
2

Gate-Level Information Flow Tracking for Security Lattices

WEI HU and DEJUN MU, Northwestern Polytechnical University
JASON OBERG, University of California, San Diego
BAOLEI MAO, Northwestern Polytechnical University
MOHIT TIWARI, University of Texas, Austin
TIMOTHY SHERWOOD, University of California, Santa Barbara
RYAN KASTNER, University of California, San Diego

High-assurance systems found in safety-critical infrastructures are facing steadily increasing cyber threats.
These critical systems require rigorous guarantees in information flow security to prevent confidential
information from leaking to an unclassified domain and the root of trust from being violated by an untrusted
party. To enforce bit-tight information flow control, gate-level information flow tracking (GLIFT) has recently
been proposed to precisely measure and manage all digital information flows in the underlying hardware,
including implicit flows through hardware-specific timing channels. However, existing work in this realm
either restricts to two-level security labels or essentially targets two-input primitive gates and several simple
multilevel security lattices. This article provides a general way to expand the GLIFT method for multilevel
security. Specifically, it formalizes tracking logic for an arbitrary Boolean gate under finite security lattices,
presents a precise tracking logic generation method for eliminating false positives in GLIFT logic created in
a constructive manner, and illustrates application scenarios of GLIFT for enforcing multilevel information
flow security. Experimental results show various trade-offs in precision and performance of GLIFT logic
created using different methods. It also reveals the area and performance overheads that should be expected
when expanding GLIFT for multilevel security.

Categories and Subject Descriptors: D.4.6 [Security and Protection]: Information Flow Controls

General Terms: Security, Design, Verification

Additional Key Words and Phrases: High-assurance system, hardware security, gate-level information flow
tracking, multilevel security, security lattice, formal method

ACM Reference Format:
Wei Hu, Dejun Mu, Jason Oberg, Baolei Mao, Mohit Tiwari, Timothy Sherwood, and Ryan Kastner. 2014.
Gate-level information flow tracking for security lattices. ACM Trans. Des. Autom. Electron. Syst. 20, 1,
Article 2 (November 2014), 25 pages.
DOI: http://dx.doi.org/10.1145/2676548

1. INTRODUCTION

High-assurance systems such as those found in industrial infrastructures, financial
systems, and medical devices are under ever-increasing risk of cyber attacks [Vishik

This work was supported by the NSF under grant CNS-11621776 and NSFC under grant 61303224.
Authors’ addresses: W. Hu (corresponding author) and D. Mu, School of Automation, Northwestern Polytech-
nical University, 127 Youyi West Road, Beilin, Xian, Shaanxi, China; email: vinnie103@gmail.com; J. Oberg,
Department of Computer Science and Engineering, University of California at San Diego, 9500 Gilman
Drive, La Jolla, CA 92093; B. Mao, School of Automation, Northwestern Polytechnical University, 127 Youyi
West Road, Beilin, Xian, Shaanxi, China; M. Tiwari, Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX 78712; T. Sherwood, Department of Computer Science, University
of California at Santa Barbara, Santa Barbara, CA 93106; R. Kastner, Department of Computer Science and
Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1084-4309/2014/11-ART2 $15.00

DOI: http://dx.doi.org/10.1145/2676548

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:2 W. Hu et al.

et al. 2012]. For example, the smart grid is facing rapidly evolving cyber threats. The
networking of grid control elements, connection of smart meters in customer premises,
and integration of corporate billing systems mean that the smart grid can potentially
be attacked remotely, without physical presence [Mo et al. 2012]. Modern intelligent
cars are also exposing new security vulnerabilities, which allows attackers to remotely
control safety-critical components such as the braking system [Checkoway et al. 2011].
In addition, there is published work demonstrating successful attacks on cardiac pace-
makers [Halperin et al. 2008] and insulin pumps [Li et al. 2011] through wireless
communication channels, which puts the patients’ safety and privacy at risk. To ad-
dress these newly emerging cyber threats, effective security measures and extensive
design efforts should be collaborated from the early system design phase or otherwise
high-assurance systems may be confronted with catastrophic consequences.

Two commonly used security techniques are data encryption and access control.
Cryptographic algorithms are effective in enforcing data secrecy during data storage
and transfer. However, they cannot protect sensitive information against leakage once
it is decrypted for processing. Additionally, modern cryptographic algorithms heavily
rely on secure key management. Even the strongest cryptographic algorithm will au-
tomatically fail if its execution environment leaks the private key through a covert
channel. To prevent illegal access to confidential information, access control policies
are usually deployed to restrict the access rights of unauthorized users. However, ac-
cess control mechanisms (discretionary, mandatory, or role-based) have an inherent
limitation. Specifically, they do prevent information from being accessed illegally, but
cannot prevent it from being propagated improperly by authorized users. In addi-
tion, even in systems where access control is strictly enforced, it still could be pos-
sible to transmit information indirectly using system side-effects. Furthermore, new
attack techniques tend to exploit security vulnerabilities, which can be far more effi-
cient than cracking a cryptographic algorithm or breaking through an access control
policy.

A complementary approach is to enforce tight information flow control (IFC). This
approach classifies data objects into different security levels and monitors the propa-
gation of data among security domains to prevent sensitive information from leakage
or high-integrity data from being violated. IFC can be implemented either through
static information flow analysis or dynamic information flow tracking (IFT) to enforce
certain information flow security policies such as Bell LaPadula for confidentiality [Bell
and LaPadula 1973] and noninterference [Goguen and Meseguer 1982] for integrity. A
survey by Sabelfeld and Myers [2003] has summarized the extensive research in static
information flow analysis at the programming language and compiler levels. Krohn
et al. [2007] and Vandebogart et al. [2007] have built IFC mechanisms into standard
OS primitives such as processes, pipes, and the filesystem for lower design complexity.
Suh et al. [2004], Newsome and Song [2005], and Dalton et al. [2007] have imple-
mented strict IFC at the ISA/uARCH level to reduce performance overheads. Although
IFC has been shown effective in preventing harmful flows of information and detect-
ing security vulnerabilities, the methods mentioned earlier are all at too high a level
of abstraction to identify hardware-specific timing channels that have been shown to
cause secret key leakage in stateful components such as caches [Bernstein 2005] and
branch predictors [Acıiçmez et al. 2006].

To account for hardware-specific timing flows, Tiwari et al. [2009b] has recently pro-
posed an IFT method called gate-level information flow tracking (GLIFT) that tracks
the flow of information through Boolean gates. At such a low level of abstraction, all
digital information flows, such as explicit flows, implicit flows, and even hardware-
specific timing flows, appear in a mathematically unified form. This will allow detec-
tion of hardware-specific timing channels that are inherently invisible at higher levels

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:3

of abstraction. In previous work [Tiwari et al. 2009a], an execution lease architec-
ture was developed to prevent undesired flows of information, including those through
hardware-specific timing channels, to restrict the effects of untrusted programs to a
constrained spatial and temporal boundary. This architecture employs GLIFT to show
provable information flow isolation between different execution contexts. Oberg has
shown how GLIFT can be used to identify and eliminate timing channels in shared
buses architectures such as I2C, USB, and Wishbone [Oberg et al. 2011, 2013a]. Fur-
ther, a practical testing framework is constructed to prove strict isolation between IP
blocks with different trust basis in SoC (System-on-Chip) systems [Oberg et al. 2014].
Again, GLIFT is used to identify and eliminate harmful flows of information, including
those through hard-to-detect timing channels.

The preceding preliminary work has demonstrated the effectiveness of GLIFT for
enhancing information flow security, especially in detecting and eliminating hardware-
specific timing channels. However, the GLIFT method employed in the aforesaid work
targets two-level security labels, which is insufficient for enforcing multilevel secu-
rity (MLS) [Denning 1976]. For example, military systems usually require an at least
four-level security classification, namely Unclassified, Confidential, Secret, and
Top secret, that cannot be modeled using a two-level linear security lattice. Another
typical example can be found in SoC systems, where designers often need to prevent
undesirable interference (caused by harmful flows of information) between IP cores of
different trust (e.g., Open-source, IP-vendor, and Self-developed). A two-level linear
security lattice simply cannot be used to model such information policies. In addition,
many systems tend to be interested in nonlinear security lattices for proving isola-
tion between incomparable entities. Thus, we need to expand GLIFT to more general
security lattices in order to adapt to a wider range of systems.

To meet the requirements for MLS, we have made a first attempt to expand the
GLIFT method to target multilevel security labels in Hu et al. [2013]. However, the
paper focused on two-input primitive gates and several simple security lattices. As
a result, it did not fully demonstrate how multilevel security labels are propagated
through Boolean circuits. Specifically, label propagation automatically reduced to the
case for a two-level security label since the primitive gates considered could take two
inputs at most each time. In addition, a naive label propagation rule-set enumeration
method was used to derive GLIFT logic for primitive gates. The complexity of such a
enumeration method would soon become intractable when the lattice structure grows
more complex. To reduce complexity, a constructive approach based on a minimum
GLIFT library was proposed to augment tracking logic for primitive gates in large
digital circuits discretely. However, such a constructive method has a potential impre-
cision problem, which will be addressed in successive discussions. Thus, the problem
of GLIFT for MLS still remains unresolved.

