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Leveraging Gate-Level Properties to Identify
Hardware Timing Channels

Jason Oberg, Sarah Meiklejohn, Timothy Sherwood, and Ryan Kastner

Abstract—Modern embedded computing systems such as med-
ical devices, airplanes, and automobiles continue to dominate
some of the most critical aspects of our lives. In such sys-
tems, the movement of information throughout a device must
be tightly controlled to prevent violations of privacy or integrity.
Unfortunately, bounding the flow of information can often present
a significant challenge, as information can flow through channels
that are difficult to detect, such as timing channels. As has been
demonstrated by recent research in hardware security, informa-
tion flow tracking techniques deployed at the hardware or gate
level show promise at identifying these “timing flows” but pro-
vide no formal statements about this claim NOR mechanisms for
separating out timing information from other types of flows. In
this paper, we first prove that gate-level information flow tracking
can in fact detect timing flows. In addition, we work to identify
these timing flows separately from other flows by presenting a
framework for identifying a different type of flow that we call
functional flows. By using this framework to either confirm or
rule out the existence of such flows, we leverage the previous
work in hardware information flow tracking to effectively isolate
timing flows. To show the effectiveness of this model, we demon-
strate its usage on three practical examples: a shared bus (I2C),
a cache in a MIPS-based processor, and an RSA encryption core,
all of which were written in Verilog/VHDL and then simulated in
a variety of scenarios. In each scenario, we demonstrate how our
framework can be used to identify timing and functional flows
and also analyze our model’s overhead.

Index Terms—Hardware security, information flow tracking,
testing, timing channels.

I. INTRODUCTION

NEW research on hardware security has shown that it is
possible to tightly constrain the flow of information in

a system. With exploits being continuously exposed in many
safety-critical embedded systems such as implantable medical
devices [1] and automobiles [2], hardware security research
is becoming increasingly sought after as a way to provide
early detection and formal guarantees. Information flow track-
ing mechanisms found at the gate level [3]–[6] have shown to
be a promising solution to this class of security problems, as
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they allow designers to test security properties before a chip
is ever fabricated.

The security problems that exist in hardware, more often
than not, cannot be solved by software mechanisms alone.
As an example, in order to show that two devices on a bus
are noninterfering, it is required that the devices not intefere
directly (i.e., by corrupt transmitted data) or through timing
(i.e., by delays in response time). At first glance, these timing
variations might seem benign, but they have been recently
exploited by many to extract secret encryption keys from
miss/hit delays in processor caches [7]–[10]. These attacks
rely on a exploiting information leaking through a timing
channel, where an attacker is able to deduce information by
simply measuring execution time. Since modern hardware
is now increasingly coupled with nondeterminism and hid-
den state, methods for detecting and even reasoning about
these types of information leaks is an increasingly complex
problem. In some cases, these timing channels might not
fit within the threat model of the system and thus might
not be of concern. Nevertheless, the techniques for assist-
ing hardware designers in reasoning and understanding these
types of leaks are a necessity. Only when hardware design-
ers understand the potential leaks in their designs (including
through time) can they make an informed decision about its
security.

The properties found at the gate level, most notably using
gate level information flow tracking (GLIFT), provide a
promising remedy to this problem. Since GLIFT targets the
lowest digital abstraction, it is able to detect and capture infor-
mation leaking through time. This claim, however, is made in
some of the initial work on GLIFT [3], [5], [11] but never
thoroughly formalized. One of the specific contributions of
this paper is to make this formalism much more apparent and
we do so in Section IV.

In addition, if a hardware designer using GLIFT detects
that there is an information flow, there is no way to separate
out the timing information from other functional information.
Following the bus example as before, if a hardware designer
were to observe an information flow using GLIFT, it would
not be obvious whether or not this flow was from direct means
(a device corrupting data on the bus) or by affecting another
device’s response time. Other timing-based information flows
do happen quite frequently in modern computing systems as
well. For example, in a system-on-chip (SoC) there may exist
an access control mechanism between a core A and core B
to prevent A from reading/writing to B. However, A issuing a
READ/WRITE request to B may affect when B can respond
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to other requests. Thus A can affect the time in which core B
can respond without directly affecting its data.

The second contribution of this paper is to help solve this
problem. We present a formal model in Section V that, when
used in conjuction with GLIFT, isolates timing information
from other flows of information. This model expands on our
previous work [12] by providing more thorough and complete
definitions, another application example (a shared bus), and
more detailed discussion. As briefly mentioned, whether or
not these timing flows are in the threat model depend on the
system at hand. Nevertheless, this framework provides a way
for hardware designers to reason about these timing flows.

To show the practicality of our framework, we explore in
detail two common shared resources which are at the heart of
interference in modern systems: the shared bus (Section VI)
and CPU cache (Section VII). The shared bus in modern
systems has been the source of the so called bus-contention
channel [13] in which information can be covertly communi-
cated through the traffic on a global bus. Previous work has
explored how to identify information flows in global buses
using GLIFT [11] but has fallen short of classifying these
flows as functional or timing. Beyond the bus, we examine
in Section VII the CPU cache; as previously mentioned, the
cache is a common vulnerability in modern systems, as it is
typically susceptible to leaking secret information through tim-
ing channels. As an additional data point, for a more thorough
assessment of our technique, we demonstrate our analysis is
effective at detecting timing channels in an RSA encryption
core from opencores.org in Section VIII. For all examples,
we do not make claims about complete information security,
but rather increased confidence by identifying the presence of
functional information and separating it from timing channels.
Before we present our formal model and its use, we outline
some essential preliminary definitions in Section III and for-
mal definitions of GLIFT and information flow tracking using
GLIFT in Section IV.

II. THREAT MODEL

The specific threat model we target is hardware with poten-
tial timing channels that might adversely affect confidentiality
or integrity. For confidentiality, we address the issue of design-
ers being unable to determine whether or not an information
leak is from timing or direct means. For example, caches have
been of big concern when processes from different trust levels
share cache lines. Data used by a secret program can be, and
has been, extracted solely from the time it takes to perform
memory operations.

For integrity and availability, we address concerns related to
timing-based interference. For example, if a hardware designer
is building a SoC and wishes to isolate high-integrity cores
from less trusted third-party ones, while still allowing resource
sharing, then he could use this framework to reason about the
timing effects that the less trusted cores have on the high-
integrity ones. This type of property is often desired in the
department of defense where red-black separation is required.

In both cases, our framework gives designers further insight
into potential vulnerabilities so they can make better decisions.

In some cases, these timing flows might be of no concern at
all; i.e., the attack space of the cache or the timing effects
on high-integrity cores are simply not in the threat model of
the designer. Regardless, this paper provides hardware design-
ers with tools to more accurately evaluate their threat model,
giving rise to increased confidence and more secure designs.

III. PRELIMINARY DEFINITIONS

Before defining information flows and related concepts, we
must first define some preliminary notions formally. Many of
these notions are commonly understood by hardware design-
ers, but we formulate them in such a way as to fit our model
in a clear and concise manner. We start with the notion of
time; as we are working at the gate level, the only notion of
time that we consider is the system clock.

Definition 1: We define the clock to be a function with no
inputs that outputs values of the form b ∈ {0, 1}. We define
a clock tick to be the event in which the output of the clock
changes from 0 to 1. Finally, we define a timet to be the
number of clock ticks that have occurred, and we define T to
be the set containing all possible values of t.

Our formal definition of time captures what we intuitively
expect: some stateless hardware component will output a
stream of ticks, and a separate stateful component will mea-
sure the number of ticks and use this to keep track of time.
By keeping track of time, we can define an event as a given
value at a certain point in time.

