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Distributed compressed sensing techniques are applied to enhance sparse channel estimation perfor-

mance in underwater acoustic multiband systems. The core idea is to use receptions from multiple

sub-bands to enhance the detection of channel tap positions. A known variant of the orthogonal

matching pursuit (OMP) algorithm based on the distributed compressed sensing principle is simul-

taneous orthogonal matching pursuit (SOMP). However, the impulse responses across multiple

sub-bands may have different arrival structures, although they often show a certain level of similar-

ity. To address such differences at the sub-bands, a multiple selection strategy is applied to select

multiple candidates at individual sub-bands at each iteration. This is different from the conventional

OMP and SOMP algorithms that select only one candidate at each iteration. When the multiple

selection strategy is combined with the SOMP algorithm, the proposed algorithm is referred to as

JB-MSSOMP algorithm. To take advantage of channel coherence between adjacent data blocks

from different sub-bands, the multiple selection strategy is further used over time. This leads to

JBT-MSSOMP algorithm. Computer simulations show improved channel estimation performance

of the proposed JB-MSSOMP and JBT-MSSOMP algorithms over the OMP or SOMP algorithms.

Communication data from a recent acoustic experiment demonstrates improved receiver perfor-

mance with the proposed channel estimators. VC 2018 Acoustical Society of America.
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I. INTRODUCTION

Multiband transmission is an alternative strategy to

orthogonal frequency division multiplexing (OFDM) or

single-carrier transmissions to utilize a wide bandwidth. In

this paper, we address channel estimation in underwater

acoustic multiband systems. The underwater acoustic chan-

nel is typically sparse, meaning that the impulse response

often has limited significant taps over the large delay spread.

Compressed sensing methods are often investigated to

improve the performance of channel estimation in underwa-

ter acoustic communication. We particularly apply distrib-

uted compressed sensing (DCS) techniques to enhance

sparse channel estimation performance in underwater acous-

tic multiband systems.

In multiband transceivers, a wide frequency band is

divided into multiple sub-bands that are separated by guard

bands. This strategy offers a compromise between single-

carrier communication and OFDM communication.1 Multiband

transmission has longer symbol duration than single-carrier

transmissions, for the same bandwidth. This leads to shorter

lengths of the discrete impulse responses, which in turn result

in lower computational costs in channel estimation and equali-

zation. Compared with OFDM, multiband transmissions do not

suffer from the issues of high peak-to-average power ratios and

sensitivity to Doppler.

Multiband transmissions have not been intensively stud-

ied in underwater acoustic communications except in a lim-

ited number of reports,1–4 while in contrast extensive efforts

have been devoted to single-carrier and OFDM communica-

tion schemes. In Roy et al.,1 underwater acoustic multiband

multiantenna transmissions were used in combination with

multichannel decision-feedback equalization. In Walree and

Leus,2 a multicarrier spread-spectrum scheme was proposed

for underwater acoustic environments, multicarrier equalizer

acted as a maximal-ratio combiner that allowed for joint

equalization and de-spreading. In Song and Badiey,3 time

reversal multiband acoustic communication was investigated

for a frequency band of 22 kHz. In Leus and Walree,4 a

bandwidth of 3.6 kHz was divided into 16 sub-bands, each of

which was modulated by OFDM. In these efforts,1–4 the cor-

relation of the impulse responses among sub-bands was not

exploited for channel estimation.

The compressed sensing (CS) channel estimation meth-

ods have been employed to yield performance enhancement

by exploitation of sparseness. For example, CS is widely used

for single carrier channel estimation5–9 and OFDM channel

estimation.10–13 However, underwater acoustic channels are

characterized by substantial time variations, large spread, lim-

ited bandwidth, shorter observation lengths lead to bettera)Electronic mail: ftong@xmu.edu.cn

J. Acoust. Soc. Am. 143 (6), June 2018 VC 2018 Acoustical Society of America 39850001-4966/2018/143(6)/3985/12/$30.00

https://doi.org/10.1121/1.5042362
mailto:ftong@xmu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1121/1.5042362&domain=pdf&date_stamp=2018-06-01


capability to track channel variation and improve the band-

width efficiency. In addition, underwater acoustic channels

suffer from background noise which leads to low signal-to-

noise ratio (SNR). The performance of CS channel estimation

will degrade under short observation lengths and low SNR.

DCS exploits multiple observed signals to enhance

sparse data recovery which exhibits strong correlation from

noisy measurements.14 DCS based channel estimation has

found successful applications in wireless radio-frequency

communications.15–18 Cheng et al.16 introduced a novel

DCS based channel estimation approach to track doubly

selective channels with a large Doppler shift for OFDM sys-

tem. DCS was applied to make joint sparsity channel estima-

tion for Q order BEM coefficient vectors. A time-frequency

channel estimation for multiple-input�multiple-output

(MIMO)-OFDM systems under the framework of distributed

compressed sensing was proposed in Ding et al.18 To

enhance the partially common tap delays channel estimates,

a pseudorandom preamble which was identical for all trans-

mit antennas was adopted. Then, a very small amount of

pilots were used for the accurate channel recovery. Limited

efforts have been reported in underwater acoustic communi-

cations that utilize DCS channel estimation. In Zhou et al.,19

DCS based estimation method was developed for underwater

acoustic MIMO system to suppress the co-channel interfer-

ence. Two adjacent data blocks were simultaneously used to

jointly estimate MIMO impulse responses. In Zhou et al.,11 a

DCS based channel estimation method was proposed to

reduce the pilot number in underwater acoustic OFDM sys-

tems. Two adjacent data blocks in the frequency domain

were combined to conduct joint sparsity channel estimation.

Currently, the DCS method has not been investigated in

underwater acoustic multiband transmission systems.

