
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Empowering Conservation through Deep

Convolutional Neural Networks and

Unmanned Aerial Systems

A thesis submitted in partial satisfaction of the

requirements for the degree of Masters of Science

in

Intelligent Systems, Robotics, and Controls

Electrical and Computer Engineering

by

Matthew EPPERSON

Committee in charge:

Professor Nikolay Atansov, Chair

Professor Ryan Kastner

Professor Curt Schurgers

2018

https://www.ucsd.edu
http://www.ece.ucsd.edu/

iii

The Dissertation of Matthew EPPERSONis approved, and it is acceptable in quality

and form for publication on microfilm and electronically:

Co-chair(if applicable)

Chair

University of California, San Diego

2018

iv

Dedicated to my parents who have always believed in me even
when I didn’t believe in myself.. . .

v

Contents

Signature Page iii

Acknowledgements ix

Abstract x

1 Introduction 1

1.1 Background . 1

1.2 What is Deep Learning? . 2

1.2.1 Brief background to CNNs . 3

1.2.2 Object Detection . 4

1.3 Why Ecology and Conservation? . 4

1.3.1 What does Computer Vision offer Ecologists? 5

1.4 Why UAVs? . 5

1.4.1 Types of UAVs . 6

1.4.2 Autopilots . 6

1.4.3 What do UAVs offer Conservationists? 7

2 Convolutional Neural Networks 8

2.1 CNNs: Layer by Layer . 8

2.1.1 Convolution Layer . 8

2.1.2 Activation Layer . 9

2.1.3 Pooling Layer . 10

2.1.4 Fully Connected Layer . 10

2.1.5 Transfer Learning . 11

2.1.6 VGG16 . 11

2.1.7 ResNet . 11

vi

2.1.8 DenseNet . 12

2.2 Object Detection Networks . 13

2.2.1 Faster-RCNN . 14

2.2.1.1 Loss . 14

2.2.2 YOLOv2 . 16

2.2.2.1 Loss . 18

2.2.3 Selecting a Network . 19

3 Belize Expedition 21

3.1 Study Sites . 21

3.2 Flight System . 22

3.3 Flights . 24

3.4 Post Processing . 24

4 Applying Convolutional Neural Networks 28

4.1 Creating the Dataset . 28

4.1.1 Labeling Tool . 29

4.1.2 Labeling Noise . 29

4.1.3 Dataset Statistics . 30

4.2 Training the Network . 31

4.2.1 Network Resolution . 32

4.2.2 Class Imbalance . 32

4.3 Evaluating the Network . 33

5 Results 35

5.1 Results . 35

5.1.1 Effect of Network Resolution . 35

5.1.2 Effect of Image Resolution . 36

5.1.3 Class Imbalance Issues . 37

5.1.4 Ecological Impact . 37

6 Further Studies 39

6.1 NOAA Dataset . 39

vii

List of Abbreviations

CNN Convolutional Neural Network

AP Average Precision

IoU Intersection over Union

viii

List of Figures

1.1 Data Processing Pipeline. a) UAV flies a lawn mower flight pattern

taking pictures at regular intervals. b) The raw images with GPS and

orientation information are stitched together to create an orthomosaic

of the canopy; covering about 8.73km2 of data at the BFREE site. c)

Orthomosaic is split into smaller images and stored on a server for la-

beling. d) Web based tool distributes a small subset of the images

to volunteers who label them to provide “ground truth”. e) CNN

uses the ground truth data train a classifier to detect ecological fea-

tures (e.g., a specific type of tree). This classifier is used to process

the remaining data and automatically characterize the images and or-

thophoto. 2

2.1 An example of performing a 3x3 convolution with a depth of two on

an 7x7x3 image with 1 pixel of padding from Andrej Karpathy’s Stan-

ford CNN Course [10] . 9

2.2 Diagram of Residual Block from [8] . 12

2.3 Diagram of Residual Block from [9] . 13

3.1 Photos taken during the expedition to the Bladen National Reserve . . 21

3.2 Map of Bladen Nature Reserve and BFREE site 22

3.3 Volantex Ranger Ex about to be hand launched for its last day of data

collection. The platform is easily managed by a team of two people

and can be launched without out external equipment making it an

ideal platform for difficult to access areas. 23

3.4 Flight Paths Over BFREE, Oro and Ramos Survey Sites 24

ix

3.5 Orthomosaic of our main test site BFREE. An example of zooming

down on the two palm trees is shown to demonstrate the resolution

of the orthomosaic. The size of the orthomosaic is 16GB. 24

3.6 Digital elevation map produced using Agisoft SfM software suite.

Color codes represent the number overlapping images for that pixel.

This additionally information could be very informative in discrimi-

nating between trees. Future research might examine how this infor-

mation could be included in a CNN architecture. 26

3.7 Two separate parts of the Oro site showing low hanging cloud cover-

age and various lighting conditions. 27

4.1 Example Instances of Cohune Palm Trees and Deciduous Trees from

our dataset. 28

4.2 Labeling tool in action. Note that you are shown surrounding area

of the tile allowing the user to label palm trees that overlap two seg-

ments. Thumbnails on the lower right allow easy visual grepping of

currently labeled trees . 29

4.3 Bounding Box Statistics from the Evaluation set. 31

4.4 Bounding Box Statistics from the Training set. 31

4.5 Example of IOU scores where blue corresponds to the human box and

red corresponds to network detections. 34

5.1 Precision Recall for Cohune Palm Trees vs Deciduous Trees. We no-

ticed a substantial intraclass difference with deciduous tree size and

shape, correspondingly the network had a difficult time localizing in-

dividual trees with a high IOU. 36

5.2 Evaluating Precision Recall vs spatial resolution is important for plan-

ning future flights since gathering higher resolution requires flying at

lower altitudes meaning you can cover less distance. Ideally we can

find a sweet spot between image resolution and performance that lets

us maximize area covered. 37

5.3 Resolution in cm/pixel from left to right: 5, 20, 40, 60, 80, 100. It is

clear that after 60 cm/pixel the image becomes indiscernible. 37

x

5.4 Left: Cohune Palm Trees Right: Deciduous Trees. Note that the two

classes of trees grow in distinct location from each other. 38

6.1 . 39

6.2 . 40

6.3 . 40

xi

List of Tables

2.1 YOLOv2 Network Architecture layer by layer for an input resolution

of 608 x 608 . 17

3.1 My caption . 23

3.2 Post Processing Statistics generated by creating othrorectified mosaics

through Agisoft. 25

4.1 My caption . 32

5.1 Average Precision for each site per class 35

xii

Acknowledgements

Big thanks to all my advisors that made this thesis possible! Dr. Kastner and Dr.

Curt Schurgers for welcoming me into Engineers for Exploration; allowing me to

embrace two of my greatest passions in life.

I would also like to thank Dr. Jamie Rotenberg at University of North Carolina

Wilmington for supporting the ecological side of this project and always being a

pleasure to chat!

Thank you to both Eric Lo, staff engineer at UCSD, and Sebastian Afshari for

flying the missions in Belize and helping create this dataset.

xiii

Abstract

Empowering Conservation through Deep Convolutional Neural Networks and

Unmanned Aerial Systems

by

Matthew EPPERSON

Masters of Science in Electrical and Computer Engineering

Universtiy of California, San Diego, 2018

Professor Nikolay Atanasov, Chair

Tropical rainforests worldwide are negatively impacted from a variety of human-

caused threats. Unfortunately, our ability to study these rainforests is impeded by

logistical problems such as their physical inaccessibility, expensive aerial imagery,

and/or coarse satellite data. One solution is the use of low-cost, Unmanned Aerial

Vehicles (UAV), commonly referred to as drones. Drones are now widely recognized

as a tool for ecology, environmental science, and conservation, collecting imagery

that is superior to satellite data in resolution. We asked: Can we take advantage

of the sub-meter, high-resolution imagery to detect specific tree species or groups,

and use these data as indicators of rainforest functional traits and characteristics?