Definition 2 [14]: For a set of data values Y , a discrete
event is the pair e: = (y, t) for y ∈ Y and t ∈ T (where we
recall T is the set of all possible time values). We also define
functions that recover the value and time components of an
event as val(e) = y and time(e) = t respectively.

To keep track of how values change over time, we can also
define a sequence of events as a trace.

Definition 3: For a value n ∈ N and a set Y , we define
a trace A(Y, n) to be a sequence of discrete events {ei =
(yi, ti)}n

i=1 that is ordered by time; i.e., time(ei) < time(ei+1)

for all i, 1 ≤ i < n, and such that val(ei) ∈ Y , time(ei) ∈ T
for all i, 1 ≤ i ≤ n. When the values of Y and n are clear, we
omit them and refer to the trace simply as A.

The way in which we have currently defined an event is
quite broad: any value at any time can be considered an event.
As an example, consider a system that outputs some value on
every clock tick; if we run such a system for k clock ticks and
record each output, then we will obtain a trace of size k. In
many cases, however, events in this trace may be redundant, as
the system might output the same value for many clock ticks
while performing some computation. In this case, we would
be interested not in the entire progression of events, but only
in the case when the value of the output changes. To capture
this, we define the distinct trace.

Definition 4: For a trace A(Y, n), we define the distinct
trace of A to be the longest subsequence d(A) ⊆ A(Y, n) such
that for all ei−1, ei ∈ d(A) it holds that val(ei) �= val(ei−1).

Constructing the distinct trace d(A) of A is quite simple:
first, include the first element of A in d(A). Next, for each
subsequent event e, check whether the last event e′ in d(A)
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is such that val(e′) = val(e); if this holds, then skip e (i.e.,
do not include it) and if it does not then add e to d(A). As
an example, consider a trace of two-bit values A = [(00, 1),
(00, 2), (01, 3), (01, 4), (11, 5), (10, 6)]. Then the distinct
trace d(A) will be d(A): = [(00, 1), (01, 3), (11, 5), (10, 6)],
as the values at time 2 and 4 do not represent changes and
will therefore be omitted.

With these definitions in hand, we can model a finite state
machine (FSM) system F that takes as input a value x in some
set X and returns a value y in some set Y in a similar manner
as past work [15]. To be fully general and consider systems
that take in and output vectors rather than single elements, we
assume that X = X1 × · · · × Xn and that Y = Y1 × · · · × Ym

for some m, n ≥ 1, which means that an input x looks like
x = (x1, . . . , xn) and an output y looks like y = (y1, . . . , ym).
To furthermore acknowledge that the system is not static and
thus both the inputs and outputs might change over time, we
instead provide as input a trace A(X, k) for some value k, and
assume our output is a trace A(Y, k).

Definition 5 [15]: An FSM F is defined as F =
(X, Y, S, s0, δ, α), where X is the set of inputs, Y the set of
outputs, S the set of states, and s0 ∈ S the starting state.
δ : X × S → S is the transfer function and α : X × S → Y is
the output function.

Since we are dealing with circuit implementations of FSMs,
both δ and α are represented as combinational logic functions.
In addition, both δ and α can be called on a trace. B = α(A, s0)

generates a trace of output events B = (e0, e1, · · · ek) during
the execution on input trace A starting in state s0. This notation
describes α executing iteratively; it takes a state and trace as
input and executes to completion producing an output trace.
When the starting state is assumed to be the initial state, we
use the notation α(A).

Now, since we are concerned with flows of information from
a specific set of inputs (the subset of inputs which are of
security concern), we need to formalize how to constrain the
others. Recall first our intuition: an information flow exists
for a set of inputs to the system F if their values affect the
output (either the concrete value or its execution time). One
natural way to then test whether or not these inputs affects
the output is to change their value and see if the value of
the output changes; concretely, this would mean running F on
two different traces, in which the values of these inputs are
different. In order to isolate just this set of inputs, however,
it is necessary to keep the value of the other inputs the same.
To ensure that this happens, we define what it means for two
traces to be value preserving.

Definition 6: For a set of inputs {xi}i∈I and two traces
A(X, k) = (e1, . . . , ek) and A(X, k)′ = (e′

1, . . . , e′
k), we say the

traces are value preserving with respect to I if for all ei ∈ A
and e′

i ∈ A′ it is the case that time(ei) = time(e′
i), and if

val(ei) = (x1, . . . , xn) and val(e′
i) = (x′

1, . . . , x′
n), then xi = x′

i
for all i �∈ I.

If two traces are value preserving, then by this definition
we know that the only difference between them is the value
of the tainted inputs {xi}i∈I . Taint will be formally defined
shortly, but, as an example, secret data would be tainted and
then tracked to ensure that it is not leaking to somewhere

harmful. In this example, the set of secret inputs would be the
set I. We will use this definition in the next section to prove
that GLIFT detects both functional and timing information
flows.

IV. INFORMATION FLOW TRACKING AND GLIFT

Information flow tracking is a common method used in
secure systems to ensure that secrecy and/or integrity of
information is tightly controlled. Given a policy specifying
the desired information flows, such as one requiring that
secret information should not be observable by public objects,
information flow tracking helps detect whether or not flows
violating this policy are present.

In general, information flow tracking associates data with
a label that specifies its security level and tracks how this
label changes as the data flows through the system. As an
example, consider a system with two labels: public and
secret, and a policy that specifies that any data labeled as
secret (e.g., a secret message) should not affect or flow
to any data labeled as public (e.g., an untrusted shared
memory) without first flowing through an encryption unit.
More generally, information flow tracking can be extended
to more complex policies and labeling systems (i.e., in gen-
eral high data should never flow to low); as such, it has
been used in all levels of the computing hierarchy, includ-
ing programming languages [16], operating systems [17], and
instruction-set/microarchitectures [18], [19]. Recently, infor-
mation flow tracking was used by Tiwari et al. [3] at the level
of logic gates in order to dynamically track the flows of each
individual bit.

In the technique used by Tiwari et al. [3], called GLIFT,
the flow of information for individual bits is tracked as they
propagate through Boolean gates; GLIFT was later used by
Oberg et al. [11] to test for the absence of all information flows
in the I2C and USB bus protocols and by Tiwari et al. [4] to
build a system that provably enforces strong noninterference.
Further, it has been used to prove timing-based noninterfer-
ence for a network-on-chip architecture in the research project
SurfNoC [20]. Since its introduction, Tiwari et al. [4] have
expanded GLIFT to what they call “star-logic” which provides
much stronger guarantees on information flow. Briefly, GLIFT
tracks flow through gates by associating with each data bit a
one-bit label, commonly referred to as taint, and tracking this
label using additional hardware known as tracking logic.

A. Formal Definitions for GLIFT

To be precise, we present definitions of tracking logic and
taint. First, it is important to understand how a “wire” in a
logic function is tainted. We define this formally as follows.

Definition 7 (Taint): For a set of wires (inputs, outputs, or
internals)X, the corresponding taint set is Xt. A wire xi for
x = (x1, . . . , xi, . . . , xn) ∈ X is tainted by setting xit = 1 for
xt ∈ Xt and xt = (x1t , . . . xit , . . . xnt).

In this definition, and in what follows, the elements of X
and Xt are given as vectors; i.e., an element x ∈ X has the form
x = (x1, . . . xn) for n ≥ 1. For single-bit security labels (which
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Fig. 1. (a) Simple AND gate. (b) Partial truth table for the tracking logic of
an AND gate. Ft = 1 iff a tainted input affects F. (c) Tracking logic for an
AND gate.

we use exclusively in this paper), x ∈ X and its corresponding
taint vector xt ∈ Xt are the same length.

Now that we have a definition for taint, we can for-
mally define the behavior of a tracking logic function and
information flow with a tracking logic function.