This article provides a general way to expand the GLIFT method to meet the re-
quirements for MLS. It presents the basic concepts, GLIFT logic formalizations, and
generation method for the expansion. In addition, it also shows what sort of area and
performance overheads should be expected when expanding GLIFT to target multiple
levels of security labels. Specifically, this article makes the following contributions.

—Providing a general way to expand GLIFT for MLS. We provide an approach to
expand the GLIFT method to target arbitrary levels of security labels for proving
multilevel security.

—Presenting generalized formalization of GLIFT logic for Boolean gates. We derive
symbolic representation of GLIFT logic for basic logical constructs (NOT, BUF, Flip-
Flop, AND, NAND, OR, NOR, XOR, XNOR, and tri-state gates) under multiple levels
of security labels.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:4 W. Hu et al.

—Performing precision and complexity analysis of GLIFT logic. We perform quantita-
tive analysis of GLIFT logic for Trust-Hub [Baumgarten et al. 2011] and IWLS [2005]
benchmarks in terms of precision, area, and performance.

The remainder of this article is organized as follows: Section 2 introduces the threat
model as well as preliminaries of information flow analysis, with an emphasis on the
basis of information flow security and related work in enforcing information flow control
at various abstraction levels. In Section 3, we define some concepts and operations
related to security lattices. We provide a general way to expand the GLIFT method to
multilevel security labels in Sections 4 and 5, formalizing GLIFT logic for Boolean gates
and presenting a precise GLIFT logic generation method. Section 6 shows how GLIFT
can be used to enforce MLS, either through static information testing/verification or
dynamic information flow tracking, and also addresses various design optimization
considerations. In Section 7, we perform precision and complexity analysis of GLIFT
logic circuits under several security lattices using Trust-Hub [Baumgarten et al. 2011]
and IWLS [2005] benchmarks. Finally, we conclude this article in Section 8.

2. PRELIMINARIES

This section covers the threat model used in this article and some basic concepts of
information flow analysis. First, we introduce our threat model and the different types
of logical information flows in digital systems. Then, we briefly review the related work
in IFT, a frequently used technique for enforcing information flow security. Finally, we
present the latest research in GLIFT with a discussion on its limitations.

2.1. Threat Model

In this article, we account for security threats caused by vulnerabilities in hardware
design that may result in violations of security properties of integrity or confidentiality.
For integrity, design flaws that allow untrusted inputs to flow to high-integrity regions
of the design are considered as a security threat (e.g., unprotected data from the open
network interface being used to manipulate the program counter). For confidentiality,
security holes that cause sensitive information to leak to an unclassified domain are
considered as a security threat (e.g., a private key in a cryptographic core flowing to
outputs other than the cipher text). Such security property violations are associated
with harmful flows of information between different security domains. Thus, these
security threats can be modeled as information flow security policy violations.

In our analysis, we target the abstraction level of Boolean gates and focus on logical
information flows that propagate through digital hardware. Our method can be used
to detect potential security vulnerabilities in hardware design by capturing harmful
flows of information, or to enforce strict information flow isolation between components
of different security classification, such as third-party cores and high-integrity cores
built in house. It does not aim to handle attacks that require statistical analysis in
order to retrieve secret information or account for information flows caused by physical
phenomena, such as power dynamics or electromagnetic radiations, that do not appear
at the logical level.

2.2. Logical Information Flows

Logical information flows in digital systems can be categorized into explicit and implicit
flows.

The simplest case is the explicit flow, which is always associated with direct data
movements. Thus, explicit flow is also called dataflow. Examples of explicit flows can
be found in evaluation expressions where information flows from source to destination

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:5

operand and in network communications where information flows from sender to
receiver. In the following example, information flows explicitly from secret to leak.

TYPE_SECRET secret;
TYPE_UNCLASSIFIED leak;
leak := secret;

A more subtle case is the implicit flow, caused by nondeterministic system behaviors
such as conditional branching or latency. Correspondingly, implicit flow can alterna-
tively be called control flow. For example, the latency difference between cache hit and
miss creates an implicit flow that could cause secret key leakage [Bernstein 2005]. In
the following example, the least significant bit of secret flows implicitly to leak.

TYPE_SECRET secret;
TYPE_UNCLASSIFIED leak;
IF (secret & 0x01) THEN
leak := TRUE;

ELSE
leak := FALSE;

Timing flow is a special type of implicit flow that transmits information through
timing-related behaviors. In the following example, the attacker can deduce whether
secret is nonzero by observing the execution time of the program.

TYPE_SECRET secret;
TYPE_UNCLASSIFIED done = FALSE;
IF (secret == TRUE) THEN
heavy_computation();

done := TRUE;

From the prior examples, we can see that undesirable flows may leak secret infor-
mation. Thus, digital systems should be designed with careful consideration of both
explicit and implicit flows and effective measures taken to prevent sensitive informa-
tion from leakage, or, the dual, high-integrity data from being violated. In practice, this
can be achieved through tight IFC. In the following section, we will briefly discuss the
related work in IFT that is commonly used for implementing IFC.

2.3. Information Flow Tracking

In IFT, data are assigned a label to indicate their security levels (e.g., trusted or
untrusted). The label is propagated along with data through the system. IFT monitors
the propagation of information to check whether secret data leak to an unclassified
domain or high-integrity data are violated by an untrusted party.

Most IFT methods focus on tracking information flows at the program language
(PL), operating system (OS), instruction set architecture (ISA), and microarchitec-
ture (μARCH) levels. PL-level IFT methods enforce information flow security through
compile-time static verification with the employment of typing systems [Volpano et al.
1996; Pottier and Simonet 2003]. Although these methods introduce little overhead in
the final implementations, they force programmers to comply with new typing systems
that lead to higher design complexity. OS-level IFT methods monitor information flows
with abstractions for operating system primitives such as processes, pipes, and the
filesystem [Krohn et al. 2007; Vandebogart et al. 2007]. They build IFC mechanisms
into the OS and thus can take the pressure of high design complexity off the program-
mers. However, these methods typically report up to 30% performance overhead and,
like PL-level methods, are at too high a level of abstraction to capture hardware-specific
timing channels. ISA/μARCH-level IFT implementations [Suh et al. 2004; Newsome

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:6 W. Hu et al.

Fig. 1. The GLIFT method. (a) I/O of AND-2 and its GLIFT logic; (b) partial truth table of GLIFT logic for
AND-2; (c) GLIFT logic of AND-2.

and Song 2005; Dalton et al. 2007] track information flows at the granularity of instruc-
tion and data words. They introduce very low performance overhead but are also at a
level of abstraction that is transparent to timing behaviors in the underlying hardware.

In addition, these IFT methods tend to be conservative in calculating the security
labels for the output, since they only consider the security label of the inputs and
ignore the value they actually take. It is often the case that a higher security-level
input does not essentially have an effect on the output even if it is involved in a
computation. Specifically, consider n data objects A1, A2, . . . , An with security labels
a1, a2, . . . , an, respectively. When an operation is performed on these objects, the security
label of the output will be assigned to the least upper bound of a1, a2, . . . , an in previous
IFT methods. This is secure but overly conservative because information contained
in A1, A2, . . . , An may not necessarily all flow to the output according to information
theory [Shannon 2001].

While information flows appear in various forms at the PL, OS, ISA, and μARCH
levels, they all flow explicitly in the granularity of binary bits at the gate level and
thus can be precisely defined in a form that unifies the notions of explicit flows, implicit
flows, and even hardware-specific timing flows [Oberg et al. 2011]. Recently, gate-level
information flow tracking (GLIFT) has been proposed to precisely measure and manage
all digital flows from the level of Boolean gates [Tiwari et al. 2009b].

2.4. Gate-Level Information Flow Tracking

In GLIFT, each binary data bit is associated with a label to indicate its security level,
such as trusted/untrusted or confidential/unclassified. GLIFT provides a more precise
approach to IFT in that the output is bounded to the most restrictive security label
whose data actually affects the output. For a better understanding, consider the AND-
2 example as shown in Figure 1(a), where A, B, and O are the inputs and output of
AND-2, and at, bt, and ot are the security labels of A, B, and O, respectively. Let an I/O
be untrusted when its security label is logical “1”.

Consider the partial truth table in Figure 1(b), where A is trusted while B is un-
trusted. In the first row, both A and B have an influence at (or dominate) the output;
thus, the output should be set to trusted since trusted is a more restrictive label. In
the second and third rows, A (or B) determines the output; the output should take the
security label of A (or B). In the fourth row, neither A nor B dominates the output. In
this case, the output should be labeled as untrusted, since a change in the untrusted
input Bcould lead to a change in the output. When considering a full truth table, we can
derive the GLIFT logic for AND-2 as shown in Figure 1(c). We can see that the GLIFT
logic takes into account both the data value and its security label while calculating
the security label for the output. By comparison, previous IFT methods tend to ignore
the actual influence of the data value at the output and always mark the output as

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:7

Fig. 2. The constructive method for GLIFT logic generation.

untrusted now that there is an untrusted input. Thus, GLIFT provides a more precise
approach to IFT than previous conservative methods.

