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based de novo assembly is incapable of reliably reconstructing the large-scale structures of human genomes.
Recently, a novel optical label based technology has enabled reliable large-scale de novo assembly. Despite
its advantage in large-scale genome analysis, this new technology requires a more computationally inten-
sive alignment algorithm than its conventional counterpart. For example, the run-time of reconstructing a
human genome is on the order of 10, 000 hours on a sequential CPU. Therefore, in order to practically apply
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1. INTRODUCTION
The ability to construct de novo assemblies is widely pursued for medical and re-
search purposes. These de novo assemblies are especially invaluable in the studies of
structural variations of genomes [Birol et al. 2009]. However, the conventional short-
read technology based de novo assemblies provide structural information only on a
micro-scale (< 1, 000 bases per fragment). They are not capable of reconstructing the
large-scale structures of human genomes [Hastie et al. 2013]. This is due to the fact
that using the short-read based assembly leads to ambiguity when these large-scale
(> 100, 000 bases per fragment) genomes have frequent structural repetitions (typical
medium to large genomes contain 40 - 85% repetitive sequences [Zuccolo et al. 2007]).

In recent years, research has shown that a novel optical label based technology
is able to overcome this limitation of the short-read technology [Lam et al. 2012].
This novel technology fluorescently labels the DNA molecule strings at the locations
where a specific nucleobase combination appears (e.g. label wherever the combination
GCTCTTC appears, as demonstrated in Fig. 1(A)). Then the labeled DNA molecules
are linearized by being passed through a nanochannel device. These linearized strings
with labels are imaged by a CCD camera as demonstrated in Fig. 1(B). In the image
field, on each string, the physical distances between every two labels are measured
and collected. This process results in a uniquely identifiable sequence-specific pat-
tern of labels to be used for de novo assembly. As opposed to the four letters, these
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Fig. 1: Demonstration of the optical labeling process. (A) Fluorescent labels attached
to “GCTCTTC”. (B) The real image field of labeled DNA fragments from a microscopy
CCD camera. The strings are linearized DNA fragments. The glowing dots are fluores-
cent labels. The numbers in kilo-bases(kb) are examples of physical distance measure-
ment between labels.

arbitrary physical distances are unlikely to contain structural repetitions. Therefore,
this optical method enables the reconstruction of the large-scale genomes for modern
bioinformatic studies. In genomic studies, N50 is a widely used metric to measure the
ability of a technology to assemble large-scale structures. Research results show that
this novel optical assembly enhances the N50 by two orders of magnitude compared to
the short-read assembly [Hastie et al. 2013].

The task of the de novo assembly is reconstructing the genome from a set of DNA
fragments. The most computationally intensive part of this task is the algorithm that
aligns every pair from the DNA fragment set. This pair-wise alignment algorithm for
the optical assembly is fundamentally different from the short-read alignment. In the
conventional short-read based process, as depicted in Fig. 2 (A), the alignment algo-
rithm is applied on the strings with “A”,“C”,“G” or “T” DNA nucleobase letters. As
opposed to the short-read letters, the new optical method aligns the locations of the
fluorescent labels on the strings shown in Fig. 2 (B). Aligning these arbitrary numbers
obtained from a human genome takes nearly 10, 000 hours on a sequential CPU. More-
over, research [Baday et al. 2012] has shown that the resolution of the optical label
method can be further enhanced by adding multiple types (colors) of labels.

Therefore, accelerating this alignment algorithm is desired not only for the purpose
of shortening the process time but also for enabling this optical based technology in
genome studies that require high resolutions.

In this article, we present three accelerated approaches for the optical labeled DNA
fragment alignment using multi-thread CPU, GPU and FPGA. These designs are com-
pared against a single thread sequential CPU implementation. The major contribu-
tions are:

— The first attempt to accelerate the large-scale genome assembly on hardware.
— An end-to-end FPGA accelerated implementation.
— A GPU accelerated implementation.
— A comparison and design space exploration of the multi-core CPU, GPU and FPGA.

This article is the extension of our previous publication [Meng et al. 2014]. We partic-
ularly extend the methodology of the FPGA design space exploration and the hardware
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Fig. 2: Comparison of the conventional and the novel de novo assembly methods. (A)
Alignment process in the conventional short-read based method. (B) Alignment process
in the novel optical label based method. Each dot represents a fluorescent label.

comparison. We also investigated the relationship between the accelerator performance
and the number of alignments per host-device data transfer.

The rest of the paper is organized as follows. We discuss related work in Section 2.
We describe the alignment algorithm in Section 3. This is followed by descriptions of
the accelerated designs in Section 4. Experimental performance results are provided in
Section 5. We compare the hardware accelerators in Section 6. We conclude in Section
7.

2. RELATED WORK
Multiple accelerated approaches for short-read assembly have been proposed in re-
cent years. Olson et al. have proposed a multi-FPGA accelerated genome assembly for
short-reads in [Olson et al. 2012]. They accelerated the alignment algorithm on the FP-
GAs for the reference guided genome assembly with 250× and 31× speedups reported
against the software implementations BFAST and Bowtie respectively. Varma et al.
have presented a FPGA accelerated de novo assembly for short-reads in [Varma et al.
2013]. They chose to accelerate a pre-processing algorithm on the FPGA to reduce the
short-read data for the CPU assembly algorithm. They reported a 13× speedup over
the software. They also proposed an improved FPGA implementation exploiting the
hard embedded blocks such as BRAMs and DSPs in [Varma et al. 2014]. Attempts
have also been made to accelerate genome assembly on GPUs. Aji et al. have proposed
a GPU accelerated approach for short-read assembly in [Aji et al. 2010]. They reported
a 9.6× speedup. Liu et al. proposed a GPU accelerated DNA assembly tool - SOAP3
[Liu et al. 2012] which achieves 20× speedup over Bowtie.