Definition 8 (Tracking Logic): For a combinational logic
function f : X → Y , the respective tracking logic func-
tion is ft:Xt × X → Yt, where Xt is the taint set of X and
Yt the taint set of Y . If f (x1, . . . , xn) = (y1, . . . , ym), then
ft(x1, . . . , xn, x1t , . . . , xnt ) = (y1t , . . . , ymt ), where yit = 1
indicates that some tainted input xj (i.e., an input xj such that
xjt = 1) can affect the value of yi.

Definition 9 (Information Flow): For a combinational logic
function f : X → Y and a set of inputs {xi}i∈I , an infor-
mation flow exists with respect to an output yj if ft(xt) =
(y1t , . . . , y(j−1)t , 1, y(j+1)t , . . . , ymt ), where each entry xit of xt

is 1 if i ∈ I and 0 otherwise. If there exists an index j such
that yjt = 1, we just say an information flow exists.

To understand how the tracking logic is used, consider
a function with public and secret labels; then a label
xit is 1 if xi is secret, and 0 otherwise. When consider-
ing a concrete assignment (a1, . . . an) with each aj being
0 or 1, running f (a1, . . . , an) will produce the data output
(y1, . . . , yi, . . . , ym), and running ft(a1, . . . , an, a1t , . . . , a1n)

will indicate which tainted input can affect the values of which
outputs (by outputting yit = 1 if a tainted input affects the
value of yi and 0 otherwise). Going back to our sample func-
tion, if we observe some output yit = 1 from ft, we know that
a secret input affects the output yi of f . If yi is public, then
this flow would violate the security policy.

Typically, each individual gate and flip-flop is associated
with such tracking logic in a compositional manner. In other
words, for each individual gate (AND, OR, NAND, etc.),
tracking logic is added which monitors the information flow
through this particular gate. By composing the tracking logic
for each gate and flip-flop together, we can form an entire
hardware design consisting of all the original inputs and out-
puts, with the addition of security label inputs and outputs.
Care must be taken to derive the tracking logic for each
gate separately, however, as the way in which the inputs to
a gate affect its output vary from gate to gate. As an exam-
ple, consider the tracking logic for a AND gate as shown in
Fig. 1.

Simply by definition, we know that if some input of a AND
gate is 0, the output will always be 0 regardless of the other
inputs. In other words, if we have inputs x1 = 1 and x2 = 0
with security labels x1t = 1 and x2t = 0 as shown in Fig. 1,
then the output will actually be untainted even though x1t = 1,
because the value of x1 has no observable effect on the output
of the gate (again, because x2 = 0 and thus the output will be 1
regardless). By building a truth table for every gate primitive,
tracking logic can be derived in this manner and stored in a
library; the tracking logic can then be applied to the gate in
a manner similar to technology mapping. As an example of
how to compose these tracking logics, we consider a two-input
multiplexer (MUX), which is composed of two AND gates and
a single OR gate where the output of the AND gates feed the
inputs of the OR gate. First, the tracking logic for each AND
gate and the single OR gate is generated. Then, the output of
the tracking logic for each AND gate is fed as inputs to the
tracking logic for the OR gate.

To use GLIFT in practice, a hardware description of the
design is written in a hardware description language (HDL),
such as Verilog or VHDL, and this description is then syn-
thesized into a gate-level netlist using traditional synthesis
tools such as synopsys’ design compiler. A gate-level netlist
is a representation of the design completely in logic gates and
flip-flops. Next, the GLIFT logic is added in a compositional
manner (as we just described); i.e., for every gate in the sys-
tem, we add associated tracking logic which takes as input
the original gate inputs and their security labels and outputs a
security label. Given a security policy such as our confiden-
tiality example (i.e., secret inputs should not flow to the public
output), GLIFT can then be used to ensure that the policy is
not violated by checking that the output of the tracking logic
ft is not 1. It is important to remember that ft is defined to
report 1 iff a tainted input can actually affect the output. In
other words, it will report 1 if at any instant in time a tainted
input can affect the value of the output.

One of GLIFTs key properties is that it targets a very low
level of computing abstraction; at such an abstraction, all infor-
mation becomes explicit. In particular, because GLIFT tracks
individual bits at this very low level, it can be used to explicitly
identify timing channels. To support this claim, the follow-
ing sections present some preliminary definitions and a model
that, when used in conjunction with GLIFT, can test for timing
channels. Such a model will be used in this paper to identify
timing channels in a shared bus in Section VI, CPU cache in
Section VII, and an RSA module in Section VIII.

B. GLIFT and Timing Channels

In order to have a clear understanding of timing channels, it
first helps to specify a definition of a timing channel familiar to
hardware designers. We define specifically a timing-only flow,
where an input affects only the timestamp of output events
and not the values. To be clear, we are concerned with timing
leaks at the cycle level. Stated differently, we assume that
an attacker does not have resources for measuring “glitches"
within a combinational logic function itself. Rather, he can
only observe timing variations in terms of number of cycles
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at register boundaries. With these assumptions, we present this
definition in order to prove that GLIFT in fact captures such
channels.

Definition 10 (Timing-Only Flow): For an FSM F with
input space X and output function α, a timing-only flow exists
for a set of inputs {xi}i∈I if there exists some value k ∈ T
and two input traces A(X, k) and A(X, k)′ such that A and A′
are value preserving with respect to I, and for B = α(A) and
B′ = α(A′) it is the case that val(ei) = val(e′

i) for all ei ∈ d(B)

and e′
i ∈ d(B′) and there exist ej ∈ d(B) and e′

j ∈ d(B′) such
that time(ej) �= time(e′

j).
This definition captures the case in which a set of inputs

affect only the time of the output. In other words, changing a
subset of the tainted inputs will cause a change in the time in
which the events appear on the output, but the values them-
selves remain the same. Before, we can use this definition to
prove that GLIFT captures timing-only channels, we need to
define the GLIFT FSM Ft.

Referring back to Definition 5, an FSM consists of two com-
binational logic functions α and δ. Thus, there exists tracking
logic functions αt and δt according to Definition 8. Using this
property, we can define the GLIFT FSM Ft, which will be
used to prove that GLIFT detects timing-only flows.

Definition 11: Given an FSM F = (X, Y, S, s0, δ, α),
the FSM tracking logic Ft is defined as Ft =
(X, Xt, Yt, S, s0, St, s0t , δt, αt) where X, S, and s0 are the
same as in F, St is the set of tainted states, s0t ∈ St the taint
of the starting state, Xt is the set of tainted inputs, Yt is the
set of tainted outputs, δt the tracking logic of δ and αt the
tracking logic function of α.

Now that these definitions are in place, we can prove that
GLIFT can detect timing-only flows.

Theorem 1: The FSM tracking logic Ft of an FSM F
captures timing-only channels.

Proof: Suppose there exists a timing-only channel for an
FSM F with respect to the set of tainted inputs I. By
Definition 10, this means there must exist value-preserving
traces A(X, k) and A(X, k)′ such that, for B = α(A) and
B′ = α(A′), val(ei) = val(e′

i) for all ei ∈ d(B) and
e′

i ∈ d(B), but there exist ej ∈ d(B) and e′
j ∈ d(B′) such

that time(ej) �= time(e′
j). Since ej ∈ d(B) implies that ej ∈ B

(and likewise for e′
j), this means that B �= B′.

