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Groups of coordinated underwater vehicles or sensors are powerful tools for monitoring the ocean. A

requirement of many coordinated surveys is to determine a spatial reference between each node in a

swarm. This work considers the self-localization of a swarm of independently moving vehicles using

acoustic noise from a dominating incoherent source recorded by a single hydrophone onboard each

vehicle. This method provides an inexpensive and infrastructure-free spatial reference between

vehicles. Movement between the vehicles changes the swarm geometry and a self-localization estimate

must be generated from data collected on short time scales. This challenges past self-localization

approaches for acoustic arrays. To overcome this challenge, the proposed self-localization algorithm

jointly estimates the vehicle geometry and the directionality of the ambient noise field, without prior

knowledge of either estimate. To demonstrate this method, experimental results are provided when a

boat is the main dominating source. The results demonstrate the ability to both estimate the direction

of arrival of the boat and the relative positions of the vehicles in the swarm. The approach in this paper

is not limited to moving vessels. Simulations are provided to examine three different factors that affect

the proposed solution: inter-vehicle motion, vehicle geometry, and the azimuthal variance of the noise

field. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5070154

[KGS] Pages: 2811–2823

I. INTRODUCTION

Swarms of underwater vehicles provide a new modality

for passive sensing in ocean environments.1 Swarms can

measure the spatial distribution of different chemicals or

physical processes in the ocean,2 freely drifting vehicles can

measure three dimensional water flows to study phenomena

such as internal waves in physical oceanography,1 and using

multiple vehicles has been proposed to optically image the

seafloor.3 Like underwater arrays, the received structure of a

signal across elements in a swarm can be used to determine

information about sound sources and environments.4,5

Swarms of vehicles have the added advantages of being

mobile, easy to deploy, and robust since every vehicle is its

own independent system.

Estimating the individual location of each node in a

swarm is necessary for most deployments. Localizing

underwater vehicles is usually based on active acoustics,

which contain trade-offs in power consumption, cost, and

required infrastructure.6,7 The localization could be per-

formed onboard each vehicle by using Doppler shifts8,9 and

inertial navigation systems, or by acoustic communication.10

Performing the localization onboard each vehicle is power

intensive and requires expensive equipment. This reduces

the endurance and increases the price point of each vehicle.

Alternatively, surveys can set up dedicated acoustic infra-

structure in a global coordinate frame to send signals to each

vehicle.1,10–12 Travel time measurements from the infra-

structure to the vehicle provide distance estimates, and mul-

tiple distance estimates can be combined to estimate the

position of each vehicle. In these applications, the acoustic

infrastructure can require significant effort to deploy and

forces the vehicles to remain within its range, limiting the

area the vehicles can survey. Using active acoustic systems

for localization is restrictive in either cost, time, endurance,

or mobility.a)Electronic mail: pnaughto@ucsd.edu
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A promising alternative to active localization systems is

to use the ambient acoustic noise in the ocean. Ambient

acoustic noise is ubiquitous,13 free, and does not require an

active source; this makes localization independent of infra-

structure, inexpensive, and low power. This article provides
a self-localization estimate for moving vehicles using ambi-
ent acoustic noise from dominating noise sources in the
ocean recorded by a single hydrophone onboard each vehi-
cle. Movement between vehicles forces the self-localization

solution to use constraints collected on short time scales (on

the order of seconds), which complicates previously pro-

posed self-localization methods focused on ambient noise.