With a limited bandwidth up to tens of kilohertz, there

exists considerable channel correlation among the sub-bands

in underwater acoustic multiband systems, namely, channel

delays exhibit similar structures, but channel coefficients are

different. DCS based algorithms can take advantage of such

correlation to improve channel estimation performance. The

improvement can shorten observation lengths or enhance

estimate accuracy in low SNR. A nature choice along this

direction is SOMP algorithm, which uses receptions from

multiple sub-bands to enhance detection channel tap posi-

tions. However, the impulse responses across multiple sub-

bands may have different arrival structures, although they

often show certain level of similarity. The different arrival

structures will be estimated as noise.

In this paper, we applied DCS techniques to enhance

sparse channel estimation for underwater acoustic multiband

systems. In order to address the different arrival structures at

multiple sub-bands, inspired by Kwon et al.20 and Shim

et al.,21 we introduced a multiple selection strategy that com-

bined with SOMP. The main idea of multiple selection strat-

egy is that, at each SOMP iteration, every candidate

generates multiple child candidates including channel

delays, channel coefficients, and residual. The set of taps

that minimize the overall residue are chosen as the tap posi-

tions for each sub-band. While the conventional OMP and

SOMP algorithms select only one candidate at each iteration.

The improved algorithm is referred to as multiple selection

SOMP (MSSOMP). To take advantage of channel coherence

between adjacent data blocks, we use the multiple selection

strategy both over multiple sub-bands and time domain. The

resultant algorithm is referred to as joint band and time spar-

sity multiple selection SOMP (JBT-MSSOMP) algorithm.

Both computer simulations and a field experiment were con-

ducted to show the effectiveness of the multiple selection

strategy in channel estimation.

This paper is organized as follows. Section II describes

the multiband system model. Section III introduces the DCS

theory and formulates MSSOMP estimation schemes.

Section IV analyzes the simulation results and underwater

acoustic communication field experimental results are

described and analyzed in Sec. V. Finally, some concluding

remarks are drawn in Sec. VI. The following notations are

used in this paper. Bold upper case and lower case letters

denote matrices and column vectors, respectively. a� b

denotes the dot product of vector a and vector b.

Superscripts ð�ÞT ; ð�ÞH; ð�Þ† denote the transpose, Hermitian

transpose and pseudo inversion operation, respectively. 0P�L

and I denote zero matrix with P rows and L columns, and the

identity matrix, respectively. jj � jj0; jj � jj1; jj � jj2 denote the

L0 norm, L1 norm, and Euclid norm. Matrix A½j� denotes a

sub-matrix obtained from jth columns of A. Notation ha; bi
denotes inner product of a and b. Eð�Þ denotes the expecta-

tion operation. [ denotes the union operation. ; denotes the

empty set. C
M�N represents the set of M � N matrices in the

complex field.

II. PROBLEM FORMULATION

We consider a single-input/multiple-output (SIMO)

multiband acoustic communication system in the ocean. It is

assumed that the underwater acoustic channel does not

change within a limited block duration (noted as P samples),

but varies with blocks. The discrete baseband receiver equa-

tion at the ith hydrophone, jth sub-band, kth block is shown

as

yi;j;kðnÞ ¼
XL�1

l¼0

xj;kðn� lÞhi;j;kðlÞ þ xi;j;kðnÞ;

i ¼ 1;…;N; j ¼ 1;…;M; k ¼ 1;…;K; (1)

where n is the symbol index within a data block, N is the

number of hydrophones, M is the total number of sub-bands,

K is the total number of data blocks. xj;kðnÞ is the transmitted

symbols from jth sub-band kth data block. The channel

impulse response at ith hydrophone jth sub-band kth data

block is described via hi;j;kðnÞ, where L is the discrete chan-

nel length. The ambient noise xi;j;kðnÞ is additive white

Gaussian distributed. Under the quasi-stationary assumption

that channel remains stable within a data block of P samples,

the receiver equation Eq. (1), can be presented in a matrix-

vector form,

yi;j;k ¼ Aj;khi;j;k þ xi;j;k; (2)

where Aj;k is a P � L Toeplitz matrix
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Aj;k¼

xj;kðL�1Þ xj;kðL�2Þ �� � xj;kð0Þ
xj;kðLÞ xj;kðL�1Þ �� � xj;kð1Þ

..

. ..
. . .

. ..
.

xj;kðLþP�2Þ xj;kðLþP�3Þ �� � xj;kðP�1Þ

0
BBBBBB@

1
CCCCCCA
;

(3)

yi;j;k ¼ yi;j;kðL� 1Þ yi;j;kðLÞ � � � yi;j;kðLþ P� 2Þ
� �T

;

(4)

hi;j;k ¼ hi;j;kð0Þ hi;j;kð1Þ � � � hi;j;kðL� 1Þ
� �T

; (5)

xi;j;k ¼ xi;j;kðL� 1Þ xi;j;kðLÞ � � � xi;j;kðLþP� 2Þ
� �T

:

(6)

The SIMO multiband impulse responses hi;j;k can be

estimated by the traditional LS algorithm, based on the

receiver equations. The Toeplitz matrix Aj;k satisfies

restricted isometry property (RIP),22 and underwater acous-

tic channel is typically sparse, namely, underwater acoustic

channel response has very few non-zero taps, but has a large

spread delay. So, the compressed sensing can be directly uti-

lized to estimate the underwater acoustic sparse channel.

III. DISTRIBUTED COMPRESSED SENSING
ESTIMATION OF MULTIBAND TRANSMISSION
CHANNEL

A. SOMP based distributed compressed sensing

For underwater acoustic multiband systems, the chan-

nels in sub-bands and data blocks have very strong correla-

tion, it can be described by joint sparsity model 2 (JSM-2) in

DCS theory.14 In JSM-2, all the channels share the same

support-set, namely, all the channels have the same tap

delays, but different tap coefficients.

The SOMP algorithm has been widely used to solve

JSM-2 problem.11,15,18,19 For underwater acoustic multiband

DCS channel estimation, shown as Fig. 1, the channel delays

in each sub-band and each data block are the same under

JSM-2 framework. The sparse channel delays can be esti-

mated by the data from all sub-bands and from their corre-

sponding adjacent data blocks, the channel coefficients are

individually estimated based on the selected channel delays,

it is the core idea of SOMP algorithm. The way that utilizes

multiple data blocks to find the same channel delays is

referred as to joint sparsity estimation. As illustrated in Fig.