F generates an output every clock tick, so for all ej ∈ B
and e′

j ∈ B′, time(ej) = time(e′
j), and thus there must exist

some e� ∈ B and e′
� ∈ B′ such that val(e�) �= val(e′

�) (because
B �= B′). By Definition 6, all input values remain the same
for all i /∈ I, meaning the only difference between them is
in the tainted inputs, and thus the difference in output must
have been caused by a tainted input. By Definition 8, αt would
thus have an output of (y1t , . . . , y�t = 1, . . . , ymt ), as the value
if y� in the output of α was affected by a tainted input. By
Definition 9, this means GLIFT has indicated an information
flow must exist. As the only possible flow is timing-based,
GLIFT thus captures timing-only flows.

Since GLIFT operates at the lowest level of digital abstrac-
tion, all information flows become explicit. Thus, if at any
instant in time a tainted input can affect the value of the output,
GLIFT will indicate so by definition. At the FSM abstraction,

Fig. 2. Classes of information flows in hardware. In this paper, we are con-
cerned with logical flows that GLIFT captures, including timing and functional
flows. Physical phenomena are out of the scope of this paper.

as defined in Definition 10, this type of behavior often presents
itself as a timing channel. This proof demonstrates that GLIFT
can in fact identify these types of information flows. What is
needed, however, is to formally understand how to separate
these types of timing flows from other functional ones. In
the next section, we demonstrate how GLIFT can be used in
conjuction with finding functional flows to isolate this timing
information.

V. ISOLATING TIMING CHANNELS

As discussed in the previous section, GLIFT allows system
designers to determine if any information flows exist within
their systems even those through timing-channels. To be con-
cise, at the digital level, there are two possible types of flows
which we name functional flows and timing, as seen in Fig. 2.
Intuitively, a functional flow exists for a given set of inputs to
a system if their values affects the values output by the system
(for example, changing the value of a will affect the output
of the function f (a, b): = a + b), while a timing flow exists if
changes in the input affect how long the computation takes to
execute.

While GLIFT will tell the designer only if any such flows
exist, in this section we create a formal model for determin-
ing whether or not the system contains specifically functional
flows. When used in conjunction with GLIFT, this technique
therefore allows us to also determine what type of flow is
occurring: if GLIFT determines that no flow exists, then
clearly there is no flow. If instead GLIFT determines that a
flow does exist but we can demonstrate that no functional flow
exists, then we know that a timing flow must exist. What is left
open, however, is the interesting case in which GLIFT deter-
mines that a flow exists but we determine that a functional
flow does exist; in this case, we are unable to determine if a
timing flow exists as well. In practice, however, benign func-
tional flows are quite rare. Their biggest occurrences are in
cryptographic operations (where the output is a direct func-
tion of the secret key) and in covert channels (where two
subsystems will covertly communicate using varying amounts
of seemingly functional noise). We would argue that in most
other cases, a functional flow is likely to be something that
violates a confidentiality or integrity policy. For example, a
functional leak of the key without going through a crypto-
graphic block would be detrimental to the security of the
system.
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Fig. 3. How our method can be used with GLIFT to isolate timing channels.
If GLIFT says there is a flow and we do not find a functional flow, we know
there exists a timing channel. If we find a functional flow we cannot conclude
the existence of a timing channel.

A. Finding Functional Flows

Now that some intuition of the problem has been presented,
we now discuss our testing framework as shown in Fig. 3.
Here, GLIFT is used in conjuction with finding functional
flows to isolate timing information. If GLIFT determines that
there is no flow, we know there is no functional NOR tim-
ing information flow. If, however, GLIFT determines there is
a flow and we can find no functional flow with a reasonable
number of traces, then we have increased confidence that the
information flow occurred from a timing channel. In this sec-
tion, we discuss how to find functional flows. We begin with
the strongest possible definition and then weaken it to make
it more amenable to testing techniques familiar to hardware
designers.

Definition 12 (Functional Flow): For a deterministic FSM
F with input space X and output function α, we say that a
functional flow exists with respect to a set of inputs {xi}i∈I if
there exists some value k ∈ T and two input traces A(X, k)
and A(X, k)′ such that A and A′ are value preserving with
respect to I, and for B : = α(A) and B′ : = α(A′) it is
the case that there exists ei ∈ d(B) and e′

i ∈ d(B′) such that
val(ei) �= val(e′

i).
This definition says that, if there is some functional flow

from this set of inputs to the output, then there exist input
traces of some size k that will demonstrate this flow; i.e., if
a different output pattern is observed by changing only the
values of these particular inputs, then their value does affect
the value of the output and a functional flow must exist. In
practice, however, this definition is not entirely useful: a sys-
tem designer wanting to isolate timing flows by ensuring that
no functional flows exist would have to look, for every pos-
sible value of k, at every pair of traces of size k in which
the value of this set of inputs differs in some way; only if he
found no such pair for any value of k would he be able to
conclude that no functional flow exists. We therefore consider
how to meaningfully alter this definition so as to still provide
some guarantees (albeit weaker ones) about the existence of

functional flows, without requiring an exhaustive search (over
a potentially infinite space!).

Definition 13 (Functional Flow): For a deterministic FSM
F with input space X and output function α, we say that a
functional flow exists with respect to a set of inputs {xi}i∈I and
an input trace A(X, k) if there exists an input trace A(X, k)′
such that A and A′ are value preserving with respect to I and
for B : = α(A) and B′ : = α(A′) it is the case that there exists
ei ∈ d(B) and e′

i ∈ d(B′) such that val(ei) �= val(e′
i).

At first glance, this definition already seems much more
useful: instead of looking just at the set of inputs, we also
consider fixing the first trace. If we then construct our second
trace given this first trace to ensure that the two are value
preserving, then comparing the distinct traces of the output
will tell us if a functional flow exists for the trace. Once again,
however, we must consider what a system designer would have
to do to ensure that no functional flow exists: given the first
trace A, he would have to construct all possible traces A′; if the
distinct traces of the outputs were the same for all such A′, then
he could conclude that no functional flow existed with respect
to A. Once again, this search space might be prohibitively
large, so we consider one more meaningful weakening of the
definition.

Definition 14 (Functional Flow): For a deterministic FSM
F with input space X and output function α, we say that a
functional flow exists with respect to a set of inputs {xi}i∈I

and input traces A(X, k) and A(X, k)′ that are value preserving
with respect to I if for B : = α(A) and B′ : = α(A′) it is
the case that there exists ei ∈ d(B) and e′

i ∈ d(B′) such that
val(ei) �= val(e′

i).
While this definition provides the weakest guarantees on the

existence of a functional flow, it allows for the most efficient
testing, as we need to pick only pairs of traces. Picking traces
can be done in a variety of ways. The best approach is for
the hardware designer to pick pairs of traces which will effec-
tively stimulate the security issues in the designs. In general,
however, this may be quite difficult since the person testing
the hardware design may have limited knowledge of its oper-
ation. If the hardware designer has trouble picking two traces,
a promising alternative is to pick random pairs of traces. In
addition, the guarantees of this definition are not as weak as
they might seem: they say that, given the output B, by observ-
ing B′ as well, we are not learning any additional information
about the inputs {xi}i∈I than we learned just from seeing B.
Again, while this does not imply the complete lack of any
functional flow, it does provide evidence in that direction (and
running this procedure with more, carefully chosen pairs of
traces would only strengthen that evidence).

Finally, we discuss our requirement that the system F be
deterministic, and observe that it is not as strict as it might
seem. As discussed at the beginning of the section, we are
interested only in flows that are detectable by GLIFT. Physical
processes that can be used to generate randomness, such as
the current power supply or electromagnetic radiation, are
therefore out of the scope of this paper. We can neverthe-
less consider randomness, however, in the form of something
like a linear feedback shift register (LFSR), which is in fact
deterministic given its current state; the randomness produced
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Fig. 4. On the left, we can see the inputs and outputs of the system S: it
takes in two multibit inputs A and B and two single-bit inputs, fast and a
clock input clk, and outputs P : = A × B. On the right, we can see that the
system first picks an ALU to use based on the value of fast and then uses
that ALU to perform the multiplication.

by an LFSR can therefore be held constant between two traces
by using the same initial state.