The proposed solution assumes that the vehicle geometry is

stationary for short periods of time, and that there are domi-

nant incoherent sound sources in the soundscape, to jointly

estimate the geometry of the vehicles along with the direc-

tion of the dominant sources. This approach reduces the time

needed for a self-localization solution by utilizing strong

anisotropies in the noise field and can accommodate many

different environments. These strong anisotropies are usually

considered a nuisance when trying to extract information

from ambient noise.5

There has been a significant amount of work on process-

ing low frequency (100–1000 Hz) acoustic noise in the ocean

because it is omnipresent and suffers the least from attenua-

tion.14 In this frequency band, an array element self-

localization solution was proposed.15,16 This self-localization

solution requires contributions of the noise field to come from

all directions, which allows an estimate of the acoustic impulse

response to be recovered between all pairs of receivers by cor-

relating the noise recorded at each receiver.17–20 This

“isotropic” assumption is usually upheld by considering long

time windows of the ambient noise field to accumulate as

many different noise sources as possible, hopefully coming

from different directions.21–23 In order for this accumulation to

work, the propagation path must remain stationary between

the receivers during the averaging process. Traditionally, the

time evolution of the propagation medium in the ocean limits

the averaging time to tens of minutes or hours.15,21 When con-

sidering arrays, the length of time needed can be shortened by

leveraging coherent array processing through spatio-temporal

filters.22,23 This is not applicable to the scenario we are consid-

ering. The ad hoc array created by mobile vehicles is sparse

with uncertain and changing receiver positions and indepen-

dent, possibly unsynchronized clocks. These characteristics

impede coherent processing. In the proposed work, the move-

ment between vehicles is the dominant change in the propaga-

tion path and is more restrictive on the length of noise record

than what has previously been considered for recovering the

acoustic impulse response (on the order of seconds, instead of

tens of minutes).5 With this restriction, it is not clear that the

acoustic impulse response can be estimated between moving

vehicles, and self-localization approaches that rely on these

estimates may not be robust.

Despite the tough restrictions on the length of time that

can be used, noise correlations across mobile vehicles do

exhibit arrivals from different noise directions.5 Without

noise coming from all directions, or when there are signifi-

cant incoherent dominant sources, this arrival structure is

biased from the dominant noise directions in the ocean envi-

ronment. Consequently, accurate distance estimates between

individual vehicles cannot be estimated and only the receiver

separation projected onto a dominant noise direction can be

retrieved. This projected information is used in the proposed

self-localization solution because it does not require the long

time averages required by an isotropic distribution. Similar

self-localization problems have been examined in terrestrial

wireless sensor networks to recover an array geometry using

projected distances from many different sources.19 Under a

far field assumption, the work of Thrun25 showed that the

relative geometry of an ad hoc microphone array could be

robustly estimated in an affine space and later upgraded to a

Euclidean space when noise sources are parameterized by an

angle. Similar works provided solutions for near-field and

three-dimensional cases,24,26–28 which are more appropriate

for indoor applications where noise sources and microphones

are in the same vicinity.

For mobile underwater vehicles, a self-localization solu-

tion is required that jointly estimates the vehicle positions

and the dominant noise directions of the ambient noise field

because recovering an estimate of the acoustic impulse

response using short time windows may be unrealistic for

some environments. We propose a robust method to perform

this estimation and evaluate our method using data collected

from a multi vehicle survey where each vehicle indepen-

dently drifts with subsea currents. We show that we are able

to accurately estimate the vehicle geometry as well as the

direction of arrival of a moving boat, which provides a high

signal-to-noise ratio (SNR) incoherent source that dominates

the ambient soundscape. Simulations are provided to exam-

ine three different factors that affect the proposed solution:

inter-vehicle motion, vehicle geometry, and the azimuthal

variance of the noise field.

The rest of this article is organized as follows. In Sec. II,

the theory behind our self-localization solution is described.

Section III describes the at sea experiment, and Sec. IV

describes the data analysis, including the detection of domi-

nant sources using noise correlations, which is the input to the

processing presented in Sec. II. The proposed method is tested

on data that was collected off of the coast of San Diego, CA,

where low frequency noise was introduced by a small boat

recording its global positioning system (GPS) location. The

results provided in Sec. V show that the estimation is able to

accurately recover the relative positions of slowly moving

vehicles and describe the angle of arrival of the moving ves-

sel. Simulations are provided to examine the effects of differ-

ent relevant parameters (e.g., inter-vehicle movement, vehicle

geometry, noise directionality) on the estimation result in

Sec. VI. This article is concluded in Sec. VII.