1, if multipath delays are jointly estimated by multiple data

blocks from time axis, we denote it as joint time sparsity

channel estimation which is marked with dotted rectangle.

Similarly, if multipath delays are jointly estimated by the

data blocks from sub-bands, we denote it as joint band spar-

sity channel estimation which is marked with dotted ellipse.

If multipath delays are jointly estimated by the data blocks

from both time and band, we denote it as joint band and time

sparsity channel estimation.

Considered multiple receptions yi;j;k; j ¼ 1; 2;…;M;
k ¼ 1; 2;…;Q that obtained from Q adjacent data blocks

from each of M sub-bands, the purpose of DCS is to simulta-

neously reconstruct MQ channels hi;j;k. Based on the concept

of DCS, we establish the following model

yi;1;1

..

.

yi;M;1

..

.

yi;1;Q

..

.

yi;M;Q

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

¼

A1;1 � � � 0P�L � � � 0P�L � � � 0P�L

. .
. . .

. . .
. . .

. . .
. . .

. . .
.

0P�L � � � AM;1 � � � 0P�L � � � 0P�L

. .
. . .

. . .
. . .

. . .
. . .

. . .
.

0P�L � � � 0P�L � � � A1;Q � � � 0P�L

. .
. . .

. . .
. . .

. . .
. . .

. . .
.

0P�L � � � 0P�L � � � 0P�L � � � AM;Q

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

�

hi;1;1

..

.

hi;M;1

..

.

hi;1;Q

..

.

hi;M;Q

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

þ

xi;1;1

..

.

xi;M;1

..

.

xi;1;Q

..

.

xi;M;Q

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; (7)

y1

..

.

ym

..

.

yMQ

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

A1 � � � 0P�L � � � 0P�L

. .
. . .

. . .
. . .

. . .
.

0P�L � � � Am � � � 0P�L

. .
. . .

. . .
. . .

. . .
.

0P�L � � � 0P�L � � � AMQ

0
BBBBBBBB@

1
CCCCCCCCA

h1

..

.

hm

..

.

hMQ

0
BBBBBBBB@

1
CCCCCCCCA

þ

x1

..

.

xm

..

.

xMQ

0
BBBBBBBB@

1
CCCCCCCCA
; (8)FIG. 1. Diagram of joint band sparsity and joint time sparsity channel esti-

mation. The x axis is the frequency (sub-band index), and the y-axis is the

time (data block index). Subscript (j, k) denotes the coordinate of the data

block that comes from jth sub-band in frequency axis kth data block in

time axis.
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Yi ¼ ~AHi: (9)

To simplify the equation, we eliminate the receiving

hydrophone index i, and adopt one subscript in notations

instead of two. Equation (8) is the mapping of Eq. (7). The

relationship between (j, k) and m is that m ¼ ðk � 1Þ �M þ j.

In Eq. (9), Yi 2C
QMP�1; ~A 2C

QMP�QML
, and Hi 2C

QML�1
.

The variable Q is the number of data blocks from each of M
sub-bands in time domain. In Eq. (7), a comprehensive band

and time sparsity with a dimension of M �Q is considered.

The advantage of Eq. (7) is that multiple data blocks can be

used to improve the common tap delays detection, while in

the OMP algorithm, only one data block is used. So the DCS

has more potential to recover the underwater acoustic chan-

nels. Thus, the DCS based channel estimation can be formu-

lated as the following optimization problem:23,24

minkYi� ~AHik2
2 s:t:kh1�;…;�hm�;…;�hMQk0 ¼ S:

(10)

In Eq. (10), the constraint condition can be described

that, all the channels contain S multipath arrivals with com-

mon delays, while the sparsity of each channel may be dif-

ferent. The SOMP algorithm25 can be directly used to

optimize Eq. (10). All of the received signals including dif-

ferent sub-bands and adjacent data blocks are jointly com-

bined to measure the multipath delays. In this way, channels

that have common delays are enhanced. When the SOMP

algorithm is applied to multiband underwater acoustic chan-

nels, the algorithm is referred as to the joint band and time

sparsity simultaneous orthogonal matching pursuit (JBT-

SOMP). Note that when Q¼ 1, the JBT-SOMP algorithm

reduces to joint band sparsity recovery noted as JB-SOMP,

when both Q¼ 1 and M¼ 1, the algorithm reduces to the

conventional OMP algorithm.

B. Multiple selection distributed compressed sensing

In this section, we consider the channels that not only

contain common tap delays but also differential tap delays.

Under time-varying and low SNR underwater acoustic

channels, the multipath components with common tap delays

will decrease, and that with differential tap delays increase.

The channels are described as

hm ¼ hc
m þ hd

m; (11)

where the superscript c and d denote the channel components

with common tap delays and those with differential tap

delays. The difference between Eq. (11) and JSM-2 is that,

Eq. (11) contains not only the common tap delays, but also

the differential tap delays. The channel estimation perfor-

mance that based JSM-2 will be degraded because of loss of

differential tap delays.

Previous DCS work11,15–19 has been done based on

JSM-2, but limited work for channel estimation that consider

differential tap delays has been done recently. In this paper,

we proposed multiple selection distributed compressed sens-

ing for underwater acoustic multiband channels to enhance

channel estimation using common tap delays and address the

differential tap delays to further improve channel estimation.