Previous work has demonstrated the effectiveness of GLIFT for building information-
flow-secure architectures [Tiwari et al. 2009a,b, 2011; Kastner et al. 2011], especially
in detecting hardware-specific timing channels [Oberg et al. 2011, 2013a, 2013b]. How-
ever, the aforesaid GLIFT method only targets two-level security labels. Real systems
usually require or benefit from MLS policies that need to be modeled using multilevel
security lattices [Denning 1976] (e.g., for modeling a security policy that specifies allow-
able information flows among IP cores from vendors of varying trust). In the following
section, we will discuss the latest research in expanding GLIFT for MLS as well as its
drawbacks.

2.5. GLIFT for Multilevel Security

To satisfy the requirements for MLS, we have made an initial attempt to expand GLIFT
to target multiple levels of security labels in Hu et al. [2013]. However, expanding
GLIFT to cope with multilevel security labels is a complicated process due to the
inherently high complexity of fine-granularity IFT methods.

Without loss of generality, consider a digital circuit with n-bit inputs under a lattice
with msecurity labels. For each input, the original variable can take two possible binary
values while its security label has m alternatives. When considering all n inputs, their
values have a total number of 2n possible combinations and their security labels have mn

possible input patterns. Thus, the complexity of the GLIFT method can be formalized
as in (1). As an example, consider the GLIFT method under two-level security labels,
namely, m = 2. The complexity of the method reduces to O(22n), which agrees with the
theoretical analysis in Hu et al. [2011].

O(2n · mn) = O((2m)n) (1)

From (1), the general GLIFT problem inherently has exponential complexity. To solve
the problem in polynomial time, we set n to be a constant and restrict our discussions
to two-input primitive gates (i.e., n = 2, in Hu et al. [2013]). With such a restriction,
the complexity of the problem reduces to O((2m)2). Subsequently, GLIFT logic for large
digital circuits is created in a constructive manner. In this constructive method, a
functionally complete GLIFT library containing the tracking logic for primitive gates
is maintained. Given a digital circuit, it is synthesized to a gate-level netlist composed
of the primitive gates found in the GLIFT library. Then, one can discretely instantiate
tracking logic for each primitive gate in the netlist through a constant-time mapping
operation. Figure 2 illustrates such a constructive approach.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:8 W. Hu et al.

Fig. 3. The design flow of the constructive method.

As shown in Figure 2, a minimum GLIFT library consisting of the tracking logic for
AND, OR, and INV (inverter) is maintained initially. This GLIFT library is functionally
complete in describing all Boolean circuits. Given a two-to-one multiplexer (MUX-2), it
is synthesized into a netlist with two AND gates, an OR gate, and an INV. Subsequently,
the GLIFT logic for MUX-2 can be obtained by mapping the netlist to the minimum
GLIFT library. Once the GLIFT logic for MUX-2 is created, it can be integrated with
the basic GLIFT library to form a larger library. In this way, more complex GLIFT
libraries can be constructed and tracking logic for large digital circuits can be generated
constructively.

Figure 3 shows the design flow of the constructive method. There can be various opti-
mizations like those in technology mapping during GLIFT logic instantiation. However,
we currently rely on logic synthesis tools for design optimization, which are performed
during a first synthesis of the original design to a gate-level netlist and a second syn-
thesis of the resulting GLIFT logic for final implementation. In our future work, we will
investigate various optimizations during the mapping of primitive gates to the GLIFT
library in order to reveal the effect of different ways of mapping on area, performance,
and precision.

The constructive method could be highly efficient for GLIFT logic generation since
it has polynomial time complexity without considering the logic synthesis process.
However, we have observed that GLIFT logic generated using this method may contain
false positives, indicating nonexistent flows of information; this will be addressed in
detail in Section 5.1.

This article intends to provide a general way in which GLIFT can be expanded
to target multilevel security labels. It presents a solution to this complex expansion
problem by formalizing tracking logic for primitive Boolean gates under multilevel
security labels and presenting a method for precise1 GLIFT logic generation. Before
this, we define some terms and definitions.

3. TERMS AND DEFINITIONS

Denning [1976] first proposed to use the lattice model for describing information flow
policies. To facilitate successive discussions, we restate some essential concepts for the
lattice model [Denning 1982] and define some operations on security labels.

1Precise GLIFT logic indicates logic TRUE when and only when there is an actual information flow.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:9

Fig. 4. Sample security lattices. (a) Two-level linear lattice for integrity; (b) three-level linear lattice for
confidentiality; (c) four-level linear lattice for confidentiality; (d) a square lattice for confidentiality.

Definition 3.1 (Lattice). Given a partial order set L = {S,�}, where S is the set of
elements and � is a partial order relation defined on the element set, the two-tuple
{S,�} constitutes a lattice if there is a least upper bound (lub) element and a greatest
lower bound (glb) element for any a, b ∈ S. Let ⊕ and � be the least upper and greatest
lower bound operators, respectively, these are denoted as

lub(a, b) = a ⊕ b
glb(a, b) = a � b.

Definition 3.2 (Maximum and Minimum Elements). Let S = {a1, a2, . . . , an} be the
element set of a given lattice. We define the maximum element (denoted as HIGH) and
minimum element (denoted as LOW) on the lattice as follows2.

HIGH = a1 ⊕ a2 ⊕ · · · ⊕ an

LOW = a1 � a2 � · · · � an

Definition 3.3 (Security Lattice). A security lattice is a lattice whose element set is
composed of security classes. A given information flow policy can be modeled using a
security lattice L = {SC,�}, where SC is a set of security classes and � is the partial
order defined on SC.

Figure 4 shows some simple security lattices. The set of security classes is a
combination of all possible security levels that data objects can take (e.g., SC =
{Unclassified, Confidential, Secret} for a three-level linear confidentiality lattice as
shown in Figure 4(b)). The arrows show the permissible directions of information flows
and reflect the partial order defined by the lattice. Let L : O → SC be a function that
returns the security class of an object in O. When L(A) � L(B), information flowing
from A to B will not violate the security policy specified by the lattice and thus is
secure. Generally, an information flow security policy only allows information to flow
within the same security class or upward along the security lattice. Any downward
information flow will cause a security policy violation. Given two security classes a and
b, we define a to be more restrictive than b (or b to be more conservative than a) when
a � b. With an understanding of the partial order on security lattices, we can define
and prove the following operation laws for comparable security classes.

PROPOSITION 3.4 (ABSORPTION LAW).

At � Bt ⊕ At � Bt � Ct = At � Bt (2)

PROOF. According to the definition of least upper bound,

At � Bt � At � Bt ⊕ At � Bt � Ct. (3)

2HIGH and LOW correspond to Confidential and Unclassified in confidentiality analysis, and to Untrusted
and Trusted in integrity analysis.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:10 W. Hu et al.

Also, according to the definition of greatest lower bound,

At � Bt � Ct � At � Bt, (4)

therefore

At � Bt ⊕ At � Bt � Ct � At � Bt ⊕ At � Bt = At � Bt. (5)

With (3) and (5), the Absorption Law holds.

PROPOSITION 3.5 (DISTRIBUTIVE LAW).

(At ⊕ Bt) � Ct = At � Ct ⊕ Bt � Ct (6)

PROOF. Since At and Bt are comparable, assume At � Bt without loss of generality,

(At ⊕ Bt) � Ct = Bt � Ct. (7)

According to the definition of least upper bound,

Bt � Ct � At � Ct ⊕ Bt � Ct. (8)

Since At � Bt, we have

At � Ct ⊕ Bt � Ct � Bt � Ct ⊕ Bt � Ct = Bt � Ct, (9)

and with (8) and (9), the Distributive Law holds.

Similarly, we can prove the following Associative Law.

PROPOSITION 3.6 (ASSOCIATIVE LAW).

At � Ct ⊕ Bt � Ct = (At ⊕ Bt) � Ct (10)

In addition, the greatest lower bound operator needs to be redefined for incomparable
security classes. Given two incomparable security labels At and Bt, their greatest lower
bound should be no more restrictive than At or Bt. As an example, considering security
classes Secret1 and Secret2 in Figure 4(d), Secret1 � Secret2 should be set to Secret1
or Secret2 (or even conservatively to Top Secret) instead of Unclassified. From the
example, the result of the greatest lower bound operation on incomparable security
classes can be nondeterministic. Thus, we redefine the greatest lower bound operator
on incomparable security classes as (11). Specifically, we construct a candidate set
consisting of all the possible safe output security classes and choose the most restrictive
one from the candidate set as the output label. We randomly pick one if there are still
multiple choices (e.g., Secret1 and Secret2 shown in Figure 4(d)) that are symmetric.

