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by
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Professor Timothy Sherwood, Co-Chair

Computers are being placed in charge of the systems and devices we trust with

our safety and security. These embedded systems control our automobiles, commercial

airlines, medical devices, mobile phones, and many other aspects that we hope will

behave in a secure and reliable manner. In addition, the hardware in these systems are

becoming increasingly complex; making security testing and evaluation a very difficult

problem. Unfortunately, we have already seen many attacks performed on many of

these systems including automobiles and medical devices. Many of these issues could

have been prevented had there been better methods for security assessment. Specifically,

xvii



hardware and embedded system designers are lacking the tools and methods for testing

various security properties of their designs.

Recently, a method known as gate-level information flow tracking (GLIFT) was

introduced to dynamically monitor information flows in hardware for security. This

dissertaion shows that this same technique can be very effectively applied statically to

hardware designs to systematically test various different hardware security properties (e.g.

to ensure that secret encryption keys are not leaking). Even further, this thesis demon-

strates that GLIFT can effectively capture timing-channels (where information leaks in

the amount of time a computation takes). These timing channels have been exploited in

many past works to extract secret keys from different stateful hardware resources such as

caches and branch predictors. This thesis presents some very fundamental background

of GLIFT, shows how it can be used statically using several application examples, and

formalizes how it can be used to detect timing channels. These contributions ultimately

provide a method to do hardware security testing and verification for our future computing

systems.
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Chapter 1

Introduction

1.1 Overview

Computing systems are at the heart of many of the systems we rely on for our

personal safety and security. Automobiles, medical devices, commercial airlines, and

mobile phones are becoming inreasingly complicated and we trust that their systems will

not behave unexpectedly or leak our secret information. With exploits being exposed

in many of these systems including pace-makers [41], insulin pumps [75] and automo-

biles [57], hardware security is becoming sought after to provide a root-of-trust. By

building security in hardware, hardware specific vulnerabilites (which are very difficult

to mitigate by software alone) are accounted for as well.

Security mechanisms themselves have existed in hardware for quite some time.

They have existed in the form of security rings to limit the resources that processes can

access and help enforce isolation between different domains (such as kernel and user

space) [35, 95]. Hardware mechanisms have also long existed in the form of privileged

instructions where a subset of instructions can only be executed by higher security

processes (such as the kernel) [88, 37]. These instructions typically restrict operations

such as I/O access and accessing protected memory regions from less privileged processes.

Hardware implementations of crypto systems have also been used for quite some time

1
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both in the form of data encryption [96, 106] and hash functions [110, 29]. In all cases,

one of the primary reasons these features are designed in hardware is to increase system

performance by taking some of the security burden of the software and boosting it with

highly parallel and efficient implementations.

As we are seeing hardware becoming more complex, the demand for these

hardware security mechanisms is increasing. The hardware itself is becoming an attack

vector with fixes that have to be added in the hardware itself. As a result, efforts to combat

the need for new hardware security mechanisms has seen a lot of momentum in the recent

years. For example, Intel is focusing a substantial amount of attention on security with

the continuous growth of its Security Center of Excellence (SeCoE). One of their most

recent projects is focused on providing secure enclaves [68] for more secure execution.

Specifically, they provide hardware mechanisms for isolation by allowing untrusted

applications to execute in special “enclaves” that they build into their instruction set

architecture (ISA). In addition, we are seeing an increasing number of hardware security

modules (HSMs) being developed by both large and small companies. One example

is the company ESCRYPT, which was recently acquired by Bosch [32], who’s primary

product is HSMs for next generation automobiles. As the hardware itself continues to

rapidly progress towards mechanisms for better security, the methods for evaluating

the security of these designs is unfortunately far behind. Although the methods for

testing and verfication for correct functionality are quite rich in the electronic design and

automation (EDA) space, the methods specific for security are extremely limited with

most solutions being centered around “best-practices” and security auditing teams.

The complexity of modern hardware makes the intricate security properties that

need to be tested and verified difficult. For example, a common property that often

needs to be guaranteed in hardware is non-interference [38], where certain parts of the

system should never interfere with other parts. An example where non-interference is
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important is the Boeing 787 aircraft which has connectivity between the user and flight

control networks [33]. In this type of scenario ensuring that there are no unintended

information flows between the two networks is critical for the correct operation of the

aircraft. This property of non-interference is also what Intel would like to demonstrate

with their enclaves, by ensuring that you can have isolation between processes in the

hardware. With the further development of intricate system-on-chips interacting via

complex protocols, guaranteeing non-interference is a hard problem since information

can flow through difficult to detect side channels.

A side-channel is defined as an entity which leaks information but was not

intended for communication. The two most common side channels found in hardware

are from timing (the data-dependent latency of a computation) and power (the data-

dependent power consumed during a computation). In this work we address only logical

side-channels (timing), physical ones (power) are out of the scope of this work. As an

example, in order to show that two devices on a bus are non-intefering, it is required that

the devices not intefere directly (i.e., by corrupt transmitted data) or through timing (i.e.,

by delays in response time). At first glance, these timing variations might seem benign,

but these side-channels have been recently exploited by many to extract secret encryption

keys from miss/hit delays in processor caches [10, 18, 86, 40]. These attacks rely on a

exploiting information leaking through a timing channel, where an attacker is able to

deduce information by simply measuring execution time. Since modern hardware is

now increasingly coupled with non-determinism and hidden state, methods for detecting

and even reasoning about these types of information leaks is an increasingly complex

problem. Recently, some work that performs information flow tracking at the level of

logic gates started getting traction as a potential way for detecting these timing channels.

Information flow tracking, in general, is a way of label information (e.g. label

a key as secret) and then tracking where this key “flows”. It is a powerful mechanism
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for detecting a potential security issue so that the system can take preventative actions.

Information flow tracking has seen lots of attention at many levels of the computing

hierarchy. It has been used in high-level languages [94, 89, 42, 16] and compilers [60,

112], binary analysis tools [113, 8, 25, 34], operating systems [114, 58, 31], and in

many hardware assisted techniques [28, 27, 98, 104, 105, 93, 23]. However, performing

gate-level information flow tracking (GLIFT) was only very recently explored [103].

The properties found at the gate-level (the lowest digital abstraction), specifically using

GLIFT, provide a powerful mechanism for testing and proving the absence of harmful

information flows in a hardware design; including those from timing channels.

GLIFT associates a label (for a 2-level security lattice, this is a single-bit) with

information and then tracks this bit as it flows through boolean gates. In the past, GLIFT

has been used to build a non-interfering processor [101], analyze the USB and I2C bus

protocols [78], build larger systems with I/O and a microkernel [102], and analyze the

security of system-on-chips [80]. In many of these applications, GLIFT was used to

show non-interference. However, the specifics of how GLIFT can be used to detect and

eliminate timing channels has not been thoroughly explored. This thesis demonstrates

how gate-level information flow tracking (GLIFT) can be used as a static hardware

security testing technique and to identify hardware timing channels. The approach

taken is to first understand how information flows at the gate level and extend this

understanding to make it possible to test and debug larger hardware security issues at

a larger scale. It explores how GLIFT can be used on real designs and also presents a

formal model for using GLIFT to detect timing channels. Specifically, This thesis is the

first to formalize timing channels in hardware and demonstrate how to separate out these

timing flows from other functional ones. To assist with reading this thesis, a detailed

organization of each chapter are described next.
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1.2 Thesis Outline

In this section, I give a brief description of each chapter in this this thesis, starting

with some background and related work.

1.2.1 Background and Related Work

Before I present details of how I have used gate level information flow tracking to

identify and eliminate timing channels, I will discuss some crucial background informa-

tion. I will first present a discussion of the cost associated with security in Chapter 2.1.

Next, I will discuss the necessary background and related work on information flow

tracking in Chapter 2.2 and how our gate-level analysis can be used as a static testing

technique. Lastly, I will provide a detailed discussion of timing channels and how they

have been exploited in the past in Chapter 2.3. Following this section, I will discuss the

details some theoretical fundamentals of GLIFT.

1.2.2 Deriving Equations for GLIFT Logic

As a first step, this thesis presents some theortical basics for GLIFT. This thesis

expands on previous work by providing a theoretical foundation for generating and

understanding Shadow (or GLIFT) Logic. Specifically, it 1) precisely defines taint and

GLIFT logic; 2) derives logic equations for some gate-level primitives; and 3) discusses

the overheads related to the GLIFT logic in terms of the number of minterms and area

using several IWLS and ISCAS benchmarks. These three essential points provide a

necessary theoretical foundation for GLIFT and are necessary for understanding the

other concepts and analyses presented in this thesis. I address these points in detail in

Chapter 3.
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1.2.3 Analyzing Timing Channels in Bus Protocols Using GLIFT

Beyond the formalisms of GLIFT, this thesis demonstrates how this technique

can be used to analyze information flows in some common bus protocols. Since GLIFT

provides a solution for monitoring information flows in hardware and targets boolean

gates it is general enough to be applied to any digital hardware. Furthermore it can

precisely detect all explicit information flows as well as timing channels since it monitors

the change of every bit cycle-by- cycle. As a result, this thesis will show that it is very

effective for proving information flow policies about common bus protocols such as the

Inter-Integrated Circuit protocol (I2C) and the Universal Serial Bus (USB). This thesis

discusses how GLIFT can be used to analyze and remove unintended information flows

in bus protocols using I2C and USB as examples but presents a general framework for

doing so that fits in seamlessly into existing hardware design flows. The general testing

framework is presented in Chapter 2 and how this framework can be applied to I2C and

USB is discussed in Chapter 4. Although this thesis demonstrates a necessary first step

in how GLIFT can be used to test for timing information flows in common bus protocols,

it is not clear how it can be applied to larger hardware systems.

1.2.4 Testing Timing Channels in a System-on-Chip

Chapter 5 presents an explanation and scenario in which our GLIFT testing

method can be used the test security properties of larger systems.

Specifically, Chapter 5 presents an analysis using two MIPS processors sharing

a cryptographic core (the advanced encryption standard) over the WISHBONE [84]

system-on-chip (SoC) bus. This chapter demonstrates how GLIFT can be used to test for

timing-based information leaks in this larger SoC. This chapter describes the methodology

of how it is used and the timing-based integrity properties that need to be upheld. This

usage of GLIFT is the first of its kind to demonstrate how it can be used to abstract
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away certain details of the design (the processors) and analyze simply the interconnect

(the WISBHONE architecture) in order to demonstrate timing isolation between two

processors even though they are sharing a common resource.

1.2.5 Formal Analysis of Timing Channels and GLIFT

An additional contribution of this thesis is a formalization of how GLIFT detects

timing channels. As briefly mentioned, information leakage through time has been

exploited by attackers to extract secret encryption keys in both branch predictors [11]

and processor caches [86, 18, 10]. GLIFT has shown to be promising in detecting these

timing channels but this claim has not been formally explored in prior work. The goal of

Chapter 6 is to make this claim more apparent. We present a framework for identifying

timing channels and separate them from other types of information flows.

To show the practicality of our framework, we explore in Chapters 6.5 and 6.6

two common shared resources which are at the heart of interference in modern computing

systems: the shared bus and CPU cache. The shared bus in modern systems has been the

source of the so called bus-contention channel [44] in which information can be covertly

communicated through the traffic on a global bus. Previous work has explored how

to identify information flows in global buses using GLIFT [78] but has fallen short of

classifying these flows as functional or timing. Beyond the bus, we examine in Chapter 6.6

the CPU cache; as previously mentioned, the cache is a common vulnerability in modern

systems, as it is typically susceptible to leaking secret information through timing

channels. For both examples, we do not make claims about complete information security,

but rather increased confidence by identifying the presence of functional information and

separating it from timing channels. Before we present our formal model and its use, we

outline some essential preliminary definitions in Chapter 6.2 and formal definitions of

GLIFT and information flow tracking using GLIFT in Chapter 6.3.



Chapter 2

Background and Related Work

2.1 The Cost of Embedded Security

Hardware and embedded systems are seeing an increasing number of exploits

that are costing companies millions of dollars [100]. This is primarily due to the lack

of, systematic, formal methods for identifying hardware-specific security vulnerabilities

(including timing channels) are non-existent. With the increasing complexity of our

hardware, these vulnerabilities are becoming increasingly more of an issue.

For example, Intel states about the core i7-900 that “in some rare cases improper

TLB invalidation may result in unpredictable system behavior and can hang your OS

or result with incorrect data” [50]. While these bugs may not occur in common place

execution, a motivated attacker may find unique ways to exploit these undocumented

behaviors to leak information and/or circumvent policy. Furthermore, such “specification

updates” are not at all uncommon. The same core i7-900 documentation states 152

separate issues, including 6 issues that cause “unpredictable behavior” and 11 capable of

spawning “unexpected results”. Assuming conservatively that this represents all of the

issues, and that the issues are spread evenly over the 1 year lifetime during which the core

is produced, this is still nearly 2 issues per week. Systematic ways for detecting these

potential security vulnerabilities are necessary for more reliable and secure hardware.

8
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Another example of a bug in an embedded system costing millions of dollars

is in the Toyota unintended acceleration issue [100]. In this example, the accelator

in some Camry’s activated against user control and they were unable to control their

automobile. Although these were unlikely to be caused by malicious intent, the security

and saftely assessment of these systems was lacking. For example, the “embedded

systems experts who reviewed Toyota’s electronic throttle source code testified that they

found it defective. They said it contains bugs – including some that can cause unintended

acceleration.” [100]. Toyota was forced to pay $1.5M to the driver of the car and $1.5M

to a victim’s family in a resulting crash. The jury in this case commented that “Toyota

acted with ’reckless disregard’ for the rights of others.” This type of mishap not only

costed Toyota $3M to the plaintiffs in this case, but unmeasurable amounts in terms of

PR and related market effects. Toyota may have been able to circumvent some of these

issues if they had more systematic security testing to ensure that these sort of safety

critical systems would not malfunction inadvertently.

Some methods for security assessment do exist but are typically done by mandated

security standards set forth by various standards bodies. Some companies have their own

internal security auditing teams, such as Intel’s Security Center of Excellence (SeCoE),

but many others follow more gonvernment mandated standards. These standards provide a

safety assessment mechanisms to help remedy some of these issues in the high-assurance

markets. For example, there is the FIPS 140-2 standard for cryptographic devices [81] put

on by the National Institute of Standards and Technology (NIST) to provide a standard

assessment mechanism for designing cryptographic modules. Much emphasis is put

on tamper-resistance and TEMPEST attacks (similar to side-channel attacks) and a

level from 1 to 4 is assigned based on how well the module is tested. Other standards

exist to measure how well systems have been evaluated. For example, the Common

Criteria [1] standard specifies a set of rules for testing and evaluation. Specifically, an
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Evaluation Assurance Level (EAL) is awarded to systems based on how thoroughly they

have been evaluated (assigned a number from 1 to 7). Not surprisingly, achieving a high-

assurance level is not only time consuming but extremely expensive. Such assurance often

requires detailed verification including strict theorem proving and third party analysis [1].

This complicated process not only takes a tremendous amount of time estimated at 10

years [97] but also costs thousands of dollars per line of code [6]. Reducing this overhead

is needed to keep these operation critical systems up-to-date with current technology at a

reasonable cost. Tools for making the security assessment of hardware is greatly needed

to both reduce this evaluation cost and make security evaluation a primary constraint in

the hardware design flow.

A powerful new technology presented in past work [103] and more thoroughly

evaluated in this thesis, called gate-level information flow tracking (GLIFT), provides

a mechanism for helping with hardware security assessment. It provides a method for

testing various security properties about the underlying hardware in a similar flavor to

functional testing and verification. This thesis is primarily focused on how GLIFT can be

used to specifically detect timing channels. However, in the rest of this chapter, I will

first disuss some necessary background about information flow tracking, GLIFT, and

timing channels.

2.2 Information Flow Tracking and GLIFT

A large amount of previous work has been done in the area of information flow

security for complete systems. Numerous works have been done on information flow

tracking specifically in hardware because monitoring information flows at this level allows

for unintended flows to be identified without significantly affecting system performance.

This section discusses the previous research in information flow security for complete

sytems and specifically focuses on GLIFT since it is the primary technique we used in
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previous and continuing analyses.

Information flow security focuses on monitoring the movement of data among

different trust levels. Traditionally information flow security is guaranteed by ensuring

that a particular information flow policy, such as integrity or confidentiality, is upheld.

These policies can be modeled using a lattice (L, v) [30], where L is the set of security

labels and v is a partial order between these security labels that specifies the permittable

information flows. For example, consider the example lattices shown in Figure 2.1.

Figure 2.1 (a) shows a typical binary security lattice. For such a binary lattice, the term

taint is often used for the higher label on the lattice. For integrity, untrusted information

is considered tainted in order to monitor if this taint violates a trusted (untainted) location.

For confidentiality, taint is defined differently. The policy taints secret information to

verify whether this leaks to an unclassified domain. Figure 2.1 (b) shows a security lattice

with multiple trust levels. In both cases, integrity states that information may flow down

in the lattice, but not up (”no write-up, no read-down” [19]). Confidentiality states that

information can flow up the lattice but not down (”no read-up, no write-down” [17]). For

simplicity, our analysis focuses on the binary lattice low @ high in Figure 2.1 (a).

high

low

TS

UC

S1 S2

(a) (b)

Figure 2.1. Examples of different security lattices. (a) is a typical binary security lattice
showing low @ high. (b) is a more complicated lattice with multiple labels. Here TS
is top-secret, S1 and S2 are two security levels which are less secure than TS but more
private than UC (unclassified).