B. Sample Usage: Fast/Slow Multiplier

To build intuition for how our model determines whether or
not a functional flow exists, we consider a simple system as
shown in Fig. 4.

As we can see, the system consists of a pair of two-input
multipliers, one fast and one slow. On inputs A, B, and fast,
the system will use fast to determine which of the hardware
multipliers to use. For both A and B, there is a clear functional
flow from the input to the output, as P: = A × B. The input
fast, however, has no effect on the value of the output P, as
it simply selects whether to perform a fast or slow multiply.
There is therefore no functional flow from fast to the output,
but there is a clear timing flow, as we can see that the latency
with which P is computed is highly dependent on the value
of fast.

To confirm this intuition that the flow from fast must be
timing rather than functional, we look at this input through
the lens of our technique described above. Using as F the
system in Fig. 4, we can define the input space to be
X := (Z, Z, {0, 1}); i.e., all tuples consisting of two integer
values and one bit, and our output space to be Y := Z. As
mentioned, we are interested in whether or not a functional
flow exists for fast, so we will define this to be our set of
inputs. Now, we pick values A0 and B0 for A and B, respec-
tively, and set our first trace to be A := ((A0, B0, 0), t0); i.e.,
the single event (at an arbitrary time t0) in which A0 and B0
are multiplied using the slow ALU. We then set our second
trace to be A′ : = ((A0, B0, 1), t0), and run these two traces to
obtain output traces B = (P, t) and B′ = (P′, t′). As A0 and B0
were the same for both traces, it is clearly the case that P = P′
and thus val(ei) = val(e′

i) for all ei ∈ d(B) and e′
i ∈ d(B′),

meaning no functional flow exists with respect to these two
traces. As discussed above, this also provides evidence that
no functional flow exists for fast at all, although further test-
ing would likely be required to rule out this functional flow
completely.

Although this example is a bit contrived, it effectively shows
that finding hardware timing channels in practice is nontriv-
ial, and testing for them requires some intuition (for example,
knowing which traces to pick). In addition, many issues related
to this method are analogous to those that may be encoun-
tered during conventional testing. For example, if a functional

difference only manifests itself after N clock cycles and the
hardware designer can only simulate for some number of
cycles less than N, then he will not observe this difference.
Some of these issues might be mitigated using some formal
technologies, but we do not address those in this paper and
leave them for valuable future research. In the next section, we
discuss a more complex example in which we examine how
timing channels can be detected and eliminated in a shared
bus system.

VI. BUS COVERT CHANNEL

Shared buses, such as the interintegrated circuit (I2C) pro-
tocol, universal serial bus (USB), and ARMs SoC AMBA bus,
lie at the core of modern embedded applications. Buses and
their protocols allow different hardware components to com-
municate with each other. For example, they are often used
to configure functionality or offload work to co-processors
(GPUs, DSPs, FPGAs, etc.). As the hardware in embedded
systems continues to become more complex, so do the bus
architectures themselves, which makes it nontrivial to spot
potential security weaknesses in their construction.

In terms of such security weaknesses, a global bus that
connects high and low entities has inherent security prob-
lems such as denial-of-service attacks, in which a malicious
device can starve one of higher integrity, and bus-snooping,
in which a low device can learn information from a high
one. To ensure the terminology used here is well understood,
we define a timing side-channel as an unintended leakage of
information through how long a computation takes to run. A
timing covert-channel (as used in this bus scenario) refers to
an intended communication between two devices covertly by
using variations in time.

The covert channels associated with common buses are well
researched. One such channel, the bus-contention channel [13]
arises when two devices on a shared bus communicate covertly
by modulating the amount of observable traffic on the bus. For
example, if a device A wishes to send information covertly to
a device B, it can generate excessive traffic on the bus to
transmit a one and minimal traffic to transmit a 0. Even if A
is not permitted to directly exchange information with B, it
still may transmit bits of information using this type of covert
channel.

Both clock fuzzing [13] and probabilistic partitioning [21]
have proven to be effective at reducing, if not eliminating, the
bus-contention channel by inserting randomness into the system.
They do not, however, expand beyond this particular channel
and explore whether or not information might leak through
other timing channels associated with the bus architecture. In
addition, previous work using GLIFT has shown that strict
information flow isolation can be obtained in a shared bus [11],
but the work states nothing about how this information relates
to timing. In what follows, we demonstrate how to use GLIFT
and the techniques presented in Section V to prove that certain
information flows in I2C occur through timing channels.

A. Identifying Timing Flows in I2C

The interintegrated circuit (I2C) protocol is a simple two-
wire bus protocol first proposed by Philips [22]. We chose
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Fig. 5. (a) Standard I2C configuration. (b) S1 can covertly communicate a
1 to S2 by sending an acknowledgment. (c) S1 can communicate a 0 covertly
to S2 by sending a negative-acknowledgment.

to look specifically at I2C because of both its wide usage in
embedded applications for configuring peripherals and its sim-
ple structure; there is no reason, however, why the techniques
presented here could not be applied to more sophisticated
architectures or protocols.

In the I2C protocol (seen in Fig. 5), a “master” of the bus
initiates a transaction by first sending a start bit by pulling
down the data line (SDA) with the clock line (SCL) high.
“Slaves” on the bus then listen for the master to indicate
either a read or a write transaction. For write transactions, the
master first sends a device address indicating a write and the
device that matches this address responds with an acknowl-
edgment (ACK). At this point, the master can transmit an
internal register address (sub-address for the device) and the
actual data. The transaction terminates with the master sending
a stop bit. A similar behavior occurs for a read transaction,
except here data transfers from a slave to the master. Since
I2C shares a common bus, there is the potential for several
different covert channels, in addition to the bus-contention
channel described above. To explore these different channels,
we look at three configurations of the I2C bus and discuss
the potential ways in which information can be communi-
cated covertly. We furthermore discuss how the flows in each
of these covert communications can be classified as either a
functional or timing flow using the techniques presented in
Section V.

1) Case 1 (Global Bus): A global bus scenario, wherein
multiple devices contend for a single bus, is the most general
and commonly found bus configuration. Consider the example
in which two devices wish to communicate covertly on the
I2C bus as shown in Fig. 5. At first glance, there exists an
obvious information flow in this architecture since the devices
themselves can “snoop” the bus. For example, a device S1 can
send an acknowledgement to the master to covertly transmit a
one to another device S2; conversely, it can send a negative-
acknowledgment to send a 0. Since S2 observes all activity on
the bus, it can simply monitor which type of message S1 sends
and thus determine the communicated bit. While this is by no
means the only type of flow, for the sake of simplicity we will
stick with this scenario throughout the rest of the section.

To put our model to use on this scenario, we designed the
system shown in Fig. 5 in Verilog by constructing I2C Master
and Slave controllers. Since we were interested in the flows
between S1 and S2, we processed the designs in the man-
ner presented in Section IV and in the previous work. To be

concrete, we took the slave and master RTL descriptions and
synthesized them down to logic gates using synopsys’ design
compiler. For each gate primitive in the system, we added the
appropriate GLIFT logic. The result is a system which con-
tains a master and two slaves, each of which also has tracking
logic associated with it. In a manner similar to that of previous
work, we executed a test scenario wherein the master performs
a write transaction with S1 and S1 sends an acknowledgement
by simulating it in ModelSim 10.0a, a Verilog simulator. We
observed that the GLIFT logic indicates a flow to S2. At this
stage, we have therefore identified that some type of informa-
tion flow exists, but it is not entirely obvious if this was a
functional or timing flow.