II. METHODS

A. Problem description

We consider a group of underwater vehicles that have a

single hydrophone on board each vehicle and are close

enough to each other that they record common noises in the

ambient soundscape. The deployments considered in Refs. 1,

4, and 5 fit this requisite. We are able to determine their
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depth using onboard pressure sensors and are interested in

estimating their horizontal positions relative to one another.

We can only solve for the positions of the vehicle up to a

rigid transformation (i.e., a translation and a rotation)

because we do not assume to know the locations of any noise

sources or vehicle positions. This is useful for deployments

that aim to study spatial data in a relative sense (e.g., chemi-

cals, currents, or optical images), or to measure the time dif-

ference of arrivals (TDOAs) of acoustic signals that are

received by the elements of the swarm. Additionally, relative

localization solutions can be augmented with a global refer-

ence when it is available, such as a GPS location when the

vehicle surfaces.

We estimate the relative geometry of the vehicle swarm

using cross-correlations of low frequency noise in the ocean

and assume that this noise is coming from far away dominant

incoherent sources. In our experiment, the low frequency

noise is dominated by a moving vessel, so the developments

in this section reflect a single moving sound source. However,

our approach is not limited to this scenario and can be modi-

fied to include multiple dominating sources. Examples of

sources that could be used are low frequency noise from shore

or noise from biological sources.15 Naughton et al.5 shows

examples of noise correlations that result from multiple domi-

nating sources (e.g., shipping noise and noise from the coast),

that are common in coastal environments.

The outline for our procedure is shown in Fig. 1. We start

with acoustic data from independent vehicles and use noise

correlations to extract TDOA constraints between vehicles.

Our experiment and TDOA extraction methods are reported

in Secs. III and IV, respectively. With these constraints, the

estimation described in Secs. II C and II D is performed and

then refined by the procedure described in Sec. II E.

B. Definitions

We define the two dimensional position of vehicle i, at

time t, as Ri,t, the collection of vehicle positions at time t as a

matrix, Rt, and the two dimensional position of the dominant

sound source at time t as St¼ [Sx,t, Sy,t]. We can arbitrarily

assign the x, y position of any vehicle (in this case the first

vehicle), to R1,t¼ [0,0] because the solution can only be

solved in a relative coordinate frame. Throughout the text

we will refer to the vehicle defined at the origin as the anchor

vehicle. With this assignment, we define a relative position

matrix for n vehicles as

�Rt ¼

x2;t � x1;t y2;t � y1;t

x3;t � x1;t y3;t � y1;t

..

. ..
.

xn;t � x1;t yn;t � y1;t

2
66664

3
77775 ¼

x2;t y2;t

x3;t y3;t

..

. ..
.

xn;t yn;t

2
66664

3
77775:

We assume that St is far from the vehicle swarm so that

the propagation of noise from St to every vehicle Ri,t can be

modeled by a plane wave and parameterized by a single

angle, at. Typically, this assumption holds as long as the

sound source is separated from the swarm by about 2–3

times the swarm’s aperture.25 We also assume that St is mov-

ing so that St 6¼Stþ� for some small value of �. This gives us

two collections of variables we wish to estimate, the time

evolution of the angles from the dominant noise source, at,

and the time evolution of the relative position matrix, �Rt.

C. Solution

The estimation is based on TDOA measurements. The

time difference of arrival between vehicle i and j for the

noise source at time t is defined as

di;j;t ¼
kRi;t � Stk2

c
� kRj;t � Stk2

c
: (1)

Here, k � k2 denotes Euclidean distance, and c is the

speed of sound underwater. By only looking at the cases

where j¼ 1, remembering that we set R1,t¼ [0,0] and incor-

porating the assumption that the source can be modeled by

an angle, Eq. (1) can be rewritten as

di;1;t �
�R

x
i;t

�R
y
i;t

h i
cos atð Þsin atð Þ
� �T

c
: (2)

Equation (2) describes a constraint on the relative geom-

etry, �Rt, but it is only a constraint along the angle at.