For underwater acoustic multiband channel estimation,

assume that M sub-bands and Q adjacent data blocks in each

sub-band are combined to estimate the channels shown in

Fig. 1, so there are total MQ data blocks. We apply multiple

selection strategy to the SOMP algorithm to estimate the

channels simultaneously. There are three kinds of candi-

dates, channel delay candidates, coefficient candidates, and

residual candidates, respectively. Each candidate generates

multiple child candidates (denoted as D child candidates),

which make up trees by multiple selection strategy shown in

Fig. 2, this is the core idea of multiple selection. There are

also three kinds of trees, delay trees, coefficient trees, and

residual trees, which are composed of delay candidates,

coefficient candidates, and residual candidates. The delay

trees, coefficient trees, and residual trees are used to save

channel delays, channel coefficients, and residual, respec-

tively. The three kinds of trees have the same structure,

shown as Fig. 2. For sth iteration (s is the iteration index),

there are total Ds child candidates, which are generated from

their father candidates at (s–1)th iteration, shown in Fig. 2.

Each of the Ds candidates re-generates another D child

FIG. 2. The structure of one delay tree. The delay trees, coefficient trees, and the residual trees have the same structure. One square denotes a candidate, so

there are delay candidates, coefficient candidates, and residual candidates. In sth iteration, the candidates are denoted as child candidates that are generated

from their father candidates in ðs� 1Þ th iteration. There are s elements in a candidate in sth iteration. Figure 2 shows the case where D¼ 2, S¼ 3, the informa-

tion in the candidates is the channel tap delays. Compared with two child delay candidates that come from the same father delay candidate, the white delay

candidate always has larger coefficient than the gray one, so the white candidate is first generated.
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candidates for ðsþ 1Þ th iteration. At ðsþ 1Þ th iteration, the

candidates are treated as child candidates, while the candi-

dates from sth iteration are treated as father candidates. At

the last iteration, we measure all the residual from residual

candidates, and save the position that has the minimum

residual. Based on the position, we select the coefficients

and the channel delays from coefficient candidates and delay

candidates at the last iteration. Thus the channels are

constructed. The resultant algorithm is referred to as JBT-

MSSOMP algorithm. When D¼ 1, the JBT-MSSOMP algo-

rithm reduces to JBT-SOMP.

The specific steps for implementing the JBT-MSSOMP

algorithm are summarized as follows:

Input: received signal blocks ym, the measure matrix

Am; m ¼ 1;…;MQ, and the sparsity S.

Output: hm, where m ¼ 1;…;MQ
Initialize: build MQ delay trees, coefficient trees, and

residual trees, denoted as Cm; qm, and um; respectively, where

m ¼ 1;…;MQ. All the delay candidates, coefficient candi-

dates, and residual candidates are set empty. Set the iteration

index s¼ 0. Initialize the residual u0
m ¼ ym; m ¼ 1;…;MQ.

The superscript denotes the iteration number.

Iteration s ¼ 1 : S
Sub-iteration gs�1 ¼ 1 : Ds�1 (Note that Ds�1 is a con-

stant, it is not a variant.)

Step 1: measure the channel delays

kgs�1 ¼ arg max
q¼1;…;L

XMQ

m¼1

jhAm q½ �; us�1
m ðgs�1Þij (12)

gs�1 denotes the candidate index in the ðs� 1Þth layer in

a tree. us�1
m ðgs�1Þ denotes the gs�1th residual candidate in

ðs� 1Þth iteration in mth residual tree. Measure inner prod-

uct of us�1
m ðgs�1Þ and Am½q�, where Am½q� is a vector that

comes from the qth column from Am. Add all the MQ inner

products, shown as Eq. (12). Then, from the number of L
added inner products, find the first D maximum values, and

save their positions into kgs�1 . kgs�1 is a scalar array, which

contains number of D different potential channel delays.

From Eq. (12), channel delays are determined by multiple

data blocks, while in OMP algorithm, channel delays are

determined by only one block. So, channels that have com-

mon delays will be enhanced by JBT-MSSOMP algorithm.

In addition, in OMP or SOMP algorithm, only one delay

candidate is selected, while in the JBT-MSSOMP algorithm,

there are D candidates are selected which has more potential

to find the correct channel delays. Step 1 can be described

that one father delay candidate generates D child delay

candidates.

The child candidates are extensions of their father candi-

dates from previous iteration, and inherit the information

from their father candidates, including delay candidates,

coefficient candidates, and residual candidates, Fig. 2 shows

the delay candidates case.

Step 2: There are Ds�1 delay candidates in ðs� 1Þ th

iteration, by using multiple selection strategy in step 1, every

delay candidate re-generates another D child delay candi-

dates, so there are total Ds�1 � D delay candidates. Save the

Ds�1 � D delay candidates into sth layer in delay trees,

shown as Eq. (13). From Eq. (13), we can observe that, all

the delay trees contain the same delay information.

Cs
mðgsÞ ¼ Cs�1

m ðgs�1Þ [ kgs�1ðdÞ
d ¼ 1;…;D;m ¼ 1;…;MQ: (13)

The relationship between the father candidate index gs�1 in

ðs� 1Þth iteration and the child candidate index gs in sth

iteration is gs ¼ ðgs�1 � 1ÞDþ d, where d is the generated

order of D child candidates which come from the same father

candidate. For example, in Fig. 2, in the third iteration, the

shadow square is first generated, and the index of its father

candidates in second iteration is 3, so g2 ¼ 3, d¼ 1.

Therefore, the index of the gray square is g3 ¼ ðg2 � 1Þ
�Dþ d ¼ 5. Equation (13) demonstrates that the child delay

candidates inherit the information from their father delay

candidates.

Measure the coefficients, save the coefficients into coef-

ficient candidates at sth layer in coefficient trees. Measure

the residual, and save the residual into the residual candi-

dates at sth layer in residual trees,

qs
mðgsÞ ¼ A†

m Cs
mðgsÞ

� �
� ym; m ¼ 1;…;MQ: (14)

us
mðgsÞ ¼ ym � A†

m Cs
mðgsÞ

� �
� qs

mðgsÞ; m ¼ 1;…;MQ:

(15)

Note that, the information in different coefficient trees is dif-

ferent, so is in the residual trees.

end sub-iteration

end iteration

Output: The final residual is saved in uS
mðgSÞ, measure

the minimum residual among DS residual candidates in a

tree at Sth iteration. So there are MQ minimum residual can-

didates that are saved,

ĝS
m ¼ argmin

gS¼1:DS

jjuS
mðgSÞjj22; m ¼ 1;…;MQ: (16)

ĝS
m denotes index of the selected residual candidate that has

the minimum residual at Sth layer in the mth tree. Select the

coefficients in the coefficients trees and delays in the delay

trees via the selected residual candidate index ĝS
m,

ĥm ¼ qS
mðĝ

S
mÞ; m ¼ 1;…;MQ: (17)

Thus, there are total MQ channels are reconstructed, the

coefficients are qS
mðĝ

S
mÞ and the tap delays are CS

mðĝ
S
mÞ, where

m ¼ 1;…;MQ.