To be concrete, consider the code snippet shown in Figure 2.2 and let L(w) be the
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label assigned to some variable w. First, to understand explicit information flows and how

they can be tracked, consider the assignment shown y = z. For integrity, using the lattice

low @ high, this code is secure if L(y) v L(z). In other words, this code is information

flow secure only if the label assigned to z allows for information to flow into y without

violating the integrity of y. Integrity in this situation is not violated as long as both y

and z have the same label or y is low and z is high. Confidentiality does essentially

the opposite as integrity. Using the binary lattice, the assignment is information flow

secure if L(z) v L(y). Meaning that information can only flow into y from z if y is at

higher or equal security level to that of z. Implicit flows in this example follow a similar

strategy except that they flow information indirectly to the variable. This particular

code shows an implicit channel in the form of a branch. Here x leaks information to y

because, depending on x, y will be assigned the value of z. For both confidentiality and

integrity, implicit flows need to also be eliminated. In this particular example, to enforce

integrity, the labels must adhere to L(y) v L(x) in a similar manner as the explicit flow.

For confidentiality, a similar relation holds for the explicit flow, namely L(x) v L(y).

Note that if integrity or confidentiality is to hold for the entire code, both the information

flow constraints for the explicit and implicit flows must be enforced. Using this common

model of information flow security, many implementations have been made to enforce

this at all layers of the system design.

if ( x )
y = z
explicit

implicit

Figure 2.2. Simple code snippet showing explicit information flow from z to y and
implicit information flow from x to y.
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The most common techniques for information flow security are implemented in

programming languages using type based systems and in operating systems. Sabelfield

and Myers [94] present a survey on the different programming language based techniques.

Most work has been done in static compile based techniques which build off of the typing

system of a language in order to enforce information flow security. These methods

have shown to be effective and can even eliminate implicit channels due to conditional

branches in execution. Jif [74, 72] is a good example of such a type based system. Similar

programming language based techniques have been applied to JavaScript to help alleviate

security issues such as history sniffing or executing malicious code [51, 24]. Flume [58]

has been shown to enforce information flow security using abstractions for operating

system primitives such as processes, pipes, and the file system. It works by providing

a user-level reference monitor which allows for decentralized information flow control

(DIFC) [73]. Some other operating system DIFC mechanisms [31, 114] perform similar

techniques but are incorporated into an entirely new operating system. These schemes

are often effective but are forced to abstract away the potential implicit flows that occur

in hardware. Further, these schemes force the designer to comply with a new typing

system (in programming language techniques) or reduce the overall system performance

(in operating system abstractions).

To maintain system performance, information flow tracking has been proposed

in hardware. The most common hardware information flow tracking strategies focus on

the Instruction Set Architecture (ISA) and microarchitecture. One such technique called

Dynamic information flow tracking (DIFT), proposed by Suh et al. [98], tags information

from untrusted channels such as network interfaces and tracks it throughout a processor.

They label certain inputs to the processor as “spurious” (tainted) and check whether or not

this input causes a branch to potentially untrusted code. This technique has been shown

to successfully prevent buffer-overflow [26] and format string attacks [76]. Raksha [28]
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is a DIFT style processor that allows the security policies to be reconfigured. Minos

[27] uses information flow tracking to dynamically monitor the propagation of integrity

bits to ensure that potentially harmful branches in execution are prevented in a manner

similar to Suh el al. [98]. RIFLE [104] is an information flow secure system which uses

binary re-writing. Since security annotations are done on the binary itself, applications

can be executed on their system without requiring additional security type annotations to

programs.

These previous techniques are effective at ensuring that potentially harmful

branches in control flow are prevented or guaranteeing the integrity of critical memory

regions. However, these methods target a higher level of abstraction and cannot be used to

monitor the information flows in general digital hardware. For this reason, these methods

also fail to detect hardware specific side channels in the form of timing. GLIFT provides

a solution for tracking information flows, including those through timing channels, in

general digital hardware. GLIFT works by tracking each individual bit in a system as

they propagate through Boolean gates. This is done using an additional tag bit commonly

referred to as taint and tracking logic which specifies how taint propagates. Information

is said to flow through a logic gate if particular tainted inputs have a chance to affect the

output.

Taint is a label associated with each data bit in the system which indicates whether

or not this particular data bit should be tracked. If integrity is a concern, untrusted

information is tainted to ensure that this tainted information does not flow to a trusted

location. In the case of confidentiality, secret information is tainted to monitor whether it

leaks to a public domain. Taint is propagated whenever a particular tainted data bit can

affect the output. In other words, if the output of a function is dependent on changes to

tainted inputs, then the output is marked as tainted.

For example, consider a simple 2-input NAND gate as seen in Figure 2.3 (a) and
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a b
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a b at bt ot

0 0 0 1 0
0 1 0 1 0
1 0 0 1 1
1 1 0 1 1

(a) (c)(b)

Partial Truth Table

b aba

o

tt

t

Figure 2.3. (a) A two-input NAND gate. (b) Truth table of two-input NAND gate with
taint information (not all the combinations are shown). (c) The corresponding tracking
logic of two-input NAND gate is abt +bat +atbt . Every change at the input of the gate
is precisely tracked at the output.

its corresponding tracking logic as shown in Figure 2.3 (c). For a NAND gate, only

particular input changes will result in a change at the output. Specifically, consider the

case in which a = 0 and b = 1. Here changing the value of b will cause no change at

o since a = 0, meaning that there is no information flowing from b to o. If b were to

be tainted (bt = 1) and a untainted (at = 0) in this case, o would be untainted (ot = 0)

since the tainted input does not affect the output. A subset of all such combinations

can be seen in Figure 2.3 (b). Using the full truth table, a function can be derived for

all similar input combinations into a tracking logic function as shown in Figure 2.3 (c).

Since NAND is functionally complete, the tracking logic for any digital circuit can be

derived by constructively generating the tracking logic for each gate. In other words,

given a circuit represented as NAND gates, the circuit can have complete information

flow tracking by interconnecting the tracking logic for each individual NAND gate. This

results in a design that precisely tracks the information flow of each individual bit. As

mentioned, GLIFT is a useful tool for analyzing any digital hardware because it exposes

all information flows explicitly.
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All prior work in the area has assumed that if a function is computed the output

should be tagged as tainted if any of the inputs are tainted. This assumption is certainly

sound (i.e., it should never lead to a case wherein the output which should be tainted is

marked as untainted) but it is overly conservative in many important cases, in particular

if something is known about the inputs at runtime. To understand the importance of

precisely tracking information flow, consider a simple 1 bit counter that increments (or

toggles in this case) every cycle or gets cleared back to zero from a reset. If a counter

is implemented as depicted in Figure 2.4 a), and uses a conservative information flow

tracking scheme as mentioned, there is no way for the counter to ever return to an

untainted state once it has been marked tainted since the value of the counter will be

tainted. Yet it is obvious that the system should return to an untainted state on an untainted

reset. However, if GLIFT is used as described, the counter would in fact reset back to

an untainted state as seen in Figure 2.4 b) and c). This is because GLIFT considers the

values of the inputs to determine if it is possible for information to flow from the inputs

to the outputs.

CLK

RESET D Q

CLK

RESET D Q

CLK

RESET D Q

a) b) c)

Untainted 

Figure 2.4. A 1-bit counter with reset. Our tracking logic is more precise and recognizes
that an untainted reset guarantees an untainted 0 in the counter value. The gray area
indicates the value here is tainted. a) Tainted counter. b) An untainted reset puts the
counter back to an untainted state. c) Untainted counter

Now that the details behind how GLIFT works has been presented, it helps to see

how it can be used in practice for testing for information flows.
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2.2.1 Using GLIFT as a Static Testing Technique

Our GLIFT analysis can be accomplished statically (at system design time)

meaning that additional gates due to our analysis logic are never actually fabricated and

are used only at design time. Most of our customers have expressed interest in using our

gate-level technology for static analysis so we focus on how our technology can be used

in this manner.

In a static scenario, the GLIFT analysis is used to test or verify if the system

complies with designer supplied security policies. This is done completely at design time,

i.e., there is no need to physically instantiate the analysis logic after testing or verification

is complete. In the past, we have successfully employed this in both testing [78, 53] and

verification [102] using GLIFT.

Figure 2.5 provides a possible design flow for static analysis. The system is

described in a hardware description language (HDL) such as VHDL or Verilog [49]. Once

the digital circuit under design has passed functional verification, it is synthesized into

a gate-level netlist using standard hardware synthesis tools such as Synopsys Design

Compiler. Next, each gate in the netlist is augmented with the appropriate analysis logic.

There are many methods for generating this tracking logic for a given circuit all with

varying computational complexity and trade-offs with preciseness. In other words, GLIFT

can be imprecise since sometimes it will conservatively say there is an information flow

when there is in fact not one. We have proven that generating precise GLIFT logic for a

general function is NP-complete in past work. This thesis will not explore these topics

further, but the interested reader should see our work on preciseness [46] and on the

complexity of the various different GLIFT logic generation methods [47].

The most common method used to generate GLIFT logic is a constructive one,

which creates GLIFT logic for each logic gate in the gate-level library individually and
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module m(…);
. . .                

always@(...) begin
. . .                

<behavior>
. . .                

end
endmodule

module m(…);
. . .                

always@(...) begin
. . .                

<new_behavior>
. . .                

end
endmodule

Figure 2.5. Using gate level analysis logic for static assesment of security properties in
digital system design.
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then appends these new “GLIFT” gates together. In other words, every gate in the system

has logic attached to it individually in a linear fashion. This design equipped with GLIFT

logic is now capable of being analyzed for unintended information flows. At this stage,

test vectors are run on the hardware to see if it violates the information flow policy. If the

policy is violated, the description of the hardware is modified and once again undergoes

functional verification and proceeds through the testing flow again. Making modifications

to the hardware model is not obvious and generally requires a form of time-multiplexing

to prove the absence of timing channels from the design. This has shown to be effective

when analyzing processor cores and bus controllers as subsequent sections discuss in

more detail.

Once the appropriate GLIFT logic is added for the design, testing and/or ver-

ification scenarios are run to check if the design potentially violates any pre-defined

security policies (e.g. “does my secret key leak?”). If some policy is violated, the design

is modified and re-verified until all properties of interest are pass. In the static testing or

verification application scenario, the tester is responsible for specifying what properties

to analyze. For example, the tester may wish to ensure that certain critical portions of

the system are never affected by untrusted components or that a secret encryption key is

never flowing to somewhere other than the ciphertext.

In our past work we have demonstrated the use of gate property analysis in secure

hardware design as a static analysis technique. We slightly modified the I2C and USB

protocols to eliminate timing channels and utilized the testing methodology to show

that these new protocols adhered to strict timing behaviors [78]. This is important in

many scenarios, e.g., to ensure that real-time systems do not miss their deadlines. Other

recent work addresses trust issues in hardware designs that use mix-trusted IP cores

from different vendors [53]. Here we use gate-level analysis to verify that there is no

unintended interaction between modules that may violate security properties such as
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non-interference. In [102], a static analysis technique is used to verify the concrete

hardware implementation with partial software specification to be free of unintended

information flows. The information flow properties of the entire design are statically

verified using gate-level analysis. To present a better understanding of how this method

can be used in practice, I will describe an example use case on an AES core.

2.2.2 Example: Using GLIFT on AES

To understand how one might use this testing flow and how information flows at

the gate-level, it is useful to think about concrete example. Let us consider a hardware

encryption core. For the purposes of this discussion, I will use the advanced encryption

standard (AES). I choose to use an encryption core as an example since they are very

commonly built in hardware and their security is often at the core of the security of the

entire system.

Figure 2.6a shows the overview of AES as a hardware encryption core. It is

comprised of several different submodules which each perform a specific function such

as MixColumns, SubBytes, etc. AES itself executes these different functions in many

iterations (called rounds) using a portion of the expanded Key in each round to produce

a ciphertext. AES itself has stood the test of time against cryptanalysis attacks and is

accepted to be secure. In other words, the cryptographic community has accepted it to

be mathematically infeasible to extract either the key or message from the ciphtertext.

When this algorithm is built in hardware, however, there are various different control

outputs that are required for ease of integration into the system. These outputs could

be things such as a way for a designer to read out the encryption key when in a special

debug mode or something as simple as saying when the ciphertext is ready.

In certain circumstances, flows from the secret key to these control outputs might

be acceptable and in others could be disastrous to the security of the system. For example,
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it might be acceptable to read the key out only when in a special “debug” mode. In

addition, it might be unacceptable for the key to flow to a “ready” control output since

this could be a potentially exploitable timing channel (i.e. the key has the ability to affect

the execution time of the core).
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Figure 2.6. (a) An overview of the interface and internal modules of a hardware AES
encryption block. (b) The layout for an AES block. Proving that the Key does not flow to
a control output is non-trivial.

Unfortunately verifying a property like this is extremely non-trival. Figure 2.6b

shows the layout of an implementation of AES. An intuitive way of figuring out whether or

not the key flows to a control output becomes extremely difficult in the mess of thousands

of gates. However, by using our gate-level technology, we can provide designers with



22

an easy tool to mark their key as “secret” and discover if it is actually ever leaking to an

“unclassified” control output. In doing so, hardware designers can systematically evaluate

the security of their design by enumerating the different properties they would like to

check.

GLIFT in and of itself does not ensure that secret data does not spread across

the whole machine, rather it is a static analysis technique that ensures that as secret data

spreads across the machine it will always be properly detected. Tracking properties at

the gate level at design time makes the most sense when coupled with the hardware and

software designs that attempt to enforce that the desired properties hold.

2.3 Timing-Channel Attacks

Timing-channels are a form of side channel in which secret information leaks

through the amount of time a computation takes to execute. Other forms of side channels

include physical ones such as the amount of power a cryptograhic operation consumes [54,

66, 70, 71, 85], the amount of electromagnetic radiation it produces [13, 65], the sounds

keys make on a computer keyboard [15], the difference in faulty behavior when a

cryptographic hardware module ages [20, 21, 87], and even the minute sounds computers

make (likely from the fluctuations in capacitors) when they perform a computation [36].

All of these side channels have been shown to leak secret encryption keys and other critical

pieces of data. Although physical side channels are quite powerful in nature, this section

focuses primarily on timing based side channels. A timing based channel when secret

data affects how long a computation takes the execute and thus the secret information

can be inferred from time. In addition, on the availability side, a timing-channel can be

used by an attacker to provide variants of denial of service by affecting when a critical

system component can respond. Timing-channels have seen a lot of attention in recent

years with many demonstratable attacks performed on the underlying hardware. These
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attacks typically exploit hardware specific features that are very frequently impossible to

solve using software mechanisms without destroying system performance.

There have been many published confidentiality-based timing attacks that target

cryptographic algorithms such as the advanced encryption standard (AES), the Rivest-

Shamir-Adlemann (RSA) public-key crypto system, Diffie-Hellman, and others. These

timing attacks exploit hardware performance mechanisms such as caches and branch-

predictors. In the processor cache space many attacks of been performed in various

fashions on data-caches [22, 10, 86, 18, 40] and even instruction caches in the work done

by Aciiçmez et al. [12, 9]. All of these cache-based attacks rely on the non-deterministic

latencies of performing a memory read. For example, cryptographic algorithms will fill

up the cache with data and often times the cache line in which data is mapped leaks

some critical information. As been demonstrated in this past work, an attacker with the

ability to measure time can extract complete encryption keys solely from the variations

in time from caches. Even further, Acciiçmez et al. also performed timing-based attacks

on branch predictors [11] where they exploited the varying latencies of correctly and

incorrectly predicting whether or not a program will take a branch. There has also been

much recent research to help thwart these attacks by creating new cache designs, as done

by Wang et al. [107, 108], and modifying the way in which attackers can measure time,

as done by Martin et al. [67].

To give a simplified example of how a timing channel attack works, I will

summarize a simplified version of the attack performed by Paul Kocher in his timing

channel attack paper on RSA [55]. The Rivest-Shamir-Adleman (RSA) assymetric,

public-key cryptographic system is one of the most widely used systems in the SSL/TLS

standard for both symmetric key-exchange and digital-signatures. I will only briefly

discuss the portions of the system that have been vulnerable to timing attacks so that the

exploitability of this algorithm can be thoroughly understood. For details about the entire
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algorithm, the reader should refer to the original RSA paper [92].

The security of RSA relies on the difficulting of computing discrete logarithms.

Stated differently, data is encrypted and decrypted by performing modular exponentiation,

which can be done efficiently. However, given a cipher text, it is computationally difficult

to compute the inverse (discrete log) to extract the message or key. To be concrete, a

message M is encrypted using a public key e and the ciphertext C is decrypted using a

private key d as follows:

C ≡Me (mod n)

M ≡Cd (mod n)
(2.1)

Where e, d, and n are derived during the key-generation process (not discussed

here) using two large and distinct prime numbers. Given that an attacker has access to M,

ciphertext C, public key e, and modulus n, it is accepted to be computationally infeasible

to compute the discret logarithm logC(M) (mod n) to extract the secret key d.

Now, to perform modular exponentiation to take C to the d, one could naively

perform: C×C× ...×C︸ ︷︷ ︸
d

. This would be very inefficient since there are certain cases

where a multiply is not necessary depending on the value of the exponent. To optimize

this, a square-and-multiply algorithm is often used. One implementation of this algorithm

can be seen in Algorithm 1.

As stated, this optimization is performed to reduce the number of multiplies the

system needs to perform because they typically require more time. Since the decision

to perform a multiply is made on the value of a key-bit, an attacker with the ability to

measure the execution time can, with surprisingly high probability, extract the entire

encryption key with a sufficient number of timing measurements (an interested reader
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Algorithm 1. Basic algorithm for square-and-multiply to compute modular exponentia-
tion. It computes Cd (mod n).