Although these approaches have improved the performance of the short-read as-
sembly significantly, they are limited to micro-scale genomes. There is still no high
performance solution for large-scale genome structure analysis. Our implementations
provide an accelerated solution for this large-scale genome task.

Our implementations are fundamentally different from these previous efforts be-
cause they employ the novel optical label based genome assembly. In this article, our
accelerated designs differ from the previous short-read approaches in two ways: 1) the
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Fig. 3: Array alignment: assume Xj aligned to Yi, (A) evaluate the similarity between
Xj and Yi; (B) evaluate the boundary offset penalty when Xj aligned to Yi; (C) evaluate
the similarities between Xj ’s neighbors and Yi’s neighbors.

data in the optical method requires more precision bits than conventional four letters
(A,C,G,T) do; 2) the physical label locations require a different alignment algorithm
[Valouev 2006] from the traditional Smith-Waterman. Most short-read methods em-
ployed the traditional Smith-Waterman algorithm which computes each score matrix
element from its three immediately adjacent elements. The algorithm in our optical la-
bel based method computes each element from a 4× 4 area as demonstrated in Fig. 5.
These differences not only increase the computational intensity but also require a dif-
ferent hardware parallel strategy from the ones proposed in these previous short-read
based works. To the best of our knowledge, our implementations are the first attempt
to accelerate the large-scale genome assembly using GPUs and FPGAs.

3. ALGORITHM
Our goal is to align every pair of floating point number arrays which represent the
physical distances of the optical labels on the DNA fragments. As shown in Fig. 3, for
arrays X and Y , we decide whether the alignment (Xj aligned to Yi) is valid based on
three evaluations. Firstly, as shown in Fig. 3 (A), we need to evaluate the similarity
between Xj and Yi, which is intuitive. Secondly, as depicted in Fig. 3 (B), we need
to evaluate the boundary offset penalty. When Xj is aligned to Yi, the leftmost ends
of X and Y may create an offset. Large offsets produce unwanted gaps in the DNA
assembly. A valid alignment should have minimum offset. The third evaluation is to
calculate the similarities between Xj ’s neighbors and Yi’s neighbors as demonstrated
in 3 (C). The necessity of this evaluation is also intuitive. Even if Xj is very similar to
Yi, the alignment is not valid if the other elements of the two arrays are dissimilar.

These intuitive evaluations of the alignment are realized by a dynamic program-
ming method specifically modified for the optical DNA analysis by Valouev [Valouev
2006]. The overall flow diagram of the algorithm is demonstrated in Fig. 4. The algo-
rithm aligns two arrays X and Y of optical label positions by computing a likelihood
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Fig. 4: Overall algorithm and its hardware partitioning. We accelerate the local score
stage due to its computational intensity. In our partitioning, we also assign the bound-
ary score and max score search stages to the accelerator to avoid intensive device-PC
data communication.

score matrix and finding the maximum within this matrix. Each score represents the
likelihood of a possible alignment between X and Y . Assuming the sizes of the input
arrays are M and N , the algorithm computes a M × N score matrix as depicted in
Fig. 5. The computation of each element in the matrix requires local scores. The black
square in the figure shows an example of a local score. Those elements near the edges,
shown as the grey regions in the figure, also require boundary scores. Thus, the align-
ment algorithm consists of three steps: 1) compute the boundary scores as described
in Algorithm 1; 2) compute the local scores as described in Algorithm 2; 3) find the
best score and its correspondent (i, j) in the score matrix as shown in lines 10 - 12 of
Algorithm 2. If the best score passes the threshold, then we find an alignment between
X and Y with Xj aligned to Yi using a trace-back operation. In our hardware acceler-
ated approaches, we keep the trace-back operation on the host PC. We therefore only
describe the best score computation in detail as follows.

The computation of the boundary scores is described in Algorithm 1. In the algo-
rithm, to compute a boundary score element located at (i, j), we firstly compute its
leftmost offset Lxi,j or Lyi,j as shown in lines 12 - 20. Then we compute an “end” likeli-
hood and several mixed likelihoods as shown in lines 21 - 30. We choose the maximum
among these likelihoods to be the boundary score for this position. This process is it-
erated, as shown in lines 4 and 11, to produce the boundary scores for the top 4 rows
and the leftmost 4 columns of the score matrix. An identical boundary score algorithm
is also applied on the rightmost offsets of the input arrays to fill the bottom 4 rows
and the rightmost 4 columns of the score matrix. These boundary score locations are
visualized in Fig. 5.

We compute a local score to represent the similarity between Xj and Yi as well as
the similarities between Xj ’s neighbors and Yi’s neighbors. In Algorithm 2, to compute
each local score scorei,j , we generate 16 score candidates correspondent to its upper-left
4×4 neighbors (refer to Algorithm 2 lines 5 - 7). Each of the 16 candidates is computed
by adding a local likelihood (this represents the similarity between Xj and Yi) to its
correspondent previous score (this represents the similarity between Xj ’s neighbors
and Yi’s neighbors) from the 4× 4 area (the shaded area in Fig.5). The score in scorei,j
is updated with the maximum among all these 4×4 candidates. This process is iterated
M × N times to generate the complete score matrix as shown in lines 3 and 4. Then
we find the highest score within the matrix (lines 10 - 12), which represents the best
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Algorithm 1 The Boundary Score Algorithm
Input: Two arrays of optical label locations X, Y ; Sizes of the input arrays 1 :M , 1 : N

1: Likelihoodlocal(x, y,m, n) local likelihood function
2: Likelihoodend(x,m, n) end likelihood function
3: Likelihoodmix(x, y,m, n)= Likelihoodend((x+ y)/2,m, n) +Likelihoodlocal(x, y, 1, 1)−
Likelihoodlocal((x+ y)/2, (x+ y)/2, 1, 1) mixed local and end likelihood function