We demonstrate a low-cost method for obtaining high-resolution aerial imagery in

a rainforest of Belize using a drone over three sites in two rainforest protected areas.

We built a workflow that uses Structure from Motion (SfM) on the drone images

to create a large orthomosaic and a Deep Convolutional Neural Network (CNN)

to classify indicator tree species. We selected: 1) Cohune Palm (Attalea cohune) as

they are indicative of past disturbance and current soil condition; and, 2) the dry-

season deciduous tree group since deciduousness is an important ecological factor

of rainforest structure and function. This framework serves as a guide for tackling

difficult ecological challenges and we show two additionally examples of how a

similar architecture can help count wildlife populations in the Arctic.

1

Chapter 1

Introduction

1.1 Background

Computer Vision (CV) has jumped by leaps and bounds in the last five years as ma-

chine learning, notably deep convolutional neural networks, have become a driving

force for pushing the bounds on tasks such as classification, segmentation, and object

detection. Industry has jumped on the deep learning wave and today you can pur-

chase products which use facial recognition for security, ride in vehicles that operate

autonomously in complex safety critical environments, or get a cancer diagnosis

more accurate then seasoned doctors from a machine [6].

In parallel to advances in computer vision micro-UAVs, colloquially referred to

as drones, have found there way out of research labs and into the hands of con-

sumers and professions a like. As demand for drones has built we have seen a

steady increase in capabilities with regards to stability, vehicle configuration, flight

duration, payload options and autonomy.

One area that is consistently under served by emerging technologies are ecology

and conservation. Both areas have ample need for these technologies which can en-

able scientists access to the information needed to gain new insights into complex

environments that are seeing rapid change due to climate change and habitat loss.

In this research we show a pipeline see 1.1 for collecting very high resolution aerial

imagery from UAVs, pre-processing the imagery into an orthomosaic using commer-

cial GIS software, and finally using deep convolution neural networks to accurately

identify individual species of trees in rain forest canopies. We show that this fine

grained classification is only possible with superior than satellite resolution and it

Chapter 1. Introduction 2

has the ability to generalize to new sites with different lighting conditions and reso-

lutions. This study directly enabled ecologists to pull useful insights from our study

area.

FIGURE 1.1: Data Processing Pipeline. a) UAV flies a lawn mower
flight pattern taking pictures at regular intervals. b) The raw images
with GPS and orientation information are stitched together to create
an orthomosaic of the canopy; covering about 8.73km2 of data at the
BFREE site. c) Orthomosaic is split into smaller images and stored on
a server for labeling. d) Web based tool distributes a small subset of
the images to volunteers who label them to provide “ground truth”.
e) CNN uses the ground truth data train a classifier to detect eco-
logical features (e.g., a specific type of tree). This classifier is used to
process the remaining data and automatically characterize the images

and orthophoto.

1.2 What is Deep Learning?

Deep Learning is an aspect of machine learning that is currently very popular for

a variety of tasks, such as natural language processing, computer vision, and even

control. Traditionally for each of these disciplines researchers would posit a model

that tried to capture the underlying truth of how the world works. For natural lan-

guage processing this might be how consonants and vowels are related to each other;

how different parts of a sentence are connected and influence the overall semantic

meaning. For computer vision it might be how edges, contours or colors make up an

object such as a dog or cat. For the most part these largely hand designed models fail

to capture the entire underlying model which might be highly nonlinear in nature.

This is where neural networks step in as universal function approximaters. Neu-

ral networks are formed by an input layer, hidden layer(s), and an output layer. Each

node is like a neuron and is connected to other nodes much like the synapses of bi-

ological systems. The systems are trained by providing training examples and com-

paring the output with the desired output and then performing back-propagation to

Chapter 1. Introduction 3

push the parameters of the network towards a better solution. The upshot of these

networks are that they are model free reducing the burden on the engineer or scien-

tist to create one by hand. The downside is that they often require massive amounts

of data before they perform well, can be computationally expensive, and are largely

black boxes that are difficult to inspect. For computer vision the most popular deep

learning algorithm has been convolutional neural networks (CNN) which we will

utilize as powerful tool for automating perception tasks in ecology and conserva-

tion.

1.2.1 Brief background to CNNs

Using computer algorithms to detect and classify objects in digital images is an in-

trinsically hard problem that has eluded computer vision experts best attempts to

model for years. Retaining the 2D structure of an object in an image and discerning

how semantic parts of it relate to each other in any given orientation or position is

no small feat.

A big step forward came in 2012 when Alex Krizhevsky proposed a learning al-

gorithm that is loosely inspired by how the human visual cortex system works [11].

It uses many stacked layers of 2D convolutional filters along with nonlinear activa-

tion layers to form a neural network capable of learning complex hierarchical repre-

sentations of objects. While the idea itself wasn’t novel idea (neural networks have

been around for decades) his use of the massively parallel computation available

in graphic processing units (GPUs), deeply stacked layers, and massive amounts of

training data allowed him to score 10.8% better than the nearest computation; a huge

break through in accuracy. Krizhevsky’s neural network called “AlexNet” is largely

considered a silver bullet that helped computer vision researchers overcome a bar-

rier in classification accuracy that they had been running up against for years and

leading to a overall boom in deep learning research.

CNNs are a very active area of research and at this point AlexNet is considered

outdated. Today Residual network (ResNet) [8] and Densely Connected Convolu-

tional Networks (DenseNet) [9] are the top performing networks that form the back-

bone for other problems like object detection, segmentation, and pose regression.

Chapter 1. Introduction 4

1.2.2 Object Detection

A subset of Deep Learning networks for computer vision are called object detectors.

These networks deal with not only classifying an image, but first localizing an indi-

vidual object in an image frame before assigning it a classification as well as a confi-

dence. Many open source variants of object detectors exist with various strengths

and weakness. We considered two algorithms for object detection and recogni-

tion: Faster-RCNN and YOLOv2. Faster-RCNN [15] uses two networks where the

first network proposes a “region” while the second network classifies that region.

YOLOv2 [14] uses a single unified network that simultaneously predicts location

and class. They both use open source GPU frameworks Caffe and Darknet respec-

tively. While the two networks are comparable in accuracy on standard datasets, we

found that YOLOv2 had the advantage when working with high resolution imagery

as it can accept arbitrarily large input images. This is unlike many neural networks

where the input size is fixed and makes detection of small objects in high resolution

imagery harder due downsampling an image before passing it through the network.

1.3 Why Ecology and Conservation?

Macro understanding of ecosystems are usually done by making assumptions based

on macro features instead of fine grained details. For example forests are usually clas-

sified into broads types: coniferous, evergreen, tropical, or mediterranean instead of

the individual species that make up the forest. Population counts of arctic fur seals

are done with boots on the ground. Coral reef classification is done exhaustively by

hand on only small sections at a time. The more fine grain the examination the more

labor intensive the process which leads to a loss in temporal coherence as such tasks

are only performed rarely and at much greater cost. Ideally researchers would be

able to obtain fine-grain temporally coherent analysis of ecosystems without having

to invest large amounts of time and money. This is where computer vision can jump

in.

Chapter 1. Introduction 5

1.3.1 What does Computer Vision offer Ecologists?

A few tasks that researchers need to perform such as counting populations of in-

dividuals species, marking geographical distribution of individuals, or even iden-

tification of individuals in a population are quite easy for humans but traditionally

very difficult to automate with machines. The promise and hype around much of the

capabilities surrounding deep learning is underlied by the idea that given enough

training data we can teach machines to operate at and even above human level abil-

ities for certain tasks. Applying these emerging technologies can allow researchers

to automate many processes that can be too labor intensive to do manually.