R = 1;
temp =C;
for i = 0 to |d|−1 do

if bit d[i] = 1 then
R = R · temp (mod n)

end if
temp = temp2 (mod n)

end for
return R

should refer to Paul Kocher’s paper [55] for specific details of the attack).

These timing-based attacks are not new and have been discussed early days of

system literature (most notably by Wei Hu and other works related to the VAX Virtual

Machine Monitor [52, 44, 111]). The most common solution proposed to solve this

problem was to add randomness to the system to make the timing measurements more

“noisy.” Thus attemping to make the signal-to-noise ratio high enough that it makes

stochastically difficult for an attacker to find any useful information. TimeWarp by

Martin et al. [67] is a good recent example of this type of technique.

There has also been much work that is typically based on information theory to

quantify how much information is leaking through a timing channel. Askarov et al. [14]

present a software-based approach that black-boxes modules and adds randomness to

when output events of this black box can be observed. They use information theory to

bound the amount of information leaking through the timing channel. Giles et al. present

“jammers” for timing channels that add randomness and then quantify the difficulty of

exploting the channel using information theory. Kocher [55] presents cryptographic

blinding in order to prevent timing channels. Cryptographic blinding is a way of adding

randomness directly to the computation rather than adding randomness into the system

itself. For example, for computing the modular exponentiation in RSA, one can multiply
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the input message by a random number and then reverse the operation before decrypting.

An attacker measuring time in this case would have a much more difficult time extracting

the secrte information because it would be blinded by this random number. In a similar

manner, Köpf et al. [56] analyze how much information is leaked once cryptographic

blinding is applied. Their approach is also information theoretic.

The root cause of these timing channels are typically hardware specific. For

example, the time penalty for missing a cache is higher than hitting it, the latency for a

mis-predicted branch is higher than one that is correct, or more time is spent on certain

branches of computation. In general, a multi-process system will take longer to finish

its work when processes contend for hardware resources. All of these hardware-specific

timing vulnerabilities can, and have been exploited to extract secret information. Further,

hardware-based timing channels can even violate the availability where a process or

subsystem cannot meet its deadline because a less trusted component has violated its

response time.

Detecting these sort of vulnerabilities, in addition to other hardware security bugs,

is becoming an increasingly difficult and costly problem. Currently, there are limited

(if any) methods for assisting designers in finding potential problems in their hardware.

There are many methods for helping prevent these sort of attacks, but systematic methods

for detecting them is an extremely difficult problem. As mentioned, there are many other

examples in which the lack of security assessment have costed companies money and

time. If these companies had a mechanism for testing the security properties of their

underlying hardware, many of the bugs that are found are likely to be circumvented.

This thesis provides such a tool and demonstrates how it can be used against hardware

timing channels. The remainder of this thesis will explore how gate-level information

flow tracking (GLIFT) can be used to detect and identify hardware timing channels. The

next Chapter will first provide some essential definitions for GLIFT in order to build a
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solid theoretical foundation.



Chapter 3

Fundamental GLIFT Logic Equations
and Overheads

In order to have a good understand of the details behind GLIFT, it is helpful

to have an understanding of some essential definitions and associated overheads. In

this chapter I will present some of these definitions and give some discussions into the

overheads that the logic creates.

GLIFT logic is the co-existing logic that propagates information throughout a

system. This logic performs no operations that affect the way that the system operates.

The GLIFT logic is used to understand where information is propagating to point out

where potential security vulnerabilities are. This is done by “tainting” information and

monitoring it as it flows throughout the system. Before we can discuss the necessary

formal equations for GLIFT, I will first define taint. Throughout this discussion, the

shadow logic for basic gate primitives (AND, OR, NAND, etc.) will be discussed.

3.1 Taint and Tracking (GLIFT) Logic

Taint is simply a label associated with a piece of information that renders it to be

tracked. For example, if one wishes to track the movement of a secret key in a piece of

hardware, then they would taint the key to indicate that it is secret. In GLIFT logic, as

28
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we will soon discuss, every bit has an associated taint bit (for a 2-level security lattice).

To this end, if a bit’s associated taint bit is asserted, we say that that bit is tainted. To be

more precise, a more formal definition is given in Definition 1. I will later repeat this

definition for completeness in Chapter 6.

Definition 1 (Taint). For a set of wires (inputs, outputs, or internals) X, the corresponding

taint set is Xt . A wire xi for x = (x1, . . . ,xi, . . . ,xn) ∈ X is tainted by setting xit = 1 for

xt ∈ Xt and xt = (x1t , . . .xit , . . .xnt).

Now that taint has been introduced, I can now present some formal definitions of

GLIFT for some common logic gates and some associated proofs. These definitions are

with respect to a combinational (stateless) logic function. Later on in Chapter 6, these

definitions will be expanded to include the notion of time and state. First I will define the

tracking (GLIFT) logic for a combinational logic function.

Definition 2 (Tracking logic). For a combinational logic function f : X → Y , the respec-

tive tracking logic function is ft : Xt×X→Yt , where Xt is the taint set of X and Yt the taint

set of Y . If f (x1, . . . ,xn) = (y1, . . . ,ym), then ft(x1, . . . ,xn,x1t , . . . ,xnt) = (y1t , . . . ,ymt),

where yit = 1 indicates that some tainted input x j (i.e., an input x j such that x jt = 1) can

affect the value of yi.

From this definition, it can be seen that the tracking logic will assert logic 1

whenever a tainted input can affect the output of the original logic function. With this

definition in place, I will now present some basic logic functions for some gate primitives

and later present the overheads associated with GLIFT logic on larger benchmarks.

3.2 GLIFT Logic for Basic Boolean Gates

There are many ways in which to derivce the GLIFT logic for a logic function.

The easiest method is to derive logic for gate primitives and then replace the gates in the
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combinational logic function with the GLIFT logic for each primitive. This method was

discussed prior in Chapter 2. There are other methods to generate this logic as well, the

interested reader should consult our paper on generating GLIFT logic [47].

The purposes of this section are to present and discuss the intuition behind the

tracking logic for several gate primitives. First, I will discuss the logic AND.

Given logic AND, f = g ·h, its associated tracking logic ft is

ft = g ·ht +gt ·h+gt ·ht (3.1)

where · and + represent the logical AND and OR operators respectively. To break

down the intuition here, the output of f can be affected in several ways by a tainted input

as each term in ft conveys. The first term, g ·ht , shows that f can be affected when g = 1

and h is tainted. In this case, changing the value of h will cause a change at the output

of f , this ft should be 1 on this case. A similar case is made for the term gt ·h. The last

term, gt ·ht covers the case when both inputs are tainted.

Now, lets look at the tracking logic for a logical OR ( f = g+h):

ft = ḡ ·ht +gt · h̄+gt ·ht (3.2)

The structure of this equation is the same as that of logic AND in that there are 3

terms. However, in the OR case, each input is negated. To understand why, consider the

first term: ḡ ·ht . Here, the output of f will be affected by the tainted input h only when

g = 0. Only if g = 0, does h have the ability to influence the output.

The last gate-example I would like to show is that for an XOR ( f = g⊕h):

ft = gt +ht (3.3)
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The intuition here is that, for an XOR, any input changing will cause a change at

the output. As an example, if g is tainted (gt = 1), then the output of the GLIFT logic ( ft)

will be 1. This is because a change of a tainted input (g) is able to influence the output of

f .

This analysis can be broadened to derive the tracking logic for more complex func-

tions by simplying analyzing whether or not a tainted input can influence the output. In

general, we have proven that derive completely precise GLIFT logic is NP-complete [47].

The best method to create this logic is to generate the logic for some complex gates, as

we have done simply here, and then those gates can be swapped out with the GLIFT logic

as needed. This reduces the amount of overhead required when generating the GLIFT

logic for a new (and potentially complex) design. I encourage the interested reader to

consult some of our other work on this topic [46, 47, 48, 45] but most of it is out of the

scope of this thesis.

3.3 GLIFT Logic Overheads

To understand how much the GLIFT logic causes in terms of overheads, it helps

to look at a set of standard benchmarks. First, I will present some results in terms of

number of minterms, which are the number of terms in the logic function which make

the output 1. I first use this metric because it provides a sense of the logic complexity

independent of optimizations. Afterward, I will present overheads in terms of area for a

set of IWLS and ISCAS benchmarks. It should be explicitly clear that the techniques

presented in this thesis use GLIFT primarily for testing. That is, GLIFT logic is never

physically instantiated on the design. The overheads presented here are to give a sense of

how the GLIFT logic will affect the time spent performing testing/verification.

Figure 3.1 shows the number of minterms for several input AND and XOR gates.

It should be noted here that the number of minterms for an AND-gate, OR-gate, NAND-
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gate, and NOR-gate are all the same. Intuitively, this can be seen in Equations 3.1 and 3.2.

Further, since the input of an inverter always affects the output, the GLIFT logic of an

inverter is essentially a wire. Thus the GLIFT logic for a NAND gate is the same as

an AND. The same rule applies to an OR gate. Figure 3.1 thus demonstrates that as as

the number of inputs grows linearly, the number of minterms grows exponentially. The

bounds 2N and 22N represent the total number of minterms for the orginal logic function

(2N) and the GLIFT logic function (22N).

Figure 3.1. The number of minterms in the GLIFT logic function for AND and XOR.
Minterms here are the number of terms in the GLIFT logic function. 2N is the total
possible number of minterms in the original function and 22N the number of total possible
minterms in the GLIFT logic fucntion.

A similar behavior can be seen on some more standard benchmarks. In Figure 3.2,

we can observe an exponential increase in the number of minterms for several adders,

multipliers, comparators, multipliers, and multiplexors. This does not, however, imply

that the actual optimized area will be exponentially larger than the original design. This

just provides a sense of how complicated the GLIFT logic is with respect to the original

logic.

To understand the concrete area overheads, we can examine Table 3.1. Here we

analyze several IWLS and ISCAS benchmarks [3]. On average, for this set of benchmarks,

the GLIFT logic is 3.25 times larger than the original logic. The results presented in this
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Figure 3.2. The number of minterms in the GLIFT logic function for several benchmarks.
1 to 4 bit Adders, Multipliers, and Comparators and 2, 4, and 8 bit Shift and Multiplexors.

table are from the Berkeley logic synthesis and verification tool, ABC [7], and are thus

unitless. As the designs increase, however, there does not seem to be a trend of increased

area. Intuitively, this makes sense because the constructive method provides a fixed

overhead on each gate (for 2-input gates this is around 4X). If another logic generation

method was used, as discussed in some of our other work [47, 46], these area numbers

increase.

Table 3.1. Area of combinational logic benchmarks (ISCAS and IWLS) and overheads
from the GLIFT logic using the constructive generation method discussed earlier in this
thesis. Area numbers are unit-less and were produced using Berkeley’s ABC tool [7].
The average area increase is: 3.25X

Benchmark Original Constructive Size Increase

74283 109 179 1.64X
alu4 cl 671 2292 3.42X

s344/s349 488 1765 3.62X
C5315 2501 9166 3.66X
C7552 2897 9377 3.24X

i10 3583 14407 4.02X
C6288 4994 11965 2.40X

too large 7812 15957 2.04X
des 14539 75262 5.18X

Although there is a 3.25X size increase in terms of area, the GLIFT logic itself is
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never used in a physical design. It can be thought of as a logic which provides meta-data

about information flow. It is used soley at design time to analyze the flow of information

through the design and, once this analysis is complete, the logic will be remove prior

to fabrication. In addition, GLIFT’s structure provides some very powerful properties.

For one, it can detect hardware timing channels (one primary purpose of this thesis).

Another, yet more subtle property is that it can be used for formal verification. Since the

GLIFT logic itself is a logic, it can be used to formally verify different security properties.

Although this topic is not explored in this thesis, I will address potential future research

directions at the end of this document.

This chapter, in small part, is a reprint of the material as it appears in the Design

Automation Conference 2010. Oberg, Jason; Hu, Wei; Irturk, Ali; Tiwari, Mohit;

Sherwood, Timothy; Kastner, Ryan; The dissertation author was the primary investigator

and author of this paper.



Chapter 4

Exploring Information Leaks in Bus
Protocols

Modern embedded systems rely on different modules communicating with one

another. These different protocols should and need to be evaulated for security in our next

generation automobiles, medical devices, mobile phones, and countless other applications.

The analysis of bus protocols is important for both integrity and confidentiality. On

the confidentiality side, potential flaws in the ways components communicate might

improperly distribute keys or potentially leak other secret information through timing-

channels. On the integrity side, misproper analysis of communication protocols can cause

variants of denial of service and data corruption whether these were intended or not.

In this section, I will discuss how different protocols can be analyzed for security

using GLIFT. Many of these are timing-related information leaks as will be explained

throughout this chapter. This chapter specifically focuses on the Inter-Integrated Circuit

I2C and the Unniversal Serial Bus (USB) because of their wide adoption in embedded

systems and their familiarity with many. The primary goal of this analysis is to show how

the hardware security testing and verification techniques presented in this are invaluable

assets for building stronger bus protocols.

35
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4.1 Information Flows in I2C

To start off, I will first begin to show how this analysis can be applied to the I2C

bus protocol. I use the information flow testing techniques presnted in Chapter 2 on I2C

to show how to obtain information flow isolation between devices on the bus.

I2C is a 2-wire serial protocol consisting of a common clock and data line as

shown in Figure 4.1 [5]. With that in mind, explicit information flows are quite simply

identified since any device can openly snoop the bus even though transfer between the

master and itself is never initiated. However, as this section will show, eliminating only

explicit information flows in I2C does not guarantee non-interference since information

can flow through more difficult to detect side channels.

Master Slave 0 Slave 1 Slave N. . .

SCL (clk)

SDA (data)

Figure 4.1. I2C Bus configuration. I2C can support several devices on a single global
bus.

Our analysis of I2C follows the same testing flow discussed in Chapter 2. We

modeled I2C devices as FSMs using RTL Verilog. It is not practical to enumerate all

input combinations to this system since the number of states in which each device can

be in grows exponentially. As a result, we chose to analyze the information flows for a

common scenario in which a master writes data to a Slave 0 (as shown in Figure 4.1) and

subsequently writes data to a Slave 1.

The design was synthesized using Synopsys Design Compiler and the gate-level

functionality was also verified using Modelsim SE 6.6b [69]. Once verified, tracking
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logic was associated with each gate and Slave 0 was marked as tainted because we wished

to monitor where Slave 0’s information flowed. During the communication between the

Master and Slave 0, Slave 0 is required to send an ACK in response to receiving data.

The Master’s state depends explicitly on whether or not it receives an ACK. Since this

ACK comes from tainted Slave 0, this ACK causes the Master’s state machine to become

tainted resulting in a taint explosion in the Master. As mentioned, such an explicit flow

is expected since the Master and Slave 0 are directly communicating. However, once

the Master subsequently communicates with Slave 1, this tainted information flows to

Slave 1 resulting in a less obvious implicit information flow from Slave 0 to Slave 1. The

tracking logic clearly identifies both information flows in this scenario.

In order to enforce non-interference between devices on the I2C bus in this

scenario, all information flows between slaves need to be eliminated. The following

subsection discusses a useful technique for proving non-interference for this particular

scenario.

4.1.1 Enforcing Non-interference in I2C

To enforce non-interference between devices on the I2C bus, we need to eliminate

all information flows both explicit and implicit. This section discusses a solution for

guaranteeing non-interference between devices on the I2C bus.

As mentioned, there are obvious explicit information flows between devices since

they are all connected via common wires. To eliminate explicit flows, we introduce

an adapter which sits between the device and the bus as shown in Figure 4.2. This

adapter arbitrates between the devices in a time division multiple access (TDMA) fashion

such that only a single device is attached to the bus (in addition to the master) at any

given time. In doing so, explicit information flows are eliminated since other devices are

isolated from one another at all times. This does not completely eliminate all information
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flows (as previously mentioned) since implicit information flows between devices via the

master.

Master Slave 0 Slave 1 Slave N. . .

SCL (clk)

SDA (data)

Adapter . . .Adapter Adapter

Execution
Lease
Unit

Untainted 
Reset

Figure 4.2. I2C configured with an additional adapter to enforce TDMA. This enforces
non-interference between devices under the presented test conditions.

To eliminate implicit timing information flows, we introduce an untainted reset

for the master such that the master is restored to a known state prior to communication

with another device. This execution lease unit monitors when a TDMA switch occurs

and restores the master to an untainted state. By requiring a strict enforcement on bus

access time and by restoring the master back to a known state, we eliminate any potential

timing channels between devices. Since GLIFT also captures information flows elicited

through timing channels, we are able to verify that these flows are in fact eliminated for

this particular scenario.

4.1.2 I2C Non-interference Overheads

The design was processed using the same aformentioned testing flow and syn-

thesized with Synopsys Design Compiler. This particular scenario was tested for non-

interference using Modelsim SE 6.6b [69]. We tested a round of communication for a

single time slot and verified that the information flows were in fact contained. Since

information flows were proven to be contained for a time slot, information flows will be

contained for this test scenario in subsequent time slots.
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Table 4.1. Time spent simulating our particular test scenario for both the original I2C
design and the one with GLIFT.

