation methods. In particular, it is not surprising that

all four sparse estimation algorithms, i.e., OMP, SL0,

BOMP, and KF-CS, achieve significantly higher SNR than

the LSQR and Kalman algorithm does. From Fig. 3, one

may also notice that the Kalman estimator produces the

worst SNR performance. This is because as both time delay

and magnitude experience variations, the dynamics of time

varying multipath arrival cannot be simply modeled by lin-

ear equation.

TABLE II. Multipath delay and magnitude of the simulation UWA channel

generated by bell-hop (Ref. 39).

Nature of path Time delay (ms) Magnitude

Path 1 Direct path 6.7 0:18� 0:98j

Path 2 Surface reflection 8:5 0:67þ 0:36j

Path 3 Direct path 10.5 �0:22� 0:19j

Path 4 Surface reflection 13:8 0:12þ 0:16j

Path 5 Bottom reflection 16.0 0:04þ 0:15j

Path 6 Bottom reflection 19.8 0:09þ 0:11j

FIG. 1. (Color online) Eignerays of the simulated UWA channel.

FIG. 2. Time varying response of the simulated UWA channel.
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As to four algorithms that are designed to utilize sparse

feature, it is evident from the Fig. 3 that the proposed KF-CS

algorithm outperforms the other three algorithms with the

highest channel recovery SNR. While the OMP algorithm

yields the second highest SNR, the BOMP and SL0 approach

exhibit almost the same SNR curve. The result of numerical

simulation in Fig. 3 implies that dynamic compressed sens-

ing provides a promising way to explore time varying

sparsity.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. CE-DFE for performance evaluation

As the accuracy of channel estimation will determine

the performance of the resulting CE-DFE, in order to evalu-

ate the performance of channel estimation, a CE-DFE is

adopted to recover the transmitted symbol s in Eqs. (2) and

(3) via39

~s ¼ gf f yþ gf b�s: (14)

The decision output is

�s i½ � ¼ sgnðrealð~sÞÞ þ j�sgnðimagð~sÞÞ: (15)

In Eq. (14), for a feedback filter, �s is a vector of estimates of

past transmitted data symbols, and the output of the filter is

the soft decision estimate ~s. In Eq. (15), the estimate ~s is the

input to a decision device that generates the final estimate, �s,

of the transmitted data symbol. The feedforward and feed-

back filter, gf f and gf b, are calculated as39

gf f ¼
h0

h0h0
H þ r2

�nIþH0HH
0

; (16)

where r2
�n ¼ jjy� A~hjj22 and

gf b ¼ �Hf bgf f : (17)

Here, H0, h0, and Hf b can be obtained from the convolution

matrix H, constructed from the impulse response estimate

H ¼

h 0½ � � � � h N � 1½ � � � � 0

0 � � � h N � 1½ � � � � 0

� � �
0 � � � h 0½ � � � � h N � 1½ �

2
66664

3
77775

¼ ½H0jh0jHf b�: (18)

B. Field experiment

The experimental field data were collected from a shal-

low water acoustic channel at Wuyuan bay, Xiamen, China.

The depth of the experiment area is about 9 m. The modula-

tion format was QPSK with a bit rate of 4 kbps and a carrier

frequency of 16 kHz. The signals were transmitted by a

transducer suspended at a depth of 4 m under the pier, with a

source level of about 185 dB re 1 lPa at 1 m. A four-element

broad band receiver is mounted at the rear of an anchored

ship covering from 2 to 6.5 m of the water column with an

element spacing of 1.5 m. The distance of communication in

the experiment is 1000 m as shown in Fig. 4(a). The sound

velocity profile is provided in Fig. 4(b), which indicates a

weak positive gradient.

Similar to the numerical simulation, the algorithm param-

eters of each algorithm are set by tuning to the best BER per-

formance to facilitate performance evaluate. Specifically,

for the BOMP algorithm, the block size is 2; for the SL0

FIG. 3. (Color online) Channel recov-

ery SNR qCR (db) of different

estimators.
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algorithm, the iteration step size l is 0.7; for the Kalman algo-

rithm, the noise variation is 0.02. The sparsity factor j is set

to 12, 12, 10, and 10 for the OMP, SL0, KF-CS, and BOMP

algorithm, respectively.

The time varying response of the third UWA channel

obtained by the five reference algorithms as well as the pro-

posed KF-CS method, respectively, are shown in Fig. 5,

which exhibits a multipath structure consisting of a cluster

of strong arrivals and a rapidly varying arrival. Meanwhile,

for two conventional estimation algorithms that do not uti-

lize sparsity, substantial estimation noise in the time delay

zone without multipath arrival is obvious. Furthermore, from

Fig. 5, one may also observe that the KF-CS method

achieves more dynamic details of the rapidly time-varying

arrivals at the delay of approximate 7 ms compared to the

other three sparse estimation methods.

C. Performance evaluation and comparison

The CE-DFE39 is utilized for processing of the experi-

mental data to evaluate the performance of the proposed KF-

CS algorithm with the BER and constellation diagram

adopted as the performance metrics.

For the CE-DFE driven by channel estimator, a periodic

training strategy is adopted to address the time variation of the

practical UWA channels. The data packet is divided into sev-

eral data blocks. Each data block contains 300 known training

symbols used for channel estimation and 900 information sym-

bols that need to be recovered by the CE-DFE. The frame

structure of QPSK packet is presented in Fig. 6. For each data

block, after the channel estimation, the corresponding CE-DFE

will produce BER values associated with this data block. The

length of the channel estimator is set as N¼ 80, equivalent to

FIG. 4. (Color online) Setup of the

field experiment and the corresponding

sound velocity profile.
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20 ms. The residual error threshold for iteration termination is

set as 4e-1. The channel estimation observation length is set as

M¼ 160 symbols, equivalent to 40 ms. The lengths of the feed-

forward and feedback filter of decision feedback equalizer

(DFE) are set as Nf f ¼ 160 taps and Nf b¼ 79 taps, respectively.