At � Bt ∈ {Ct | Ct � S, ∀ At � S and Bt � S} (11)

For simplicity, we will use a unified notation for the greatest lower bound operator
in our discussion. Eq. (11) should be used when calculating greatest lower bounds for
incomparable security classes.

Definition 3.7 (Dot Product). We define the dot product on a Boolean variable Aand
a security label vector Bt as (12). Such a dot product operation implies logical AND
when applied to Boolean variables.

A · Bt =
{

LOW A = 0
Bt A = 1

(12)

Using (12), we can verify the following Associative Law on the dot product operator
by assigning A to “0” and “1”, respectively, as

(A · Bt) � Ct = A · (Bt � Ct), (13)

where A is a Boolean variable while Bt and Ct are security label vectors.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:11

Eq. (14) defines the Distributive Law on the dot product operator, where the symbol
∨ denotes logical OR operation. The law can be proved by assigning A or B to “0” and
“1”, respectively.

(A∨ B) · Ct = A · Ct ⊕ B · Ct (14)

We can derive the following Absorption Law by replacing B with AB in (14).

A · Ct ⊕ AB · Ct = A · Ct (15)

Without loss of generality, we consider an arbitrary security lattice L = {SC,�}
in our successive discussions. Let m = |SC| be the total number of security classes.
Then the security label for a Boolean variable needs to be denoted with at least
w = 	log2m
 binary bits. We use upper-case letters with/without a superscript to denote
Boolean variables (e.g., A, B, A1, A2, . . . , An), while their security labels are denoted as
At, Bt, A1

t , A2
t , . . . , An

t correspondingly. Note that each security label is a w-dimensional
vector, for instance, At = (aw−1

t , . . . , a1
t , w0

t). The logical AND (∧) and dot product oper-
ators will be eliminated wherever possible for simplicity.

With the preceding notations and definitions, we will provide a general way to ex-
pand GLIFT for MLS. A fundamental task in this expansion process is GLIFT logic
generation. Thus, we first formalize GLIFT logic for Boolean gates in Section 4 and
then provide a method for false-positive-free GLIFT logic generation in Section 5.

4. FORMALIZING GLIFT LOGIC FOR BOOLEAN GATES UNDER MULTILEVEL
SECURITY LATTICES

4.1. Buffers, Inverters and Flip-Flops

A common property of buffers, inverters, and flip-flops is that a change in the input will
always be reflected at the output, indicating an information flow. Although the value
observed at the output may be inverted, these components never lead to a change in
the security label. Let I denote the input and O the output. The GLIFT logic for these
components can be formalized as (16).

Ot = It (16)

It should be noted that the GLIFT logic for flip-flops has some slight difference, since
flip-flops are sequential components where signal transition activities usually take
place at clock edges. Thus, they will delay the propagation of security labels for one
clock cycle.

4.2. AND/NAND Gates

Consider the two-input AND gate (AND-2) whose Boolean function is O = A ∧ B.
To formalize GLIFT logic under multilevel security lattices, we need to expand the
security labels to multidimensional vectors and apply the corresponding operators on
security label vectors. Specifically, dot product should be used to imply multiplication
of a Boolean variable with a security label; the least upper and greatest lower bound
operators need to be used for operations on security labels. Table I shows the truth
table that calculates the output security label of AND-2, where At, Bt, and Ot are the
security label vectors of A, B, and O, respectively.

As an example, consider the case when A = 0 and B = 1. In this case, Ot should be
set to At since A dominates the output. Now consider the case when A = 1 and B = 0.
In this case, Ot evaluates to Bt, indicating information flow from B to the output. More
subtle cases could happen when A and B are both logical “1” or logical “0”. Specifically,
when A and B are both logical “1”, neither A nor B has a direct influence on the output
and the security class of the output will be evaluated to At ⊕ Bt (the more conservative
one). When A and B are simultaneously logical “0”, both A and B have an influence

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:12 W. Hu et al.

Table I. Truth Table of GLIFT Logic for AND-2 under Multilevel
Security Lattices

A B At Bt O Ot

1 0 0 At Bt 0 At � Bt

2 0 1 At Bt 0 At

3 1 0 At Bt 0 Bt

4 1 1 At Bt 1 At ⊕ Bt

on the output. The security class of the output will be evaluated to At � Bt (the more
restrictive one).

From Table I, we can obtain the GLIFT logic for AND-2 as shown in (17).

Ot = ABt ⊕ BAt ⊕ At � Bt (17)

To formalize GLIFT logic for multiple input Boolean gates under multilevel security
lattices, we start from considering the three-input AND gate (AND-3) under a three-
level linear security lattice. Let the Boolean function of AND-3 be O = A∧ B ∧ C. We
can derive the GLIFT logic for AND-3 step by step using (17) as

Ot = C · L(AB) ⊕ ABCt ⊕ L(AB) � Ct, (18)

where L(AB) denotes the security label of A∧ B as already formalized in (17).
Once (18) is expanded and simplified, we have

Ot = ABCt ⊕ ACBt ⊕ BC At ⊕ ABt � Ct

⊕ BAt � Ct ⊕ C At � Bt ⊕ At � Bt � Ct.
(19)

Now consider an n-input AND expression O = A1 ∧ A2 ∧ · · · ∧ An under an m-level
security lattice. A possible solution is to evaluate the following polynomial and then
apply appropriate operators, specifically the least upper and greatest lower bound
operators on security label vectors. The minus sign in (20) denotes removing the term
A1 A2 · · · An from the resulting equation.

Ot = (
A1 + A1

t

)(
A2 + A2

t

) · · · (An + An
t

) − A1 A2 · · · An (20)

With the tracking logic for AND gates, one can quickly derive GLIFT logic for NAND
gates. Specifically, NAND and AND gates share the same tracking logic according to
Section 4.1. To compose a minimum GLIFT library that is functionally complete in
describing all digital circuits, the OR gate is usually included. In the following section,
we derive GLIFT logic for OR gates under multilevel security lattices.

4.3. OR/NOR Gates

We first consider the two-input OR gate (OR-2) whose Boolean function is O = A∨ B.
Using the DeMorgan Law [Maini 2007], we have

O = A∧ B.

According to Section 4.1, OR-2 has the same GLIFT logic as A ∧ B, which can be
directly derived from (17) and is shown in (21).

Ot = ABt ⊕ BAt ⊕ At � Bt (21)

More generally, consider an n-input OR expression O = A1 ∨ A2 ∨ · · · ∨ An. A feasible
solution is to evaluate the following polynomial and then apply appropriate operators
on security label vectors, namely, ⊕ for plus while � for product. The minus sign in
(22) denotes removing the term A1 A2 · · · An from the resulting equation.

Ot = (
A1 + A1

t

)(
A2 + A2

t

) · · · (An + An
t

) − A1 A2 · · · An (22)

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:13

Similarly, NOR and OR gates share the same GLIFT logic as well, according to
Section 4.1. By (20) and (22), the GLIFT logic for OR gates can be quickly derived from
that for AND gates by merely inverting the Boolean variables and vice versa.

4.4. XOR/XNOR Gates

The XOR and XNOR are a special type of gate in that they are information flow
sensitive. Specifically, whenever there is a change in the input, the change will be
observed at the output. With such an understanding, the GLIFT logic for n-input XOR
and XNOR gates with inputs A1, A2, . . . , An can be described as (23).

Ot = A1
t ⊕ A2

t ⊕ · · · ⊕ An
t (23)

4.5. The Tri-State Gate

The tri-state gate is another special type of logic construct commonly found in digital cir-
cuits. The output of the tri-state gate is selected between the input and high-impedance
state by a control signal. The logic function of the tri-state gate can be described as (24),
where S, I, O, and “Z” represent the control signal, input, output, and high-impedance
state, respectively.

O = S ? I : ′Z′; (24)
From (24), when S is asserted, the output O will be determined by I. Thus, the term

SIt should be added to the GLIFT logic to track information flow from I to O when
S = 1. Similarly, when S is negated, the output O will be in high-impedance state.
Therefore, the term S · LOW should be added to the GLIFT logic since the security
class for constants is LOW. Additionally, the control signal S is also information flow
sensitive. Specifically, a change in S will always cause the output to switch between
the logical “0”/“1” and high-impedance states. To model such transition activities, the
term St should be included in the GLIFT logic. According to our analysis, the GLIFT
logic for the tri-state gate can be formalized as (25).

Ot = SIt ⊕ S · LOW ⊕ St

= SIt ⊕ St
(25)

When the tri-state gate is used for driving shared buses, there can be some slight dif-
ference its GLIFT logic. Specifically, the tracking logic should be set to high impedance
when the select line S is negated to prevent multiple driving sources. Eq. (26) shows
the tracking logic for the tri-state gate in shared bus architectures.