Design Type 2 Slaves 4 Slaves 8 Slaves

TDMA Gate Design 121ms 225ms 426ms
TDMA w/ GLIFT 192ms 389ms 770ms

To obtain simulation times, we execute the complete scenario mentioned and

confirmed that the master returns back to a known state without leaking any information

to any devices on the bus. The simulation times for this TDMA based solution and the

design with GLIFT tested are shown in Table 4.1. As shown, we tested this scenario

with 2, 4, and 8 slaves existing on the bus. Not suprisingly, the simulation times for

both the original TDMA based solution and the one with GLIFT increased with the

number of slaves present on the bus. Since we are scaling the number of slaves in the

system by a factor of 2, this essentially doubles the hardware and resulting simulation

time. Furthermore, the overhead of the GLIFT logic does have significant effect on

the simulation time relatively speaking. However, this overhead is not unwieldy since

the added simulation time can likely be tolerated for such a strong information flow

guarantee.

In addition, we are required to have additional hardware (adapter) to eliminate

explicit information flows between devices. Table 4.2 shows the sizes of each component

in our testing scenario in terms of combinational and non-combinational area. It is

important to note that our Master and Slave are of minimal functionality since we were

only concerned with testing the previously discussed scenario. If additional complexity

were added to the system (i.e., a fully functional I2C system), the Adapter’s area overhead

would be much less significant since its functionality is fixed (i.e., it only performs

arbitration). The overhead of the execution lease unit is insignificant and not shown since

it is only needed to reset the master to a known state when its timer expires. Furthermore,
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Table 4.2. Area for I2C components in non-interference compliant design. This is the
final system after testing and does not contain GLIFT logic.

Module Gates Flip-Flops

Master 145 26
Slave 125 24

Adapter 375 62

we are required to enforce a TDMA strategy which inherently reduces the bandwidth of

the communication channel since an unused time-slot is wasted. However, this solution

enforces non-interference proven by GLIFT in this particular scenario and such overheads

could likely be tolerated for such a strong guarantee.

4.2 Information Flows in USB

Unlike I2C, the Universal Serial Bus (USB) operates as a star tiered topology

as shown in Figure 4.3. Devices are not sitting on one global bus in which explicit

information may flow between one another. The Host node broadcasts data out to all

Hubs and Devices. This downstream data (Host to Device) is observed by all devices and

upstream data (Device to Host) is observed only by Hubs which are in the path of the

stream [4]. As a result, devices are not able to snoop information sent from the Device to

Host since information flows only through Hubs until it reaches the Host as shown in

Figure 4.3. Devices can only potentially intercept information that is sent from the Host

to Device since it is broadcasted. Thus the explicit information flows are less significant

than in I2C, assuming USB Hubs are properly routing information. However, timing

channels are still very apparent in a similar manner as I2C. This section discusses our

analysis of the USB protocol along with a solution to enforce non-interference.

We are concerned with all information flows between devices. Although explicit

information flows are less significant than in I2C, they still occur from the host broad-
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Figure 4.3. Packets sent from the host are broadcast onto the bus to all connected devices.
The topology is a tiered star structure.

casting packets onto the USB. The less obvious types are the implicit information flows

caused by state-effects on the host, i.e., a tainted device affecting the host’s state. This

implicit flow comes in the form of a timing channel because the amount of time in which

the host communicates with a device can be observed by another device. It is very similar

to the implicit information flow elicited by I2C as previously discussed.

In order to accurately model the USB protocol, we designed a USB Host and

Device in RTL Verilog HDL and followed the testing flow as shown in Figure 2.5 in

Chapter 2. These behavioral Verilog modules were functionally verified at the RTL level

using Modelsim SE 6.6b [69]. As mentioned for I2C, testing all possible combinations

is infeasible since the number of states is exponential. Thus, we have chosen a typical

communication scenario consisting of 2 devices and a Host controller as shown in Figure

4.4. We have the Host send a packet indicating a write to Device 1 and then subsequently

sends a data packet. Device 1 completes the transaction by responding with a handshake

or acknowledgement packet. The Host then repeats the same procedure with Device 2.

Once the design was verified at the RTL level, we synthesized the designs to a

gate-level netlist using Synopsys Design Compiler. We simulated the gate level design

under the identical test conditions as those at the RTL level and verify that the circuit



42

Figure 4.4. Host broadcasts to Device 1 and observed by Device 2. Subsequent broad-
casts cause an implicit information flow between Device 1 to Device 2 through the
Host.

has functionally equivalent operations. Once verified, the gate level designs were post

processed such that the tracking logic for each gate is generated. Once completed, the

entire circuit has its original functionality with the addition of precise tracking logic.

The resulting gate level design with GLIFT logic was then simulated again using

the same test scenario except one of the devices was labeled as tainted (i.e., tainted 1). In

doing so, we were able to confirm that two devices, which are not physically connected,

influence each other through implicit channels as shown in Figure 4.4. Once the host

controller finishes sending packets, its state is explicitly dependent on the handshake

packet received from Device 1 in a similar manner as I2C. This information flow is

captured by GLIFT and the resulting host state machine becomes tainted. Subsequently,

when the Host broadcasts data, this taint is propagated to Device 2 resulting in an implicit

flow between the two devices on the bus even though they are not physically on the same

wire. This flow is again the result of a timing channel.

To solve this problem, we need to devise a way to reset the master back to a

known state and isolate specific paths from downstream transmission. The next subsection

discusses a unique TDMA solution to preventing these unintended information flows and
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providing isolation.

4.2.1 Enforcing Non-interference in USB

The TDMA solution works by modifying the Host such that it arbitrates between

tainted and untainted states using a TDMA unit. In other words, the Host operates using a

particular state in a fixed time slot. Once this time slot expires, the Host will switch out its

state with another one (i.e., swaps out tainted for untainted). If the former was a tainted

state, the switch will cause all the hardware in the Host to return to untainted. The timer

allows each state machine to operate in a mutually exclusive manner. The fixed TDMA

time slots prevent any timing information from flowing between the state machines since

the state machines themselves have no influence on the arbitration. Conceptually, the

TDMA unit in the Host acts as supervisor to the two state machines and has complete

control of when tainted or untainted states can run. To account for explicit flows, the

devices are tri-stated from the host when their time slot is not active to guarantee that

they are not snooping on the bus.

With these additions, we synthesized the design and tested this scenario using the

testing flow shown in Figure 2.5. We simulated our scenario for a complete time slot and

verified that the information flows were contained. Again, this proves that unintended

information flows are eliminated for subsequent time slots for this particular scenario.

This includes information that flows through timing channels. As in I2C, this solution

results in some hardware and performance overheads and the next subsection will discuss

these in more detail.

4.2.2 USB Non-interference Overheads

The new TDMA based solution to USB does have some minor penalties in

simulation time. Yet, it results in minimal hardware overhead because the majority of
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Table 4.3. Time spent simulating the mentioned test scenario on USB with and without
GLIFT.

Design Type 2 Devs 4 Devs 8 Devs

TDMA Gate Design 110ms 171ms 281ms
TDMA w/ GLIFT 187ms 297ms 531ms

the hardware does not need to be reproduced. Specifically, we are only required to have

additonal logic to arbitrate between states. Once the timer expires, a new state is loaded

into the Host and the old state is overwritten in a similar manner as a context switch. All

internal buffers, counters, etc. remain the same.

The simulation times for the original USB design and the one equipped with

GLIFT can be seen in Table 4.3. As in I2C, the aformentioned test scenario was executed

with 2, 4, and 8 devices on the bus. This means that we were required to replicate 2, 4,

and 8 state machines respectively in the Host. This is done because a state machine is

needed for each outgoing port of the Host if non-interference is to be enforced between

all devices. Unlike I2C, the simulation time does not necessarily double as devices are

introduced. We suspect this is due to the fact that the majority of the hardware in the host

remains the same. Thus introducing devices to the system increases the simulation time

by an amount proportional to the size of the device plus a small overhead in the Host

due to additional arbitration logic. Also, the simulation times for the design with GLIFT

scale roughly by the same factor as the design without GLIFT. Again, we expect that the

difference in time between the system with and without GLIFT to be more significant as

more test scenarios are performed.

This implementation incurs a 12.6% increase in area over the original host con-

troller for replicating a single FSM. This overhead includes the timer and logic to select

between state machines. Additional FSMs are needed for each port on the Host, assuming

that non-interference is to be enforced between all devices. With that in mind, the area
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Table 4.4. Area Overhead for Replicating State Machines

Number of FSMs Area Overhead

2 12.6%
4 33.4%
8 77.4%
16 157.5%
32 322.9%

overhead increases linearly with the increase in FSMs as shown by Table 4.4. These

results show that much of the hardware can be re-used since the amount of overhead

increases by a constant factor associated with the TDMA and extra arbitration logic. With

many state machines, this overhead becomes quite large because the extra arbitration

logic begins to dominate the base functional logic. The significant drawback with this

design is performance. With any TDMA based scheme, performance is potentially

reduced because if a device does not use its time slot when it is active, the time slot is

wasted. However, such a reduction in performance can likely be tolerated at the benefit

of strong information flow policies.

This chapter, in full, is a reprint of the material as it appears in the Design

Automation Conference 2011. Oberg, Jason; Hu, Wei; Irturk, Ali; Tiwari, Mohit;

Sherwood, Timothy; Kastner, Ryan; This dissertation author was the primary investigator

and author of this paper.



Chapter 5

Testing Timing Information Flows in
Larger Systems

System-on-chips (SoCs) find themselves at the heart of these issues since they rely

on the re-use of third-party intellectual property (IP) cores. These cores include memories,

digital signal processors (DSP), graphical processing units (GPUs), analog RF blocks,

I/O interfaces, and other various hardware accelerators (such as hardware encryption

units). The SoC tightly integrates these cores together using a SoC bus architecture such

as the Opencores WISHBONE. Ideally, integration of these components would be done

in a realible and secure manner. Unfortunately, since many of these cores come from

potentially untrusted sources, their use in high-assurance applications becomes extremely

limited. This stems from the fact that these cores either come from an untrusted vendor

or they have not been evaluated to the same extent as the trused cores. For example, the

Mars Rover requires separation between the flight critical and scientific measurement

systems simply because the flight critical components require detailed evaluation far

beyond that of the measurement ones. A missed bug or vulnerability in the measurement

components could affect the flight control components and desecrate the integrity the

entire system.

One concern in mix-trusted SoC integration is due to malicious inclusions such

46
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as hardware trojans. These trojans can violate security by using hidden circuitry to

either covertly transmit information or insert a kill switch into the system. A survey by

Tehranipoor et al. [99] covers many of the detection techniques including power and

timing-based analyses. The work in this thesis can help deal with hardware trojans, but

requires additional techniques to help mitigate their effect. We can ensure hardware

trojans in untrusted cores do not affect trusted ones but we must explicitly assume trusted

cores do not have trojans.

This thesis shows how a SoC can be designed using cores from different trust lev-

els and have its security tested using GLIFT in Chapter 5. In doing so, I will demonstrate

that untrusted cores never affect trusted ones. Specifically, we target the WISHBONE [84]

SoC protocol using a cross-bar interconnect. We design a realistic system which re-

sembles that of what one might find in high-assurance applications. Specifically, two

processors (trusted and untrusted) which wish to share a hardware accelerator (AES

encryption unit) in the SoC. Ideally, this sort of behavior should be allowed as long as the

untrusted component does not interfere with the trusted one (and thereby compromise

the integrity of the system). Using GLIFT, we show how a cross-bar can be designed

and tested to be information flow secure such that the untrusted processor never affects

the trusted one. This allows the hardware accelerator to be shared in a secure way

without causing harmful side effects to the trusted computation. We demonstrate that this

isolation is maintained across several different scenarios in which the untrusted processor

is attempting to interfere with the trusted one.

Secure mix-trusted integration is not impossible if appropriate techniques are in

place to build the system securely from the ground up. By designing a secure computing

foundation, information flow can be tightly bounded in the system. Such techniques are

hard to come by since information can flow through difficult to detect side-channels in

hardware; e.g. the amount time a computation takes to execute. In this chapter, I will
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demonstrate that GLIFT can be usd to detect and eliminate timing-based side channels in

an SoC. These channels arise from contention of a shared hardware accelerator between

two processors: one trusted and one not.

5.1 Designing a Secure Crossbar in Wishbone

WISHBONE is a SoC protocol originally developed by the Opencores community.

It is a relatively simple protocol that allows easy integration of different cores into a design.

WISHBONE itself is very flexible and allows many different interconnect configurations

and bus transactions. WISHBONE allows many connectivity configurations including:

point-to-point, data-flow, shared bus, and cross-bar interconnect.

WISHBONE itself is very flexible and allows many different interconnect con-

figurations and bus transactions. WISHBONE allows many connectivity configurations

including: point-to-point, data-flow, shared bus, and cross-bar interconnect. In this paper,

we focus on the cross-bar interconnect since it provides a flexible interface for systems

which contain large numbers of cores interacting in parallel. This particular type of

configuration can be seen in Figure 5.1.

A cross-bar, put simply, is essentially a way for multiple devices to interact with

each other. It consists of a set of control lines for “granting” access to a particular device

if it is available. If some device A wishes to talk to device B, it will request a connection

to device B through the crossbar and it will be granted if B is not busy (already talking to

another device). More specifcally, the cross-bar interconnect logic is designed to observe

requests from the masters by monitoring their cyc signal. If a request is received (cyc

asserted), the cross-bar logic routes the connections from the master to the requested

slave by decoding the address lines of the master. At this point, a transaction occurs

between the master and slave: READ/WRITE, BLOCK transfer, or Read-Modify-Write

(RMW). In this paper, we focus on the simple READ/WRITE bus cycles since they are
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Figure 5.1. The WISHBONE system-on-chip architecture with cross-bar (xBar) inter-
connect. Many masters and slaves exist in the system and bus cycles initiate with a
request by a master.

the most primitive of the three types. To complete a READ, the master deassarts the we

signal, waits for the slave to assert ack and then reads the data lines and deasserts its

cyc signal. A WRITE transaction occurs in a similar manner except we is asserted and

the data lines are written by the master. Once a transaction completes, the interconnect

logic disconnects the master and slave to make the slave available. If contention for a

slave occurs, the master which issues its request later waits until the slave is available.

WISHBONE itself supports time-outs and retries, but for this particular work we are

not concerned with these optimizations. The verilog code for the cross-bar used in this

system can be found in the Appendix of this dissertation.

We wish to demonstrate that multiple cores can access a shared resource in a safe

and secure manner. We designed a system which consists of two MIPS-based processors

and a 128-bit Advance Encryption Standard (AES) core. The two processors share

the AES core over the WISHBONE interface. We assume that one of these processors

runs critical code while the other is untrustworthy, e.g., running unknown (potentially
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malicious) code or not being as thoroughly evaluated as the trusted core. Further details

of this system are discussed in the next subsection.

5.1.1 Mix-Trusted System with Hardware Accelerator

Our system consists of two MIPS-based processors and a 128-bit AES core. We

designed the MIPS based processor and the 128-bit AES was obtained from the Open-

cores [83] website. All cores are written in Verilog HDL. We chose this configuration

because it well suits the common issues found in high-assurance applications. Namely, it

is often desirable to share a hardware accelerator in a large SoC with mix-trusted com-

ponents. Although this system is does not have all the complexity of commercial SoCs

it does capture the main idea that multiple mix-trusted cores share common hardware

resources and isolation between them should be maintained.

Figure 5.2 (a) shows the overview of our system. It consists of two of our

processors and a 128-bit hardware AES unit. One of these processors is treated as

untrusted (U) and the other trusted (T ). In other words, we do not trust the behavior

of processor U and assume its intentions are to corrupt the execution of T . Our MIPS

based processor is fully functional and can execute many of the SPEC 2006 benchmarks

(e.g. mcf, specrand, bzip2) [43]. To execute these applications (which are written in C),

we used the SESC gcc cross-compiler to compile to MIPS binaries [90]. These binaries

are loaded into our processor’s memory and the executions are simulated using Mentor

Graphics’ Modelsim [69]. In order to communicate off-chip, we memory-mapped

our processors WISHBONE I/O controller to a region of unused memory space. In

order to communicate off-chip, we memory-mapped our processors WISHBONE I/O

controller to a region of unused memory space. Specifically, we memory-mapped and

added several WISHBONE configuration registers (WB CTRL REG, WB DATA REG, and

WB ADDR REG) to our processor. Since we have a cross-compiler for our processor, we
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wrote C-applications to push data out of the WISHBONE I/O interface. We wrote

different applications for U and T to execute as we discuss later.
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Figure 5.2. (a) The system used in our test scenario. This consists of two MIPS-based
processors and a 128-bit AES encryption core. U and T contend for the use of the AES
core. (b) The system after the AES core, xBar, and interface controllers have their GLIFT
logic added. Information is observed to flow from U to T . (c) The final information flow
secure system uses a time-multiplexed arbiter with a trusted reset to ensure information
flow isolation between U and T . Adding the GLIFT logic to this system shows no
information flowing from U to T .

We also designed the cross-bar interconnect to handle requests from the proces-

sors. The cross-bar interconnect is connected to each processor’s WISHBONE controller

(Figure 5.2 (a)). This cross-bar interconnect handles requests from the two processors in

a round-robin fashion. This is simply for correctness and to prevent any sort of denial of

service. Each processor can perform at most one transaction before having to relinquish
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control of the bus. It waits for requests from a master and grants access to the slave at the

address specified if the slave is available. In our scenario, we have only a single slave: a

128-bit hardware AES unit. Depending on the request type, this AES unit will take the

data passed to it (in 32-bit chunks) and encrypt/decrypt a 128-bit block. The processor

which requested the bus cycle polls until the transaction is complete and then retrieves

the data from the AES unit. Upon completion, the next processor (if it has a pending

request) will get access to the AES core.