Therefore, estimating the relative geometry in two dimen-

sions is underdetermined when considering only a constraint

along a single direction, at. In order to estimate the direction

perpendicular to at, the estimation must consider angles that

describe the component perpendicular to at. In other words,

the estimation must include at least one more angle that is

sufficiently different from at to provide constraints along the

FIG. 1. Outline of our processing pipeline: We start with raw acoustic data

from each individual vehicle. The vehicles and the deployment are described

in Sec. III. We compute noise correlations between the vehicles and extract

TDOA values from the noise correlations, as described in Sec. IV. Finally,

we perform the estimation described in Sec. II by first estimating the relative

positions using the formulation of Secs. II C and II D and then refining the

positions using the procedure described in Sec. II E.
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component perpendicular to at. This requires assumptions on

both the motion of the sound source, St, and the relative posi-

tions of the vehicles, �Rt. These assumptions ensure an over-

determined set of constraints by measuring the relative

geometry of the swarm from sufficiently diverse angles. The

first assumption is that the relative geometry remains

unchanged ( �Rto � �Rto6tw ) for some time window, tw, so that

only the relative positions of the swarm at the center time,
�Rto , need to be estimated. This is an assumption on the rela-
tive movement between the vehicles, which is usually much

smaller than the vehicle movement on a global scale, espe-

cially for vehicles that are drifting with currents or moving

in a formation. We have seen this assumption on the vehicle

geometry holds true for the presented experiment as well as

in other deployments.4,5 The second assumption is that the

source, St, will provide a collection of angles at0�tw:t0þtw that

are sufficiently different from the center angle, at0 , so that

the geometry of the swarm can be interrogated by different

directions. Together, these two assumptions provide an over-

determined system of constraints for a self-localization

solution.

This defines the approach. Given a time window, t¼ t0
� tw: t0 þ tw, the estimation will produce an estimate of the

vehicle geometry at the center time, �Rto as well as the collec-

tion of angles, at0�tw:t0þtw , which we will denote at0;tw
for

simplicity. The constraints of Eq. (2) set up a minimization

problem to estimate the angle of arrival of the source at each

time, and the relative geometry of the vehicles25

argmin
�R to ;Kt0 ;tw

k�RtoKt0;tw � cDt0;twk
2: (3)

Here, Kt0;tw describes the constraints placed by the

angles, at,

Kt0;tw ¼
cosðat0�twÞ cosðat0�twþ1Þ � � � cosðat0Þ � � � cosðat0þtw�1Þ cosðat0þtwÞ
sinðat0�twÞ sinðat0�twþ1Þ � � � sinðat0Þ � � � sinðat0þtw�1Þ sinðat0þtwÞ

� �
;

and Dto;tw is a collection of the TDOAs compared to vehicle

1, di,1,t. Since we are comparing to the same vehicle, we

drop the subscript of 1 (i.e. di,1,t¼ di,t) and define Dto;tw as

Dto;tw ¼

d2;to�tw d2;to�twþ1 � � � d2;to � � � d2;toþtw

d3;to�tw d3;to�twþ1 � � � d3;to � � � d3;toþtw

..

. ..
. . .

. ..
. . .

. ..
.

dn;to�tw dn;to�twþ1 � � � dn;to � � � dn;toþtw

2
66664

3
77775:

In the noise free case, Dto;tw should be at most rank 2

because it is the product of two rank 2 matrices ( �Rto ; Kt0;tw ).