Ot = S ? (SIt ⊕ St) : ′Z′

= S ? (It ⊕ St) : ′Z′ (26)

In addition, Boolean operators can also be used to set or reset registers, that is,
assigning constant values to registers. As an example, R = R xor R clears the register
R. In such cases, the security label of the registers should be set to LOW since constants
always have a LOW label.

Now that we have derived GLIFT logic for the basic building blocks of Boolean cir-
cuits, we will address the potential imprecision problem with the constructive method
and then provide a method for precise GLIFT logic generation under multilevel security
lattices in the following sections.

5. PRECISE GLIFT LOGIC GENERATION UNDER MULTILEVEL SECURITY LATTICES

5.1. Impreciseness of the Constructive Method

The constructive method can be used to generate GLIFT logic for digital circuits in
linear time through a constant-time mapping operation. However, this constructive

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:14 W. Hu et al.

approach has a potential imprecision problem. Specifically, GLIFT logic generated
using this method may contain false positives, indicating nonexistent flows of infor-
mation. For a better understanding, consider the MUX-2 whose Boolean function is
F = SA∨ SB [Maini 2007]. Using (16), (17), and (21), we have

Ft = SA · L(SB) ⊕ SB · L(SA) ⊕ L(SA) � L(SB). (27)

When (27) is expanded and simplified using (2), (10), and (13) to (15), the GLIFT
logic for MUX-2 can be formalized as (28).

Ft = SAt ⊕ SBt ⊕ ABSt ⊕ ABSt ⊕ At � St ⊕ Bt � St ⊕ ABSt (28)

Considering the case when A = 1, At = LOW, B = 1, Bt = LOW, we have Ft = St,
indicating that information flows from S to F. Actually, the output will be constantly
class LOW in this case since At = Bt = LOW. Thus, the term ABSt is a false positive
that indicates nonexistent flow of information. In the following section, we present a
feasible solution to eliminating such false positives.

5.2. Precise GLIFT Logic Generation Method

According to switching circuit theory, false positives in the GLIFT logic created by the
constructive method are caused by static logic hazards resulting from single-variable
switches. As proved by Eicherberger [1965], a Boolean function with all its prime im-
plicants will be free of all static logic hazards. This provides a possible solution to
eliminating false positives in GLIFT logic generated in a constructive manner. For a
better understanding, consider the MUX-2. To include all prime implicants, a redun-
dant term ABneeds to be appended to its Boolean function. We denote the new function
as G = F ∨ AB, where F = SA∨ SB. Eq. (29) shows the GLIFT logic for G generated
using the constructive method.

Gt = F · L(AB) ⊕ AB · Ft ⊕ L(AB) � Ft (29)

When A = 0, Gt can be simplified to (30).

Gt|A=0 = SAt ⊕ SBt ⊕ BSt ⊕ At � St ⊕ Bt � St (30)

Similarly, when A = 1, Gt can be simplified to (31).

Gt|A=1 = SAt ⊕ SBt ⊕ BSt ⊕ At � St ⊕ Bt � St (31)

Thus, we have

Gt = A · Gt|A=0 ⊕ A · Gt|A=1

= SAt ⊕ SBt ⊕ ABSt ⊕ ABSt ⊕ At � St ⊕ Bt � St.
(32)

With a comparison to (28), we can discover that the additional term ABSt is automat-
ically reduced. We can further verify that all the terms in Gt now precisely measure
actual information flows to the output. In other words, false positives are eliminated
by adding the prime implicant AB.

For a more concrete understanding, observe (29), where L(AB) does not contain any
false positives since there is no single-variable switch (e.g., S and S in F composes a
single-variable switch). When A = 1, At = LOW, B = 1, Bt = LOW, we have F = 1 and
L(AB) = LOW. In this case, AB and L(AB) together dominate the output of (29), and Gt
will be evaluated to LOW regardless of the output status of Ft. Further, GLIFT logic can
only contain false positives and never indicates any false negatives [Hu et al. 2011].
Gt should be able to precisely track all the actual information flows in F, since G is

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:15

logically equivalent to F. Thus, adding the prime implicant AB eliminates the false
positives while retaining all the actual information flows in Ft.

From the MUX-2 example, precise GLIFT logic can be generated using the construc-
tive method now that the Boolean function contains all its prime implicants. However,
finding all prime implicants has been proven an NP-hard problem [Palopoli et al. 1999].
To eliminate all logic hazards while retaining acceptable computational complexity, Lin
and Devadas [1995] proposed a method that allows synthesis of static-logic-hazard-free
circuits using BDDs (Binary Decision Diagrams). This provides a new method for pre-
cise GLIFT logic generation as shown in Algorithm 1.

ALGORITHM 1: The BDD Algorithm
Input: Boolean function f (x1, x2, . . . , xn) with inputs x1, x2, . . . , xn
Input: GLIFT library consisting of the precise GLIFT logic for MUX-2
Output: Precise GLIFT logic of f denoted as sh(f)

1 fBDD ← f , constructing a reduced ordered/free BDD from f
2 fMU X−2 ← fBDD, represent each node in the BDD using a MUX-2
3 for each MUX-2 node m ∈ fMU X−2 do
4 if m has constant input(s) then
5 simplify MUX-2 node m to Boolean equation
6 else
7 map m to the GLIFT library // instantiate GLIFT logic for m
8 add GLIFT logic of m to sh(f)
9 end

10 end
11 return sh(f)

In this BDD method, a reduced ordered or free BDD [Lin and Devadas 1995] is first
constructed from a given Boolean function (line 1). Then the BDD is converted into a
MUX-2 network (line 2). If a MUX-2 node in the network has constant input(s) (line 4),
it can be further reduced to a Boolean equation (line 5). Finally, the simplified MUX-2
network is augmented with GLIFT logic using the constructive method introduced in
Section 5.1 (lines 7 and 8). Now that the GLIFT logic for MUX-2 is false positive free,
the resulting GLIFT circuit will be precise.

For a better understanding, consider the Boolean function F = AB ∨ BC ∨ A C. As
shown in Figure 5(a), a reduced ordered BDD is first constructed. Then, the BDD is
converted into a MUX-2 network as shown in Figure 5(b). Further, the two multiplexer
nodes with constant inputs are reduced to C and C, respectively. Figure 5(c) shows the
MUX-2 network after simplification. Finally, GLIFT logic is generated constructively
by augmenting tracking logic for each MUX-2 node. In this step, the false-positive-free
GLIFT logic for MUX-2 given in (32) is instantiated and the security labels for constant
inputs should be set to LOW.

Eqs. (33) and (34) give the GLIFT logic for F created using the constructive and BDD
methods, respectively, where xnor and xor are the logical Exclusive-NOR (xnor) and
Exclusive-OR (xor) operators.

Ot = (B xnor C)At ⊕ (A xor C)Bt ⊕ (A xor B)Ct ⊕ At � Bt

⊕ At � Ct ⊕ Bt � Ct ⊕ A BCt ⊕ ACBt ⊕ BC At
(33)

Ot = (B xnor C)At ⊕ (A xor C)Bt ⊕ (A xor B)Ct ⊕ At � Bt

⊕ At � Ct ⊕ Bt � Ct
(34)

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:16 W. Hu et al.

Fig. 5. The BDD method for false-positive-free GLIFT logic generation.

By comparison, GLIFT logic generated using the constructive method includes addi-
tional terms (those in the box) indicating nonexistent flows of information. The BDD
method eliminates such false positives, resulting in tracking logic that precisely mea-
sures all actual information flows.

In the BDD method, the only source of false positives is the single-variable switch in
the select line of MUX-2. Now that such false positives are eliminated by instantiating
precise GLIFT logic for MUX-2 given in (32), the BDD method is false positive free.
In addition, GLIFT logic can only contain false positives and never indicates any false
negatives [Hu et al. 2011]. Thus, the BDD method will not lead to removal of any actual
information flows.

5.3. Complexity Analysis

According to Section 2.5, the complexity of the general GLIFT problem is O((2m)n),
where m and n are the numbers of security classes and inputs, respectively. The com-
plexity of the naive label propagation rule-set enumeration method can reach O((2m)n)
since it needs to enumerate an n-dimensional label propagation rule set with 2m alter-
native security classes in each dimension. The complexity of the constructive method
varies from the GLIFT library it maintains. When a minimum GLIFT library consisting
of two-input Boolean gates is maintained, the complexity of the constructive method
will reach its lower bound O((2m)2 + g), where g is the number of primitive gates in the
synthesized netlist. The complexity of calculating all prime implicants or constructing
a BDD is on the order of O(2n) while deriving tracking logic for bound operators has
complexity of O(m2) [Palopoli et al. 1999; Lin and Devadas 1995]. Therefore, the precise
GLIFT logic generation problem has complexity of O(m2 + 2n + g).

The BDD method provides a more efficient solution to false-positive-free GLIFT logic
generation (than calculating all prime implicants) since BDD maintenance is quite
inline with modern logic synthesis techniques. This will allow precise measurement of
actual information flows in large digital circuits. However, precisely accounting for all
information flows may lead to high design overheads in area and performance, which
will be shown in the experimental results section.