Note that all the communication between the processor and AES unit are through

WISHBONE and its cross-bar interconnect. In this system, since we have both trusted

and untrusted processors contending for the use of the AES unit, there is likely to be

information flows from U to T . Such a flow would violate the integrity of T and should

be prevented. Moreover, this interference is not a denial of service attack since it is not

possible for U to keep T from completing its work. Still, U can effect when T gets access

to the AES block because it must wait for U’s transaction to complete. For example, if U

never wants to use the bus, and T performs continuous bus transactions, T can finish in

some time t. However, if U performs bus transactions every time it is scheduled, T will

finish its bus transactions in time ≈ 2t. Thus U can affect the time in which T finishes

execution but cannot prevent it from doing so. The next section discusses how we identify

information flows in this system and how to eliminate them.

5.1.2 Building a Secure Cross-Bar for WISHBONE

To first illict how an information flow occurs from U to T , we test a scenario in

which T encrypts a 128-bit block of text using the AES unit and subsequently decrypts the

cipher-text to verify the result. In parallel with T , U continuously reads a configuration

register on the AES core. We call this program executing on processor U as R CONF .

This scenario was chosen to show an information flow because U is not overwriting any
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Table 5.1. Description and results of different applications executed on U and T . Un-
trusted flows are identified in the base cross bar for most scenarios and none are identified
in the secure cross-bar. Flows do not occur if T does not use the WISHBONE interface
as in the cases of running MM.

p on U τ on T Flow in Secure xBar Flow in Base xBar

AES MM NO NO
MM AES NO YES
R CONF AES NO YES
R ALL AES NO YES
W ALL AES NO YES
AES AES NO YES

of T ’s data since it is only reading. In other words, U is not directly corrupting T ’s data

on the AES block and at first glance U seems to be non-interfering with T .

Since we are concerned with the information flow from U to T , we need to look

at the information flowing out of U and in to T . To be precise, let Tint = {data it ,ack it}

be the taint input wires to T from the wishbone logic. We determine whether or not a flow

occured by identifying whether any wire in Tint is every set to 1. To do so, we must track

the flow of information through the cross-bar, the AES unit’s WISHBONE controller, and

the AES unit itself. To track this flow of information, we follow the same static testing

method presented in Chapter 2. Namely, we process the cross-bar and the AES unit with

its WISHBONE interface through synthesis using Synopsys’ Design Compiler to achieve

a gate-level netlist. Subsequently, we add the GLIFT logic to these components and

re-insert this logic into the system as shown in Figure 5.2 (b). We then execute R CONF

on U by simulating the Verilog in Modelsim [69]. From the simulation, as shown in

Figure 5.3, a tainted flow is observed entering T ’s inputs as soon as it requests an AES

transaction ({data it ,ack it}= {0xF · · ·F,1}). Since we only tainted the ouputs of U , it

must be the source of this tainted information flow.

This flow occurs because U and T contend for the use of the encryption unit.
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Figure 5.3. Waveform showing tainted information flow. As soon as T requests access
to the AES unit (wb stb o = wb cyc o = 1) tainted information flows to its inputs
({data i t, ack i t} = {0xF· · ·F, 1}). U’s outputs were the only marked as tainted,
so this flow must have originated from U .

Specifically, U affects the execution of T indirectly by its use of the AES unit. This

flow can be regarded as occuring through a timing channel. That is, U is able to affect

the time in which T finishes its computation (U is only reading and therefore does not

directly affect the computation of T ). Such channels can violate the integrity of the design

because they can potentially violate real-time constraints where T must meet a critical

deadline but is unable to because of U . To solve this problem, we put in place a way for

U to never affect T ’s use of this resource. Specifically, we introduce a time-multiplexed

arbiter with a trusted reset to the cross-bar which forces T and U to operate in mutually

exclusive time slots as shown in Figure 5.2 (c). Upon expiration of a time-slot, the logic

is restored to a known state to ensure harmful content is left behind. As we see in the

next section, this new cross-bar eliminates this untrusted flow.

5.1.3 Secure Cross-Bar Evaluation

To demonstrate the lack of information flow using this new cross-bar, we construct

several different programs which have malicious characteristics of causing interference

to the trusted computation on T . Specifically, we show non-interference for a fixed set

of programs. Non-interference states that U should never affect T through any sort of

digital information. This includes both directly corrupting the data of T or affecting the
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time in which programs on T take to complete. This ensures not only the integrity of

the data on T , but also the integrity of the timing of the computation. To demonstrate

this property for a set of programs, let P = {p1, p2, · · · , pn} be a set of programs to be

run on U . We want to show non-interference with respect to P by demonstrating that no

untrusted information flows to the inputs of T :

∀p ∈ P. S(p || τ) c⇒ Tint ={0,0} (5.1)

where S(p || τ) is the system executing with p on U and τ on T and c⇒ is an

implication over all clock cycles c. Tint is the set of taint inputs from the wishbone cross-

bar as previously defined. This definition says that for any program p in a set P, when

executing p on U with some trusted computation on τ on T , no untrusted information

from U flows to the inputs of T during any clock cycle. Since GLIFT can also capture

information flowing through timing channels as mentioned in the previous section, this

includes information which affects the time in which τ takes to complete.

For our particular test scenario, we build the set P = {MM,R CONF,

R ALL, W ALL, AES}. MM is a simple matrix multiply program. R CONF is the same

program as before which continuously reads a configuration register on the AES core.

R ALL attempts to read the entire address space associated with the AES core. W ALL

attempts to write the entire address space associated with the AES core. Lastly, AES uses

the AES core to encrypt then decrypt some information. All of these applications are

written in C, compiled to MIPS, and loaded on to their respective processor’s instruction

memory. Table 5.1 presents an interesting subset of our test cases and summarizes

the outcomes. We do not present all results due to space constraints but observed that

Definition 5.1 holds for each τ we tested.

For all cases in which τ accesses the WISHBONE fabric, untrusted information



56

flows from U to T in the unsecure cross-bar, thus violating Definition 5.1. One interesting

case is when MM and AES are run on T and U respectively. In this case, no untrusted

information flows to T simply because τ never accesses the AES core. Its execution is

independent of the behavior of U . Conversely, another interesting case arises when U

runs MM and T runs AES. In this case, even though p is not using the AES core, the lack

of its use still affects the behavior of τ . This lack of use allows τ to finish faster than if

p were accessing it; a flow of information. GLIFT indicates no flow (Tint = {0,0}) for

all applications when the secure cross-bar is used. In other words, non-interference is

upheld for these computations on U .

It is important to make a couple of notes on this solution. First, the arbiter only

time-multiplexes this specific resource and not the cross-bar as a whole. The goal of the

cross-bar interconnect is to allow parallelism; multiplexing the entire cross-bar eliminates

this flexibility. This parallelism can still be maintained since U can be granted access to

other devices in the system in parallel with T and isolation can still be maintained. In

addition, ideally this property (Definition 5.1) would be shown for all possible programs

on U to demonstrate complete non-interference. However, such an exhaustive test would

be impractical in this case. Some recent work on GLIFT has made an effort to solve

this problem by introducing Star-Logic [102] which uses an abstract execution to make

exhaustive testing possible. Unfortunately most of this work is still in its early stages, but

we plan to employ these techniques in future research.

Overheads Due to GLIFT Analysis

It is difficult to quantify the amount of testing overhead required for this analysis

since it requires both the intuition of the designer including the cleverness of chosen test

vectors and detailed knowledge of the design. However, the overhead due to simulation

time can be quanitified, so we use this as a metric for evaluating the overhead. It is worth



57

noting that the area overhead of GLIFT is substantial (≈ 3.5X), but as exemplified in

previous sections, the logic is used simply during simulation and has no manifestation in

the final design.

Table 5.2 shows the simulation times for the base RTL system, base system

with GLIFT logic, the system with the secure cross-bar RTL, and the secure system

with GLIFT logic. The simulation for the system with the base RTL is longer than the

one with the secure cross-bar simply due to the isolated time-slots. In otherwords, U

cannot affect the time it takes for T to access the slave. Therefore the secure cross-bar

system completes in simply fewer simulated clock cycles. However, if we compare the

RTL version with their respective GLIFT ones (which execute in the same number of

respective clock cycles), the overheads in simulation times are apparent. This is due to

the extra logic imposed by GLIFT and the requirement for the simulation tool to analyze

more logic than the RTL. As shown in Table 5.2, the simulation time due to GLIFT

logic is 2X longer than the original design in the worst case. However, for such a strong

security guarantee, such overheads are likely to be tolerated especially if they provide the

flexibility of using untrusted components in a SoC.

Table 5.2. Simulation times for various stages of our design. The base RTL refers to what
is shown in Figure 5.2 (a). The GLIFT logic incurs at most a 2X overhead in simulation
time in this system.

Design Simulation Time

Base RTL 502.08 ms
Base w/ GLIFT 718.03 ms
Secure xBar RTL 353.60 ms
Secure xBar w/ GLIFT 698.50 ms

Building these systems in a secure manner requires strict design practices and

tools. In this chapter, I showed how mix-trusted IP cores can be integrated in a secure

manner. By using gate-level information flow tracking to show information flow isolation
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between trusted and untrusted cores, we have constructed a secure cross-bar interconnect

for the WISHBONE SoC bus architecture. This powerful property makes it possible to

integrate mix-trusted cores and verify the security of their interactions. This ultimately

reduces the cost and time associated with development and makes using untrusted cores

in high-assurance applications more of a possibility.

This chapter 5, in full, is a reprint of the material as it appears in the IEEE journal

on Design and Test of Computers 2013. Oberg, Jason; Sherwood, Timothy; Kastner,

Ryan. The dissertation author was the primary investigator and author of this paper.



Chapter 6

Formalizing Timing Channels at the
Gate-level

GLIFT’s low-level properties provide a promising remedy to identifying timing

channels. Since GLIFT targets the lowest digital abstraction, it is able to detect and

capture information leaking through time. This claim, however, is made in some of

the initial work on GLIFT done by my colleagues and myself [103, 101, 78] but never

thoroughly formalized. One of the specific contributions of this chapter is to make this

formalism much more apparent: that GLIFT can detect timing channels.

In addition, if a hardware designer using GLIFT detects that there is an informa-

tion flow, there is no way to separate out the timing information from other functional

information. Using a shared bus as an example, if a hardware designer were to observe

an information flow using GLIFT, it would not be obvious whether or not this flow was

from direct means (a device corrupting data on the bus) or by affecting another device’s

response time. The help solve this problem, we present a formal model in Chapter 6.4

that, when used in conjuction with GLIFT, isolates timing information from other flows of

information. This model incorporates details from my published work [79] and provides

more thorough and complete definitions, another application example (a shared bus), and

more detailed discussion. As briefly mentioned, whether or not these timing flows are in

59
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the threat model depend on the system at hand. Nevertheless, this framework provides a

way for hardware designers to reason about these timing flows.

6.1 Threat Model

The specific threat model we target is hardware with potential timing channels

that might adversely affect confidentiality or integrity. For confidentiality, we address the

issue of designers being unable to determine whether or not an information leak is from

timing or direct means. For example, caches have been of big concern when processes

from different trust levels share cache lines. Data used by a secret program can be, and

has been, extracted solely from the time it takes to perform memory operations.

For integrity, we address concerns related to timing-based interference. For

example, if a hardware designer is building a system-on-chip and wishes to isolate high-

integrity cores from less trusted third-party ones, while still allowing resource sharing,

then he could use this framework to reason about the timing effects that the less trusted

cores have on the high-integrity ones.

In both cases, our framework gives designers further insight into potential vulner-

abilities so they can make better decisions. In some cases, these timing flows might be of

no concern at all; i.e., the attack space of the cache or the timing effects on high-integrity

cores are simply not in the threat model of the designer. Regardless, this work provides

hardware designers with tools to more accurately evaluate their threat model, giving rise

to increased confidence and more secure designs.

6.2 Preliminary Definitions

Before defining information flows and related concepts, we must first define

some preliminary notions formally. Many of these notions are commonly understood by

hardware designers, but we formulate them in such a way as to fit our model in a clear
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and concise manner. We start with the notion of time; as we are working at the gate level,

the only notion of time that we consider is the system clock.

Definition 3. We define the clock to be a function with no inputs that outputs values of

the form b ∈ {0,1}. We define a clock tick to be the event in which the output of the clock

changes from 0 to 1. Finally, we define a time t to be the number of clock ticks that have

occurred, and we define T to be the set containing all possible values of t.

Our formal definition of time captures what we intuitively expect: some stateless

hardware component will output a stream of ticks, and a separate stateful component will

measure the number of ticks and use this to keep track of time. By keeping track of time,

we can define an event as a given value at a certain point in time.

Definition 4. [62] For a set Y , a discrete event is the pair e := (y, t) for y ∈ Y and

t ∈ T (where we recall T is the set of all possible time values). We also define functions

that recover the value and time components of an event as val(e) = y and time(e) = t

respectively.

To keep track of how values change over time, we can also define a sequence of

events as a trace.

Definition 5. For a value n ∈ N and a set Y , we define a trace A(Y,n) to be a sequence

of discrete events {ei = (yi, ti)}n
i=1 that is ordered by time; i.e., time(ei)< time(ei+1) for

all i, 1 ≤ i < n, and such that val(ei) ∈ Y , time(ei) ∈ T for all i, 1 ≤ i ≤ n. When the

values of Y and n are clear, we omit them and refer to the trace simply as A.

The way in which we have currently defined an event is quite broad: any value

at any time can be considered an event. As an example, consider a system that outputs

some value on every clock tick; if we run such a system for k clock ticks and record

each output, then we will obtain a trace of size k. In many cases, however, events in
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this trace may be redundant, as the system might output the same value for many clock

ticks while performing some computation. In this case, we would be interested not in the

entire progression of events, but only in the case when the value of the output changes.

To capture this, we define the distinct trace.

Definition 6. For a trace A(Y,n), we define the distinct trace of A to be the largest

subsequence d(A) ⊆ A(Y,n) such that for all ei−1,ei ∈ d(A) it holds that val(ei) 6=

val(ei−1).

Constructing the distinct trace d(A) of A is quite simple: first, include the first

element of A in d(A). Next, for each subsequent event e, check whether the last event

e′ in d(A) is such that val(e′) = val(e); if this holds, then skip e (i.e., do not include it)

and if it does not then add e to d(A). As an example, consider a trace of two-bit values

A = ((00,1),(00,2),(01,3),(01,4),(11,5),(10,6)). Then the distinct trace d(A) will be

d(A) := ((00,1),(01,3),(11,5),(10,6)), as the values at time 2 and 4 do not represent

changes and will therefore be omitted.

With these definitions in hand, we can model a finite state machine system F

that takes as input a value x in some set X and returns a value y in some set Y in a

similar manner as past work [61]. To be fully general and consider systems that take

in and output vectors rather than single elements, we assume that X = X1× . . .×Xn

and that Y = Y1× . . .×Ym for some m,n ≥ 1, which means that an input x looks like

x = (x1, . . . ,xn) and an output y looks like y = (y1, . . . ,ym). To furthermore acknowledge

that the system is not static and thus both the inputs and outputs might change over time,

we instead provide as input a trace A(X ,k) for some value k, and assume our output is a

trace A(Y,k).

Definition 7. [61] A finite state machine (FSM) F is defined as F = (X ,Y,S,δ ,α), where

X is the set of inputs, Y the set of outputs, and S the set of states. δ : X ×S→ S is the
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transfer function and α : X×S→ Y is the output function.

Since we are dealing with circuit implementations of finite state machines, both

δ and α are represented as combinational logic functions. In addition, both δ and α can

be called on a trace. B = α(A,s0) generates a trace of output events B = (e0,e1, · · ·ek)

during the execution on input trace A starting in state s0. This notation describes α

executing recursively; it takes a state and trace as input and executes to completion

producing an output trace. When the starting state is assumed to be the initial state, we

use the notation α(A).

Now, since we are concerned with flows of information from a specific set of

inputs (the subset of inputs which are of security concern), we need to formalize how

to constrain the others. Recall first our intuition: an information flow exists for a set

of inputs to the system F if their values affect the output (either the concrete value or

its execution time). One natural way to then test whether or not these inputs affects the

output is to change their value and see if the value of the output changes; concretely, this

would mean running F on two different traces, in which the values of these inputs are

different. In order to isolate just this set of inputs, however, it is necessary to keep the

value of the other inputs the same. To ensure that this happens, we define what it means

for two traces to be value preserving.

Definition 8. For a set of inputs {xi}i∈I and two traces A(X ,k) = (e1, . . . ,ek) and

A(X ,k)′ = (e′1, . . . ,e
′
k), we say the traces are value preserving with respect to I if for all

ei ∈ A and e′i ∈ A′ it is the case that time(ei) = time(e′i), and if val(ei) = (a1, . . . ,an) and

val(e′i) = (a′1, . . . ,a
′
n), then ai = a′i for all i 6∈ I.

If two traces are value preserving, then by this definition we know that the only

difference between them is the value of the tainted inputs {xi}i∈I . Taint will be formally

defined shortly, but, as an example, secret data would be tainted and then tracked to
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ensure that it is not leaking to somewhere harmful. In this example, the set of secret

inputs would be the set I. We will use this definition in the next section to prove that

GLIFT detects both functional and timing information flows.

6.3 Recap–Information Flow Tracking and GLIFT

As disucssed in Chapter 2, information flow tracking is a common method used in

secure systems to ensure that secrecy and/or integrity of information is tightly controlled.

Given a policy specifying the desired information flows, such as one requiring that secret

information should not be observable by public objects, information flow tracking helps

detect whether or not flows violating this policy are present. To assist in the understanding

of the details presented in this chapter, this information will be quickly reviewed.