Therefore, an affine solution to Eq. (3) can be found using a

singular value decomposition of the matrix Dto;tw ,

UVWT ¼ Dto;tw ; (4)

and only considering the first two singular values and vectors

for the estimation of �Rto and Kto;tw ,

�Rto ¼ U0V0 and Kto;tw ¼ W0T : (5)

In other words, U0 is an (n – 1)� 2 matrix consisting of

the first two left singular vectors (where n is the number of

vehicles), W0 is an (2 * tw) � 2 matrix consisting of the first

two right singular vectors (where tw controls the number of

time samples used in the estimation) and V0 is a diagonal

matrix consisting of the two largest singular values. The

product of �Rto and Kto;tw from Eq. (5) gives an optimal rank

2 approximation to Dto;tw , and an optimal affine solution to

the minimization problem of Eq. (3). However, this solution

is not unique and given any invertible matrix, C,

�R
�
to
¼ U0V0C�1 and K�to;tw ¼ CW0T ; (6)

is also a solution to Eq. (3). In general, an affine solution

will not uphold the Euclidean constraint that cos ðaiÞ2
þsin ðaiÞ2 ¼ 1, so we choose C such that this discrepancy is

minimized25

C� ¼ arg min
C
k 1 1½ �K�to;tw � K

�
to;tw
� 1 1 � � � 1½ �k2; (7)

where � denotes the dot product. Once an optimal value of C
is computed, the optimal value of the relative distance

matrix, �R
�
to

, and the optimal angles of arrival, K�to;tw , are

given by Eq. (6). The nonlinear least squares problem of Eq.

(7) is only a four-parameter estimation problem and can be

estimated using methods like gradient descent (our imple-

mentation uses Levenberg-Marquardt). Solving Eqs. (6) and

(7) is more robust to local minima than trying to solve a non-

linear optimization problem over the two dimensional posi-

tions of all vehicles and the angle of arrival of all sources.

A variety of angles are needed in order for this estima-

tion procedure to be well conditioned. When all at0;tw are

similar, the position of the vehicles will not be constrained

along the dimension that is perpendicular to the angles at0;tw ,

and the optimization procedure of Eq. (3) will be unstable.

This introduces a fundamental trade-off when considering a

single moving source: increasing the time window, tw,

increases the opportunity for more azimuthal variety, but it

also means that the assumption of a constant swarm geome-

try is less likely to hold, �Rto ¼ �Rto6tw .

D. Condition number of C

C provides a “Euclidean upgrade” to the affine solution

based on the angles of arrival computed in Eq. (6).25 When

the angles of arrival are similar, the estimation of Eq. (6)

2814 J. Acoust. Soc. Am. 144 (5), November 2018 Naughton et al.



becomes ill-conditioned and will be more sensitive to noise

on the input values, Dto;tw . A way to measure this is to look

at the condition number of C after it is estimated by Eq. (7),

which estimates the worst case loss of precision from the

Euclidean upgrade. If the condition number of C is large, the

final solution to Eq. (6) will be more sensitive to noise on

the input, Dto;tw , and the solution is less likely to produce a

good estimate.

The choice of the anchor unit when computing �Rt

affects the condition number of C. Since the swarm pre-

sented in Sec. III is relatively small, Eq. (6) is computed for

all possible values of the anchor unit and the solution that

yields the smallest condition number for C is chosen. This

chooses a solution that is least sensitive to input noise.

E. Refinement

The problem with the solution outlined in the last section

is that it does not utilize all of the information between all

vehicle pairs. Since the relative distance matrix is relative to

an arbitrary anchor unit, we are only considering the TDOA

values compared to that anchor unit, i.e., di,1,t. This means

that the solution is susceptible to poor detections on the

anchor unit and that there is information received by other

pairs that could be useful for the self-localization solution.