This technology has already begun to seep into conservation projects. For exam-

ple Right Whale classification and individual IDing was presented in Kaggle compe-

tition by NOAA [1]. In a similar sense the authors of [4] used an object detector with

facial recognition to find and ID gorillas in the wild. The authors in [17] leveraged

Google Street View and Google Earth satellite imagery to classify trees, geo-locate

them, and estimate trunk thickness. Researchers from both engineering and ecol-

ogy are just beginning to jointly explore computer vision tools for these types of

challenging tasks.

1.4 Why UAVs?

Taking to the sky has always been a force multiplier for mankind and few things

have put flight into peoples hands as cheaply as micro unmanned aerial vehicles

which we will interchangeable call UAVs, MAVs, or drones. In the consumer world

UAVs are more commonly referred to as drones and come in a price range from sub

fifty dollar toys designed to be flown inside by children to multi-thousand dollar air-

craft for taking action videos. They have been successfully commercialized and used

by government organizations to: survey land, create 3D reconstructions of building,

monitor agricultural crops, perform remote inspection on wind turbines, assistant in

search and rescue, and even provide broadband coverage during natural disasters

to name a few.

Chapter 1. Introduction 6

1.4.1 Types of UAVs

The two most common platforms are multi-rotor copters and fixed wing planes.

Multi-rotor copters usually consist of three to eight propellers, commonly four

(quadcopters), with battery, electronics and payload centered on the vehicle. They

range in size from as small as ten centimeters to several meters for the largest plat-

forms. Their popularity comes from their ability to move in six degrees of freedom

and their ease of flying; making it an ideal platform for inspection and shooting

video. They aren’t very aerodynamically efficient and usually have flight durations

ranging from 10-45 minutes depending on configuration and payload. They are of-

ten very weight constrained limiting the types and sizes of payloads they are capable

of carrying.

Fixed wing planes are essentially miniaturized versions of manned planes we are

accustomed to seeing in our skies. Just like traditional aircraft they come in a large

variety of shapes and sizes that have different advantages in flight duration, agility,

payload capacity, etc... They vary from hand launched, to shot runway takeoffs, to

being catapulted by pneumatic machines. The advantage to fixed wing aircraft are

that they are much more efficient than multi-rotor copters with increased payload

capacity, longer flight durations, and faster speeds.

For conservation in ecology both vehicle types have important use cases. For our

research focusing on wide-scale classification of rain forest canopies a fixed wing

aircraft was a natural choice for its long range capabilities.

1.4.2 Autopilots

At the heart of most MAVs are highly sophisticated autopilot systems that use in-

ertial measurement units, GPS, and embedded processors capable of handling low

level control/stabilization as well as high level decision making. Prior to a decade

ago autopilots with these capabilities were extremely expensive and not commer-

cially available. As cheap micro electronic measurement sensors (MEMS) and faster

embedded processors made their way onto the market they began to find their way

Chapter 1. Introduction 7

into autopilots. This is at the heart of the explosion of UAVs on the market. To-

day they are many autopilots with many available as open source, open hardware

projects which are ideal for research applications.

Autopilots usually operate in two different modes: fully autonomous and fly-

by-wire. In fly-by-wire mode the autopilot sits between the human and the aircraft

to stabilize the vehicle and make the end task for the human much easier. All multi-

rotor vehicles operate in this manner. In fully autonomous mode the vehicle has a

high level mission plan from the user which commonly consists of a set of waypoints

and actions to perform at those waypoints. In this research we make heavy use of

this waypoint following to automate the flight paths and image capture in order to

achieve a certain amount of overlap per image.

1.4.3 What do UAVs offer Conservationists?

8

Chapter 2

Convolutional Neural Networks

2.1 CNNs: Layer by Layer

Convolutional neural networks have been very successful in computer vision as

their key ingredient convolution filters preserve 2D structure and are able to pull

features from images. Back propogation and stochastic gradient descent are used

to optimize these filters in order to produce. Here I will cover some of the most

common layers used in CNNs.

2.1.1 Convolution Layer

The first and foremost layer is the convolution layer. A convolution layer contains a

set of filters which are convolved across feature maps in order to get the feature map.

Let’s take a concrete look at what this means. Imagine we are working with images

that are of the shape 28x28x3 pixels. We then decide we want to use a convolution

filter of size 2x2x5 which will result in a 28x28x5 feature map. Each kernel in this

filter will be of size 2x2x3 since the depth in our original image is 3 and there will be

five kernels. We then take the dot product of each slice in our 2x2x3 matrix against

the original image at pixel 0x0 giving us 3 scalar values which are summed to get

the first value in the first feature map of the output. We then slide these filters across

the entire feature map in x and y thereby creating a new feature map. See 2.1 for an

example of convolving two 3x3x3 kernels on a 7x7 image. A few things to consider

when sliding the feature maps are image padding. For pixel 0,0 in our example part

of the filter would be off the image. To keep the convolution consistent people will

often times pad the edges of the image with 0 or 0.5. Additionally a stride length

Chapter 2. Convolutional Neural Networks 9

can be set which determines how far we move the filter at each step. A stride length

of 2 would skip every other pixel when sliding.

FIGURE 2.1: An example of performing a 3x3 convolution with a
depth of two on an 7x7x3 image with 1 pixel of padding from An-

drej Karpathy’s Stanford CNN Course [10]

2.1.2 Activation Layer

Its common after each of the convolutional layers to apply a non-linear activation

function. A few examples of activation include:

σ(x) =
1

1 + e−x

tanh(x) =
ex − e−x

ex + e−x

Chapter 2. Convolutional Neural Networks 10

ReLu(x) =


0 x < 0

x x ≥ 0

ReLu or rectified linear unit has been a popular choice for cnns as it is computa-

tion efficient without sacrificing accuracy.

2.1.3 Pooling Layer

Pooling layers are used to downsample feature maps from layer to layer. Two com-

mon flavors of pooling layers are max pooling and average pooling. Max pooling

simply looks at a window and returns only the maximum value. Average pooling as

it names suggests averages all the values in the window and returns that value. Lets

take for example a 2x2 max pooling layer with an feature map of size of 128x128x32.

After applying the pooling layer we would have 64x64x32 as an output. A common

intuition behind max pooling is that it provides spatial invariance, i.e. if an object

shifts by a few pixels we will still have a high response. An alternative to max pool-

ing is using strided convolutions. The argument for this is that a good amount of

information is lost in pooling layers.

2.1.4 Fully Connected Layer

Fully connected layers are what we traditional think of as the multi-layer perceptron

model. They are commonly used in the final layer of CNNs to distill feature maps

from a multi-dimensional matrix into a vector that can be then used for classification

or regression. As a simple example are classification networks that will use two fully

connected layers where the output is a vector of the same length as number of classes

they want to predict from. SoftMax is applied to the vector to normalize the sum of

the vector to one and then each scalar in the vector is interpreted as a likelihood of

that image being of that particular class.

Chapter 2. Convolutional Neural Networks 11

2.1.5 Transfer Learning

Transfer learning is the process of taking a neural network trained for a certain task

and refining it for another. A common example of this is retraining a classifica-

tion network to predict a different set of classes than what it was originally trained

for or changed from a classifier to a regression network. The common intuition for

this is that the early layers in the network have learned basic features like, curves,

corners, or other simple patterns that are universal in all types of objects. The top

layers which carry the strong semantic information are closer to the end and there-

fore receive more gradient during back propagation. Some methods even freeze the

weights for lower levels as fixed feature extractors and only allow the the final lay-

ers to change during training. As a bonus, transfer learning reduces the total time to

train a network as the lower levels of a network take longer to train that the deeper

layers.

When exploring new architectures it is common procedure to simply download a

set of weights for a popular network backbone and just apply transfer learning from

there. In these next sections I will cover some of the popular network backbones.