In general, information flow tracking associates data with a label that specifies

its security level and tracks how this label changes as the data flows through the system.

As an example, consider a system with two labels: public and secret, and a policy

that specifies that any data labeled as secret (e.g., an encryption key) should not affect

or flow to any data labeled as public (e.g., a malicious process). More generally,

information flow tracking can be extended to more complex policies and labeling systems

(i.e., in general high data should never flow to low); as such, it has been used in all

levels of the computing hierarchy, including programming languages [94], operating

systems [59], and instruction-set/microarchitectures [98, 27]. Recently, information flow

tracking was used by Tiwari et al. [103] at the level of logic gates in order to dynamically

track the flows of each individual bit.

In the technique used by Tiwari et al., called gate level information flow tracking

(GLIFT), the flow of information for individual bits is tracked as they propagate through

Boolean gates; GLIFT was later used by Oberg et al. [78] to test for the absence of all

information flows in the I2C and USB bus protocols and by Tiwari et al. [102] to build a
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system that provably enforces strong non-interference. Further, it has been used to prove

timing-based non-interference for a network-on-chip architecture in the research project

SurfNoC [109]. Since its introduction, Tiwari et al. have expanded GLIFT to what they

call “star-logic” which provides much stronger guarantees on information flow [102].

Briefly, GLIFT tracks flow through gates by associating with each data bit a one-bit label,

commonly referred to as taint, and tracking this label using additional hardware known

as tracking logic.

6.3.1 Formal definitions for GLIFT

To be precise, we present definitions of tracking logic and taint. Some of these

definitions were presented earlier on in this thesis, but they will be re-discussed here

for completeness. First, it is important to understand how a “wire” in a logic function

is tainted. We define this formally as follows (this is the same as Definition 1 for taint

presented in Chapter 3):

Definition 9 (Taint). For a set of wires (inputs, outputs, or internals) X, the corresponding

taint set is Xt . A wire xi for x = (x1, . . . ,xi, . . . ,xn) ∈ X is tainted by setting xit = 1 for

xt ∈ Xt and xt = (x1t , . . .xit , . . .xnt).

In this definition, and in what follows, the elements of X and Xt are given as

vectors; i.e., an element x ∈ X has the form x = (x1, . . .xn) for n ≥ 1. For single-bit

security labels (which we use exclusively in this paper), x ∈ X and its corresponding taint

vector xt ∈ Xt are the same length.

Now that we have a definition for taint, we can formally define the behavior of a

tracking logic function and information flow with a tracking logic function. The tracking

logic function definition is the same as Definition 2 in Chapter 3.

Definition 10 (Tracking logic). For a combinational logic function f : X → Y , the

respective tracking logic function is ft : Xt ×X → Yt , where Xt is the taint set of X



66

and Yt the taint set of Y . If f (x1, . . . ,xn) = (y1, . . . ,ym), then ft(x1, . . . ,xn,x1t , . . . ,xnt) =

(y1t , . . . ,ymt), where yit = 1 indicates that some tainted input x j (i.e., an input x j such

that x jt = 1) can affect the value of yi.

Definition 11 (Information flow). For a combinational logic function f : X → Y and a

set of inputs {xi}i∈I , an information flow exists with respect to an output y j if ft(xt) =

(y1, . . . ,y j−1,1,y j+1, . . . ,ym), where each entry xit of xt is 1 if i ∈ I and 0 otherwise. If

there exists an index j such that y j = 1, we just say an information flow exists.

To understand how the tracking logic is used, consider a function with public

and secret labels; then a label xit is 1 if xi is secret, and 0 otherwise. When considering

a concrete assignment (a1, . . .an) with each a j being 0 or 1, running f (a1, . . . ,an) will

produce the data output (y1, . . . ,yi, . . . ,ym), and running ft(a1, . . . ,an,a1t , . . . ,a1n) will

indicate which tainted input can affect the values of which outputs (by outputting yit = 1

if a tainted input affects the value of yi and 0 otherwise). Going back to our sample

function, if we observe some output yit = 1 from ft , we know that a secret input affects

the output yi of f . If yi is public, then this flow would violate the security policy.

Typically, each individual gate and flip-flop is associated with such tracking logic

in a compositional manner. In other words, for each individual gate (AND, OR, NAND,

etc.), tracking logic is added which monitors the information flow through this particular

gate. By composing the tracking logic for each gate and flip-flop together, we can form an

entire hardware design consisting of all the original inputs and outputs, with the addition

of security label inputs and outputs. Care must be taken to derive the tracking logic for

each gate separately, however, as the way in which the inputs to a gate affect its output

vary from gate to gate. As an example, consider the tracking logic for a AND gate as

shown in Figure 6.1.

Simply by definition, we know that if some input of a AND gate is 0, the output
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Figure 6.1. (a) A simple AND gate. (b) A partial truth table for the tracking logic of an
AND gate. Ft = 1 iff a tainted input affects F . (c) The tracking logic for an AND gate.

will always be 0 regardless of the other inputs. In other words, if we have inputs x1 = 1

and x2 = 0 with security labels x1t = 1 and x2t = 0 as shown in Figure 6.1, then the

output will actually be untainted even though x1t = 1, because the value of x1 has no

observable effect on the output of the gate (again, because x2 = 0 and thus the output will

be 1 regardless). By building a truth table for every gate primitive, tracking logic can be

derived in this manner and stored in a library; the tracking logic can then be applied to

the gate in a manner similar to technology mapping. As an example of how to compose

these tracking logics, we consider a 2-input multiplexer (MUX), which is composed of

two AND gates and a single OR gate where the output of the AND gates feed the inputs

of the OR gate. First, the tracking logic for each AND gate and the single OR gate is

generated. Then, the output of the tracking logic for each AND gate is fed as inputs to

the tracking logic for the OR gate.

To use GLIFT in practice, a hardware description of the design is written in a

hardware description language (HDL), such as Verilog or VHDL, and this description is

then synthesized into a gate-level netlist using traditional synthesis tools such as Synopsys’

Design Compiler. A gate-level netlist is a representation of the design completely in logic
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gates and flip-flops. Next, the GLIFT logic is added in a compositional manner (as we

just described); i.e., for every gate in the system, we add associated tracking logic which

takes as input the original gate inputs and their security labels and outputs a security label.

Given a security policy such as our confidentiality example (i.e., secret inputs should

not flow to the public output), GLIFT can then be used to ensure that the policy is not

violated by checking that the output of the tracking logic ft is not 1. It is important to

remember that ft is defined to report 1 iff a tainted input can actually affect the output. In

other words, it will report 1 if at any instant in time a tainted input can affect the value of

the output.

One of GLIFT’s key properties is that it targets a very low level of computing

abstraction; at such an abstraction, all information becomes explicit. In particular, because

GLIFT tracks individual bits at this very low level, it can be used to explicitly identify

timing channels. To support this claim, the following sections present some preliminary

definitions and a model that, when used in conjunction with GLIFT, can test for timing

channels. Such a model will be used in this paper to identify timing channels in a shared

bus in Section 6.5 and CPU cache in Section 6.6.

6.3.2 GLIFT and Timing Channels

In order to have a clear understanding of timing channels, it first helps to specify

a definition of a timing channel familiar to hardware designers. We define specifically

a timing-only flow, where an input affects only the timestamp of output events and not

the values. To be clear, we are concerned with timing leaks at the cycle level. Stated

differently, we assume that an attacker does not have resources for measuring “glitches”

within a combinational logic function itself. Rather, he can only observe timing variations

in terms of number of cycles at register boundaries. With these assumptions, we present

this definition in order to prove that GLIFT in fact captures such channels.
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Definition 12 (Timing-only flow). For a FSM F with input space X and output function

α , a timing-only flow exists for a set of inputs {xi}i∈I if there exists some value k ∈ T and

two input traces A(X ,k) and A(X ,k)′ such that A and A′ are value preserving with respect

to I, and for B = α(A) and B′ = α(A′) it is the case that val(ei) = val(e′i) for all ei ∈ d(B)

and e′i ∈ d(B′) and there exist e j ∈ d(B) and e′j ∈ d(B′) such that time(e j) 6= time(e′j).

This definition captures the case in which a set of inputs affect only the time of

the output. In other words, changing a subset of the tainted inputs will cause a change

in the time in which the events appear on the output, but the values themselves remain

the same. Before we can use this definition to prove that GLIFT captures timing-only

channels, we need to define the GLIFT FSM Ft .

Referring back to Definition 7, a FSM consists of two combinational logic

functions α and δ . Thus there exists tracking logic functions αt and δt according to

Definition 10. Using this property, we can define the GLIFT FSM Ft , which will be used

to prove that GLIFT detects timing-only flows.

Definition 13. Given a FSM F = (X ,Y,S,δ ,α), the FSM tracking logic Ft is defined as

Ft = (X ,Xt ,Yt ,S,St ,δt ,αt) where X and S are the same as in F, St is the set of tainted

states, Xt is the set of tainted inputs, Yt is the set of tainted outputs, δt the tracking logic

of δ and αt the tracking logic function of α .

Now that these definitions are in place, we can prove that GLIFT can detect

timing-only flows.

Theorem 1. The FSM tracking logic Ft of a FSM F captures timing-only channels.

Proof. Suppose there exists a timing-only channel for a finite state machine F with

respect to the set of tainted inputs I. By Definition 12, this means there must exist

value-preserving traces A(X ,k) and A(X ,k)′ such that, for B = α(A) and B′ = α(A′),
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val(ei) = val(e′i) for all ei ∈ d(B) and e′i ∈ d(B), but there exist e j ∈ d(B) and e′j ∈ d(B′)

such that time(e j) 6= time(e′j). Since e j ∈ d(B) implies that e j ∈ B (and likewise for e′j),

this means that B 6= B′.

F generates an output every clock tick, so for all e j ∈ B and e′j ∈ B′, time(e j) =

time(e′j), and thus there must exist some e` ∈ B and e′` ∈ B′ such that val(e`) 6= val(e′`)

(because B 6= B′). By Definition 8, all input values remain the same for all i /∈ I, meaning

the only difference between them is in the tainted inputs, and thus the difference in output

must have been caused by a tainted input. By Definition 10, αt would thus have an output

of (y1t , . . . ,y`t = 1, . . . ,ymt), as the value if y` in the output of α was affected by a tainted

input. By Definition 11, this means GLIFT has indicated an information flow must exist.

As the only possible flow is timing-based, GLIFT thus captures timing-only flows.

Since GLIFT operates at the lowest level of digital abstraction, all information

flows become explicit. Thus, if at any instant in time a tainted input can affect the value

of the output, GLIFT will indicate so by definition. At the FSM abstraction, as defined in

Definition 12, this type of behavior often presents itself as a timing channel. This proof

demonstrates that GLIFT can in fact identify these types of information flows. What is

needed, however, is to formally understand how to separate these types of timing flows

from other functional ones. In the next section we demonstrate how GLIFT can be used

in conjuction with finding functional flows to isolate this timing information.

6.4 Isolating Timing Channels

As discussed in the previous section, GLIFT allows system designers to determine

if any information flows exist within their systems even those through timing-channels.

To be concise, at the digital level, there are two possible types of flows which we name

functional flows and timing, as seen in Figure 6.2. Intuitively, a functional flow exists for
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(captured by GLIFT)

Functional FlowsTiming Flows EM Radiation Power

Figure 6.2. The classes of information flows in hardware. In this work, we are concerned
with logical flows that GLIFT captures, including timing and functional flows. Physical
phenomena are out of the scope of this work.

a given set of inputs to a system if their values affects the values output by the system (for

example, changing the value of a will affect the output of the function f (a,b) := a+b),

while a timing flow exists if changes in the input affect how long the computation takes

to execute. While GLIFT will tell the designer only if any such flows exist, in this section

we create a formal model for determining whether or not the system contains specifically

functional flows. When used in conjunction with GLIFT, this technique therefore allows

us to also determine what type of flow is occuring: if GLIFT determines that no flow

exists, then clearly there is no flow. If instead GLIFT determines that a flow does exist

but we can demonstrate that no functional flow exists, then we know that a timing flow

must exist. What is left open, however, is the interesting case in which GLIFT determines

that a flow exists but we determine that a functional flow does exist; in this case, we are

unable to determine if a timing flow exists as well.

6.4.1 Finding Functional Flows

We can then create a testing framework as shown in Figure 6.3. Here GLIFT is

used in conjuction with finding functional flows to isolate timing information. If GLIFT

determines that there is no flow, we know there is no functional nor timing information
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flow. If, however, GLIFT determines there is a flow and we can find no functional flow,

then we know that the information flow occured from a timing channel. In this section,

we discuss how to find functional flows. We begin with the strongest possible definition

and then weaken it to make it more amenable to testing techniques familiar to hardware

designers.

Design in HDL 

Synthesize 
to Gates 

Apply GLIFT Logic 

Gate netlist 

Choose  
Pair of Traces 

Design w/ GLIFT 

Simulate 
Identify tainted flows 

Taint  
inputs 

Apply GLIFT Find Functional Flows 

Simulate on Input 
traces; log events 

2 Input Traces 

Follow Def. 6 
Find 2 Different Events  

2 Output Traces 

Tainted 
flow? 

Difference 
found? 

No Information Flow 

No 

Yes 

Cannot conclude if timing flow 

Yes 

No 

Flow through Timing Channel 

Figure 6.3. How our method can be used with GLIFT to isolate timing channels. If
GLIFT says there is a flow and we do not find a functional flow, we know there exists a
timing channel. If we find a functional flow we cannot conclude the existence of a timing
channel.

Definition 14 (Functional flow). For a deterministic FSM F with input space X and

output function α , we say that a functional flow exists with respect to a set of inputs

{xi}i∈I if there exists some value k ∈ T and two input traces A(X ,k) and A(X ,k)′ such

that A and A′ are value preserving with respect to I, and for B := α(A) and B′ := α(A′)
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it is the case that there exists ei ∈ d(B) and e′i ∈ d(B′) such that val(ei) 6= val(e′i).

This definition says that, if there is some functional flow from this set of inputs to

the output, then there exist input traces of some size k that will demonstrate this flow; i.e.,

if a different output pattern is observed by changing only the values of these particular

inputs, then their value does affect the value of the output and a functional flow must exist.

In practice, however, this definition is not entirely useful: a system designer wanting to

isolate timing flows by ensuring that no functional flows exist would have to look, for

every possible value of k, at every pair of traces of size k in which the value of this set

of inputs differs in some way; only if he found no such pair for any value of k would

he be able to conclude that no functional flow exists. We therefore consider how to

meaningfully alter this definition so as to still provide some guarantees (albeit weaker

ones) about the existence of functional flows, without requiring an exhaustive search

(over a potentially infinite space!).

Definition 15 (Functional flow). For a deterministic FSM F with input space X and

output function α , we say that a functional flow exists with respect to a set of inputs

{xi}i∈I and an input trace A(X ,k) if there exists an input trace A(X ,k)′ such that A and

A′ are value preserving with respect to I and for B := α(A) and B′ := α(A′) it is the case

that there exists ei ∈ d(B) and e′i ∈ d(B′) such that val(ei) 6= val(e′i).

At first glance, this definition already seems much more useful: instead of looking

just at the set of inputs, we also consider fixing the first trace. If we then construct our

second trace given this first trace to ensure that the two are value preserving, then

comparing the distinct traces of the output will tell us if a functional flow exists for the

trace. Once again, however, we must consider what a system designer would have to do

to ensure that no functional flow exists: given the first trace A, he would have to construct

all possible traces A′; if the distinct traces of the outputs were the same for all such A′,
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then he could conclude that no functional flow existed with respect to A. Once again,

this search space might be prohibitively large, so we consider one more meaningful

weakening of the definition.

Definition 16 (Functional flow). For a deterministic FSM F with input space X and

output function α , we say that a functional flow exists with respect to a set of inputs

{xi}i∈I and input traces A(X ,k) and A(X ,k)′ that are value preserving with respect to I

if for B := α(A) and B′ := α(A′) it is the case that there exists ei ∈ d(B) and e′i ∈ d(B′)

such that val(ei) 6= val(e′i).

While this definition provides the weakest guarantees on the existence of a

functional flow, it allows for the most efficient testing, as we need to pick only two traces.

In addition, the guarantees of this definition are not as weak as they might seem: they

say that, given the output B, by observing B′ as well, we are not learning any additional

information about the inputs {xi}i∈I than we learned just from seeing B. Again, while

this does not imply the complete lack of any functional flow, it does provide evidence

in that direction (and running this procedure with more, carefully chosen pairs of traces

would only strengthen that evidence).

Finally, we discuss our requirement that the system F be deterministic, and

observe that it is not as strict as it might seem. As discussed at the beginning of the section,

we are interested only in flows that are detectable by GLIFT. Physical processes that can

be used to generate randomness, such as the current power supply or electromagnetic

radiation, are therefore out of the scope of this work. We can nevertheless consider

randomness, however, in the form of something like a linear feedback shift register

(LFSR), which is in fact deterministic given its current state; the randomness produced

by an LFSR can therefore be held constant between two traces by using the same initial

state.
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6.4.2 A sample usage: fast/slow multiplier

To build intuition for how our model determines whether or not a functional flow

exists, we consider a simple system as shown in Figure 6.4.

Multiplier 

A 
B 

Fast 
P 

clk 

Start 

Fast 
Mult 

Slow 
Mult 

Figure 6.4. On the left, we can see the inputs and outputs of the system S: it takes in two
multi-bit inputs A and B and two single-bit inputs, fast and a clock input clk, and outputs
P := A×B. On the right, we can see that the system first picks an ALU to use based on
the value of fast and then uses that ALU to perform the multiplication.