Since the devices can directly observe all interactions on
the bus, one might expect this to be a functional flow. Not
surprisingly, we utilized the model presented in Section V to
show exactly that. To put this model to use, we abstract the
output y = 〈SCL, SDA〉 of our model since these are the only
two signals observable by S2 (recall that SCL is the clock
line and SDA the data line). In addition, we abstracted the
input traces to our system as A1(X, k) : = 〈S1 sending NACK〉
and A2(X, k) : = 〈S1 sending ACK〉; running these through
the system produced two output traces AG1 and AG2 . In a bit
more detail, we collected AG1 by logging the discrete events
that occurred when S1 failed to acknowledge a write trans-
action from the master (thus intending to covertly transmit a
0). We then obtained a related trace AG2 , in which S1 does
acknowledge the write. By analyzing these traces, we identi-
fied events ej ∈ d(AG1) and e′

j ∈ d(AG2) (recall that d(AG1)

and d(AG2) are the distinct traces of AG1 and AG2 respectively,
as defined in Definition 4) such that val(ej) �= val(e′

j). As a
result, from Definition 14 of a functional flow, we know that
a functional flow must exist. Recall, however, that this does
not mean that there exists only a functional flow. Since GLIFT
indicates that there exists a flow, it may be the case that infor-
mation flows from S1 to S2 through both functional and timing
channels.

The next case discusses how such a functional flow can
be easily prevented using time-multiplexing of the bus in a
manner similar to probabilistic partitioning [21].

2) Case 2 (Strict Time-Multiplexing of the Bus): A seem-
ingly easy solution to eliminate this information flow presented
in Case 1 is to add strict partitioning between when devices
may access the bus, as shown in Fig. 6. Here, slaves on the bus
may view the bus only within their designated time slots; this
prevents devices from observing the bus traffic at all times.
In this paper, we partition over-conservatively by allowing the
bus to be multiplexed between statically set time slots. In terms
of probabilistic partitioning, we test the case in which the
system is running in secure mode. We are interested in the
same scenario as before: S1 wishes to transmit information
covertly with S2; now, however, the bus-contention channel is
eliminated, as partitioning has made contention impossible.

Because the bus-contention channel has been ruled out, one
might think that a covert channel between S1 and S2 no longer
exists. Nevertheless, information can still be communicated
covertly through the internal state of the master; to there-
fore transmit a covert bit, S1 need only leave the master in
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Fig. 6. Adding strict time-partitioning of the I2C bus. The bus is only
accessed by S1 and S2 in mutually-exclusive time slots.

a particular state before its time slot expires. For example,
many bus protocols have a time-out period in case a device
fails to respond to a request. If S1 leaves the master in such a
state prior to its time-slot expiring, S2 can observe this state in
the following time slot and conclude, based on the response
time from the master, whether a zero or a one is being trans-
mitted: if the master’s response time is short, S2 can conclude
S1 wishes to communicate a 1, and if the response time is long
it can conclude a 0. Although this type of covert channel is
quite subtle, by using the model from Section V we can prove
that this information flow occurs through a timing channel.

To prove that this is not a functional flow, we abstract
this system in the same manner as Case 1, except we now
use y = 〈SDAS2 , SCLS2〉, where SDAS2 and SCLS2 are the
wires observable by S2. In the same manner as Case 1,
we set input traces A1(X, k) : = 〈S1 sending NACK〉 and
A2(X, k) : = 〈S1 sending ACK〉 to collect output traces ATDMA1

and ATDMA2 , respectively. Following our model, we worked to
findtheexistenceofaneventej ∈ d(ATDMA1)ande′

j ∈ d(ATDMA2)

such that val(ej) �= val(e′
j); we found, however, that no such

events existed for this particular testing scenario. As discussed in
Section V, this provides evidence for the absence of a functional
flow; although it does not completely rule out the existence of
such a flow, because we have chosen our input traces to represent
essentially opposite events (sending a negative-acknowledgment
and sending an acknowledgment), if a functional flow did exist
then it is very likely it would be captured by these two traces. We
therefore conclude that, because GLIFT did indicate the exis-
tence of some information flow and we have provided strong
evidence that a functional flow does not exist, this flow is from
a timing-channel.

3) Case 3 (Time-Multiplexing With Master Reset): The
work of Oberg et al. [11] using GLIFT for the I2C chan-
nel indicated that all information flows are eliminated when
the master device is reset back to a known state on the expi-
ration of a slave’s timeslot. In particular, this implies that no
timing channels can exist, and thus the attack from Case 2
no longer applies. In practice, this trusted reset would need to
come from a trusted entity such as a secure microkernel; we
will therefore assume for our testing purposes that this reset
comes from a reliable source once this subsystem is integrated
into a larger system. With this assumption, we validated this
scenario by adapting the test setup in Case 2 to incorporate
the master being restored to an initial known state once S1’s
time slot expires.

In the same manner as Case 2, we abstract the output
y = 〈SDAS2 , SCLS2〉. We create input traces A1(X, k) :=
〈S1 sending NACK〉 and A2(X, k) := 〈S1 sending ACK〉 to

TABLE I
SIMULATION TIMES IN MILLISECONDS ASSOCIATED WITH THE THREE

PRESENTED CASES FOR I2C, AND FOR A SINGLE TRACE. GLIFT
IMPOSES A SMALL OVERHEAD IN THE SIMULATION TIME FOR

THESE TEST CASES

log output traces ATDMA1 and ATDMA2 respectively. As
expected, d(ATDMA1 = d(ATDMA2), and thus we again obtain
strong evidence that a functional flow does not exist.

As is hopefully demonstrated by these three cases, identify-
ing the presented covert channels is not necessarily intuitive;
furthermore, hardware designers are likely to easily over-
look these problems when building their bus architectures or
designing secure protocols. By combining the tracking logic
of GLIFT with our model, we provide a method for hardware
engineers to systematically evaluate their designs to determine
whether or not techniques such as those used in Case 3 can
in fact eliminate covert channels such as the ones presented
in Cases 1 and 2.

B. Overheads

To provide an understanding of the associated overheads
with these techniques, we present the simulation times needed
to execute them. We collected the simulation times by using
ModelSim 10.0a and its built-in time function. The simu-
lations were run on a machine running Windows 7 64-bit
Professional with an Intel Core2 Quad CPU(Q9400) @ 2.66
GHz and 4.0 GB memory.

As seen in Table I, there is not a significant difference
between simulating the designs with GLIFT logic and the
base register-transfer level (RTL) designs. This is likely due
to the small size of the designs and the relatively short input
traces required for these particular tests. The overheads associ-
ated with GLIFT become more apparent in Section VII when
we discuss identifying timing channels associated with a CPU
cache.

Finally, we mention that, although we consider two input
traces for each case, we present in Table I our simulation times
for only a single input trace. We do this because, as mentioned
in Section V, designers may wish to check even beyond two
traces to gain more assurance that a functional flow does not
exist. Since the simulation time of a particular input trace is
independent of the others, we chose to present the results for
a single trace but note that they can be appropriately scaled
to consider more traces as well.

VII. CACHE TIMING CHANNEL

Recent work has shown CPU caches to be one of the
biggest sources of hardware timing channels in modern pro-
cessors [7]–[10]. In a modern computing system, a cache can
be seen as a performance optimization that provides a “quick
look-up” for frequently used information. Caches are typically
built from faster and higher power memory technologies, such
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Fig. 7. (a) Typical CPU cache. The attack operates by malicious process
first filling the cache with some data D. (b) Victim process encrypts some
data with its secret key, thus bringing in cache lines. (c) Malicious process
can observe which cache lines were evicted from latency, thus deducing the
address and value of key used to index look-up table.

as SRAM, and sit between slower main memory (typically
DRAM) and the CPU core. When a memory region is ref-
erenced by a program, it is brought into the cache for fast
access.