4: for i = 1 to N do
5: Lxi,j = 0, Lyi,j = 0
6: if i ≤ 4 then
7: jmax =M
8: else
9: jmax = 4

10: end if
11: for j = 1 to jmax do
12: if Xj < Yi then
13: while Yi − YLyi,j

> Xj do
14: Lyi,j ++
15: end while
16: else
17: while Xj −XLxi,j > Yi do
18: Lxi,j ++
19: end while
20: end if
21: scorei,j = Likelihoodend(min(Xj , Yi), j+1−max(1, Lxi,j), i+1−max(1, Lyi,j))
22: if Xj < Yi then
23: for k = Lyi,j to i− 1 do
24: scorei,j = max(scorei,j , Likelihoodmix(Xj , Yi − Yk, j, i− k))
25: end for
26: else
27: for k = Lxi,j to j − 1 do
28: scorei,j = max(scorei,j , Likelihoodmix(Xj −Xk, Yi, j − k, i))
29: end for
30: end if
31: end for
32: end for
Output: Score matrix score[1 : N ][1 :M ] filled with boundary scores in the top 4 rows

and leftmost 4 columns

alignment for X and Y . This highest score is used in the post processes to complete
the genome reconstruction.

The likelihood functions in Algorithm 1 and 2 are derived from an error
model proposed in [Valouev 2006]. The functions Likelihoodlocal(x, y,m, n) and
Likelihoodend(x,m, n) are computed as shown in Equations 3 and 4 respectively. The
Likelihoodlocal(x, y,m, n) function consists of two terms: the bias value BXY (provided
in Equation 1); the maximum between the penalty value (provided in Equation 2) and
a constant POutlierPenalty. The values of the constants used in Equations 1 - 4 are em-
pirically tuned to suit the optical experiment [Valouev 2006]. Changing these values
does not influence the computing speed of the algorithm. Therefore, without the loss
of generality, in our implementations, we tuned these constants to suit our experiment
input data - a synthetic human genome. These constant values are listed in Table I.
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Algorithm 2 The Dynamic Programming Score Algorithm
Input: Two arrays of optical label locations X, Y ; Sizes of the input arrays 1 : M ,

1 : N ; Score matrix score[1 :M ][1 : N ] with boundary scores filled
1: Likelihoodlocal(x, y,m, n) local likelihood score function
2: scorebest = −∞
3: for i = 1 to N do
4: for j = 1 to M do
5: for g = max(1, i− 4) to i− 1 do
6: for h = max(1, j − 4) to j − 1 do
7: scorei,j = max(scorei,j , Ag,h+Likelihoodlocal(xj−xh, yi−yg, j−h, i−g))
8: end for
9: end for

10: if scorei,j > scorebest then
11: scorebest = scorei,j , jbest = j, ibest = i
12: end if
13: end for
14: end for
Output: Best score scorebest; The X and Y indices of the best score jbest and ibest

Optical Label Location Array X

O
p

tical Lab
el Lo

catio
n

 A
rray Y

…

…

…

…

…

Boundary 
Score

Local
Score

Candidate Score
=Previous Score + Likelihoodlocal
(Data Dependency) 

…

Y
i

XjX1 XMY
1

Y
N

iterate j

iterate i

Fig. 5: Visualized pair-wise alignment process. The 2D array represents the likelihood
score matrix. Each (i, j) element in the matrix is a likelihood score for aligning Xj with
Yi. The top, bottom, left and right grey regions represent the boundary score compu-
tations. The black square and the shaded area displays one iteration of the dynamic
programming process. The computations for the black square have data dependencies
to the shaded area. The arrows show that this computation is iterated to fill the entire
matrix.

Let F represent the number of DNA fragments of an assembly process. Let M
be the number of labels on the fragment. The algorithm requires O(F 2N2) times of
Likelihoodlocal operations to complete an assembly process. The DNA fragment pool
typically has 100, 000 - 1, 000, 000 arrays. A typical input array length (M or N ) is 15 -
100 elements. Therefore, the number of Likelihoodlocal operations, in a human genome
assembly process, is on the order of 1015. The total amount of computations requires
more than 10,000 hours on a sequential CPU.

Each element of the input arrays represents a distance, which is on the order of
thousands of bases, between two neighboring optical labels on the actual DNA frag-
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Table I: Constant values in score functions

Constant C V δ B B
′

Pmiss R P Bend B
′
end

Value 3.6505 0.0449 0.0010 −0.0705 0.9144 1.5083 −0.0931 −8.1114 0.0226 0.3992

ment. The synthetic data used in our implementations is designed to simulate these
properties of the real-world human genomes. Since the data ranges and array lengths
are similar, the computation performance tested with this synthetic data reflects the
performance with the real-world genomes.

Our focus is to accelerate this pair-wise algorithm which aligns the optical labeled
DNA molecule fragments to construct the contigs in the assembly process. The scaffold-
ing process, using optical labeled contigs, is not a computationally intensive operation
which can usually be performed on a sequential computer in 10-30 minutes.

biasXY = [max(0, x− δ) +max(0, x− δ)] ∗B +B
′

(1)

pen = C − (x− y)2

V ∗ (x+ y)
− Pmiss ∗ (m+ n)− [max(0, x− δ) +max(0, x− δ)] ∗R (2)

Likelihoodlocal(x, y,m, n) = biasXY +max(pen, P ) (3)

Likelihoodend(x,m, n) = 2 ∗max(0, x− δ) ∗Bend +B
′

end − Pmiss ∗ (m+ n− 2) (4)

4. ACCELERATED DESIGNS
We partitioned the algorithm by accelerating some parts on the hardware and keeping
some parts on the PC. This partitioning strategy is depicted in Fig. 4. The most compu-
tationally intensive stage of the algorithm is the local score computation. Therefore, in
our partitioning, we accelerated the local score computation on the hardware. The two
stages, boundary score computation and maximum score search, are not as computa-
tionally intensive as the local score stage. However, these two stages have significantly
intensive data communication with the local score stage. In order to avoid this com-
munication bottleneck between the PC and the hardware accelerator, we also assigned
these two stages on the accelerator. The path trace stage consists of control intensive
operations. Therefore, we kept this stage on the PC.