As we can see, the system consists of a pair of two-input multipliers, one fast and

one slow. On inputs A, B, and fast, the system will use fast to determine which of the

hardware multipliers to use. For both A and B, there is a clear functional flow from the

input to the output, as P := A×B. The input fast, however, has no effect on the value

of the output P, as it simply selects whether to perform a fast or slow multiply. There is

therefore no functional flow from fast to the output, but there is a clear timing flow, as

we can see that the latency with which P is computed is highly dependent on the value of

fast.

To confirm this intuition that the flow from fast must be timing rather than

functional, we look at this input through the lens of our technique described above. Using

as F the system in Figure 6.4, we can define the input space to be X := (Z,Z,{0,1});

i.e., all tuples consisting of two integer values and one bit, and our output space to be

Y := Z. As mentioned, we are interested in whether or not a functional flow exists for

fast, so we will define this to be our set of inputs. Now, we pick values A0 and B0 for
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A and B respectively, and set our first trace to be A := ((A0,B0,0), t0); i.e., the single

event (at an arbitrary time t0) in which A0 and B0 are multiplied using the slow ALU. We

then set our second trace to be A′ := ((A0,B0,1), t0), and run these two traces to obtain

output traces B = (P, t) and B′ = (P′, t ′). As A0 and B0 were the same for both traces, it

is clearly the case that P = P′ and thus val(ei) = val(e′i) for all ei ∈ d(B) and e′i ∈ d(B′),

meaning no functional flow exists with respect to these two traces. As discussed above,

this also provides evidence that no functional flow exists for fast at all, although further

testing would likely be required to rule out this functional flow completely.

Although this example is a bit contrived, it effectively shows that finding hardware

timing channels in practice is non-trivial, and testing for them requires some intuition (for

example, knowing which traces to pick). In the next section, we discuss a more complex

example in which we examine how timing channels can be detected and eliminated in a

shared bus system.

6.5 The Bus Covert Channel

Shared buses, such as the inter-integrated circuit (I2C) protocol, universal serial

bus (USB), and ARM’s system-on-chip AMBA bus, lie at the core of modern embedded

applications. Buses and their protocols allow different hardware components to commu-

nicate with each other. For example, they are often used to configure functionality or

offload work to co-processors (GPUs, DSPs, FPGAs, etc.). As the hardware in embedded

systems continues to become more complex, so do the bus architectures themselves,

which makes it non-trivial to spot potential security weaknesses in their construction.

In terms of such security weaknesses, a global bus that connects high and low

entities has inherent security problems such as denial-of-service attacks, in which a

malicious device can starve one of higher integrity, and bus-snooping, in which a low

device can learn information from a high one. It is not uncommon for designers to go as
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far as building physically isolated high and low buses in high-assurance applications to

avoid these vulnerabilties.

The covert channels associated with common buses are well researched. One

such channel, the bus-contention channel [44] arises when two devices on a shared bus

communicate covertly by modulating the amount of observable traffic on the bus. For

example, if a device A wishes to send information covertly to a device B, it can generate

excessive traffic on the bus to transmit a 1 and minimal traffic to transmit a 0. Even if

A is not permitted to directly exchange information with B, it still may transmit bits of

information using this type of covert channel.

The two most well-known solutions to the bus-contention channel are clock

fuzzing [44] and probabilisitic partitioning [39]. The first, clock fuzzing, works by

presenting a skewed and seemingly random input clock to the system. Such a “noisy”

clock makes it stochastically difficult for the two devices to synchronize, and thus

to perform this type of covert communication. Although often effective for specific

applications, in reality clock fuzzing only reduces the bandwidth of the channel with an

added performance overhead [39]. Probabilistic partioning, on the other hand, works by

permitting devices access to the bus in isolated time slots in a round-robin fashion. Two

modes are chosen at random: secure and insecure. In insecure mode, the bus operates

in the standard fashion where devices contend for its usage. In secure mode, the bus is

allocated to each device in a time-multiplexed round-robin manner; this therefore limits

access the bus to only one device at a time, thus eliminating the potential for covert

communication.

Both clock fuzzing and probabilistic partitioning have proven to be effective at

reducing, if not eliminating, the bus-contention channel. They do not, however, expand

beyond this particular channel and explore whether or not information might leak through

other timing channels associated with the bus architecture. In addition, previous work
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using GLIFT has shown that strict information flow isolation can be obtained in a shared

bus [78], but the work states nothing about how this information relates to timing. In what

follows, we demonstrate how to use GLIFT and the techniques presented in Section 6.4

to prove that certain information flows in I2C occur through timing channels.

6.5.1 Identifying Timing Flows in I2C

The inter-integrated circuit (I2C) protocol is a simple 2-wire bus protocol first

proposed by Philips [5]. We chose to look specifically at I2C because of both its wide

usage in embedded applications for configuring peripherals and its simple structure; there

is no reason, however, why the techniques presented here could not be applied to more

sophisticated architectures or protocols.

In the I2C protocol (seen in Figure 6.5), a “master” of the bus initiates a transaction

by first sending a start bit by pulling down the data line (SDA) with the clock line (SCL)

high. “Slaves” on the bus then listen for the master to indicate either a read or a write

transaction. For write transactions, the master first sends a device address indicating a

write and the device that matches this address responds with an acknowledgement (ACK).

At this point, the master can transmit an internal register address (sub-address for the

device) and the actual data. The transaction terminates with the master sending a stop bit.

A similar behavior occurs for a read transaction, except here data transfers from a slave

to the master. Since I2C shares a common bus, there is the potential for several different

covert channels, in addition to the bus-contention channel described above. To explore

these different channels, we look at three configurations of the I2C bus and discuss the

potential ways in which information can be communicated covertly. We furthermore

discuss how the flows in each of these covert communications can be classified as either

a functional or timing flow using the techniques presented in Section 6.4.
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Figure 6.5. (a) Standard I2C configuration. (b) S1 can covertly communicate a 1 to S2 by
sending an acknowledgement. (c) S1 can communicate a 0 covertly to S2 by sending a
negative-acknowledgement.

Case 1: global bus

A global bus scenario, wherein multiple devices contend for a single bus, is the

most general and commonly found bus configuration. Consider the example in which

two devices wish to communicate covertly on the I2C bus as shown in Figure 6.5. At first

glance, there exists an obvious information flow in this architecture since the devices

themselves can “snoop” the bus. For example, a device S1 can send an acknowledgement

to the master to covertly transmit a 1 to another device S2; conversely, it can send a

negative-acknowledgement to send a 0. Since S2 observes all activity on the bus, it can

simply monitor which type of message S1 sends and thus determine the communicated

bit. While this is by no means the only type of flow, for the sake of simplicity we will

stick with this scenario throughout the rest of the section.

To put our model to use on this scenario, we designed the system shown in

Figure 6.5 in Verilog by constructing I2C Master and Slave controllers. Since we were

interested in the flows between S1 and S2, we processed the designs in the manner

presented in Section 6.3 and in the previous work. To be concrete, we took the slave

and master RTL descriptions and synthesized them down to logic gates using Synopsys’
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Design Compiler. For each gate primitive in the system, we added the appropriate GLIFT

logic. The result is a system which contains a master and two slaves, each of which also

has tracking logic associated with it. In a manner similar to that of previous work, we

executed a test scenario wherein the master performs a write transaction with S1 and S1

sends an acknowledgement by simulating it in ModelSim 10.0a [69], a Verilog simulator.

We observed that the GLIFT logic indicates a flow to S2. At this stage, we have therefore

identified that some type of information flow exists, but it is not entirely obvious if this

was a functional or timing flow.

Since the devices can directly observe all interactions on the bus, one might

expect this to be a functional flow. Not surprisingly, we utilized the model presented in

Section 6.4 to show exactly that. To put this model to use, we abstract the output y =

〈SCL,SDA〉 of our model since these are the only two signals observable by S2 (recall that

SCL is the clock line and SDA the data line). In addition, we abstracted the input traces

to our system as A1(X ,k) := 〈S1 sending NACK〉 and A2(X ,k) := 〈S1 sending ACK〉;

running these through the system produced two output traces AG1 and AG2 . In a bit more

detail, we collected AG1 by logging the discrete events that occured when S1 failed to

acknowledge a write transaction from the master (thus intending to covertly transmit

a 0). We then obtained a related trace AG2 , in which S1 does acknowledge the write.

By analyzing these traces, we identified events e j ∈ d(AG1) and e′j ∈ d(AG2) (recall that

d(AG1) and d(AG2) are the distinct traces of AG1 and AG2 respectively, as defined in

Definition 6) such that val(e j) 6= val(e′j). As a result, from Definition 16 of a functional

flow, we know that a functional flow must exist. Recall, however, that this does not mean

that there exists only a functional flow. Since GLIFT indicates that there exists a flow, it

may be the case that information flows from S1 to S2 through both functional and timing

channels.

The next case discusses how such a functional flow can be easily prevented using
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time-multiplexing of the bus in a manner similar to probabilistic partitioning [39].

Case 2: strict time-multiplexing of the bus

A seemingly easy solution to eliminate this information flow presented in Case

1 is to add strict partitioning between when devices may access the bus, as shown in

Figure 6.6. Here, slaves on the bus may view the bus only within their designated time

slots; this prevents devices from observing the bus traffic at all times. In this work, we

partition over-conservatively by allowing the bus to be multiplexed between statically set

time slots. In terms of probabilistic partitioning, we test the case in which the system

is running in secure mode. We are interested in the same scenario as before: S1 wishes

to transmit information covertly with S2; now, however, the bus-contention channel is

eliminated, as partitioning has made contention impossible.

Master S1 S2

Aribter Aribter clock

SDA

SCL

Figure 6.6. Adding strict time-partitioning of the I2C bus. The bus is only accessed by
S1 and S2 in mutually-exclusive time slots.

Because the bus-contention channel has been ruled out, one might think that a

covert channel between S1 and S2 no longer exists. Nevertheless, information can still be

communicated covertly through the internal state of the master; to therefore transmit a

covert bit, S1 need only leave the master in a particular state before its time slot expires.

For example, many bus protocols have a time-out period in case a device fails to respond
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to a request. If S1 leaves the master in such a state prior to its time-slot expiring, S2 can

observe this state in the following time slot and conclude, based on the response time

from the master, whether a 0 or a 1 is being transmitted: if the master’s response time is

short, S2 can conclude S1 wishes to communicate a 1, and if the response time is long

it can conclude a 0. Although this type of covert channel is quite subtle, by using the

model from Section 6.4 we can prove that this information flow occurs through a timing

channel.

To make use of our model, we again synthesize the Verilog master, slave, and

arbiter (as shown in Figure 6.6) into gates and annotate the design with GLIFT logic

exactly as we did in Case 1. We then executed the same scenario as Case 1 by having

the master request a write to S1 during S1’s allocated time slot and having S1 either

acknowledge or not to covertly transmit a 1 or 0 respectively. After tainting the data

out of S1, the GLIFT logic indicated that there is indeed information flowing from S1 to

S2. As S2 can access the bus only after S1’s time slot has expired, this flow must occur

through the state of the master.

To prove that this is not a functional flow, we abstract this system in the same

manner as Case 1, except we now use y = 〈SDAS2 ,SCLS2〉, where SDAS2 and SCLS2

are the wires observable by S2. In the same manner as Case 1, we set input traces

A1(X ,k) := 〈S1 sending NACK〉 and A2(X ,k) := 〈S1 sending ACK〉 to collect output

traces AT DMA1 and AT DMA2 respectively. Following our model, we worked to find the

existence of an event e j ∈ d(AT DMA1) and e′j ∈ d(AT DMA2) such that val(e j) 6= val(e′j);

we found, however, that no such events existed for this particular testing scenario. As

discussed in Section 6.4, this provides evidence for the absence of a functional flow;

although it does not completely rule out the existence of such a flow, because we have

chosen our input traces to represent essentially opposite events (sending a negative-

acknowledgement and sending an acknowledgement), if a functional flow did exist then
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it is very likely it would be captured by these two traces. We therefore conclude that,

because GLIFT did indicate the existence of some information flow and we have provided

strong evidence that a functional flow does not exist, this flow is from a timing-channel.

Case 3: time-multiplexing with master reset

The work of Oberg et al. [78] using GLIFT for the I2C channel indicated that all

information flows are eliminated when the master device is reset back to a known state

on the expiration of a slave’s timeslot. In particular, this implies that no timing channels

can exist, and thus the attack from Case 2 no longer applies. In practice, this trusted reset

would need to come from a trusted entity such as a secure microkernel; we will therefore

assume for our testing purposes that this reset comes from a reliable source once this

subsystem is integrated into a larger system. With this assumption, we validated this

scenario by adapting the test setup in Case 2 to incorporate the master being restored to

an initial known state once S1’s time slot expires.

We again took the slave, master, and arbiter Verilog modules, synthesized them

into logic gates, and applied the GLIFT tracking logic just as we did in Case 2. Running

this test scenario, we observed that, as previous work had indicated, GLIFT shows that

there is no information flowing from S1 to S2. At this point, we could conclude that no

information flow exists (either functional or timing), but for the sake of completeness we

again used our model to test the existence of a functional flow for this test case.

In the same manner as Case 2, we abstract the output y = 〈SDAS2,SCLS2〉. We

create input traces A1(X ,k) := 〈S1 sending NACK〉 and A2(X ,k) := 〈S1 sending ACK〉

to log output traces AT DMA1 and AT DMA2 respectively. As expected, d(AT DMA1 =

d(AT DMA2), and thus we again obtain strong evidence that a functional flow does not

exist.

As is hopefully demonstrated by these three cases, identifying the presented
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covert channels is not necessarily intuitive; furthermore, hardware designers are likely

to easily overlook these problems when building their bus architectures or designing

secure protocols. By combining the tracking logic of GLIFT with our model, we provide

a method for hardware engineers to systematically evaluate their designs to determine

whether or not techniques such as those used in Case 3 can in fact eliminate covert

channels such as the ones presented in Case 1 and Case 2.

6.5.2 Overheads

To provide an understanding of the associated overheads with these techniques,

we present the simulation times needed to execute them. We collected the simulation

times by using ModelSim 10.0a [69] and its built-in time function. The simulations

were run on a machine running Windows 7 64-bit Professional with an Intel Core2 Quad

CPU(Q9400) @ 2.66GHz and 4.0GB memory.

Table 6.1. Simulation times in milliseconds associated with the three presented cases for
I2C, and for a single trace. GLIFT imposes a small overhead in the simulation time for
these test cases.

Case 1 Case 2 Case 3

GLIFT 223.95 ms 230.29 ms 222.40 ms
RTL 210.45 ms 211.72 ms 219.04 ms

As seen in Table 6.1, there is not a significant difference between simulating the

designs with GLIFT logic and the base register-transfer level (RTL) designs. This is

likely due to the small size of the designs and the relatively short input traces required for

these particular tests. The overheads associated with GLIFT become more apparent in

Section 6.6 when we discuss identifying timing channels associated with a CPU cache.

Finally, we mention that, although we consider two input traces for each case, we

present in Table 6.1 our simulation times for only a single input trace. We do this because,

as mentioned in Section 6.4, designers may wish to check even beyond two traces to
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gain more assurance that a functional flow does not exist. Since the simulation time of a

particular input trace is independent of the others, we chose to present the results for a

single trace but note that they can be appropriately scaled to consider more traces as well.

6.6 Cache Timing Channel

Recent work has shown CPU caches to be one of the biggest sources of hardware

timing channels in modern processors [10, 18, 86, 40]. In a modern computing system,

a cache can be seen as a performance optimization that provides a “quick look-up” for

frequently used information. Caches are typically built from faster and higher power

memory technologies, such as SRAM, and sit between slower main memory (typically

DRAM) and the CPU core. When a memory region is referenced by a program, it is

brought into the cache for fast access.

Broadly, there are two basic types of caches: direct-mapped and set-associative.

For a direct-mapped cache, a memory address A is divided into three fields: tag, index,

and disp, where tag is meta-data used when indexing into the cache, index is the line

index, and disp is the block offset. When accessing a direct-mapped cache, index is first

checked to determine which cache line A references. Next, tag is checked; if tag matches

what is stored in the cache, a hit occurs and the data is accessed with low latency from

the cache. If it does not match, a longer latency miss requires that the data be accessed

from main memory and brought into the cache. In an effort to minimize misses, N-way

set-associative caches allow N cache lines to exist in a set. In the same manner as a

direct-mapped cache, the cache is first accessed using index. Then, within the index,

each of the N lines’ tag entry are checked against the tag of A. If none match then a miss

occurs, which requires one of the N cache lines to be evicted and replaced by referenced

data using a replacement policy such as least-recently used (LRU).

Since most programs have spatial locality in their memory reads and writes, the
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presence of a cache makes the overall performance significantly higher than if main

memory were accessed on every memory operation. However, caches’ non-deterministic

latencies are the direct source of timing channels. As mentioned, when a memory region

is referenced that is currently stored in the cache (a cache hit), the time to receive the data

is significantly faster than if it needs to be retrieved from main memory (a cache miss).

Many data encryption algorithms, such as the advanced encryption standard (AES), use

look-up tables based on the value of the secret key. Since a look-up table will return

a value in an amount of time that is directly correlated with whether or not the value

is already cached, observing the timing of interactions with the look-up table produces

valuable information about the secret key.