2.1.6 VGG16

VGG16 was one of the first major networks after AlexNet which went for simplicity

and depth [16]. The first contribution was its simplicity. CNNs before VGG used

very large filter sizes, for example AlexNet used 11x11, which led to large param-

eter sizes. The authors of VGG16 instead used series of two back to back convolu-

tion/ReLu layers with 3x3 filters before doing max pooling. VGG16 at the time was

considered a very deep network with 13 convolution layers and 3 fully connected

layers. It showed that very deep networks were extremely important in learning the

hierarchical features necessary for good classification. VGG16 scored 7.3% error rate

on ImageNet dataset.

2.1.7 ResNet

In 2015 Microsoft Research came out with Deep Residual Learning for Image Recogni-

tion [8] which had 152 layers and new type of of block called the residual block. It

Chapter 2. Convolutional Neural Networks 12

scored 3.6% on the ImageNet challenge in 2015. A residual block is a normal feed

forward neural network that adds in shortcut connections where the input to a layer

is both fed through a layer but also routed around the layer and added to the output

of the next layer. See 2.2 for a visual description. They hypothesized that a resid-

ual mapping induced by this block would be easier to learn than the original feed-

forward network. ResNets come in several popular forms now such as ResNet18,

ResNet32, ResNet50, ResNet101, and ResNet152, where the choice of depth is based

on computational resources and dataset. Most popular deep learning frameworks

have pretrained ResNet models available for download.

Another intuition behind ResNets success is that the shortcut connections allow

gradients to move more easily through the network which helps alleviate a problem

known as the vanishing gradient. Vanishing gradients is the problem where the

loss at the end of the network has very little impact on changing the weights on the

earlier layers and was one of the main reasons preventing networks from going as

deep as ResNet. In the next network the use of skip connection is taken even further.

FIGURE 2.2: Diagram of Residual Block from [8]

2.1.8 DenseNet

In 2016 Densely Connected Convolutional Networks (DenseNets) were proposed

and shown to match and beat the residual network architecture on many datasets

while using much fewer parameters and therefore computation. With DenseNets

Chapter 2. Convolutional Neural Networks 13

the authors connect all feature maps of same size together through concatenation so

that the lth layer will have (l-1) feature maps. This is different then the ResNet model

which uses summation in its shortcut connections. In order to concatenate feature

maps across max pooling layers DenseNet introduce transition layers. These tran-

sition layers pass the prior feature maps through batch normalization, convolution,

and finally average pooling before concatenating them to layers further down.

FIGURE 2.3: Diagram of Residual Block from [9]

2.2 Object Detection Networks

Object detection networks deal with the problem of first localizing an object with an

image frame as well as classifying that object and is generally considered a harder

problem then pure classification tasks. The two popular datasets for benchmarking

results are Common Objects in Context (COCO) [12] and The PASCAL Visual Object

Classes (PASCAL VOC) [7]. At the time this work began the two most popular object

detection networks were Faster-RCNN and YOLOv2 which I will cover in depth in

the next two sections. Since then the state of the art has progressed considerably.

Future work might include exploring this architectures.

Chapter 2. Convolutional Neural Networks 14

2.2.1 Faster-RCNN

Faster-RCNN [15], where the R stands for region, is one of the most popular object

detection networks at the moment and is an advancement on the authors previous

two networks RCNN and Fast RCNN. The authors show results for both VGG16 and

ZF network backbones, but many open source implementations of Faster-RCNN

have replaced these backbones with various ResNet and DenseNets backbones.

The main contribution of Faster-RCNN is the Region Proposal Network (RPN)

which replaces Fast-RCNNs slower, more complicated region proposal mechanism.

It works by sliding a window across the final convolution feature map in a network

and simultaneously predicting class probability and objectness. Objectness in this

context is the probability that there is an object present in the bounding box. The

RPN is implemented as a single NxN conv layer that maps into a lower dimension

followed by two 1x1 conv layers for class probability and objectness. Furthermore

they make use anchor boxes or priors on bounding boxes to make the task of the box

regressor easier. At each position in the sliding window there are 9 anchor boxes

which the regressor predicts bounding boxes with respect to.

The training scheme for this network is a multi-step process which involves

training the RPN and Fast-RCNN networks separately and then later fixing the conv

layers of Fast-RCNN and just fine-tuning the RPN.

2.2.1.1 Loss

The loss for Faster-RCNN is split into two parts as shown below.

L = Lcls +Lreg (2.1)

Given pi is the predicted confidence that the ith anchor box is an object and p∗i

is a binary indicator that the anchor box has an IoU greater than 0.7 with a ground

truth we can define the loss as:

Chapter 2. Convolutional Neural Networks 15

Lcls(pi, p∗i) =
1

Ncls

A

∑
i=1

[pi log(pi) + (p∗i − pi) log(1− pi)] (2.2)

We then parameterize the anchor box and bounding box truth as the following

where a indicates a parameter from the anchor box and ∗ from the ground truth.

tx =
(x− xa)

wa
(2.3)

ty =
(y− ya)

ha
(2.4)

tw = log(
w
wa

) (2.5)

th = log(
h
ha
) (2.6)

t∗x =
(x∗ − xa)

wa
(2.7)

t∗y =
(y∗ − ya)

ha
(2.8)

t∗w = log(
w∗

wa
) (2.9)

t∗h = log(
h∗

ha
) (2.10)

(2.11)

Next we define the regression loss where again we use p∗i as an indicator whether

this anchor box has an IoU above 0.7 with the ground truth.

Lreg(p∗i , t, t∗) = p∗i (SmoothL1(tx − t∗x) + SmoothL1(ty − ty∗)

+ SmoothL1(tw − tw∗) + SL1(th − th∗))

(2.12)

SmoothL1(d) =


0.5d2 i f |d| ≤ 0

|d| − 0.5 otherwise
(2.13)

Chapter 2. Convolutional Neural Networks 16

2.2.2 YOLOv2

YOLOv2, You Only Look Once, is another successful object detector released in 2016

[14]. It’s key contribution is a unified network that simultaneously predicts object

class and location with out the use of a secondary Region Proposal Network. While

maintaining comparable accuracy to Faster-RCNN it runs at a much higher frame

rate.

The backbone is of the authors design that uses only 3x3 and 1x1 convolutions,

max pooling layers, and batch normalization. The network contains 23 convolution

layers, 5 max pooling layers, and one short cut layer that concatenates features from

lower levels to the final layer. Since the model contains no fully connected layers

the network input size is unconstrained. The 5 max pooling layers of stride 2 mean

that the final feature map will have a width and height that is the original width and

height divided by 25. As such the the original network input is usually selected to

be a multiple of 32 i.e. 320, 416, 608, etc... An example of the network architecture is

shown in table 2.1

YOLOv2 takes a simple approach to bounding box regression and class predic-

tion. To understand how it works lets view the final feature map as a grid. At each

location in this grid we want to predict bounding boxes and give a confidence metric

for how likely there is to be an object there. We want to predict 5 numbers at each

location in the grid plus a confidence for each class as show below:

tx, ty, tw, th, to, P(C1), ..., P(CN) (2.14)

The parameters tx, ty, tw, th are regressed with relation to the feature map x,y lo-

cation which we call fx and fy. Further tx, ty are constrained to be between [0,1]

by the logistic function. We also define pw, ph as the prior width and height for the

anchor boxes.