We identified three levels of possible parallelism in the algorithm (from coarse-
grained to fine-grained): 1) align multiple pairs in parallel; 2) compute multiple ele-
ments (rows or columns) in the score matrix in parallel; 3) compute the 16 likelihood
scores for each score element in parallel. These three levels and their hierarchy are de-
picted in Fig. 6. Particular computation and data reuse patterns exist in each level of
possible parallelism. These patterns create tradeoffs in hardware accelerated designs.

When using level 1 parallelism (processing multiple pairs in parallel), each pair is
data independent. Therefore, data communications or synchronization between paral-
lel processes do not exist. However, it requires more computing resource to manage
multiple alignments concurrently as well as more storage resource for intermediate
data (e.g. multiple score matrices). On the other hand, the other two levels of par-
allelism (levels 2 and 3) provide more opportunities to share or reuse the data be-
tween the parallel processes due to their finer granularity. However, these two fine-
grained levels of parallelism may introduce performance challenges such as higher
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Fig. 6: Possible parallelism in the algorithm.

synchronization overhead on processors and placement and route complexity on FP-
GAs. These complex architectural tradeoffs create design space exploration problems.
We explored these design spaces to determine the proper level or combination of levels
of parallelism to match the architectural features on the hardware. We also applied
multiple optimization techniques on each design. We applied SIMD instructions and
multi-thread techniques on the CPU design. For the GPU design, we tuned the CUDA
code to tackle the data dependency caused by the local score computation. We also im-
plemented a low level FPGA design due to the inefficient resource utilization provided
by the state of the art high level synthesis tools. In the following sections, we describe
the design space explorations and the optimal designs in detail.

4.1. Multi-core CPU
In the CPU design, we firstly improved the locality of the program by dictating the com-
piler to store the highly reused variables in the CPU registers. We then parallelized
the algorithm by inserting OpenMP directives. The performance is highly correlated
with the granularity of the iterations in the algorithm. We evaluated the fine-grained
strategy which processes multiple rows and columns in parallel on the multiple CPU
cores. The evaluation results indicated that it is expensive to synchronize and ex-
change fine-grained data among the cores. The multi-core CPU is more suitable for
the coarse-grained parallelism. Therefore, we chose to align multiple pairs in parallel
on the multi-core CPU.

We divided the total workload into several sets of alignment tasks and assigned each
of the sets to a CPU core as demonstrated in Fig. 7. When one CPU core finishes its
current alignment workload, it can start aligning another pair immediately without
synchronizing with the other CPU cores. This setup does not create “dead” parallel
processes or threads when the input array sizes change during the run-time. There-
fore, all the CPU cores are completely occupied during this process. In addition, within
each core, the process is in a sequential fashion which is suitable for control domi-
nated operations such as the boundary score computation. We also forced functions
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Fig. 7: Multi-core CPU accelerated design. Assume there are S pairs of optical arrays
to be aligned and the CPU has T cores.

Likelihoodlocal(x, y,m, n) and Likelihoodend(x,m, n) to be static and inlined in order to
provide more optimization opportunities for the compiler.

The computations of the Likelihoodlocal function provide us an opportunity to utilize
the CPU SSE SIMD instructions. Therefore, we program the Likelihoodlocal function to
process 4 elements with a SIMD fashion using “ m128” type of its intrinsic operands.

4.2. GPU
The GPU design consists of three CUDA kernels, invoked from a C++ host code. The
CUDA kernels accelerate the alignment algorithm to keep the intermediate data on
the GPU during the process. The C++ host program only sends the input DNA arrays
to the first kernel and receives the output maximum score from the third kernel.

There are multiple options for CUDA kernel design based on different levels of gran-
ularity. We firstly evaluated the coarse-grained only strategy on the GPU. The evalu-
ation shows that coarse-grained parallelism is significantly bounded by a low GPU
occupancy. Therefore, to fully utilize the GPU parallel computing power, we added
fine-grained parallelism in our design. The GPU design computes multiple rows and
columns in fine-grained parallel within each GPU thread-block. The design also uti-
lizes multiple thread-blocks to align multiple pairs in coarse-grained parallel. Com-
puting the 16 candidates in parallel is not efficient on the GPU since it requires a
16-element reduction process which creates idle threads frequently.

We partitioned the algorithm into three CUDA kernels 1) boundary score kernel; 2)
dynamic programming kernel; 3) maximum score search kernel. We chose this kernel
partitioning because these parallelized computations require GPU global synchroniza-
tion after 1) and 2).

In the boundary score kernel design, we fully parallelized the computations due
to the data independency. The GPU thread arrangement is: assigning the boundary
score computation for each element (lines 12 - 30 in Algorithm 1) to one GPU thread;
assigning the boundary score computations of each alignment to one GPU thread-
block. With this design, we maximized the GPU parallel resource occupancy. Moreover,
since this design assigns all the computations of an alignment to the same thread-
block, we were able to store the intermediate data in the shared memory to minimize
the memory access delay in the computations.