From Eq. (12), it is evident that all the delays are deter-

mined by multiple data blocks, multipath components that

have common delays are enhanced, but multipath compo-

nents that have differential delays will be estimated as fake

taps which may have negative impact to channel equalizer.

By the multiple selection strategy shown as Eqs. (14) and

(15), if the differential tap delays located in the first D maxi-

mum candidates, it will be delivered to the candidates in Sth

iteration. By minimizing the residue in Sth iteration shown
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in Eq. (16), both common tap delays and the differential tap

delays will be selected to reconstruct the channels.

From Fig. 2, we can see that, the trees grow exponen-

tially, when either D or the maximum iteration S is large, the

computational cost will become prohibitive. So we choose a

parameter j that comprises the channel estimation perfor-

mance and the computational complexity. During sth itera-

tion, we choose the first j maximum coefficient candidates,

and their corresponding coefficient candidates and residual

candidates. So during sth iteration, there are j candidates

instead of Ds candidates. Many tap delay candidates are

identical because of the common tap delays. Therefore, the

actual number of child candidates is often moderate.

Fortunately, the acoustic channel is sparse, which means that

the number of the significant taps are limited, the computa-

tional complexity of JBT-MSSOMP algorithm seems

acceptable.

C. Computational complexity analysis

In this subsection, computational complexities of the

OMP, JBT-SOMP, and JBT-MSSOMP algorithms are ana-

lyzed. We assume that multiplication and addition have the

same computational cost.26,27 The total complexity of the OMP

algorithm isOðPLþ Psþ Ps2 þ s3Þ at the sth iteration.26

Table I shows the computational complexity of the

OMP, JBT-SOMP, and JBT-MSSOMP algorithms at each

iteration. For each channel estimate, the JBT-SOMP algo-

rithm almost has the same complexity as the OMP algo-

rithm. The JBT-MSSOMP algorithm has higher

computational cost due to the generation of multiple child

candidates. Its complexity is controlled by D and j. Since

the underwater acoustic channel is sparse, the value of j is

limited. The resultant complexity of the proposed JB-

MSSOMP JBT-MSSOMP and algorithm is still acceptable.

D. Multichannel estimation based decision feedback
equalization

Considered that the true underwater acoustic channel is

unknown in field tests, we utilize the communication

performance of multichannel estimation based decision feed-

back equalization (MCE-DFE) to assess the performance of

channel estimators. The MCE-DFE contains a feedforward

filter bank, feedback filter and a decision device. A channel

convolution matrix is constructed based on channel esti-

mates. Then the feedforward and feedback equalizer coeffi-

cients are obtained from the convolution matrix based on the

minimum mean squared error criterion.28

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations are presented to

evaluate the performance of the JB-SOMP, JB-MSSOMP,

and JBT-MSSOMP methods in estimation of the underwater

acoustic multiband channel. A two-band underwater acoustic

communication system was simulated. We utilized

BELLHOP model to generate the impulse response for one

sub-band, referred to as band-1. In the BELLHOP simula-

tion, the water depth was 20 m. The sound speed was set as

1500 m/s, evenly across the water column. The depth of

source was 8 m. The receiver depth was 14 m. The sour-

ce�receiver range was 1000 m. The carrier frequency was

set as 85 kHz. The other band, referred to as band-2, was

manually generated to investigate two scenarios of multi-

band acoustic transmissions. In scenario I, the multiband

impulse responses only contained common tap delays, as

shown in Fig. 3(a). In scenario II, the impulse responses con-

sisted both common tap delays and differential tap delays, as

shown in Fig. 3(b). Specifically in Fig. 3(b), the first, third,

and fourth taps of the impulse response at band-2 had differ-

ent arrival times from those at band-1.

The communication simulations were carried out in

the baseband. The symbol rate was 12 kilosymbol/s, and

Quadrature Phase Shift Keying (QPSK) was used as the map-

ping scheme. The received SNR was set as 3 dB. The sparsity

S in the CS and DCS algorithms was set at 7, the number of

the sub-bands M was set at 2, the number of data blocks Q
was set at 2. In the JB-MSSOMP and JBT-MSSOMP algo-

rithms, j was set at 10, the number of child candidates D was

set at 5. All the parameters were chosen by tuning the mean

square error (MSE) to minimum. The MSE in channel estima-

tion is defined as

c ¼ 10 log10

jjhm � ĥmjj22
jjhmjj22

 !
; (18)

where hm is the simulated impulse response, and ĥm is the

corresponding channel estimate.

TABLE I. Computational complexity.