6. GLIFT FOR ENFORCING MULTILEVEL SECURITY

In this section, we will illustrate how GLIFT can be used to enforce MLS. In addition,
various design optimization considerations will be addressed.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:17

Fig. 6. GLIFT for static information flow testing/verification or dynamic information flow tracking.

6.1. Application Scenarios of GLIFT

There are two application scenarios of GLIFT, namely, static or dynamic.
Figure 6 illustrates the design flow of GLIFT, either for static information flow test-

ing/verification or dynamic information flow tracking. The differences between the
static and dynamic application scenarios lie in that static testing/verification will pre-
vent the additional area and performance overheads introduced by GLIFT logic but
require extensive testing efforts. By comparison, dynamic IFT will allow capture of
more realistic runtime behaviors at significant resource and performance costs.

In both the static and dynamic application scenarios, the designer is responsible for
specifying the security classifications for the inputs according to security specification
of the design. To assign the classification levels, he needs to classify the inputs accord-
ing to their source and security property, for example, inputs taking information from
the open environment should be marked as untrusted, and in a cryptographic core,
the message, secret key, and control signals can have different security levels. After
assigning classification levels to the inputs, GLIFT logic will perform security label
propagation and determine the classification levels of the internal nets and outputs.

6.2. GLIFT for Static Information Flow Testing/Verification

In a static testing/verification scenario, the digital circuit under test is first synthesized
to a gate-level netlist using logic synthesis tools such as Synopsys Design Compiler.
Given a security lattice, GLIFT logic for the target digital circuit can be generated
using the constructive or BDD method. In the static verification scenario, GLIFT logic
is in formal representation, described with security label vectors and bound operators,
whereas in the static testing scenario, GLIFT logic needs to be further represented
in Boolean functions. Subsequently, the designer can perform security partitioning
across the design and run verification scenarios to check whether there is any security
violation. Once a violation is identified, the designer can capture the harmful flows of
information that caused the violation. Further, security vulnerabilities can be located
by tracking backwards along the propagation path of harmful information flows.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:18 W. Hu et al.

Table II. The Least Upper and Greatest Lower Bound Operations on the Square
Security Lattice

.lub UC S1 S2 TS .glb UC S1 S2 TS

UC UC S1 S2 TS UC UC UC UC UC

S1 S1 S1 S1/S2 TS S1 UC S1 S1/S2 S1

S2 S2 S1/S2 S2 TS S2 UC S1/S2 S2 S2

TS TS TS TS TS TS UC S1 S2 TS

For a more concrete understanding of the difference between static information flow
testing and verification, consider the MUX-2 example. The formal representation of
GLIFT logic for MUX-2 given in (28) or (32) can be used for verification depending
on the precision requirement. Such GLIFT logic representation is independent of the
security lattice under consideration, which is applied during the final verification stage.
For information flow testing, GLIFT logic should be further represented in Boolean
functions. Such a Boolean function varies from security lattices and encoding schemes
that need to be specified during the early Boolean function representation stage. As an
example, (32) needs to be implemented as (35) under the two-level linear security lattice
LOW � HIGH, where Gt, At, Bt, and St are security label bits of G, A, B, and S, respectively.
When another security lattice is considered, the resulting Boolean function would be
completely different.

Gt = SAt ∨ SBt ∨ ABSt ∨ ABSt ∨ AtSt ∨ BtSt (35)

Although static testing/verification can prevent the area and performance overheads
of additional GLIFT logic, a major limitation of static analysis lies in coverage. The size
of state space of a design grows exponentially to its number of inputs. As a result, either
extremely long testing/verification time is needed to guarantee full state space coverage
or a full coverage can hardly be achieved. Thus, in security-critical applications where
information flow control should be strictly enforced, we need to physically deploy GLIFT
logic for real-time monitoring of all flows of information.

6.3. GLIFT for Dynamic IFT

In a dynamic application scenario, GLIFT logic needs to be represented in Boolean
functions and physically implemented with the original design. A first step in this
process is to derive Boolean tracking logic for the bound operators.

6.3.1. Deriving GLIFT Logic for Bound Operators. The tracking logic for bound operators
can be described with truth tables that are an implementation of the partial order
on the security lattice. Specifically, for a security lattice with m security classes, there
would be m2 entries in the truth tables. As an example, consider the square security
lattice as shown in Figure 4(d). Let UC, S1, S2, and TS denote the Unclassified, Secret1,
Secret2, and Top Secret security classes, respectively. The least upper and greatest
lower bound operations on the square security lattice can be described in Table II.

From Table II, the least upper and greatest lower bound operations on incomparable
security classes can lead to nondeterministic output labels (e.g., S1 � S2 = S1/S2). In
such cases, the designer is responsible for specifying the output label without violating
the information flow policy. In this example, either S1 or S2 is a safe label. Since
enumerating these truth tables has polynomial complexity, the tracking logic for bound
operators can always be derived in polynomial time under a given security lattice.

As a special case, we can reduce Table II for a two-level security lattice that has
only two security classes Unclassified and Secret1. For binary implementation,
Unclassified and Secret1 can be encoded as “0” and “1”, respectively. In this case,
the least upper and greatest lower bound operations can be described with a logical

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:19

OR and a logical AND array correspondingly. Subsequently, GLIFT logic formalized in
Section 4 will reduce to the special case for a two-level security lattice as formalized in
Hu et al. [2011]. Such reducibility implies compatibility of our results with preliminary
work.

6.3.2. Generating Optimized GLIFT Logic. While deriving Boolean GLIFT logic for phys-
ical implementation, the security classes need to be encoded in binary bits. To derive
optimized GLIFT logic, we need to choose an encoding scheme that leads to optimiza-
tion of the most computationally intensive operations, that is, calculating the least
upper and greatest lower bounds of security labels. Considering the square lattice
shown in Figure 4(d), encoding Unclassified, Secret1, Secret2, and Top Secret as
“00”, “01/10”, “10/01”, and “11”, respectively, will lead to optimized (not necessarily
optimal) implementation results since computing the least upper and greatest lower
bounds reduces to simple logical AND and OR operations to the greatest extent.

In addition, we can denote unused encoding states as don’t-care conditions for further
optimization. For a security lattice with msecurity classes, we need at least w = 	log2m

Boolean bits to encode the security classes. There are 2w − m unused encoding states
that can be used as don’t-care conditions. Denoting such don’t-care conditions to logic
synthesis tools will lead to optimized implementation results.

As an example, consider the GLIFT logic for AND-2 under the three-level linear
confidentiality lattice shown in Figure 4(b). According to our analysis, encoding security
classes Unclassified, Confidential, and Secret as “00”, “01/10”, and “11” will lead
to optimized implementation results without accounting for the don’t-care conditions.
Considering the case when Confidential is encoded as “01”, the GLIFT logic can be
derived from (17) as (36), where Ot = (o1

t , o0
t), At = (a1

t , a0
t), and Bt = (b1

t , b0
t).

o1
t = Aa1

t b1
t b0

t ∨ Ba1
t a0

t b1
t ∨ a1

t a0
t b1

t b0
t

o0
t = Aa1

t b0
t ∨ Ba0

t b1
t ∨ a0

t b0
t

(36)

Under the chosen encoding scheme, “10” is an unused encoding state. When such
don’t-care conditions are denoted to logic synthesis tools, we can obtain the optimized
GLIFT circuit as shown in (37).

o1
t = Ab1

t ∨ Ba1
t ∨ a1

t b1
t

o0
t = Ab0

t ∨ Ba0
t ∨ a0

t b0
t

(37)

By comparison of (36) and (37), denoting don’t-care conditions can lead to significant
optimization effects. It is important to point out that such optimization will not cause
any security violation since the input pattern “10” will never be observed at the security
label inputs.

7. EXPERIMENTAL RESULTS

In this section, we first perform a comparison of GLIFT logic generated by different
methods in terms of area, delay, and precision using IWLS benchmarks. We then
demonstrate how GLIFT can be used for enforcing information flow security through
static testing/verification. Finally, we present area and performance analysis of GLIFT
logic for Trust-Hub [Baumgarten et al. 2011] and IWLS [2005] benchmarks to show
the design overheads that should be expected when expanding GLIFT for MLS.

7.1. A Comparison of GLIFT Logic Generation Methods

We use the IWLS benchmark x2, a moderate design with limited number of I/Os, for
precision analysis. GLIFT logic for this benchmark under the four-level confidentiality
security lattice shown in Figure 4(c) is generated using both the constructive and BDD

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:20 W. Hu et al.

Fig. 7. The number of information flows in GLIFT logic generated using different methods. k through q are
the outputs of the benchmark.

methods. The Unclassified, Confidential, Secret, and Top Secret security classes
are encoded as “00”, “01”, “10”, and “11”, respectively. The GLIFT circuits are simu-
lated under a total number of 220 random test vectors produced by a Linear Feedback
Shift Register (LFSR) to see how often each output takes a security label other than
Unclassified, which reflects the number of information flows. Figure 7 shows the ex-
perimental results, where k through q represent the outputs of the benchmark. The
percentage data reflect the ratio of false positives in GLIFT logic generated by the
constructive method.