The pseudo code of the dynamic programming kernel is described in Listing 1. We
parallelized the score element computations using N × 4 threads in each thread-block.
The candidate score computation for each matrix column requires 4 previous columns
as described in line 7 of Algorithm 2. Parallelizing this part of the algorithm is a chal-
lenging task due to this data dependency. We overcame this issue by dynamically as-
signing the columns of the score matrix to 4 groups of threads. As described in Listing
1, we used threadIdx.y to partition N × 4 threads into 4 groups. They form a software
pipeline. Each thread group is only responsible for a specific candidate computation
(leftmost, 2nd left, 2nd right or rightmost). By increasing col id, we stream the columns
of the score matrix into this pipeline.
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The example in Fig. 8 shows a snapshot of this software pipeline when the GPU
is processing columns 8, 9, 10 and 11. These columns are assigned to the different
stages (thread groups) of the pipeline: column 11 to group threadIdx.y = 0; column 10
to threadIdx.y = 1; column 9 to threadIdx.y = 2; column 8 to threadIdx.y = 3. The
computations in the pipeline stages threadIdx.y = 0 − 3 are leftmost candidates, 2nd
left candidates, 2nd right candidates and rightmost candidates respectively, as shown
in the shaded blocks in Fig. 8. In the snapshot, these computations all require the data
from column 7 which has already been computed in the previous col id iteration (refer
to the “for” loop in Listing 1). Once the computations in the snapshot are finished, the
data in column 8 is then ready. With the data from column 8, the pipeline streams
a new column (column 12 in the snapshot) by increasing the iteration index col id.
These 4 thread groups execute different instructions to implement the 4 stages of the
pipeline. In order to fit this design on the GPU SIMD architecture, we ensured the
threads of each GPU warp to execute the same instruction by extendingN to a multiple
of 32.

Once the dynamic programming kernel finishes computing the score matrix, the
third kernel searches the matrix to find scorebest, ibest and jbest. We implemented this
maximum score search kernel using the reduction approach. We kept the reduction
process of each alignment within one thread-block. Therefore, this process does not
require the expensive global synchronization on the GPU. Then, we created multiple
thread-blocks to concurrently process the reductions for multiple alignments. We also
applied shared memory and efficient warp arrangement in the reduction.

4.3. FPGA
Similar to the GPU, the FPGA also accelerates the algorithm by processing the compu-
tations in a parallel fashion. The FPGA is a customizable architecture. There are usu-
ally two ways to implement the parallelism on the FPGA: 1) replicate a logic module
multiple times to physically create multiple parallel data paths; 2) pipeline the archi-
tecture to process the multiple data concurrently in a streaming fashion. A high perfor-
mance design requires a proper decision on which technique is used to implement each
of the three levels of the algorithmic parallelism. Moreover, due to the FPGA resource
constraints, a feasible design also requires the proper number of replications in each
level of parallelism. There exists many possible settings of choices of parallel tech-
niques and numbers of replications. In order to reduce the size of the design space, we
firstly constructed a reasonable structure of the FPGA design based on heuristics. Fig.
9 depicts this FPGA structure. Due to the algorithmic data dependency, it is impossi-
ble to replicate parallel data paths for both row and column dimensions. Therefore, we
chose to only replicate the row parallel data paths (level 2 parallelism)and pipeline the
column dimension (level 2 parallelism). We replicated the likelihood score units (level
3 parallelism) to sustain the throughput of this full pipeline in the column dimension.
We also replicated the entire alignment module multiple times (level 1 parallelism) to
maximize the overall throughput. We then permutated the numbers of parallel paths
in this structure to find the optimal setting.

Implementing multiple RTL designs to measure the performances of these permu-
tations requires a significant amount of effort. Therefore, exploring the FPGA design
space using RTL designs is inefficient in terms of the development complexity. Instead
of manually implementing multiple RTL designs, we propose a method using Vivado
HLS which enables rapid FPGA implementations to explore different parallel struc-
tures.

We restructured the original software C code, as described in Listing 2, into the
format that represents the parallel hardware structure. We firstly constructed a func-
tion lkh score() to implement the likelihood score computation in equation 3. To im-
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Listing 1: Pseudo Code for Dynamic Programming GPU Kernel
1 //gridDim . x=number of alignments
2 //blockDim . x=N, blockDim . y=4
3 g l o b a l void par 4 co l kerne l ( /∗ input/output a r g u m e n t s ∗/ )
4 {
5 int a l i g n o f f s e t =M∗N∗blockIdx . x ;
6 //shared mem delecrat ion
7 //move input X, Y arrays from global memory to shared memory
8 for ( int c o l i d =0; co l id<M; c o l i d ++)
9 {

10 i f ( threadIdx . y==0)
11 {
12 /∗use feedback score to compute the l e f tmost candidates and find the

max for c o l i d +3∗/
13 }
14 else i f ( threadIdx . y==1)
15 {
16 /∗use feedback score to compute the 2nd l e f t candidates and find the

max for c o l i d +2∗/
17 }
18 else i f ( threadIdx . y==2)
19 {
20 /∗use feedback score to compute the 2nd right candidates and find the

max for c o l i d +1∗/
21 }
22 else i f ( threadIdx . y==3)
23 {
24 /∗use feedback score to compute the rightmost candidates and find the

max for c o l i d ∗/
25 //output the score for c o l i d
26 //feedback score [ threadIdx . x ]= score for c o l i d
27 }
28 syncthreads ( ) ;
29 }
30 }

plement the full pipeline, we restructured the local score computation code into a
function pipeline unit() with 4 pipeline stages. Lines 35 - 39 describe a line buffer
used to feed the input into this pipeline. We then call pipeline unit() in the align-
ment module() function. We replicated multiple instances of lkh score(), pipeline unit()
and alignment module() to generate parallel data paths in the three levels. Finally, we
used function top module() to wrap up these sub-modules. This new C code structure
eases the scheduling task for the HLS tool to generate efficient architectures.