Description Computational complexity

OMP OðPLþ Psþ Ps2 þ Ps3Þ
JBT-SOMP OðPLþ ðPLþ Psþ Ps2 þ Ps3ÞÞ
JBT-MSSOMP OðjPLþ jDðPLþ Psþ Ps2 þ Ps3ÞÞ

FIG. 3. (Color online) Simulation sub-

band channels. (a) Sub-band channel

responses with common tap delays. (b)

Sub-band channel responses with par-

tially common tap delays and partially

differential tap delays.
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The performance comparison for the first scenario is

shown in Figs. 4(a) and 4(b) among four channel estimators:

the OMP, JB-SOMP, JB-MSSOMP, and JBT-MSSOMP

algorithms. Figure 4(a) shows channel estimation MSE com-

parison for the band-1 impulse response while Fig. 4(b) for

band-2. We observe that the channel estimation MSE obtained

by the JB-SOMP, JB-MSSOMP, and JBT-MSSOMP algo-

rithms were all lower than that by OMP, indicating a better

performance than the OMP algorithm. The reason is that the

two sub-band impulse responses shared the common tap

delays which were used to enhance channel estimation perfor-

mance. The JBT-MSSOMP algorithm achieved the best per-

formance, because the JBT-MSSOMP algorithm used the

observations from both multiple sub-bands and multiple data

blocks. The average MSE obtained by JBT-MSSOMP, JB-

MSSOMP, and OMP algorithms in Fig. 4(a) was �12.06,

�10.97, and �9.79 dB, while it was �13.20, �12.18, and

�11.18 dB in Fig. 4(b). There was more than �2 dB MSE

performance enhancement compared with the JBT-MSSOMP

and OMP algorithms. Meanwhile, there was about �1 dB

average MSE enhancement compared with the JB-MSSOMP

and OMP algorithms.

Figures 4(c) and 4(d) show the channel estimation MSE

for the second scenario, where the two bands shared partially

common tap delays and partially differential tap delays. The

MSE obtained by the JB-SOMP algorithm was lower than

that of OMP under short observation lengths, for example

5�10 ms, in Figs. 4(c) and 4(d). However, in Figs. 4(c) and

4(d), with the increasing of the observation length beyond

20 ms, the JB-SOMP algorithm had slightly worse perfor-

mance than the OMP algorithm, for example, when the

observation length is 25 ms, the MSE obtained by the OMP

and JB-SOMP algorithms in Fig. 4(c) was �12.33 and

�12.10 dB, respectively. The reason is that the long observa-

tion length improves the performance of OMP algorithm,

while the JB-SOMP algorithm suffers from increasing esti-

mation noise caused by the differential tap delays at two

sub-bands, shown as Eq. (11). The JB-MSSOMP and JBT-

MSSOMP algorithms outperformed either the JB-SOMP or

OMP algorithm, for all observation lengths shown in the

plots. The performance improvements can be explained by

the adoption of the multiple selection strategy to address the

differential tap delays at the two sub-bands. It can be seen

that the JB-SOMP and JB-MSSOMP algorithms in Fig. 4(a)

did not show much performance difference. However, they

had considerable differences in Fig. 4(c). The average MSE

difference between the JB-SOMP and JB-MSSOMP algo-

rithms in Fig. 4(c) were 0.76 dB. This confirmed the merit of

the multiple section strategy in the second scenario.

Because of the partially shared common tap delays in

the two sub-bands, the MSE obtained by the JB-MSSOMP

and JBT-MSSOMP algorithms in Fig. 4(c) was slightly

higher than those in Fig. 4(a). The average MSE obtained by

JBT-MSSOMP in Fig. 4(c) was �11.74 dB while that in Fig.

4(a) was �12.06 dB. The comparison between Fig. 4(b) and

Fig. 4(d) showed similarly small differences.

V. EXPERIMENTAL RESULTS

A. Experimental setting

To further demonstrate the effectiveness of the proposed

channel estimation schemes, we used underwater acoustic

communication measurements from our recent field experi-

ment to perform channel estimation and equalization. The

FIG. 4. (Color online) MSE versus

channel observation length for (a)

band-1 in scenario I. (b) band-2 in sce-

nario I. (c) band-1 in scenario II.(d)

band-2 in scenario II.
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acoustic experiment was conducted in the northern Gulf of

Mexico, August 22, 2016. The water depth of the site was

20 m. A five-element broadband receiver array was deployed

in a mooring, as shown in Fig. 5(a). The five-element array

covered 9�16 m with an element spacing of 1.75 m. A trans-

ducer was hung from a research vessel that was anchored at

different stations during the experiment. The transducer had

a source level of about 177 dB re 1 lPa at 1 m. Its central fre-

quency is 85 kHz, with a bandwidth of 20 kHz. The trans-

ducer depth was 12 m. Figure 5(b) shows the sound speed

profile at the experiment site. The profile indicated a highly

stratified ocean environment.

A three-band QPSK signal was transmitted during the

experiment, namely, the number of the sub-bands was

M¼ 3. The three sub-bands had the central frequencies of

78, 85, and 92 kHz, with 1 kHz guard band in-between,

referred to as band-1, band-2, and band-3, respectively. The

signal duration was 6.25 s. The symbol rate of each sub-band

was 6 kilosymbol/s.

B. Channel characteristics

The average SNR of the received data obtained at the

500 and 1000 m ranges was 36.2 and 29.1 dB across the sub-

bands, respectively. To demonstrate the performance of the

proposed methods under low SNR regions, we added

recorded noise to the original communication measurements

at the 1000 m range. After noise addition, the SNR level at

each sub-band was 10 dB for the 1000 m range. The resultant

data is referred to as the low SNR data. The communication

measurements at the 500 m range were referred to as the

high SNR data. The coherence time at the 500 and 1000 m

range was 241.1 and 115.5 ms, respectively. Considering the

coherence time, we were able to use adjacent data blocks to

perform DCS based channel estimation.

Figure 6 shows the estimated impulse responses of the

middle hydrophone located at the depth of 12.5 m. The source

motion generated non-negligible time-varying Doppler effects,

as the source was hung from the research vessel, the average

Doppler was calculated with known symbols by a narrowband

iterative method29 before channel estimation. The instanta-

neous Doppler reached 615 Hz, although the average Doppler

for the packet was only a couple of hertz. We set the channel

length at 33.33 ms. The channel observation length was three

times of the channel length, that was 100 ms. The impulse

responses were estimated by the Least Square QR-factorization

(LSQR) method which is a fast algorithm of LS.

As shown in Fig. 6, the multipath energy was limited to

a few channel taps, the channel impulse responses had a

sparse structure. Meanwhile, there existed rich multipath

arrivals that shared common tap delays [hc
m in Eq. (11)]

among three sub-bands. It clearly shows that there existed

partially differential tap delays [hd
m in Eq. (11)].