For each candidate algorithm, the above parameters are care-

fully selected to ensure the minimum BER.

The BER curves of the CE-DFE driven by different esti-

mators are shown in Fig. 7(a). One may see that the KF-CS

algorithm generates the lowest BER curve. Due to significant

estimation noise in numerous near-zero taps as shown in

Figs. 5(a)–5(e), the LSQR and Kalman estimator exhibit

worse BER curves compared to the other four methods that

explore sparse features.

Among the sparse estimation algorithms, the BOMP

algorithm corresponds to a higher BER curve compared to

the others. The reason may be that it is designed to achieve

block sparse for all multipath arrivals, some of which are

actually purely sparse instead of block sparse.

Note that, different from the simulation result in Fig. 3,

the BER behavior of the SL0 method is superior to that of

the OMP approach. It reveals that, compared with simulation

that still contains some fixed multipath arrivals, the practical

time-varying channel may lead to more impact on

correction-based matching pursuit than on smooth l0 norm

sparse recovery. In other words, smooth l0 norm provides a

certain tolerance to time varying sparsity, as the multipath

arrivals with varying time delay still contribute to sparse

recovery.

Specifically, from Fig. 5, it is noticeable that, at the

delay of approximate 7 ms, the presence of a highly time-

varying multipath arrival unavoidably leads to significant

impact on performance. To further investigate the BER per-

formance of different estimation algorithms, estimated

results on this multipath arrival are obtained by first normal-

izing the estimated channel response, and then accumulating

the path energy within the time delay range of 2.5 ms [shown

with arrows in Fig. 5(a)].

FIG. 5. Response of the third channel obtained by different methods.

FIG. 6. The frame structure of the

QPSK packet.
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With respect to the BER curves in Fig. 7(a), the esti-

mated results on this time varying path are provided in Fig.

7(b) in terms of normalized energy. From Fig. 7(b), it can be

concluded that, while the Kalman as well as LSQR algorithm

exhibit under-estimation of this time varying path, the BOMP

algorithm tends to overestimate this dynamic arrival as it is

designed to achieve block sparsity on all sparse components.

On the other hand, because OMP algorithm achieves match-

ing pursuit by the means of cross-correlation, it experiences

obvious performance degradation when the sparse component

becomes extremely weak, as shown at the delay of 4 ms.

Meanwhile, the SL0 algorithm also exhibits similar perfor-

mance fluctuations with the time variation of multipath

arrival. Under the framework of dynamic compressed sens-

ing, note that the proposed algorithm achieves relatively sta-

ble performance with respect to the multipath time variation.

Thus, the results in Fig. 7(b) partially contribute to clarifying

the different BER behaviors in Fig. 7(a).

Regarding the average BER in terms of all the data

blocks, as shown in Table III, the four estimators with spar-

sity exploitation generally outperform the two methods that

do not exploit it. Specifically, while the average BER of

LSQR and Kalman algorithm is 4.74% and 4.68%, the KF-

CS algorithm yields an average BER of 1.01%, versus

1.47% by SL0 algorithm, 2.61% by BOMP, and 1.52% by

OMP algorithm, respectively—the result of which is gener-

ally consistent with that of the BER curve in Fig. 7(a).

The constellation outputs associated with the different

methods are provided in Fig. 8, from which one may observe

FIG. 7. (Color online) BERs of DEF (a), as well as the normalized energy of the time varying path (b).

TABLE III. Averaged BER and qEO value associated with three channel

estimation algorithms.

Algorithm LSQR Kalman OMP BOMP SL0 KF-CS

BER(%) 4.74 5.12 1.52 2.61 1.47 1.01
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that the Kalman as well as LSQR estimator correspond to

worse constellation quality due to considerable estimation

noise. While the four sparse generally estimators achieve a

better separating effect compared to the Kalman and LSQR

method, from Fig. 8, it is evident that separability of the con-

stellation associated with the other three sparse estimators is

apparently inferior to that of the proposed KF-CS estimator.

It can be attributed to the fact that, as the other three sparse

methods are derived under the assumption that the sparse

channel remains static, time variations of the UWA channel

will inevitably lead to significant performance degradation.

Thus, the comparison result of the constellation is also con-

sistent with the BER result in Fig. 7(a).

VI. CONCLUSION

With the purpose to exploit the time varying sparsity, in

this paper, the estimation of sparse UWA channel with time

variations is investigated. As the UWA channel is treated as

a sparse set with fixed support under the classic CS

framework, the CS channel estimation strategies generally

suffer from significant performance degradation at the pres-

ence of channel time variations.

By modeling the time varying UWA channel as sparse

set with static supports as well as time varying supports, the

problem of UWA channel estimation can be formulated

under the DCS framework. Namely, with the running of a

KF for estimation of the nonzero tap, sparse recovery is per-

formed on the error of Kalman filtering to estimate new addi-

tions that produced by the time varying channel. Moreover,

the PD-Pursuit algorithm for the DS is adopted to search for

the complex domain KF-CS sparse solution.

The effectiveness of the proposed algorithm was first

demonstrated by numerical simulations with artificially

induced time variations. Finally, UWA communication exper-

imental data were used to verify the proposed algorithm at the

form of a CE-DFE, which indicates that the proposed KF-CS

algorithm achieved the best performance compared to the

conventional sparse or no sparsity exploitation algorithms.

FIG. 8. (Color online) Constellation

outputs of different channel estimators.
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