Chapter 2. Convolutional Neural Networks 17

TABLE 2.1: YOLOv2 Network Architecture layer by layer for an input
resolution of 608 x 608

layer filters size input output

0 conv 32 3 x 3 / 1 608 x 608 x 3 608 x 608 x 32
1 max N/A 2 x 2 / 2 608 x 608 x 32 304 x 304 x 32

2 conv 64 3 x 3 / 1 304 x 304 x 32 304 x 304 x 64
3 max N/A 2 x 2 / 2 304 x 304 x 64 152 x 152 x 64

4 conv 128 3 x 3 / 1 152 x 152 x 64 152 x 152 x 128
5 conv 64 1 x 1 / 1 152 x 152 x 128 152 x 152 x 64
6 conv 128 3 x 3 / 1 152 x 152 x 64 152 x 152 x 128
7 max N/A 2 x 2 / 2 152 x 152 x 128 76 x 76 x 128

8 conv 256 3 x 3 / 1 76 x 76 x 128 76 x 76 x 256
9 conv 128 1 x 1 / 1 76 x 76 x 256 76 x 76 x 128
10 conv 256 3 x 3 / 1 76 x 76 x 128 76 x 76 x 256
11 max N/A 2 x 2 / 2 76 x 76 x 256 38 x 38 x 256

12 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
13 conv 256 1 x 1 / 1 38 x 38 x 512 38 x 38 x 256
14 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
15 conv 256 1 x 1 / 1 38 x 38 x 512 38 x 38 x 256
16 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
17 max N/A 2 x 2 / 2 38 x 38 x 512 19 x 19 x 512

18 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x1024
19 conv 512 1 x 1 / 1 19 x 19 x1024 19 x 19 x 512
20 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x1024
21 conv 512 1 x 1 / 1 19 x 19 x1024 19 x 19 x 512
22 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x1024
23 conv 1024 3 x 3 / 1 19 x 19 x1024 19 x 19 x1024
24 conv 1024 3 x 3 / 1 19 x 19 x1024 19 x 19 x1024

25 route 16 N/A N/A N/A
26 reorg N/A / 2 38 x 38 x 512 19 x 19 x2048
27 route 26 24 N/A N/A

28 conv 1024 3 x 3 / 1 19 x 19 x3072 19 x 19 x1024
29 conv 35 1 x 1 / 1 19 x 19 x1024 19 x 19 x 35

bx = σ(tx) + fx (2.15)

by = σ(ty) + fy (2.16)

bw = pw ∗ exp(tw) (2.17)

bh = ph ∗ exp(th) (2.18)

Like Faster-RCNN the author uses anchor boxes as priors for predicting bound-

ing boxes at each locations. The author determined that 5 prior anchor boxes was

a good trade-off between accuracy and efficiency. For each prior bounding box we

need to predict the parameters shown in equation 2.14.

Lets take a concrete look at this with an example. Say that our input resolution is

Chapter 2. Convolutional Neural Networks 18

416 x 416, we have 3 classes, and are using 5 prior anchor boxes. Dividing our input

resolution by 32 we obtain our final feature map width and height equal to 13. Now

at each location in this 13 x 13 map we need to regress 3 classes and 5 bounding box

parameters for 5 anchor boxes.

(5 ∗ (5 + 3)) ∗ 132) = 6760 (2.19)

Instead of using a several fully connected layer to regress these numbers the

author simply uses a 1x1 conv in the prior layer and sets the number of filters equal

to the number of anchors multiplied by the 5 parameters plus the number of classes.

In table 2.1 there are 5 anchors and 2 classes meaning there are 35 filters going into

the final feature map. Which can be seen on layer 29.

This setup allows the user to have the freedom to change the input resolution on

the fly without having to modify the final layer. The only information we need a

prior is the number of classes.

2.2.2.1 Loss

The loss function for YOLOv2 consists of 4 separate parts

LYOLOv2 = Lcoord +Lobj +Lnoobj +Lclass (2.20)

(2.21)

The first part Lcoord deals with bounding box regression.

Lcoord = λcood

fx∗ fy

∑
i=1

Anchors

∑
j=i

1
i,j
obj[(σ(t

(i,j)
x)− σ(t̂(i,j)x))2 + (σ(t(i,j)y)− σ(t̂(i,j)y))2+

(σ(t(i,j)w)− σ(t̂(i,j)w))2 + (σ(t(i,j)h)− σ(t̂(i,j)h))2]

(2.22)

Chapter 2. Convolutional Neural Networks 19

The next part deal with the loss associated with predicting the objectness of the

bounding box. Ideally we would like the objectness to predict the IoU of the pre-

dicted bounding box with the true bounding box. This is a little unintuitive as dur-

ing inference we do not have access to the truth. The Lnoobj is there to punish false

positives.

Lobj = λobj

fx∗ fy

∑
i=1

Anchors

∑
j=i

1
i,j
obj(IoUpred

truth − σ(t̂(i,j)o))2 (2.23)

Lnoobj = λnoobj

fx∗ fy

∑
i=1

Anchors

∑
j=i

1
i,j
noobj(−σ(t̂(i,j)o))2 (2.24)

(2.25)

The final piece weights the error associated with predicting the class of the bound-

ing box. It’s simply the sum of squared error of the true class probability distribution

(which is 1 at the true class and 0 everywhere else) and the predicted class probabil-

ity. This is different that much formulations which is the cross entropy loss function

like Faster-RCNN.

Lclass = λnoobj

fx∗ fy

∑
i=1

Anchors

∑
j=i

N

∑
c=1

1
i,j
obj(1c=trueclass − P(c)(i,j))2 (2.26)

As an aside the naive loss function with regard to class probability has serious is-

sues with regards to class imbalance. Our work demonstrates YOLOv2s inability to

work well over in these situations as well be explained further in the results section.

2.2.3 Selecting a Network

Preliminary results using both networks showed results heavily in favor of YOLOv2.

The largest reason being the input size to YOLOv2 could easily be scaled up and had

pretrained models for higher resolution networks. This could potentially have been

replicated on with Faster-RCNN; however, it would have taken extensive architec-

ture changes and weeks training networks from scratch.

Chapter 2. Convolutional Neural Networks 20

Additionally the Darknet framework that YOLOv2 runs on was more approach-

able for the author allowing for easy modifications where necessary.

21

Chapter 3

Belize Expedition

FIGURE 3.1: Photos taken during the expedition to the Bladen Na-
tional Reserve

3.1 Study Sites

We collected aerial survey data over two adjacent protected areas located in the

Maya Mountains in the Toledo District of southern Belize 3.2. The first was a 467-

hectare (1,153-acre) private protected reserve administered by the Belize Foundation

for Research and Environmental Education (BFREE; 16.5 N, 88.6 W). The second site

was a 170-hectare (420-acre) valley within the 39,270-hectare (97,039-acre) Bladen

Nature Reserve (BNR), a national park-like, government reserve (Forestry Depart-

ment, Government of Belize). The two sites are part of the 607,028 hectares (1.5

million acres) Maya Mountains protected area system, often considered one of the

largest remaining unspoiled, mixed tropical forest ecosystems remaining in Central

America [2], [13], [5]. Elevation and precipitation in the Maya Mountains range from

80 to 1000 meters with rainfall averages between 2500 and 3000 millimeters (80-100

inches) of rain per year. The area has distinct wet and dry seasons, of which 89%

Chapter 3. Belize Expedition 22

of the rainfall occurs between May and December [3]. Both the BFREE and BNR

areas have been classified with only coarse-scale, generalized habitat categories in-

cluding: mainly tall and low tropical evergreen forest (low forest is referred to as

“Broken Ridge” in Belize), and a variety of disturbed habitats including early sec-

ondary forest, riparian edge, seasonally inundated forests, and Cacao agroforest at

BFREE; and tall to medium, tropical evergreen forests as well as smaller amounts of

mixed low forest with some disturbed riparian edge near the Bladen River for the

BNR.

For this we work we split these areas into three separate entities. First is BFREE

area discussed above. Second is Oro which is a smaller valley that required to fly

past BFREE along a river. Third is Ramos which required flying a considerable dis-

tance along a river before reaching a small open valley.