C. Communication performance in training mode

Because channel impulse response is unknown in field

communication, the MCE-DFE was adopted for performance

FIG. 5. (Color online) Experimental

setup and sound speed profiles. (a)

Experimental diagram, (b) sound speed

profile.

FIG. 6. (Color online) Snapshots of

estimated impulse responses at the

500 m range (a) and at the 1000 m

range (b), for the middle hydrophone

with a depth of 12.5 m.
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evaluation of different algorithms in terms of the communi-

cation quality. The communication metrics were adopted to

assess the performance of channel estimation algorithm: out-

put SNR, bit error rate (BER), and the constellation. The out-

put SNR at mth data block is defined as

cOSNR ¼ 10 log10

jjxmjj22
jjxm � x̂mjj22

 !
; (19)

where xm is the transmitted symbols, and x̂m is the receiver

soft output. Five channel estimators, including the LSQR,

OMP, JB-SOMP, JB-MSSOMP, and JBT-MSSOMP algo-

rithms, were used in the receiver.

The receiver parameters are listed in Table II. The chan-

nel length was set at Tch¼ 33.33 ms, corresponding to

L¼ 200 symbols. The length of feedforward filter was

Nff ¼ 2L symbols. The length of feedback filter was Nfb

¼ L� 1 symbols. In the OMP, JB-SOMP, JB-MSSOMP,

and JBT-MSSOMP algorithms, the sparsity was set at 30. In

the JB-MSSOMP and JBT-MSSOMP algorithms, j was set

at 10, and the number of child candidates in Eq. (12) was set

at D¼ 5, it is a compromise between computation complex-

ity and performance. Two adjacent data blocks were used for

joint channel estimation in the JBT-MSSOMP algorithm,

i.e., Q¼ 2.

In the training mode, channel estimators assumed per-

fect knowledge of the transmitted symbols. Figure 8 shows

the receiver output SNR in the training mode from band-1.

In both Figs. 7(a) and 7(b), the output SNR increased with

the increased channel observation length for each of the

channel estimation algorithms. Clearly, the LSQR algorithm

resulted in the worst performance. Among the OMP, JB-

SOMP, JB-MSSOMP, and JBT-MSSOMP algorithms, the

proposed JB-MSSOMP and JBT-MSSOMP algorithms

achieved higher output SNR under short observation length,

for example less than 20 ms. At the observation length of

13.33 ms, the JB-MSSOMP and JBT-MSSOMP algorithms

resulted in 1.57 and 2.45 dB gain over the OMP algorithm in

Fig. 7(a). Their gains were 1.17 and 2.12 dB in Fig. 7(b) for

the same observation length of 13.33 ms. The JB-SOMP

algorithm had slightly better performance than the OMP

algorithm in both plots. The JBT-MSSOMP algorithm

achieved the higher gain when the observation length was

short, less than 20 ms.

In the high SNR case shown in Fig. 7(a), the output

SNR of CS and DCS channel estimators converged when the

observation length was larger than 25 ms. In the high SNR

scenario, with a large channel observation length, the DCS

methods did not have performance advantages. In the low

SNR case [Fig. 7(b)], the JB-MSSOMP and JBT-MSSOMP

algorithms still led to some performance advantages over the

OMP algorithms at the channel observation length of

26.67 ms. Their gains were 0.67 and 1.29 dB over the OMP

algorithm.

We further analyze the channel estimation performance

under different sparsity. Specially, in this part, we compare

the performance of JBT-SOMP algorithm. For the receiver

parameters, the observation length is fixed at 13.33 ms, the

remaining parameters are the same as previous settings in

the training mode. LSQR, OMP, JB-SOMP, JB-MSSOMP,

JBT-SOMP, and JBT-MSSOMP algorithms are compared

under different sparsity.

From Fig. 8, it can be observed that, the output SNR

obtained by OMP, JB-SOMP, JB-MSSOMP, JBT-SOMP,

and JBT-MSSOMP algorithms varied with sparsity, while

the output SNR obtained by LSQR algorithm kept constant.

It is evident that, the JBT-MSSOMP channel estimator

obtained the best performance both in Figs. 8(a) and in 8(b).

In Fig. 8, the output SNR obtained by OMP algorithm

decreased when the sparsity increased. In Fig. 8(a), the JBT-

MSSOMP channel estimator obtained the maximum output

SNR 10.12 dB at the sparsity of 25, the JB-SOMP, JB-

MSSOMP, and JBT-SOMP channel estimator obtained the

TABLE II. Parameters setting.

Parameters Description Value

Fs Sampling frequency 510 kHz

Fc Sub-band carrier frequency 78, 85, and 92 kHz

R Symbol rate 6 kilosymbol/s

NT Number of transducers 1

NR Number of hydrophone channels 5

Kos Over sampling factor 1

Tpreamble Duration of preamble 0.26 s

Tch Channel impulse response duration 33.33 ms

L Length of discrete channel L ¼ Tch � R

Nff Feedforward filter span 2L

Nfb Feedback filter span L � 1

FIG. 7. (Color online) Output SNR

versus channel observation length for

the high SNR data (a) and for the low

SNR data (b), at band-1. Note that the

y-axis limits in (a) and (b) are 14 and

10 dB.
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maximum output SNR at the sparsity of 20, the output SNR

was 8.59, 8.94 and 9.32 dB, respectively. In Fig. 8(b), The

JBT-MSSOMP, JB-MSSOMP, and JB-SOMP algorithms

obtained the best output SNR at the sparsity of 20. Note

that, both in Figs. 8(a) and 8(b), when the sparsity was 50,

the output SNR obtained by OMP and JB-SOMP algo-

rithms was closed, while the JB-MSSOMP and JBT-

MSSOMP algorithms still achieved high gains, because the

JB-MSSOMP and JBT-MSSOMP algorithms applied multi-

ple selection strategy. Compared with JBT-SOMP and JB-

MSSOMP algorithms in both Figs. 8(b) and 8(a), we can

see that, when the sparsity was less than 40, the output

SNR obtained by JBT-SOMP was larger than that obtained

by JB-MSSOMP. When the sparsity was 50, the perfor-

mance between JBT-SOMP and JB-MSSOMP was very

closed.