In previous work, the varying latencies of memory accesses
due to cache hits/miss have been exploited. This vulnera-
bility has been used to completely extract the secret key;
these attacks have been divided into three categories: trace-
driven [7], time-driven [8], [9], and access-driven [10]. Access-
driven attacks in particular exploit knowledge about which
cache lines are evicted. Specifically, a malicious process
observes the latency of cache misses and hits and uses these
patterns to deduce which cache lines are brought in/evicted,
which in turn leaks information about the memory address
(e.g., the secret key in AES table look-ups). In this paper, we
chose to look at access-driven attacks, as they are the easiest
for us to demonstrate given our current test setup. Furthermore,
this type of cache attack has applications beyond just encryp-
tion; for example, as demonstrated by Ristenpart et al. [23] in
their attack on virtualized systems.

A. Overview of Access-Driven Timing Attacks

At a high-level, an access-driven cache timing attack first
fills the cache using some malicious process. Next, a secret
process uses a secret key to perform encryption. Finally,
the malicious process tries to determine which of the cache
lines were evicted in the encryption process. Since the key is
XORed with part of the plaintext before indexing into a look-
up table, the malicious process can correlate slow accesses
with the value of the secret key.

In a bit more detail, we can see a depiction of this attack in
Fig. 7. In our test setup, we have a malicious process M and
secret process V (for victim). First, as seen in Fig. 7(a), M
fills the contents of the cache with some data D. Next, as seen
in Fig. 7(b), V subsequently runs AES using a secret key as
input for a short duration; this process fills the contents of the
cache. Now, in Fig. 7(c), M reads D again from memory and
observes the latency of each access. Since M and V share the
cache, M will receive memory responses with lower latency if
V did not evict certain cache lines prior to the context switch,

Fig. 8. Block diagram of a simple MIPS-based CPU. The cache is replaced
by one that contains the original cache and its associated tracking logic. Our
test-bench drives the simulation of the processor to capture the output traces.

as they will still reside in the cache. Because the secret key
used by V is an index into look-up tables, the access latencies
of M (i.e., a cache hit or miss) directly correlate with the value
of the secret key.

B. Identifying the Cache Attack as Timing Channel

Since this attack relies on the timing information available
to M, it can clearly be identified as a type of timing attack.
In this section, we demonstrate this fact more formally by
using GLIFT and our model from Section V to prove that any
information flows are timing-based.

To put this scenario to test, we designed a complete MIPS-
based processor written in Verilog. The processor is capable
of running several of the SPEC 2006 [24] benchmarks includ-
ing mcf, specrand, and bzip2, in addition to two security
benchmarks: sha and aes, all of which are executed on the
processor being simulated in ModelSim SE 10.0a (a com-
mercial HDL simulator). All benchmarks are cross-compiled
to the MIPS assembly using gcc and loaded into instruction
memory using a Verilog testbench. The architecture of the pro-
cessor consists of a five-stage pipeline and 16 K-entry direct
mapped cache (one-way cache). We chose to use a direct-
mapped cache for our experiments for ease of testing, but note
that this analysis would apply directly to a cache with greater
associativity.

Since our particular region of interest is the cache, we focus
our analysis directly on this subsystem. To do so, we apply
GLIFT logic to the cache system as described in Section IV.
This new “GLIFTed” cache is reinserted into the RTL proces-
sor design in the place of the original RTL cache. Pictorially,
this can be seen in Fig. 8. The input and output to the cache
system include address and data lines and control signals
(write-enable, memory stall signals, etc.); each such input and
output is now associated with a taint bit which will be essential
to testing whether or not information flows from our victim
process V to our malicious process M.
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To execute the test scenario, we follow the same procedure
as the access-driven timing attack previously discussed by hav-
ing malicious and victim executions share the cache. We have
M first fill the cache by setting all data in the cache. We then
have V execute AES with all inputs to the cache marked as
tainted (i.e., secret). Subsequently, we have M execute and
observe whether or not information from V flows to M. As
expected, we observe that as M reads from memory locations,
secret information immediately flows out of the cache. We
therefore know that a flow exists, but at this stage it is still
ambiguous whether the flow is functional or timing.

To identify exactly which type of channel was identified by
GLIFT, we leverage the benefits of our model by working to
identify a functional flow; as previously discussed, if we detect
no functional flow, then we know the flow must be from a
timing channel. To fit our model, we abstract the output of the
cache as y = 〈dataM〉 to indicate the cache output observable
by M (note that, in particular, stall is not included in this
output, as it cannot be observed directly by M). Following our
model, we then defined two traces: A1(X, k) := 〈V using K1〉
and A2(X, k) := 〈V using K2〉; i.e., the cases in which V
encrypts using two different randomly selected keys. We
then simulated both of these scenarios and logged all of the
discrete events captured by ModelSim to obtain to output
traces AC1 and AC2; by definition of y, these output traces
contain all events observable by M. Once we collected these
traces, we checked whether or not a functional flow exists for
these particular traces by looking for the existence of events
ej ∈ d(AC1) and e′

j ∈ d(AC2) such that val(ej) �= val(e′
j).

For these particular traces, we found no such pair of events.
To build an intuition about why this type of information
flow was not functional, it helps to look at the details of the
cache structure. As mentioned, the cache in this scenario was
designed to allow for a context switch between two running
programs M and V . The cache control logic checks a process
ID to ensure that M cannot access V’s data and that only its
own data is returned on a memory access. While V is running,
all of its information in the cache is labeled as secret.
When M executes, its memory accesses will not return V’s
data, but rather its own. If M’s data was already present, this
data would be returned quickly and if it were not then it would
be returned with a delay in time. The same data would be
returned regardless so there is no functional difference, rather
only a difference in the time they appear. Again, although
the fact that no functional flow exists with respect to these
particular traces does not imply the lack of a functional flow
for any traces, it does lend evidence to the theory that the flow
must be timing-based rather than functional (and additional
testing with different keys would provide further support).

C. Overheads

As we did for I2C in Section VI, we evaluated the overheads
associated with our technique by measuring simulation time.
We collected our measurements using ModelSim 10.0a and its
built in time function running on the same Windows 7 64-bit
Professional machine with an Intel Core2 Quad CPU(Q9400)
@ 2.66 GHz and 4.0 GB of memory. We measured the time for

TABLE II
SIMULATION TIMES IN SECONDS FOR AES RUNNING WITH DIFFERENT

ENCRYPTION KEYS, WITH AND WITHOUT GLIFT TRACKING LOGIC.
IN GENERAL, SIMULATING A DESIGN WITH GLIFT LOGIC CAUSES

LARGE SLOW-DOWNS

Algorithm 1 Basic Algorithm for Square-and-Multiply to
Compute Modular Exponentiation. It Computes Cd (mod n)

R = 1;
temp = C;
for i = 0 to |d| − 1 do

if bit d[i] = 1 then
R = R · temp (mod n)

end if
temp = temp2 (mod n)

end for
return R

the secret process (V) to run AES on a secret key K1 followed
by a malicious process (M) attempting to observe which cache
lines were evicted. This measurement was repeated for both
the design with and without GLIFT. For completeness, we
repeated the same process for the second input traces; namely
when V executes AES using K2 followed by M attempting to
observe which cache lines were evicted. The resulting times
from these simulations can be found in Table II.

As Table II shows, there is a large overhead (≈ 6X) for using
GLIFT to detect whether or not a flow exists. Furthermore,
since the behavior of M is fixed between both input traces and
the only value changing is the secret key, the results clearly
show that a timing channel exists with regards to the cache,
as the execution time for AES on K2 is longer than that of
K1; the existence of such a timing channel was also identified
by GLIFT and our model.