Taking the output n as an example, the GLIFT logic created using the con-
structive method contains 6.28% false positives. These false positives correspond to
220 ∗ 0.0628 = 65850 nonexistent information flows, indicating that secret information
leaks to unclassified domains when actually it does not. Such false positives can lead
to additional verification time or conservative system behaviors by producing false
security alters and thus should be reduced to the greatest extent whenever possible.

We then generate GLIFT logic for several IWLS benchmarks under the same secu-
rity lattice and encoding scheme using both the constructive and BDD methods for a
comparison of area and performance. In the constructive method, a minimum GLIFT
library consisting of the tracking logic for AND-2, OR-2, and INV is maintained for
simplicity. Maintaining such a minimum library will not hinder the validity of our ex-
perimental results since the GLIFT logic needs to be resynthesized and mapped to the
Synopsys SAED 90nm standard cell library [Synopsys 2007] for area, delay, and power
reports. The results are shown in Table III. The table also shows the total number
of operators (least upper/greatest lower bound and dot product) in the formal repre-
sentation of GLIFT logic. Such a number reflects the complexity of the GLIFT logic
independent of the security lattice.

From Table III, it can be seen that GLIFT logic generated using the constructive and
BDD methods may see significant differences in the total number of operators, area,
and performance. For most benchmarks, the constructive method will result in smaller
area, delay, and power consumption. However, GLIFT logic generated by the BDD
method may sometimes see small delay due to logic-level reductions during the BDD
construction phase. On average, GLIFT logic created using the BDD method reports
4.51× in total more number of operators, 3.65× in area, 1.74× in delay, and 3.43× in
power, respectively, than those generated by the constructive method.

In practice, the designer needs to balance between precision requirements and
design overheads and decide what GLIFT logic generation method should be used. In

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:21

Table III. Total Number of Operators, Area, Delay and Power of GLIFT Logic (including the
original design) under the Four-Level Linear Lattice Generated by Different Methods

Operators Area (um2) Delay (ns) Power (mW)
Benchmark Cons. BDD Cons. BDD Cons. BDD Cons. BDD
alu2 1884 1881 23047 22863 2.43 2.01 5.10 5.05
alu4 3744 8877 43126 102751 3.59 2.97 9.47 22.0
apex6 3756 10351 46946 110684 1.47 3.49 8.91 21.5
x3 3552 9592 46381 108552 1.26 3.48 8.86 22.0
x4 1710 10043 20968 91776 1.04 3.00 4.28 18.7
i5 792 6677 12069 40755 1.84 2.49 2.38 7.37
i6 2310 3058 26529 25765 1.52 1.10 6.51 5.70
i7 3054 3388 35695 48714 1.64 1.25 8.89 9.45
i8 4770 23815 59438 380678 1.86 2.70 13.6 77.9
i9 3036 21769 41174 312563 1.86 2.78 11.1 66.2
frg2 4038 36278 54854 279606 2.22 4.87 11.0 57.1
pair 11766 86757 102704 669799 2.25 7.13 21.3 143
N. Average 1.00 4.51 1.00 3.65 1.00 1.74 1.00 3.43

safety-critical systems where false positives are strictly not allowed, the BDD method
needs to be used, whereas in systems where a certain amount of false positives can be
tolerated, the constructive method would be sufficient and much more cost effective.

7.2. Static Testing/Verification Analysis

We use the Trust-Hub [Baumgarten et al. 2011] benchmark BasicRSA-T400, that
implements the 32-bit RSA cryptographic algorithm, for static testing/verification. We
show how GLIFT can capture secret key leakage through a hidden timing channel.

In the experiment, we target the same security lattice and use an identical encoding
scheme as in Section 7.1. We divide the 32-bit secret key into four bytes and label
these bytes from MSB to LSB as type Top Secret (“11”), Secret (“10”), Confidential
(“01”), and Unclassified (“00”), respectively. Therefore, the security label of the entire
secret key is key t = 64’hFFFF AAAA 5555 0000 (each key bit has a 2-bit label).
We focus on the secret key in our test and thus mark all the remaining signals as
type Unclassified. The GLIFT logic for the benchmark is created using the con-
structive method, represented in Boolean function and simulated under ModelSim to
capture secret key leakage. The simulation result is shown in Figure 8.

From Figure 8, note that GLIFT logic indicates that the secret key flows to the ci-
pher and rdy signals since both cipher t and rdy t take labels other than Unclassified.
We concentrate on the rdy signal in our analysis since the RSA cryptographic
algorithm prevents secret key leakage via cipher text. It is shown that rdy t changes
from Unclassified to Confidential and eventually to Top Secret, indicating the al-
gorithm implementation processes from LSB to MSB. However, the rdy signal always
remains constantly logical “0” until the encryption completes, regardless of the value
of the secret key. Thus, the secret key does not affect the rdy signal in a way that deter-
mines whether rdy can take a logical “1” value. Instead, it has an influence on rdy by
determining when it actually takes a logical “1”. In other words, the secret key leaks to
rdy via timing-related flow. Such timing flow is caused by the timing difference between
different algorithm branches selected by the secret key bits. Further, the secret key can
be retrieved through statistical analysis of the algorithm processing time measured at
the rdy signal [Kocher 1996]. Similarly, more test scenarios can be run by assigning
security labels to the signals and observing if there is any harmful flow of information.

From the experiment, we see GLIFT can be used to capture harmful timing flows that
indicate the existence of hidden timing channels. By employing a multilevel security

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:22 W. Hu et al.

Fig. 8. GLIFT logic captures key leakage during static information flow testing.

lattice, it allows finer classification of data objects and a better understanding of the
leakage process. We refer the interested reader to other works that provide more detail
on GLIFT for detecting timing channels [Oberg et al. 2013a; 2014], which is out of the
scope of this work.

7.3. Design Complexity of GLIFT for Dynamical IFT

We also generate GLIFT logic for several Trust-Hub [Baumgarten et al. 2011] and
IWLS [2005] benchmarks under the two-to-four-level linear and square security lattices
in Figure 4. The tracking logic (including the original design) is created using the
constructive method, synthesized using Synopsys Design Compiler, and targeted to
the Synopsys SAED 90nm standard cell library [Synopsys 2007] for area and delay
reports, as shown in Table IV. The table also shows the total number of operators (least
upper bound, greatest lower bound, and dot product) in the formal representation of
GLIFT logic. Such numbers remain constant under different security lattices.

Observe from Table IV that GLIFT logic typically reports larger area and delay as
the security lattice grows more complex. Row “N. Average” shows the average area
and delay normalized to those under the two-level security lattice, reflecting the de-
sign overheads that should be expected when expanding GLIFT to multilevel security
lattices. It should be noticed that tracking logic under the three-level linear lattice
consumes relatively smaller area and delay than that for the four-level one. This is
because we took the don’t-care input set into account and denoted these don’t-cares
conditions to the logic synthesis tool.

From the experimental results, we see that expanding GLIFT to multilevel security
lattices will result in considerable area and performance overheads. However, realistic
systems usually require MLS policies that need to be modeled using multilevel
security lattices, thus the two-level GLIFT method should be expanded to meet such
requirements. Security is a pressing problem in high-assurance systems that are being
confronted with rapidly evolving cyber threats. Such design overheads should definitely
be tolerated since a single failure resulting from security vulnerabilities will render
critical infrastructures useless and cause tremendous losses. In real applications, there
are usually partitions among security domains within a design. Only security-critical
portions of the design need to be augmented with GLIFT logic for dynamic IFT.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:23

Table IV. Total Number of Operators, Area and Delay of GLIFT Logic (including the original design)
under the Two-to-Four-Level linear and Square Lattices

Area (um2) Delay (ns)
Benchmark # Oper. 2-lev 3-lev 4-lev Square 2-lev 3-lev 4-lev Square
s1423 3672 20096 49208 62308 68435 2.18 2.52 2.62 4.01
s5378 7392 39527 99659 125364 142428 1.54 1.96 2.03 2.49
s9234 5742 31964 79796 100979 113922 0.48 0.64 0.70 1.17
s13207 12618 52589 137231 162122 206494 1.07 1.89 2.11 2.79
s15850 19680 35581 97020 116675 126359 0.49 0.76 0.70 0.92
s35932 71136 458857 1160821 1511884 1705441 0.57 1.29 1.10 1.38
s38417 98310 569453 1511936 2136536 2310636 1.12 1.28 1.65 1.83
s38584 61896 340235 897934 1208826 1322753 1.35 2.81 1.88 2.02
DES 17712 45845 154853 204085 244764 2.18 2.76 2.62 3.03
BasicRSA 30204 129282 354764 432836 508598 0.14 0.33 0.48 0.34
b19 688050 2326801 6184741 7848774 8266121 6.66 8.73 8.61 12.0
RS232 1740 11459 27262 32285 35965 0.62 0.81 1.01 1.17
wb conmax 225294 992830 3514102 4403386 4614289 2.61 3.38 4.16 4.62
PIC16F84 13416 64282 184123 223647 249298 0.50 0.74 0.71 0.86
MCU8051 56148 237109 692763 874074 991815 11.2 15.3 17.0 25.3
N. Average – 1.00 2.74 3.47 3.89 1.00 1.53 1.62 1.95

In addition, GLIFT can also be used for static information flow security testing or
verification, which does not require physical implementation of the additional tracking
logic. These options will reduce or eliminate the area and performance overheads.