In previous work, this vulnerability has been used to completely extract the

secret key; these attacks have been divided into three categories: trace-driven [10],

time-driven [18, 86], and access-driven [40]. Briefly, trace-driven attacks require that

an adversary have detailed cache profiling information such as the number of cache hits

and misses. This means that the adversary requires either physical access to the machine

or other means for obtaining these fine granularity details. Time-driven attacks instead

collect timing measurements over several encryptions by a remote server and correlate

their running time to the value of the secret key; this type of attack was carried out most

notably by Bernstein [18], who used it to extract a complete 128-bit AES key. To do this,

Bernstein exploits timing fluctuations of ≈ 222 samples and uses stochastic differences

between encryptions to identify the value of a byte of the secret key. He then repeats this

procedure for each of the key bytes to eventually extract the key in its entirety. Although

this type of attack is the most general, it requires large numbers of encryptions (≈ 226) in

order to obtain enough data to make this attack practical. Finally, access-driven attacks

exploit knowledge about which cache lines are evicted. In particular, a malicious process

observes the latency of cache misses and hits and uses these patterns to deduce which
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cache lines are brought in/evicted, which in turn leaks information about the memory

address (e.g., the secret key in AES table look-ups). In this work, we chose to look at

access-driven attacks, as they are the easiest for us to demonstrate given our current test

setup. Furthermore, this type of cache attacks has applications beyond just encryption; for

example, as demonstrated by Ristenpart et al. [91] in their attack on virtualized systems.

6.6.1 Overview of Access-Driven Timing Attacks

At a high-level, an access-driven cache timing attack first flushes the cache using

some malicious process. Next, a secret process uses a secret key to perform encryption.

Finally, the malicious process tries to determine which of the cache lines were brought

into the cache in the encryption process. Since the key is XORed with part of the plaintext

before indexing into a look-up table, the malicious process can correlate fast accesses

with the value of the secret key. As noted by Gullasch et al. [40], this attack assumes that

the secret and malicious process share physical memory; an attack in which the secret

and malicious process do not share physical memory would require slightly different

behavior from the malicious process.

In a bit more detail, we can see a depiction of this attack in Figure 6.7. Assume

we have a malicious process M and secret process V (for victim). First, as seen in part

(a), M flushes all contents of the cache. Next, as seen in part (b), V subsequently runs

AES using a secret key as input for a short duration; this process fills the contents of

the cache. Now, in part (c), M reads memory locations and observes the latency of each

access. Since M and V share physical memory, M will receive memory responses with

lower latency if V accessed this data prior to the context switch, as it will already reside

in the cache. Because the secret key used by V is an index into look-up tables, the access

latencies of M (i.e., a cache hit or miss) directly correlate with the value of the secret key.
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Figure 6.7. (a) A typical CPU cache. The attack operates by malicious process first
flushing the cache. (b) The victim process encrypts some data with its secret key, thus
bringing in cache lines. (c) The malicious process can observe which cache lines are
present from latency, thus deducing the address and value of key used to index look-up
table.

6.6.2 Identifying the Cache Attack as a Timing Channel

As the above attack critically requires on the timing information available to M,

it can clearly be identified as a type of timing attack. In this section, we demonstrate this

fact more formally by using GLIFT and our model from Section 6.4 to prove that any

information flows are timing-based.

To put this scenario to test, we designed a complete MIPS based processor written

in Verilog. The processor is capable of running several of the SPEC 2006 [43] benchmarks

including mcf, specrand, and bzip2, in addition to two security benchmarks: sha and

aes, all of which are executed on the processor being simulated in ModelSim SE 10.0a

(a commercial HDL simulator) [69]. All benchmarks are cross-compiled to the MIPS

assembly using gcc and loaded into instruction memory using a Verilog testbench. The

architecture of the processor consists of a 5-stage pipeline and 16K-entry direct mapped
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cache (1-way cache). We chose to use a direct-mapped cache for our experiments for

ease of testing, but note that this analysis would apply directly to a cache with greater

associativity.

Since our particular region of interest is the cache, we focus our analysis directly

on this subsystem. To do so, we apply GLIFT logic to the cache system as described in

section 6.3. Specifically, we remove the hardware modules associated with the cache

(cache control logic and the memory itself) and synthesize them to logic gates and

flip-flops using Synopsys’ Design Compiler using their and or.db library; this library

contains basic 2-input ANDs, ORs, inverters and flip-flops, and thus our resulting design

contains only these primitives. We then process each gate and flip-flop in the design

and add its associated tracking logic in a compositional manner. That is, we process

each gate and flip-flop linearly and add the GLIFT logic associated with their function

(AND, OR, etc.). This new “GLIFTed” cache is re-inserted into the register-transfer level

(RTL) processor design in the place of the original RTL cache. Pictorially, this can be

seen in Figure 6.8. The input and output to the cache system include address and data

lines and control signals (write-enable, memory stall signals, etc.); each such input and

output is now associated with a taint bit which will be essential to testing whether or not

information flows from our victim process V to our malicious process M.

To execute the test scenario, we follow the same procedure as the access-driven

timing attack previously discussed by having malicious and victim executions share the

cache. We have M first flush the cache by resetting all data in the cache. We then have V

execute AES with all inputs to the cache marked as tainted (i.e. secret). Subsequently, we

have M execute and observe whether or not information from V flows to M. As expected,

we observe that as M reads from memory locations, secret information immediately

flows out of the cache. We therefore know that a flow exists, but at this stage it is still

ambiguous whether the flow is functional or timing.
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Figure 6.8. A block diagram of a simple MIPS-based CPU. The cache is replaced by
one which contains the original cache and its associated tracking logic. Our testbench
drives the simulation of the processor to capture the output traces.
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To identify exactly which type of channel was identified by GLIFT, we leverage

the benefits of our model by working to identify a functional flow; as previously discussed,

if we detect no functional flow, then we know the flow must be from a timing channel.

To fit our model, we abstract the output of the cache as y = 〈dataM〉 to indicate the

cache output observable by M (note that, in particular, stall is not included in this output,

as it cannot be observed directly by M). Following our model, we then defined two

traces: A1(X ,k) := 〈V using K1〉 and A2(X ,k) := 〈V using K2〉; i.e., the cases in which

V encrypts using two different keys. We then simulated both of these scenarios and

logged all of the discrete events captured by ModelSim to obtain to output traces AC1

and AC2; by definition of y, these output traces contain all events observable by M. Once

we collected these traces, we checked whether or not a functional flow exists for these

particular traces by looking for the existence of events e j ∈ d(AC1) and e′j ∈ d(AC2) such

that val(e j) 6= val(e′j). For these particular traces, we found no such pair of events. Again,

although the fact that no functional flow exists with respect to these particular traces does

not imply the lack of a functional flow for any traces, it does lend evidence to the theory

that the flow must be timing-based rather than functional (and additional testing with

different keys would provide further support).

6.6.3 Overheads

As we did for I2C in Section 6.5, we evaluated the overheads associated with

our technique by measuring simulation time. We collected our measurements using

ModelSim 10.0a and its built in time function running on the same Windows 7 64-bit

Professional machine with an Intel Core2 Quad CPU(Q9400) @ 2.66GHz and 4.0GB of

memory. We measured the time for the secret process (V ) to run AES on a secret key

K1 followed by a malicious process (M) attempting to observe which cache lines were

evicted. This measurement was repeated for both the design with and without GLIFT.
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For completeness, we repeated the same process for the second input traces; namely

when V executes AES using K2 followed by M attempting to observe which cache lines

were evicted. The resulting times from these simulations can be found in Table 6.2.

Table 6.2. Simulation times in seconds for AES running with different encryption keys,
with and without GLIFT tracking logic. In general, simulating a design with GLIFT logic
causes large slow-downs.

AESK1 AESK2

GLIFT 381.49 s 392.60 s
RTL 66.30 s 66.76 s

As Table 6.2 shows, there is a large overhead (≈ 6X) for using GLIFT to detect

whether or not a flow exists. Furthermore, since the behavior of M is fixed between both

input traces and the only value changing is the secret key, the results clearly show that

a timing channel exists with regards to the cache, as the execution time for AES on K2

is longer than that of K1; the existence of such a timing channel was also identified by

GLIFT and our model.

6.7 Timing Channels in RSA Encryption Core

As an additional point of reference, this section describes how this model can be

applied to detect a timing channel in an RSA cryptographic core. The RSA public-key

cryptosystem [92] is one of the most widely used data encryption and digital signtuare

algorithms. In short, the algorithm uses modular exponentiation to encrypt and decrypt

data. Computing this exponentiation can be done quickly and efficiently in hardware.

One approach for computing decryption: Cd (mod n), where C is the ciphertext,

d is the private key and n the public modulus, is to employ a square-and-multiply

algorithm which iterates over all key bits and performs a multiply each iteration depending

on the value of the key bit. The details of this algorithm can be seen in Algorithm 2 (note
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that this is the same algorithm presented in Chapter 2.3). If the current key-bit is 1, a

multiply is performed otherwise the operation is skipped. A square is computed every

iteration.

Algorithm 2. Basic algorithm for square-and-multiply to compute modular exponentia-
tion. It computes Cd (mod n).

R = 1;
temp =C;
for i = 0 to |d|−1 do

if bit d[i] = 1 then
R = R · temp (mod n)

end if
temp = temp2 (mod n)

end for
return R

As one might expect, on iterations where an additional multiply is performed, the

run time will be slower. Essentially, the value of the key will have great influence on the

run-time of the decryption and thus attackers can (and have [55]) exploited this timing

variation to extract the private key.

In hardware, an RSA decryption module1 will not only have Key and Ciphertext

inputs and a Message output, but other control signals as well. For example, a signal is

needed to notify when the algorithm should begin (start) and also an output to say when

the decryption is completed (rdy). If the key affects when the Message is ready (i.e. the

time in which rdy is asserted), this timing variation can be exploited by an attacker.

6.7.1 Detecting Leak as Timing Channel

To this end, we apply our analysis to the BasicRSA core from opencores [82] and

determine whether or not there is a timing channel in the design. Following the same

GLIFT analysis flow, we detect that the key does in fact affect rdy. Now, to classify this

1We use decryption here because RSA decrypts using a private key and encrypts with a public one
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as a timing leak, we apply the model presented in Chapter 6.4 and abstract the input

traces A := 〈RSA on Key 1〉 and A′ := 〈RSA on Key 2〉 using two randomly chosen keys

and record the output traces B and B′ by logging the values of the rdy signal for the

duration of the decryption. When applying our model to these output traces, we find that

val(ei) = val(e′i) for all ei ∈ d(B) and e′i ∈ d(B′). Since GLIFT indicates that there is an

information leak and we did not detect a functional flow, we know that this leak must be

from a timing-channel.

The analysis of this core brings up a necessary discussion. As described, our

model cannot detect the presence of a timing when a functional one exists as well. For

example, the ciphertext of an encryption algorithm (like RSA) will always be functionally

affected by the key. However, as demonstrated here, by discovering the key’s effect on

the time in which rdy is asserted, it is possible to conclude that it affects the time in

which the cryptographic process completes. In other words, this technique is able to

conclude that the core has a timing channel.

Chapter 6, in full, is a reprint of the material as it appears in the conference

on Design Automation and Test in Europe 2013 and also in submission at the IEEE

Transactions on Computer-aided Design of Integrated Circuits and Systems 2014. Oberg,

Jason; Meiklejohn, Sarah; Sherwood, Timothy; Kastner, Ryan. The dissertation author

was the primary investigator and author on both of these papers.



Chapter 7

Conclusion

The number of computers we rely for our personal health, safety, and security

is ever increasing. Many of these computers we completely take for granted and put

complete trust that they will behave in the manner promised to us. Unfortunately, we

have already encountered many serious problems in automobiles [57, 100] and medical

devices [41, 75] and it seems likely that further attacks and vulnerabilities will be exposed

in the near future. With the increasing complexity of hardware, design evaulation is

becoming an increasingly important problem [50]. Security can no longer be a second-

class concern and needs to be managed as a primary design constraint in the development

of our hardware.

As described in this thesis, hardware itself is becoming more frequently exploited

by attackers. Side-channel attacks in the form of both power [54, 66, 70, 71, 85] and

timing [22, 10, 86, 18, 40, 12, 9, 11] are becoming more prevelant making it easier for

attackers to thwart the mathematical power of cryptogrphic algorithms. Timing-attacks

are often powerful because they often do not require physical access to a device. In

many of these attacks, such as the one performed by Bernstein [18], was done on a

remote machine. In order to appropriately manage these timing-based information leaks,

hardware designs need appropriate tools to help them evaluate and debug the security of

their designs.
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In the past chapters in this thesis, I presented a technique for detecting timing-

based information flows in hardware. This technique leverages past work on gate-level

information flow tracking [103] and demonstrates that it can be nicely applied to hardware

security testing and verification. Unlike prior work on GLIFT, the concepts presented

here demonstrate that GLIFT can in fact be used as a powerful, static, testing technique.

To demonstrate its effectiveness, I have showed several different application use cases for

using GLIFT statically. In Chapter 4, I demonstrated that GLIFT can be an invaluable

tool for analyzing different information flows in common bus protocols. Although I

specifically targetted I2C and USB, the ideas presented in this chapter extend easily

to others. Further, to show that this technique can be applied to larger systems, I

built a system-on-chip (SoC) that was composed of two processors sharing a hardware

accelerator (an AES core) as discussed in Chapter 5. Here I demonstrated that only the

interfaces need to be analyze since we were concerned with the interaction of the two

processors. Using this analysis, I was able to demonstrate that the processors could not

affect one another even through timing. Lastly, in Chapter 6, I formalized exactly how

GLIFT detects timing channels and also presented a formal model for separating these

timing leaks from more functional ones. All of these contributions demonstrate that

GLIFT is well suited for static testing.

The static testing techniques and detection of timing channels presented in this

thesis will provide valuable insight for security testing and verification in next generation

hardware. Security can no longer be overlooked be hardware designers. Companies have

already begun this push by putting together hardware security teams focusing primarily on

potential vulnerabilities in their designs. Intel’s Security Center of Excellence (SeCoE)

is a good example of where the hardware design community is moving. Although

companies are apparently moving in the right direction, the tools and methods for

assisting in this movement are far behind. The methods I presented in this thesis provide
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such a set of techniques which will aid in the development of our future hardware in a

more secure manner. The hope is that these and similar techniques will be adopted in

order for our embedded systems, that manage many important aspects of our lives, to be

more trustworthy, safe, and reliable.



Chapter 8

Future Research in Hardware Security

There are many avenues for future research using GLIFT. There are many other

necessary formalisms related to the preciseness (see [46, 47] for details of preciseness)

of the GLIFT logic and timing channels. For example, I have observed behavior that the

GLIFT logic will detect an information leak for finite amounts of time. The duration

in which GLIFT asserts there is a flow is both dependent on the timing channel and the

preciseness of the generated tracking logic. In the future, I will explore these properties

further. The hope in studying this specific topic more is that may be possible to measure

the bandwidth of a timing channel. It also might be possible to profile different types

of inputs on how much information they are leaking. For example, it may be the case

that different values of secret keys actually leak more information than others. I believe

GLIFT has the power to explore some of these very important and intricate security

properties.

Another avenue for further development is to use GLIFT to make much more

formal guarantees and truly prove hardware security properties. For example, most

formal tools, such as those in the open-source ABC tool developed at Berkeley [7],

are based on formal solvers such as SAT and SMT solvers. The Boolean satisfiability

problem (SAT) is computationally difficult (NP-hard). Due to this inherent difficulty,

extremely complex problems, such as providing static and provable security properties,

98



99

can be decided using SAT-solvers. Even further, the efficiency of these SAT solvers

is increasing dramatically with increase computing power and further research. As an

example, in the annual SAT competition, the run time to solve 80 problems was 1000

seconds in 2002 and 40 seconds in 2010 [2]. This makes proving hardware security

properties much more achievable than in the past. These SAT solvers require that the

problem be expressed as a formal logic. The solvers then work to determine whethe

or not this logic can ever be satisfiable, or true. Since digital hardware is composed

of Boolean functions separated by stateful latches, SAT solvers are a very natural fit

to GLIFT. The mapping between our information flow security properties to a formal

logic happens neatly since it already exists as one. A future research direction would be

to make this formal integration a reality by coupling our gate-level logic with a formal

SAT-based tool using ABC. This would provide a seemless integration so that hardware

designers wishing to prove security properties about their RTL can easily pass in a set of

security properties and the RTL and receive output about whether or not they passed or

failed.

Beyond all the work I have done with my collaborators related to GLIFT [77, 78,

46, 47, 102, 80, 79, 45, 109, 48] I have contributed to the development of two secure

hardware description languages. The Caisson language, which was presented in the

symposium on Programming Language Design and Implementation in 2011 [64], lever-

ages a static type system to allow hardware designers to formally prove non-interference

about their register transfer level (RTL) code. My contribution to the Caisson language

was assessing the overhead that this new language caused on the resulting hardware

and an invaluable comparison to a system with GLIFT logic. Further, in a much more

improved language called Sapper, which will appear at the conference on Architectural

Support for Programming Languages and Operating Systems in 2014 [63], I designed

and built the processor used for the performance assessment of the language. Sapper
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improved the hardware overhead imposed by Caisson by generating concise logic for

dynamic information flow tracking. In other words, security properties were enforced in

the physical hardware rather than at design time.

I have a huge interest in hardware description languages for both security and

easier design. Current languages for hardware design are not only difficult for designers to

write, but they do not offer good methods for security. Ideally, assertions, such as System

Verilog Assertions (SVAs), would have the ability to concisely specify information flow

security properties. There are large avenues for future research in this space and I hope

to leverage my past experience in this space to explore it more in the future.
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