We permutated the numbers of the three levels of data path replications in the re-
structured C code by modifying the limit parameter in the HLS ALLOCATION direc-
tives. We evaluated 10 different settings by running the entire HLS design tool chain
including the placement and route phase. Fig. 10 depicts the evaluations of these HLS
designs. The experimental results indicate that design H achieves the highest through-
put efficiency among all the evaluated designs. We then implemented design H in RTL
to further improve the resource efficiency.

Our RTL FPGA design consists of two modules: 1) boundary score module and 2)
dynamic programming and maximum score module. To achieve a high throughput,
we fully pipelined the FPGA architecture to output a new likelihood score every clock
cycle. The two modules are able to run concurrently in a streaming fashion.

The architecture of the boundary score module is described in Fig. 11. In this figure,
we demonstrate the boundary score module by only showing an example computing the
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Listing 2: Pseudo Code for local score element computation function in HLS C code
1 void lkh score ( /∗argument declaration∗/ )
2 {
3 //compute l ike l ihood score as shown in equation r e f {equ : s funct ion }
4 }

6 void pipe l ine uni t ( /∗argument declaration∗/ )
7 {
8 #pragma HLS ALLOCATION instances=lkh score l imi t =16
9 //use HLS ALLOCATION d i r e c t i v e to contro l the number of lkh score r e p l i c a t i o n s

11 /∗declare buf fer ing variables for the 4 stages (4 columns )∗/

13 /∗ c a l l lkh score ( ) to compute l ike l ihood scores for 0 − 3 columns∗/

15 //pipe l ine
16 /∗stage0 : max for column 0∗/
17 /∗stage1 : max for column 1∗/
18 /∗stage2 : max for column 2∗/
19 /∗stage3 : max for column 3∗/
20 }

22 void alignment module ( /∗argument declaration , e . g . input : DATA TYPE x∗/ )
23 {
24 #pragma HLS ALLOCATION instances=pipe l ine uni t l imi t =5
25 /∗use HLS ALLOCATION d i r e c t i v e to contro l the number of p ipe l ine uni t

r ep l i ca t i on s ∗/

27 /∗declare x , y l ine buf f ers :
28 e . g . DATA TYPE x0 , x1 , x2 , x3 , x4 ; ∗/

30 for ( /∗ i t e r a t e row index∗/ )
31 {
32 for ( /∗ i t e r a t e column index∗/ )
33 {
34 //update the x l ine buf f er
35 x4=x3 ;
36 x3=x2 ;
37 x2=x1 ;
38 x1=x0 ;
39 x0=x ;
40 /∗ c a l l p ipe l ine uni t ( x0 , x1 , x2 , x3 , x4 , . . . ) ∗/
41 }
42 }
43 }

45 void top module ( /∗argument declaration∗/ )
46 {
47 #pragma HLS ALLOCATION instances=alignment module l imi t =2
48 /∗use HLS ALLOCATION d i r e c t i v e to contro l the number of alignment module

r ep l i ca t i on s ∗/

50 /∗ c a l l alignment module ( ) ∗/
51 }
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Fig. 8: Visualized GPU kernel for dynamic programming, assuming the score matrix
size is M × N . N rows × 4 columns of score elements are computed concurrently. For
example, columns 8,9,10 and 11 are computed concurrently. At the given state in the ex-
ample, column 11 is assigned to the threads whose threadIdx.y = 0. Then the leftmost
candidates of column 11 are computed using the previously computed data in column
7. Similarly, columns 10,9 and 8 are assigned to threadIdx.y = 1, threadIdx.y = 2 and
threadIdx.y = 3 respectively. N is set to a multiple of 32 to ensure each warp has the
threads with the same threadIdx.y.

scores at the 4th top row. The other rows and columns are identical to this example.
We replicated this architecture 16 times to process the top 4 rows, bottom 4 rows, left
4 columns and right 4 columns of boundary scores in parallel. This boundary score
module is fully pipelined and consists of control logic (the black blocks in the figure),
arithmetic units (the grey blocks), muxer and a shifting register forX. The control logic
and arithmetic units correspond to Algorithm 1. The shifting register is for accessing
XLxi,j

and Xk as shown in lines 17 and 28.
The design of the dynamic programming module is described in Fig. 12. This ar-

chitecture consists of 5 major pipeline stages as shown in Fig. 12. Stage 0 computes
16 (4 × 4) Likelihoodlocal functions in parallel. These Likelihoodlocal modules are fully
pipelined. Stages 1 - 4 compute the maximums of the leftmost, second left, second right
and rightmost columns of candidates, respectively.

We replicated the described architecture 5 times to process 5 rows of scores in par-
allel. After the last column of the current 5 rows, the next 5 rows will enter this ar-
chitecture to continuously fill the pipeline. The output of all the rows are passed to a
pipeline maximum module to find scorebest, ibest and jbest. We chose to process 5 rows
in parallel to match the throughput of the boundary score module. The two modules
are thus able to run in a streaming fashion without idling.

As depicted in Fig. 12, the results of Stage 0 are delayed by the registers to feed
Stages 2 - 4 at the correct cycles. Shown in the figure, the computation for score[i][j+3]
is at Stage 1; score[i][j+2] is at Stage 2; score[i][j+1] is at Stage 3; score[i][j] is at Stage
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Fig. 9: FPGA implementation of the three levels of parallelism. 1) replicate the overall
architecture to process multiple alignments in parallel; 2) within each alignment score
matrix, replicate the row modules to process multiple rows in parallel and pipeline
multiple columns; 3) for each score element, replicate the likelihood score module to
compute multiple likelihood scores in parallel.
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4. These stages are all using score[i − 1 : i + 3][j − 1]. score[i − 1 : i − 4][j − 1] are the
scores created and stored in the BRAMs during the computation of the previous 5 rows.
score[i : i+3][j−1] are created from the previous cycle as a feedback loop. Therefore, in
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Fig. 11: FPGA boundary score module. The control logic corresponds to Algorithm 1.
A shifting register storing 10 elements of X is used for accessing XLxi,j and Xk effi-
ciently. llhend and llhmix represent the likelihood score modules for Likelihoodend and
Likelihoodmix.

order to keep the pipeline outputting new data every cycle with the constraint of this
feedback loop, we designed a combinational logic to compute the 4 parallel additions
and the “Max 5 to 1” operation within one clock cycle.