FIGURE 3.2: Map of Bladen Nature Reserve and BFREE site

3.2 Flight System

The imagery was collected using a 2-meter wingspan, fixed-wing airplane-type UAV,

model Volantex Ranger EX 3.3. The Ranger was fitted with an Ardupilot autopilot

system, which allows for autonomous control over long range flights. This flight sys-

tem (Ranger + Ardupilot) was selected due to its rugged design, payload capacity,

and long range. The tough body and 60 km range were requirements for use in Be-

lize where landing areas were rough on the airframe. Flight paths were pre-planned

Chapter 3. Belize Expedition 23

TABLE 3.1: My caption

Item Cost
ranger airframe $140.00
ranger servos $150.00
ranger power system (esc + motor) $150.00
ranger telemetry kit $200.00
ranger rc $40.00
3dr pixhawk $200.00
pixhawk airspeed $55.00
pixhawk gps/compass $80.00
frsky taranis rc tx $240.00
batteries $500.00
gcs laptop $200.00
chargers $280.00
Sony QX1 + 20mm lens $750.00
NGB Converted Canon S100 $600.00
Total $3585

in QGround Control Station, an open source ground control station software. All

flights were conducted with a Sony QX1 for visible imagery, and a modified Canon

S100 for near infrared, which limited vehicle range due to weight, but lowered the

number of required flights. The cameras were triggered externally by the autopilot

system based on distance flown. A bill of materials is given in table 3.1. Collecting

the same data using a manned flight system would be orders of magnitude more

expensive.

FIGURE 3.3: Volantex Ranger Ex about to be hand launched for its
last day of data collection. The platform is easily managed by a team
of two people and can be launched without out external equipment

making it an ideal platform for difficult to access areas.

Chapter 3. Belize Expedition 24

3.3 Flights

Data was collected over three days over a total of six flights. The paths of all flights

are shown in 3.4. All flights began from the same location on a dirt road in a corn

field adjacent to the rainforest allowing for ample room for takeoff and landing.

One of the downsides to commercial MAVs is that generally speaking they are not

water proof nor very water resistant. Rainforests often have unpredictable weather

patterns that interfere with flights. During this trip we were forced to cut several

flights shorter than we desired.

FIGURE 3.4: Flight Paths Over BFREE, Oro and Ramos Survey Sites

3.4 Post Processing

FIGURE 3.5: Orthomosaic of our main test site BFREE. An example
of zooming down on the two palm trees is shown to demonstrate the
resolution of the orthomosaic. The size of the orthomosaic is 16GB.

The flight paths were designed to collect enough overlapping images to recreate

the canopy in 3D and generate orthorectified mosaics through the process of SfM

Chapter 3. Belize Expedition 25

using Agisoft Photoscan Professional version 1.2.6. We produced three separate TIFs

for the area: a RGB orthomosaic, a NIR orthomosaic, and a digital elevation map

(DEM). The BFREE main survey site is a wide open with very little terrain. The

lack of elevation changes allowed the UAV to safely fly at lower altitudes and collect

higher resolution data. The resolution for the BFREE site is 4.93 cm/pixel covering a

8.73km2 site. The other two sites: Ramos and Oro lay along a river that cut through

mountainous terrain which forced the UAV to fly at higher altitudes to maintain a

safe boundary. The Ramos and Oro flights have nearly half the resolution with at

around 10 cm/pixel with 20.50km2 and 16.37km2 respectively. Additionally these

two flights encountered more low hanging fog and poor lighting conditions as can

be seen in 3.7 making the task of classification more difficult. This requires the tree

detector to be robust to resolution variations as well as lighting conditions.

TABLE 3.2: Post Processing Statistics generated by creating othrorec-
tified mosaics through Agisoft.

Site Flying Altitude (m) Number of Images Resolution (cm/pixel) Area (km2)
BFREE 248 1529 4.93 8.73
Oro Main 535 325 10.5 3.3
Oro Joiner 543 156 10.5 2.27
Oro Path 594 412 11.7 10.8
Ramos 537 769 10.6 20.5

Additionally we used the Agisoft softare to generate orthorectified mosaics. Or-

thomosaics are similar to the panoramas popular on mobile phone; the basic premise

being that by taking and stitching together many images you end up with a single

cohesive image that represents an area larger than you could normally capture with

a single photograph. Orthomosaics go a step farther by reprojecting the image into

a top down view which is called orthorectification. See 3.5 to see the orthorectified

image of the BFREE site. This is crucial to obtaining accurate population counts,

since at most you want a single instance of a tree to be represented in the data. If

we had simply used the raw images we might have had several pictures of the same

tree.

Meta-data for each image i.e. GPS location and orientation is captured from the

autopilot. This information allows the software to create a correspondence between

Chapter 3. Belize Expedition 26

each pixel in the orthomosaic and a global latitude, longitude. Meaning for each

instance of a tree we find we can relate exactly where in the world that tree is located.

FIGURE 3.6: Digital elevation map produced using Agisoft SfM soft-
ware suite. Color codes represent the number overlapping images for
that pixel. This additionally information could be very informative in
discriminating between trees. Future research might examine how

this information could be included in a CNN architecture.

Chapter 3. Belize Expedition 27

FIGURE 3.7: Two separate parts of the Oro site showing low hanging
cloud coverage and various lighting conditions.

28

Chapter 4

Applying Convolutional Neural

Networks

4.1 Creating the Dataset

Creating an annotated dataset is often the longest and most tedious part of any ma-

chine learning task. A common complaint against deep learning is that you need

large amounts of data to train properly generalized model. This can be mitigated

somewhat through transfer learning, but for good generalization of a network suf-

ficient training data is needed. The goal for our network is that it will be effective

on other areas outside our main site of BFREE which might have variations in light-

ing conditions, pixel resolution, etc.. Our dataset can be found at DATASET-URL-

INSERT-HERE.

FIGURE 4.1: Example Instances of Cohune Palm Trees and Deciduous
Trees from our dataset.

Chapter 4. Applying Convolutional Neural Networks 29

4.1.1 Labeling Tool

In order to parallelize the labeling process we developed a simple web tool for de-

centralizing the task of labeling images. The web tool was a built using a mix of

javascript and python; django was used to run the server and store data, open-

streetmap was used for displaying the image and drawing boxes, and leaflet for

working with GIS data. The web tool was run on a local server that allowed users to

log on remotely and label data at their convenience. 4.2 shows an example of using

the tool. Users were given tiles cropped from the orthomosaic. Each tile corresponds

to approximately 100m2 of rainforest. In order to help keep the labeling consistent

a demo video was shown to volunteers that described how to label a tile. Each tile

annotation contains a list of bounding boxes with a corresponding class label; either

Cohune palm or deciduous. The data was stored on the server in a database and

served as a CSV on request.

FIGURE 4.2: Labeling tool in action. Note that you are shown sur-
rounding area of the tile allowing the user to label palm trees that
overlap two segments. Thumbnails on the lower right allow easy vi-

sual grepping of currently labeled trees

4.1.2 Labeling Noise

Our volunteers came from a mix of ecology students at the University of North Car-

olina Wilmington who labeled Cohune Palm trees and computer science students at

Chapter 4. Applying Convolutional Neural Networks 30

University of California San Diego who labeled Deciduous Trees. Between labelers

we found considerable variation in accuracy and annotation styles.

First we noticed that many tiles had obviously missing bounding boxes. We

hypothesize that this is due to labeler fatigue. The tiles we present are quite dense

with trees and are a very uniform green. The author noticed in his own labeling that

over time it became harder to focus and be consistent with labeling. This could be

mitigated in the future by presenting smaller tiles and limiting the amount of time

users are allowed to label at one time.

Secondly we saw that bounding boxes with respect to crowding i.e. overlapping

trees as well as occluded trees had a large variation. Some users created one box

per crowd while some were meticulous in labeling each tree. Some users labeled

tiny portions of heavily occluded palm trees while others skipped even partially oc-

cluded trees. One thought for future work would be to present users with examples

for each scenario and then present tests which are used to evaluate the labelers skill.

In order to combat this label noise the author went through the dataset and

cleaned up bounding boxes with respect to crowded or occluded trees and added

missing annotation to each tile. This led to significantly lower average loss and

higher evaluation metrics.