D. Performance in decision-directed mode

In the decision-directed mode, the previous detected

symbols were used in both channel estimation and Doppler

estimation. A 0.26 s preamble was used to estimate the initial

channel impulse responses and Doppler estimates. Four

channel estimators, OMP, JB-SOMP, JB-MSSOMP, and

JBT-MSSOMP, were considered in the decision-directed

mode. The parameters of MCE-DFE receiver were set the

same as in the training mode listed in Table II. The parame-

ters in OMP, JB-SOMP, JB-MSSOMP, and JBT-MSSOMP

algorithms were also set the same as in the training mode.

Periodic training was adopted to prevent error propagation.

The periodical training symbols accounted for 14.29% of the

transmitted symbols.

The channel observation length was P¼ 100 symbols

(16.67 ms) in Fig. 9(a) and P¼ 160 symbols (26.67 ms) in

Fig. 9(b). In Fig. 9(a), the OMP, JB-SOMP, JB-MSSOMP,

and JBT-MSSOMP achieved the output SNR of 4.85, 6.09,

7.61, and 8.96 dB. In Fig. 9(b), the OMP, JB-SOMP, JB-

MSSOMP, and JBT-MSSOMP algorithm achieved the out-

put SNR of 4.13, 4.81, 5.38, and 5.95 dB. The output SNR

achieved by the JB-MSSOMP and JBT-MSSOMP algo-

rithms resulted in better performance than the conventional

OMP. The JBT-MSSOMP algorithm achieved the highest

output SNR. The comparison results in the decision-directed

mode were consistent with those in the training mode. The

output SNR associated with the OMP algorithm showed an

oscillation feature because of the error propagation, when

the MCE-DFE was driven by noisy channel estimates.

Receiver output scattering plots of band-1 associated

with the OMP, JB-SOMP, JB-MSSOMP, and JBT-

MSSOMP algorithms are shown in Fig. 10 for the high SNR

data. The best channel estimator, the JBT-MSSOMP algo-

rithm, showed the best separated scattering plot and resulted

in 4.11 dB gain in the output SNR over the OMP algorithm.

Finally, low density parity check code (LDPC) channel

coding technology30 was utilized. The coding rate was 2/3.

The final BER in the decision-direct mode was provided in

Table III and Table IV, for the high SNR data and low SNR

data, respectively. In Table III, the BER obtained by OMP

did not exhibit improvements after LDPC decoding, due to

access errors. The receiver with the JBT-MSSOMP estimator

FIG. 8. (Color online) Output SNR

versus sparsity for the high SNR data

(a) and for the low SNR data (b) at

band-1.

FIG. 9. (Color online) Output SNR in

the decision-directed mode for the

high SNR data (a) and the low SNR

data (b) for band-1. The channel obser-

vation lengths in (a) and (b) were

16.67 and 26.67 ms, respectively.
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achieved zero error, after LDPC decoding. The LSQR chan-

nel estimation algorithm for MCE-DFE was failed in the

working mode.

VI. CONCLUSIONS

The multiband underwater acoustic channels exhibit

similar sparse structure in both adjacent data blocks and dif-

ferent sub-bands. In this paper, we applied DCS method that

combined adjacent data blocks from each of sub-bands to

improve the channel estimation performance under short

observation length and low SNR. However, channels that

contain differential tap delays will unavoidably degrade the

performance of conventional DCS algorithm. To address the

issue, we applied multiple selection strategy to joint band

sparsity DCS channel estimation and joint both band and

time sparsity DCS channel estimation, which were referred

to as JB-MSSOMP and JBT-MSSOMP. The multiple selec-

tion strategy generates multiple candidates including channel

delay candidates, channel coefficient candidates, and resid-

ual candidates, during each iteration. At last, the minimum

residue is chosen to select the channel delays and coeffi-

cients. In this way, the estimation for common tap delays is

enhanced, while the differential tap delays are correctly

reconstructed. Simulation results indicated that, the proposed

JB-MSSOMP and JBT-MSSOMP algorithms achieved about

�1 dB and more than �2 dB average MSE than the OMP

algorithm, respectively. Field experimental results indicated

that, the JB-MSSOMP and JBT-MSSOMP algorithms

(a) (b)

(c) (d)

FIG. 10. (Color online) Constellations.

(a)�(d) are the scatterplots from MCE-

DFE obtained by the OMP, JB-SOMP,

JB-MSSOMP, and JBT-MSSOMP

algorithms, respectively, measured

from high SNR data.

TABLE III. BER measured from high SNR data.

OMP JB-SOMP JB-MSSOMP JBT-MSSOMP

band-1

Uncoded BER (%) 11.68 7.48 2.97 1.27

Coded BER (%) 11.25 3.40 0.00 0.00

band-2

Uncoded BER (%) 15.52 9.77 4.50 2.17

Coded BER (%) 16.46 7.24 0.44 0.00

band-3

Uncoded BER (%) 14.23 8.20 4.20 2.27

Coded BER (%) 13.43 4.76 0.42 0

TABLE IV. BER measured from low SNR data.

OMP JB-SOMP JB-MSSOMP JBT-MSSOMP

band-1

Uncoded BER (%) 16.75 13.33 10.75 7.87

Coded BER (%) 16.58 12.72 9.29 3.40

band-2

Uncoded BER (%) 16.35 12.18 10.52 7.73

Coded BER (%) 16.55 10.81 8.71 2.15

band-3

Uncoded BER (%) 17.73 13.13 11.67 9.85

Coded BER (%) 17.73 12.23 10.23 6.75
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obtained higher output SNR than OMP both in short obser-

vation length and low SNR. After LDPC channel decoding,

the JB-MSSOMP and JBT-MSSOMP obtained lower BER

than OMP.
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