We used fixed point numbers and arithmetic in the FPGA design. Due to the data
range, we used 26 bits for the scores and 18 bits for the input arrays, both with 10
decimal bits. These fixed point numbers can represent the optical labeled fragments
up to 1, 000, 000 bases. This range covers most human genome assembly applications.
In the score functions, we implemented the divisions using lookup tables.

Since the RTL implementation is more resource efficient compared with the HLS
implementation, we were able to replicate the overall alignment architecture 5 times
to align 5 pairs of DNA molecules concurrently. In the HLS design, we were only able
to replicate this architecture 2 times. We enhanced the resource efficiency by more
than 200% using the RTL design.

5. RESULTS
The input data for the alignment algorithm in our experiment consists of 16642 DNA
molecule fragments. Each fragment contains 5 – 182 labels. The range of the distances
between labels is 500 – 3.79× 105 bases.

We tested the multi-core CPU design on a 3.1GHz Intel Xeon E5 CPU with 8 cores.
The CPU design was compiled with O3 GCC optimizations. The GPU design was tested
on a Nvidia Tesla K20 Kepler card. The FPGA design was implemented and tested on
a Xilinx VC707 FPGA development board. The input data used in our experiments is
a set of synthetic human genome sequences.

Fig. 13 presents the performance of our implementations. The baseline is a highly
optimized C++ program without any parallelism. The average time for aligning two
optical labeled molecules is 42.486µs in the baseline implementation. The run-times for
the boundary score, dynamic programming and maximum score operations are 9.351µs,
30.594µs and 2.541µs respectively.

The OpenMP parallelized C++ program consumes 5.04µs aligning a pair of molecules
on an 8 core CPU with hyper-thread technology on each core. The performance of this
multi-core implementation achieves a 8.4× speedup which is proportional to the num-
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Fig. 12: FPGA dynamic programming module with three levels of concurrency. First,
the 16 (4 × 4) Likelihoodlocal functions are computed concurrently with 16 parallel
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ber of cores. The extra 0.4× speedup is contributed by hyper-thread. The CPU SSE
SIMD technique boosts the performance with a 11× speedup against the baseline.

Our GPU implementation was written using the Nvidia CUDA 6.5 SDK. The GPU
runs at a base frequency of 706 MHz and has 2496 CUDA cores. We varied the num-
ber of input alignments per host-device data transfer transaction from 10 to 10240 to
investigate how the GPU design performs. As shown in Fig. 14 (B), the dynamic pro-
gramming kernel converges to the minimal run-time after increasing the number of
alignments per transaction to 2560. The boundary kernel and the max reduction ker-
nel converge to their minimums when the number of alignments per transaction hits
640. The data copying operation from the device to host keeps speeding up with the
increase of the number of alignments. This is due to the fact that the output array
only contains very few data (each alignment only generates one max score, and two
indices of the X and Y arrays) which never saturates the memory transaction band-
width. However, the dynamic programming kernel dominates the overall run-time.
Therefore, as a consequence, the overall performance saturates the max throughput
after increasing the number of alignments to 2560.

The best performance of the GPU design is at 3.116µs per alignment with a 13.6×
speedup against the baseline. The run-time for the boundary score, dynamic program-
ming and maximum score kernels are 0.940µs, 1.484µs and 0.494µs respectively. The
data transferring time between the host memory and GPU memory is 0.198µs.

The FPGA design was built using Xilinx ISE 14.7 in Verilog. The FPGA design was
implemented on a Xilinx Virtex 7 VC707 board receiving input and sending output
using RIFFA [Jacobsen and Kastner 2013] (configured as a x8 Gen 2 PCIe connection
to the PC). We also investigated how the FPGA design performs when changing the
number of alignments per RIFFA transaction between the host CPU and the FPGA. We
also varied the number of alignments per transaction from 10 to 10240. The simulated
design generates the ideal throughput of the FPGA acceleration module. We measured
the bandwidth of RIFFA by sending the data to the FPGA and receiving the same data
back to the host without doing any computation on the FPGA. We only measured the
host to device bandwidth since the transfer from the device to host contains very few
data. As shown in Fig. 14 (A), the actual FPGA performance is significantly lower than
the simulated ideal performance due to the RIFFA bandwidth limit when the number
of alignments is between 10 and 640. After the number of alignments reaches 5120,
the actual FPGA performance converges to its maximum which is slightly lower than
the ideal performance due to the host software overhead.

Our FPGA experimental result shows the best throughput at 2.7 million pairs of
molecules per second or equivalently 0.367µs per alignment. Thus, the FPGA imple-
mentation achieves a 115× speedup against the baseline. Our FPGA implementation
runs at a frequency of 125 MHz. Table II lists the resource utilization of the entire
design including the PCIe communication logic. The design occupied 89% of the slices
on the FPGA. In order to meet the timing constraint with such a high logic utilization,
we used “SmartXplorer” to permutate multiple placement and route strategies in ISE.
Since we used fixed-point number representation in the FPGA design, compared to the
baseline floating-point design, we observed a 0.019% error which is negligible in real
applications.