4.1.3 Dataset Statistics

In order to get a better understanding of the dataset we examine the position of

each bounding box in the image frame as well as the distribution of the square root

of bounding boxes areas. The latter is very import as its informative for choos-

ing bounding box priors for the network. Notice that the distribution for each

class is roughly Gaussian centered around mean 210pixels2 for Cohune Palms and

130pixels2 for Deciduous trees. Deciduous trees by inspection have a much higher

standard deviation then Cohune Palms with more outliers. Also note that we have a

heavy class imbalance with approximately 10x Cohune Palm Trees when compared

to Deciduous Trees. This will be addressed in 4.2.2.

Chapter 4. Applying Convolutional Neural Networks 31

FIGURE 4.3: Bounding Box Statistics from the Evaluation set.

FIGURE 4.4: Bounding Box Statistics from the Training set.

4.2 Training the Network

The dataset we present is still relatively small compared to many used to train

deep neural networks from scratch. We compensate by using a pretrained net-

work. YOLOv2 comes with several pretrained networks on the common classifi-

cation datasets ImageNet and object detection datasets COCO [12], Pascal VOC [7].

The main difference between the pretrained networks is that the ImageNet weights

do not include the final convolution layer which is used for regression while the

other two pretrained networks do. We found that training with the ImageNet base

network led to better performance. We hypothesize that this is because the other

networks have already over fit the regression task to the bounding box shapes and

Chapter 4. Applying Convolutional Neural Networks 32

TABLE 4.1: My caption

item cost
Noctua NH-L12 $60.00
NVIDIA GTX 1080 $700.00
Silverstone ML07 $70.00
Corsair SF 600W $120.00
Samsung 850 EVO 1TB $350.00
Total $1,970.00

classes in the object detection datasets.

We trained our networks using NVIDIA GTX 1080 graphics card, Intel Core i7 7th

gen, and 32GB of RAM. The full desktop setup cost was under $3000. On average

we trained for approximately 20,000 iterations on our dataset with a batch size of

32 taking roughly 18 hours. We used a simple learning rate schedule that started

at 0.001 and dropped by 10x every 7,500 iterations. This is a fairly short training

regime when compared to training on a dataset which may contain upwards of a

million images like ImageNet.

4.2.1 Network Resolution

YOLOv2 takes advantage of its ability to have dynamically resized inputs in training

by randomly resizing the network input every 10 iterations. This has the effect of

training on various resolutions of data making the algorithm more robust to variance

in resolution at run time; an important step to generalizing our network to images

with lower resolution. We limit the resize to three strides above and below our

desired input resolution i.e. if our desired inference resolution is 416 then the lower

limit on training would be 320 and the maximum would be 512. We experiment with

three different resolutions, 416, 608, 800 and show the performance of each at 5.1.

4.2.2 Class Imbalance

Our dataset suffers from a large class imbalance between Cohune Palm Trees and

Deciduous trees as shown in 4.4.

Chapter 4. Applying Convolutional Neural Networks 33

4.3 Evaluating the Network

Evaluating the performance of the network for an object detector is much less straight

forward then for a classification network. We not only have to classify an object but

we need to judge how well the generated bounding boxes match the ground truth;

all the while trying to minimize the number of false positives that are produced.

With the number of variables being juggled different interpretations arise for what

a good network performance looks like. A commonly accepted metric used by [12]

is Average Precision (AP) which is a single value that attempts to capture a coherent

metric of precision. While others might display performance as the relationship be-

tween probability of detection vs probability of false alarm. In the next paragraph I

will cover the basics of evaluating detections and the metrics we adopt for this work.

Detections generated by the network for an image fall into three categories: True

Positive (TP), False Positive (FP), and False Negative (FN). In order to classify a de-

tection as TP, FP, or FN we define Intersection over Union (IoU) between a network

generated bounding box and a human bounding box as IoU = Intersectiono f Boxes
Overlapo f Boxes . See

4.5 for an example of IoU. Given network detections and human labels for an image

we can define TP as a network detection and human label with an IoU greater than

a certain threshold and a matching class. Both the Pascal VOC and COCO datasets

evaluate results using an IoU of 50% and we adopt this standard. Furthermore there

can only be a single TP per ground truth. If there are more than one network de-

tection that meet the criteria for TP the detection with max IoU is accepted and the

rest are considered as FPs. FPs are all network detections that do not have a corre-

sponding ground truth. FN are all human labels that do not have a corresponding

network detection. Now we can define precision = TP
TP+FP and recall = TP

TP+FN as the

two metrics we will use to evaluate performance. Precision gives a sense of how rel-

evant the returned detections are i.e. high precision corresponds to returning mainly

good detections with few false positives. While recall represents the percentage of

human labels correctly returned.

Each network detection has an associated confidence in how likely it thinks there

is an object of that class present at that location. In order to calculate Average Preci-

sion we divide our confidence threshold from 0 to 1 with steps of size 0.01. We then

Chapter 4. Applying Convolutional Neural Networks 34

calculate precision at each step in our confidence range excluding any detection that

have a confidence below that threshold which are then averaged to find AP. An-

other common way to represent network performance are precision recall graphs.

We calculate recall at each confidence threshold like before and then simply plot the

precision and recall as a pair. The desired shape for a PR curve is a knee which shows

that precision remains high as recall increases and confidence threshold decreases.

We use pycoco api open source evaluation tools [12] to keep our results consistent

with state of the art object detection evaluation metrics. This also means our dataset

is in the COCO format and can thus be trained on any open source object detector

that uses that format for training and evaluation.

FIGURE 4.5: Example of IOU scores where blue corresponds to the
human box and red corresponds to network detections.

35

Chapter 5

Results

5.1 Results

Preliminary results show distinct patterns in the distribution of both Cohune Palm

and deciduous trees. Our best results using YOLOv2 CNN to classify the individual

trees resulted in an average precision (AP) of 79.5% for Cohune Palm and 67.3% AP

for deciduous trees 5.1 at the main BFREE site. Furthermore testing at our more

distant sites: Oro and Ramos we scored an 67.1% and 76.0% AP on Cohune Palms

and 64.9% and 84.2% AP on Deciduous trees respectively. See table 5.1 below. This

shows that our network was able to generalize enough to more distant sites that had

both lower resolution and different lighting conditions due to low hanging clouds.

TABLE 5.1: Average Precision for each site per class

Site Resolution (cm/pixel) Cohune Palm (AP) Deciduous Trees (AP)
BFREE 4.93 79.5% 67.3%
Oro 10.95 67.1% 64.9%
Ramos 10.60 76.0% 84.2%

For both Oro and Ramos the size of evaluation set of spiny trees is very small due

to scarcity of deciduous trees in the labeled areas. Examining the outlier of Ramos

spiny results revealed that the area labeled had a high number of easy detections as

well leading to better then average results.

5.1.1 Effect of Network Resolution

One aspect we explore in this work is the input resolution of the network. We found

that it provided a mild boost of roughly .8% for our bfree site. However, it produced

Chapter 5. Results 36

FIGURE 5.1: Precision Recall for Cohune Palm Trees vs Deciduous
Trees. We noticed a substantial intraclass difference with deciduous
tree size and shape, correspondingly the network had a difficult time

localizing individual trees with a high IOU.

significantly better results for both Cohune Palm Trees and Deciduous trees of both

Ramos and Oro. We hypthosize this is because the image resolution was already

have of our main sites that any further down sampling to fit into the network input

significantly hurt our performance.

5.1.2 Effect of Image Resolution

In 5.2 we show the PR curves for various resolution of data starting for Cohune Palm

trees starting from our base resolution of 5 cm/pixel and going to 1m/pixel. The

resolutions were artificially created by subsampling the original images as shown

in Figure 11. Within the 5-20cm/pixel range we still have workable results; past 40

cm/pixel we seen a rapid decline. Typical satellite imagery lives in the range of 3

meters to 30 cm with the cost getting proportionally higher as resolution increases.