8. CONCLUSION

GLIFT provides an effective approach for detecting security vulnerabilities, including
hard-to-detect timing channels that are inherent in the underlying hardware but in-
visible to higher levels of abstraction. This article provides a general way to expand
the GLIFT method to target multilevel security lattices, formalizing tracking logic for
primitive gates, presenting precise GLIFT logic generation methods for large digital
circuits, and demonstrating various application scenarios of GLIFT, which provides
a possibility for proving MLS in high-assurance systems from the ground up. It also
reveals what sort of area and performance overheads should be expected if MLS is re-
quired at such a low level of abstraction. However, the present state-of-the-art of GLIFT
cannot handle attacks that require statistical analysis or account for information flows
caused by physical phenomena, such as power dynamics or electromagnetic radiation,
that do not appear at the logical level. In our future work, we will investigate various
design optimization issues such as different mapping techniques, optimized encoding
schemes, and formal verification methods.

REFERENCES

Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2006. Predicting secret keys via branch prediction.
In Proceedings of the 7th Cryptographers’ Track at the RSA Conference on Topics in Cryptology (CT-
RSA’07). Springer, 225–242.

Alex Baumgarten, Michael Steffen, Matthew Clausman, and Joseph Zambreno. 2011. A case study in hard-
ware trojan design and implementation. Int. J. Inf. Secur. 10, 1, 1–14.

D. Elliott Bell and Leonard J. LaPadula. 1973. Secure computer systems: Mathematical foundations.
http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf.

Daniel J. Bernstein. 2005. Cache-timing attacks on aes. http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Stefan Savage, Karl

Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno. 2011. Comprehensive experimental

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

2:24 W. Hu et al.

analyses of automotive attack surfaces. In Proceedings of the 20th USENIX Conference on Security
(SEC’11). USENIX Association, 6.

Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha: A flexible information flow architec-
ture for software security. In Proceedings of the 34th Annual International Symposium on Computer
Architecture (ISCA’07). ACM Press, New York, 482–493.

Dorothy E. R. Denning. 1976. A lattice model of secure information flow. Comm. ACM 19, 5, 236–243.
Dorothy E. R. Denning. 1982. Cryptography and Data Security. Addison Wesley Longman, Boston, MA.
Edward B. Eichelberger. 1965. Hazard detection in combinational and sequential switching circuits. IBM J.

Res. Develop. 9, 2, 90–99.
Joseph A. Goguen and Jose Meseguer. 1982. Security policies and security models. In Proceedings of the

IEEE Symposium on Security and Privacy (S&P’82). 11–20.
Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford, Shane S. Clark, Benessa Defend, Will

Morgan, Kevin Fu, Tadayoshi Kohno, and William H. Maisel. 2008. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses. In Proceedings of the IEEE Symposium
on Security and Privacy (SP’08). 129–142.

Wei Hu, Jason K. Oberg, Ali Irturk, Mohit Tiwari, Timothy Sherwood, Dejun Mu, and Ryan Kastner. 2011.
Theoretical fundamentals of gate level information flow tracking. IEEE Trans. Comput.-Aided Des.
Integr. Circ. Syst. 30, 8, 1128–1140.

Wei Hu, Jason K. Oberg, Dejun Mu, and Ryan Kastner. 2013. Expanding gate level information flow tracking
for multi-level security. IEEE Embedd. Syst. Lett. 5, 2, 25–28.

IWLS. 2005. IWLS benchmarks ver. 3.0. http://iwls.org/iwls2005/benchmarks.html.
Ryan Kastner, Jason K. Oberg, Wei Hu, and Ali Irturk. 2011. Enforcing information flow guarantees in re-

configurable systems with mix-trusted ip. In Proceedings of the International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA’11).

Paul C. Kocher. 1996. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems.
In Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO’96). Springer, 104–113.

Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. 2007. Information flow control for standard os abstractions. SIGOPS Oper. Syst. Rev. 41, 6, 321–
334.

Chunxiao Li, Anand Raghunathan, and Niraj K. Jha. 2011. Hijacking an insulin pump: Security attacks
and defenses for a diabetes therapy system. In Proceedings of the 13th IEEE International Conference
on e-Health Networking Applications and Services (Healthcom’11). 150–156.

Bill Lin and Srinivas Devadas. 1995. Synthesis of hazard-free multilevel logic under multiple-input changes
from binary decision diagrams. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 14, 8, 974–985.

Anil K. Maini. 2007. Digital Electronics: Principles, Devices and Applications. John Wiley and Sons.
Yilin Mo, Tiffany Hyun-Jin Kim, Kenneth Brancik, Dona Dickinson, Heejo Lee, Adrian Perrig, and Bruno

Sinopoli. 2012. Cyber-physical security of a smart grid infrastructure. Proc. IEEE 100, 1, 195–209.
James Newsome and Dawn Song. 2005. Dynamic taint analysis for automatic detection, analysis, and

signature generation of exploits on commodity software. In Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS’05).

Jason Oberg, Sarah Meiklejohn, Timothy Sherwood, and Ryan Kastner. 2014. Leveraging gate-level prop-
erties to identify hardware timing channels. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 33, 9,
1288–1301.

Jason K. Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and Ryan Kastner. 2011. Information
flow isolation in i2c and usb. In Proceedings of the 48th ACM/EDAC/IEEE Design Automation Conference
(DAC’11). 254–259.

Jason K. Oberg, Sarah Meiklejohn, Timothy Sherwood, and Ryan Kastner. 2013a. A practical testing frame-
work for isolating hardware timing channels. In Proceedings of the Design, Automation, and Test in
Europe Conference (DATE’13). 1281–1284.

Jason K. Oberg, Timothy Sherwood, and Ryan Kastner. 2013b. Eliminating timing information flows in a
mix-trusted system-on-chip. IEEE Des. Test 30, 2, 55–62.

Luigi Palopoli, Fiora Pirri, and Clara Pizzuti. 1999. Algorithms for selective enumeration of prime implicants.
Artif. Intell. 111, 12, 41–72.

Francois Pottier and Vincent Simonet. 2003. Information flow inference for ml. ACM Trans. Program. Lang.
Syst. 25, 1, 117–158.

Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow security. IEEE J. Select.
Areas Comm. 21, 1, 5–19.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

Gate-Level Information Flow Tracking for Security Lattices 2:25

Claude E. Shannon. 2001. A mathematical theory of communication. SIGMOBILE Mob. Comput. Comm.
Rev. 5, 1, 3–55.

G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004. Secure program execution via dynamic
information flow tracking. SIGOPS Oper. Syst. Rev. 38, 5, 85–96.

Synopsys. 2007. SAED edk90 core - 90nm digital standard cell library. http://www.synopsys.com/
community/universityprogram/pages/library.aspx.

Mohit Tiwari, Xun Li, Hassan M. G. Wassel, Frederic T. Chong, and Timothy Sherwood. 2009a. Execu-
tion leases: A hardware-supported mechanism for enforcing strong non-interference. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’09). ACM Press,
New York, 493–504.

Mohit Tiwari, Hassan M. G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T. Chong, and Timothy
Sherwood. 2009b. Complete information flow tracking from the gates up. In Proceeding of the 14th

International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’09). ACM Press, New York, 109–120.

Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr, Timothy Levin, Ben Hardekopf, Ryan Kastner,
Frederic T. Chong, and Timothy Sherwood. 2011. Crafting a usable microkernel, processor, and i/o
system with strict and provable information flow security. In Proceeding of the 38th Annual International
Symposium on Computer Architecture (ISCA’11). ACM Press, New York, 189–200.

Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell Krohn, Cliff Frey, David Ziegler, Frans
Kaashoek, Robert Morris, and David Mazieres. 2007. Labels and event processes in the asbestos oper-
ating system. ACM Trans. Comput. Syst. 25, 4.

Claire Vishik, Ruby B. Lee, and Fred Chong. 2012. Building technologies that help cyber-defense: Hardware-
enabled trust. In Securing Electronic Business Processes: Highlights of the Information Security Solu-
tions Europe Conference, H. Reimer, N. Pohlmann, and W. Schneider Eds., Springer, 316–325.

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. 1996. A sound type system for secure flow analysis.
J. Comput. Secur. 4, 2–3, 167–187.

Received September 2013; revised June 2014; accepted July 2014

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1, Article 2, Pub. date: November 2014.