6. HARDWARE COMPARISON
Table III presents the summary of the comparison between the three hardware. We
compare the performances and prices of the hardware accelerators.
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Table II: FPGA design resource utilization on VC707

Slice Reg. Slice LUT. BRAM DSP48E

150412 251979 159 2280

24% 82% 15% 81%

6.1. Performance
Although the multi-core CPU has the highest operating frequency among the three
hardware, it achieves the lowest speedup. This is due to the fact that the multi-core
CPU has very limited parallel computing resources: 8 cores with hyper-thread. These
cores are not closely coupled in the architecture. Frequently synchronizing these cores
for fine-grained parallel computations becomes significantly expensive. Therefore, we
were only able to utilize these cores to align multiple molecule pairs in a coarse-grained
parallel fashion. The SSE SIMD extension provides a limited level of fine-grained par-
allelism. The CPU 128-bit SIMD extension does not provide dedicated SIMD units to
achieve massive fine-grained parallelism.

The GPU, as opposed to the multi-core CPU, has a SIMD architecture that sup-
ports fine-grained parallelism. We therefore observed a higher speedup on the GPU.
However, the control dominated boundary score computations introduce a significant
amount of diverse instructions which harm the parallelism in the SIMD architecture.
The GPU accelerates the dynamic programming algorithm by 20× while it only ac-
celerates the boundary score algorithm by 10×. Compared with the GPU, each CPU
coarse-grained parallel core is processing each alignment in a sequential fashion which
has more advantage in dealing with the control dominated instructions. Moreover, the
array size differences create multiple inactive threads. With the CUDA profiler “nvvp”,
we observed that these inactive threads occupy more than 45% of the GPU computing
resource due to the control branch diversities. Compared with the GPU design, the
multi-core CPU and the FPGA suit this feature of the algorithm better. The multi-
core CPU coarse-grained parallelism avoids inactive threads. Unlike the GPU threads
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Fig. 14: Performance vs. number of alignments per host - accelerator device transac-
tion. (A) FPGA performance vs. number of alignments per RIFFA send/receive transac-
tion; the simulated performance is calculated by counting the cycles of the RTL design;
the RIFFA bandwidth is measured in M alignments per second. (B) GPU performance
(throughput) vs. number of alignments per CUDA H-D or D-H transaction; the run-
time curve of each kernel and CUDA API is also plotted.

issued before the program starts and unchangeable during the run-time, the FPGA
pipeline terminates and moves on to the next array when the current array finishes
during the run-time. These unsuitable GPU features limit the performance for the
alignment algorithm.
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Table III: Hardware Comparison

Accelerator Multi. Core
CPU

GPU FPGA

Parallel Architecture Coarse-grain cores Massively parallel
threads

Replicated paths

Solution for data
dependency

NA Thread/Warp
strategy

Manually design
full pipeline &

single-cycle logic

Customized Operator NA NA Look up table
division

Customized Bit-width No No Yes

Frequency 3.1 GHz 706 MHz 125 MHz

Performance 8.4× 13.6× 115×

DSE & Develop Effort 2 weeks 3 months 9 months

Price $2,000 $3,200 + $2,000 $3,495 + $2,000

Performance per $
(aligns/sec/$)

99.2 61.7 495.5

On the FPGA architecture, the customized logic avoids the diverse instruction issue
in the boundary score algorithm. In the dynamic programming module, the pipeline
on the FPGA is spatial. The data is transferred from one logic to the next logic using
on-chip registers. In opposition, in the GPU design, we implemented a similar opti-
mization using warps (different threadIdx.y) as shown in Listing 1 and Fig. 8. Each
GPU warp represents a logic module on the FPGA. Unlike the spatial pipeline, the
GPU warps are scheduled temporally. The data is not transferred spatially between
warps. In contrast, the warps read or write the data on the shared memory. Although
these warps are designed to be processed efficiently on the GPU, the FPGA spatial
pipeline still outperforms the GPU warps without the overhead from scheduling and
memory access. Moreover, the boundary score module stores its output in the low la-
tency BRAM on the FPGA. The dynamic programming module can then access these
boundary scores within one clock cycle. As opposed to the FPGA, the GPU dynamic pro-
gramming kernel reads the boundary scores from the global memory with a higher la-
tency. For these reasons, the FPGA implementation achieves the highest performance.

6.2. Hardware Prices
The prices of the acceleration hardware vary significantly depending on the complex-
ities of the devices. The devices used in our implementations belong to the high-end
category. The Xilinx VC707 FPGA evaluation board costs about $3, 495 [Xilinx 2014].
The Nvidia K20 GPU can be purchased for $3, 200. These high-end GPUs and FPGAs
have comparable prices. The high-end CPU, Intel Xeon E5 has a relatively lower price
which is roughly $2, 000. In our comparison, we added the CPU price to the cost of the
GPU and FPGA accelerated systems since both of them used the CPU as a host to send
and receive data. In our application, the performances per dollar are 99.2 aligns/sec/$,
61.7 aligns/sec/$ and 495.5 aligns/sec/$ for the multi-core CPU, GPU and FPGA re-
spectively.
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7. CONCLUSION
In this article, we have addressed the necessity to accelerate the optical label based
DNA assembly. We have presented three different accelerated approaches: a multi-core
CPU implementation, a GPU implementation and a FPGA implementation. We have
also presented the detailed design space explorations for these three approaches. The
speedups over the sequential CPU baseline are 8.4×, 13.6× and 115× for the multi-core
CPU, GPU and FPGA respectively. Using spatial pipelines, the FPGA design has been
customized to suit the algorithm more efficiently than the other two hardware. The
tradeoff to this performance efficiency on the FPGA is its significant design complexity
in comparison with the approaches on the other two hardware.
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