We show with this technique that it is necessary to have very high resolution im-

agery in order to do fine grained species classification. More performance from the

network might have been possible with greater tuning and training for lower res-

olution imagery; however, we believe that we are close to the upper limit. As the

pictures in 5.3 show at a certain point the palm becomes indistinguishable to hu-

mans putting a bound on our ability to even create a dataset with which to train our

network.

Chapter 5. Results 37

FIGURE 5.2: Evaluating Precision Recall vs spatial resolution is im-
portant for planning future flights since gathering higher resolution
requires flying at lower altitudes meaning you can cover less distance.
Ideally we can find a sweet spot between image resolution and per-

formance that lets us maximize area covered.

FIGURE 5.3: Resolution in cm/pixel from left to right: 5, 20, 40, 60, 80,
100. It is clear that after 60 cm/pixel the image becomes indiscernible.

5.1.3 Class Imbalance Issues

Class imbalance played a large roll in our training. We found that training on both

classes produced networks that could not localize deciduous trees at all. This is

because the signal from Cohune Palm trees heavily out weights that of the deciduous

trees during back-propagation. In the future we would like to explore weighting the

loss function in order to place more emphasis on examples from classes with fewer

instances.

5.1.4 Ecological Impact

We identified 6,308 palms at BFREE, yielding 120.4 ha palm coverage. Palms were

more prevalent at BFREE, (disturbed) with 21% palm cover, compared to only 5.9%

Chapter 5. Results 38

and 2.0% in our less-disturbed, mountain sites (BNR). Total palm coverage in the

BNR ranged from 6.2 ha - 27.3 ha. Our preliminary data for deciduous trees at BFREE

resulted in identifying 2,389 trees with a total coverage of 17.8 ha or 3.0%. Our results

conform well with past on-the-ground data for both tree types. Cohune palms tend

to grow in disturbed areas, but also contribute to soil organics. Deciduous tree crown

area calculated in comparable rainforests ranged from 3− 10%. This study shows

how UAV and CNNs can save time (vs. manual) identifying specific tree species,

helping to determine key rainforest habitat characteristics, as well as aid research

and management of remote areas.

FIGURE 5.4: Left: Cohune Palm Trees Right: Deciduous Trees. Note
that the two classes of trees grow in distinct location from each other.

39

Chapter 6

Further Studies

6.1 NOAA Dataset

FIGURE 6.1

Chapter 6. Further Studies 40

FIGURE 6.2

FIGURE 6.3

41

Bibliography

[1] Robert. Bogucki. Which Whale Is It, Anyway? Face Recognition for Right Whales

Using Deep Learning. 2016. URL: https://blog.deepsense.ai/deep-learning-

right-whale-recognition-kaggle/ (visited on 02/24/2018).

[2] S. W. Brewer and M. A. Webb. “A seasonal evergreen forest in Belize: unusu-

ally high tree species richness for northern Central America.” In: Botanical Jour-

nal of the Linnean Society. (2002), 275–296.

[3] N. Brokaw and T. Lloyd-Evans. “Report and Recommendations of the Manomet

Bird Observatory—Missouri Botanical Garden Investigation of the Upper Bladen

Branch Watershed, Maya Mountains, Belize”. In: (1987).

[4] C. A. Brust et al. “Towards Automated Visual Monitoring of Individual Go-

rillas in the Wild”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. (2012), pp. 2820–2830. URL: http : / / openaccess .

thecvf.com/content_ICCV_2017_workshops/papers/w41/Brust_Towards_

Automated_Visual_ICCV_2017_paper.pdf.

[5] D. C. Dourson. “Biodiversity of the Maya mountains with a focus on the Bladen

nature reserve, Belize, Central America.” In: U.S.: Goatslug Publications. (2013).

[6] A. Esteva et al. “Dermatologist-level classification of skin cancer with deep

neural networks.” In: Nature (2017), pp. 6014–6023.

[7] M. Everingham et al. “The pascal visual object classes (voc) challenge.” In:

International journal of computer vision (2010), pp. 303–338.

[8] K. He et al. “Deep residual learning for image recognition.” In: Proceedings of

the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778.

https://blog.deepsense.ai/deep-learning-right-whale-recognition-kaggle/
https://blog.deepsense.ai/deep-learning-right-whale-recognition-kaggle/
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w41/Brust_Towards_Automated_Visual_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w41/Brust_Towards_Automated_Visual_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w41/Brust_Towards_Automated_Visual_ICCV_2017_paper.pdf

BIBLIOGRAPHY 42

[9] G. Huang et al. “Densely connected convolutional networks.” In: Proceedings of

the IEEE conference on computer vision and pattern recognition (2017). URL: https:

//arxiv.org/pdf/1608.06993.pdf.

[10] Andrej Karpathy. Convolutional Neural Networks (CNNs / ConvNets). 2016. URL:

http://cs231n.github.io/ (visited on 03/02/2018).

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Littrow Configura-

tion Tunable External Cavity Diode Laser with Fixed Direction Output Beam”.

In: Advances in neural information processing systems (2012), pp. 1097–1105. URL:

http://papers.nips.cc/paper/4824-imagenet-classification-with-

deep-convolutional-neural-networks.

[12] Tsung-Yi Lin and et al. “Microsoft coco: Common objects in context.” In: Euro-

pean conference on computer vision. (2014).

[13] C. R. Olivet and N Asquith. “Ecosystem Profile: Northern Region of the Mesoamer-

ica Biodiversity Hotspot, Belize, Guatemala, and Mexico.” In: Conservation In-

ternational, Mexico and Central American Program. Critical Ecosystems Partnership

Fund Report (2004).

[14] J. Redmon and A. Farhadi. “YOLO9000: better, faster, stronger.” In: arXiv (2016),

p. 1612.

[15] S. Ren et al. “Faster r-cnn: Towards real-time object detection with region pro-

posal networks.” In: Advances in neural information processing systems (2015),

pp. 91–99.

[16] K. Simonyan and A Zisserman. “Very deep convolutional networks for large-

scale image recognition.” In: arXiv (2014), p. 1409.1556.

[17] J. D. Wegner et al. “Cataloging public objects using aerial and street-level

images-urban trees.” In: In Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition (2016), pp. 6014–6023. URL: http://www.vision.

caltech.edu/publications/CVPR2016-WegnerBransonEtAl.pdf.

https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
http://cs231n.github.io/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://www.vision.caltech.edu/publications/CVPR2016-WegnerBransonEtAl.pdf
http://www.vision.caltech.edu/publications/CVPR2016-WegnerBransonEtAl.pdf

	Signature Page
	Acknowledgements
	Abstract
	Introduction
	Background
	What is Deep Learning?
	Brief background to CNNs
	Object Detection

	Why Ecology and Conservation?
	What does Computer Vision offer Ecologists?

	Why UAVs?
	Types of UAVs
	Autopilots
	What do UAVs offer Conservationists?

	Convolutional Neural Networks
	CNNs: Layer by Layer
	Convolution Layer
	Activation Layer
	Pooling Layer
	Fully Connected Layer
	Transfer Learning
	VGG16
	ResNet
	DenseNet

	Object Detection Networks
	Faster-RCNN
	Loss

	YOLOv2
	Loss

	Selecting a Network

	Belize Expedition
	Study Sites
	Flight System
	Flights
	Post Processing

	Applying Convolutional Neural Networks
	Creating the Dataset
	Labeling Tool
	Labeling Noise
	Dataset Statistics

	Training the Network
	Network Resolution
	Class Imbalance

	Evaluating the Network

	Results
	Results
	Effect of Network Resolution
	Effect of Image Resolution
	Class Imbalance Issues
	Ecological Impact

	Further Studies
	NOAA Dataset