VIII. TIMING CHANNELS IN RSA ENCRYPTION CORE

As an additional point of reference, this section describes
how this model can be applied to detect a timing channel in
an RSA cryptographic core. The RSA public-key cryptosys-
tem [25] is one of the most widely used data encryption and
digital signature algorithms. In short, the algorithm uses mod-
ular exponentiation to encrypt and decrypt data. Computing
this exponentiation can be done quickly and efficiently in
hardware.

One approach for computing decryption: Cd (mod n),
where C is the ciphertext, d is the private key and n the public
modulus, is to employ a square-and-multiply algorithm which
iterates over all key bits and performs a multiply each itera-
tion depending on the value of the key bit. The details of this
algorithm can be seen in Algorithm 1. If the current key-bit is
1, a multiply is performed otherwise the operation is skipped.
A square is computed every iteration.

As one might expect, on iterations where an additional mul-
tiply is performed, the run time will be slower. Essentially, the
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value of the key will have great influence on the run-time of
the decryption and thus attackers can (and have [26]) exploited
this timing variation to extract the private key.

In hardware, an RSA decryption module1 will not only have
Key and Ciphertext inputs and a Message output, but other
control signals as well. For example, a signal is needed to
notify when the algorithm should begin (start) and also an
output to say when the decryption is completed (rdy). If the
key affects when the message is ready (i.e., the time in which
rdy is asserted), this timing variation can be exploited by an
attacker.

A. Detecting Leak as Timing Channel

To this end, we apply our analysis to the BasicRSA core
from opencores [27] and determine whether or not there is a
timing channel in the design. Following the same GLIFT anal-
ysis flow, we detect that the key does in fact affect rdy. Now, to
classify this as a timing leak, we apply the model presented in
Section V and abstract the input traces A := 〈RSA on Key 1〉
and A′ := 〈RSA on Key 2〉 using two randomly chosen keys
and record the output traces B and B′ by logging the val-
ues of the rdy signal for the duration of the decryption.
When applying our model to these output traces, we find that
val(ei) = val(e′

i) for all ei ∈ d(B) and e′
i ∈ d(B′). Since

GLIFT indicates that there is an information leak and we did
not detect a functional flow, we know that this leak must be
from a timing-channel.

The analysis of this core brings up a necessary discussion.
As described, our model cannot detect the presence of a tim-
ing when a functional one exists as well. For example, the
ciphertext of an encryption algorithm (like RSA) will always
be functionally affected by the key. However, as demonstrated
here, by discovering the key’s effect on the time in which rdy
is asserted, it is possible to conclude that it affects the time
in which the cryptographic process completes. In other words,
this technique is able to conclude that the core has a timing
channel.

IX. RELATED WORK

Most previous work on timing channels has focused on tech-
niques for identifying timing and storage channels in larger
systems, but not specifically in hardware design. Similarly,
there has been significant work in reducing or eliminating spe-
cific timing channels, but little work in providing systematic
testing techniques for identifying such channels.

Some of the most notable work in this area is with regards
to the VAX virtual machine monitor (VMM) [28]. In one
paper, Wray [29] describes how the timing and storage chan-
nels were analyzed in the VAX VMM; the timing channels
described in his paper, however, are specific to the VAX VMM
and a systematic testing method for identifying them was
not discussed. In another paper, Kemmerer [30] presents a
shared matrix methodology for identifying timing channels;

1We use decryption here because RSA decrypts using a private key and
encrypts with a public one

this methodology works by creating a matrix that compares
shared resources, processes, and resource attributes. Based on
these fields and some proposed criteria for a timing and storage
channel, the matrix can be analyzed to determine whether or
not a shared resource can be used as a side channel. This tech-
nique therefore requires the designer to construct such a matrix
and determine the shared resources, but ultimately still does
not provide a general technique for detecting timing channels
in hardware.

In terms of timing channel mitigation in secure systems, one
technique (that we discussed in Section VI) is clock fuzzing,
which was first introduced by Hu in 1991 [13]. Clock fuzzing
works by presenting the system with a seemingly random
clock to make it stochastically difficult for two objects to
synchronize. However, as later discussed by Gray [21], clock
fuzzing in reality only reduces the bandwidth of the timing
channel and does not eliminate it entirely.

Recently, there has been extensive work with regards to
hardware information flow tracking. Dynamic information
flow tracking (DIFT), due to Suh et al. [18] tags information
that comes from potentially untrusted channels and tracks them
throughout a processor. This tag is checked before branches in
execution are taken, and the branch is prevented if this infor-
mation originated from an untrusted source. As demonstrated
by Suh et al., DIFT is quite effective at detecting buffer over-
flow and format-string attacks, but works at too high of an
abstraction to track information through timing channels. A
similar tracking system, Minos [19], keeps an integrity bit on
information and uses this bit to prevent potentially malicious
branches in execution. Raksha [31] is a DIFT style processor
that allows security policies to be reconfigured and thus pro-
vides a more flexible framework. As mentioned in Section IV,
GLIFT [3] works by tracking each individual bit in a hard-
ware system. It is a general technique that has been applied to
buid an execution lease CPU [5] and to analyze information
flows in bus protocols [11]. Following this, some recent work
from industry has shown that GLIFT-like techniques can be
effectively applied in practice [32]. GLIFT itself precedes this
paper, but their use of similar methods shows that industry is
searching for hardware security testing methods like the one
presented in this paper.

Information flow tracking has also been used in hardware
design languages. Caisson [33] is a hardware security language
that aids hardware designers by using programming language
type-based techniques to prevent unintended information flows
and eliminate timing channels. This paper is effective at help-
ing hardware designers to build secure hardware, but is not a
general technique for testing for timing channels. In this paper,
on the other hand, we have focused directly on a formal test-
ing method for detecting hardware timing channels to make
secure hardware easier to design and test.

X. CONCLUSION

In this paper, we presented a framework that can be
used with GLIFT to effectively separate timing flows from
functional flows. Using this separation, designers can make
informed decisions about whether or not to be concerned with
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information flows identified by hardware information flow
tracking techniques. In many cases, the designer is likely to be
more concerned by timing channels than by functional flows,
while in other cases the existence of timing channels might
cause little concern.

To demonstrate the usefulness of our framework, we applied
it to two common resources in modern systems: a shared bus
and cache. In these examples, we showed how information
flows can indeed be identified as timing-based with the help of
GLIFT. While in some cases our framework does not provide
any definite guarantees, it does provide strong evidence to rule
out the existence of functional flows; used in combination with
information flow tracking, which tells us if any flow exists,
our framework can therefore provide strong evidence for the
existence of timing channels.

Much future work is possible for both information flow
tracking and for our framework in particular. Most promi-
nently, if a functional flow exists then we cannot say anything
about the existence of a timing flow; one natural question to
ask is therefore if we can identify timing channels even in the
presence of a functional flow. This would have implications
for applications such as data encryption, in which the out-
put ciphertext is always a function of the secret key, yet it is
critical that an adversary observing encryption not be able to
deduce the secret key using a timing channel. At the present,
solving such a problem seems nontrivial and we leave it as an
important open problem.

Another necessary future contribution is to more accurately
evaluate the number of traces needed to detect a functional
flow. At the gate-level abstraction, as discussed in this paper,
finding an answer to this issue appears to be a nontrivial prob-
lem. A potential remedy we have considered is performing
our information flow analysis at an abstraction which does
not include time. If we can treat parts of the system as atomic
operations by eliminating the time component, then observed
information flows would be purely functional. This approach
may be a valuable asset to providing more formal guarantees
about functional flows.
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