To overcome this, the solution to Eq. (6) is refined by

minimizing the following nonlinear optimization problem

using the Levenberg-Marquardt algorithm:

�R
�
to
; a�to;tw

¼ arg min
�R to ;ato ;tw

XN

h¼1

XN

i¼1;i 6¼h

Xtoþtw

t¼to�tw

ð Rh;to � Ri;to½ �

� cosðatÞ sinðatÞ½ �T � cdh;i;tÞ2: (8)

We use the solution computed in Eq. (6) as the starting

point for this optimization problem. Equation (8) refines the

solution of Eq. (6) to include the information from new pairs

of vehicles. An important thing to note about our estimation

is that given a center time, to, the only parameter that needs

to be chosen is the length of the time window, tw. Choosing

tw will be discussed in Secs. V and VI.

III. EXPERIMENT

We described the core estimation of the relative vehicles

positions in Sec. II, and we will describe how we extract the

constraints for our estimation in Sec. IV. In this section, we

describe our experiment, which will make the description of

how we extract constraints between vehicles in Sec. IV more

clear.

Our self-localization approach was tested using data

from a multi-vehicle deployment. Acoustic data was col-

lected using Autonomous Underwater Explorers (AUEs),

designed and built at the Scripps Institution of

Oceanography.1 Each AUE is a self-contained sensor that

collects acoustic data from an HTI-96-MIN hydrophone, in

addition to accelerometer, temperature, and pressure data.

The AUEs track a depth in the ocean’s water column by

adjusting their buoyancy. When the motor is on, the hydro-

phones are saturated. For an individual AUE, the motors ran

at least 10% of the duration of the experiment and are inde-

pendent of the other AUEs. The AUEs have no actuation in

either horizontal direction and currents move the AUEs sub-

stantially while deployed in the ocean. The clocks of the

AUEs are synchronized at the beginning and end of the

experiment using a GPS receiver on each AUE, and a linear

drift correction is applied to each AUE clock before any

processing on the acoustic data is performed. The AUEs

measure their depth using an onboard pressure sensor. In

order to provide a “Ground Truth” estimate for our vehicle

geometry, an acoustic triangulation system is set up to act

similar to a GPS system. Five acoustic buoys are positioned

on the surface of the ocean to send a linearly modulated

chirp (8–15 kHz) to be received by the hydrophone of each

AUE. Each of five buoys takes turns pinging and each packet

of five pings occurs every ten seconds. The AUEs have lim-

ited on-board processing and no communication infrastruc-

ture, so all localization is done offline after they are

retrieved. We believe that these localization estimates are

accurate to about 1–3 meters.1,4,5

The experiment was performed off of the coast of

the Scripps Institution of Oceanography and is described in

Fig. 2. Eight AUEs and the five pinger localization system

were deployed close to shore, in water that was approxi-

mately 20 meters deep. The pingers were separated between

0.5 and 1 km apart. The AUEs were programmed to hold a

depth of 6 meters and were accurate to 61 meter. While the

AUEs were deployed, a small boat circled the acoustic ping-

ing array twice while recording its GPS position at 1 Hz. In

the first loop around the array, the boat traveled approxi-

mately 11 m/s and circled the array in approximately 400 s.

During the second loop, the boat was slowed to 4 m/s and

traveled around the array for approximately 700 s. Both the

bearing and range of the boat from the center of the swarm

are shown in Fig. 3. In this figure, we can see the change in

speed of the boat in the bearing plot. The range plot also

shows that we can model the boat as a single angle in rela-

tion to the AUE swarm.

IV. DATA ANALYSIS

In order to provide physical constraints from the moving

boat, arrival information must be extracted between AUEs.

This is done by correlating low frequency noise between

pairs of vehicles to extract TDOA information from domi-

nant noise directions [i.e., Eq. (1)]. These TDOA measure-

ments provide the input to the self-localization solution

described in Sec. II. This section describes implementation

details regarding these low frequency correlations.

There are conditions that make the boat difficult to

detect for some deployment times. First, there is missing

data in the acoustic recordings resulting from the vehicles

running their motor to adjust its buoyancy (described in Sec.

III). The boat can also be difficult to detect when it is broad-

side to the vehicles, and when there are other noise sources

in the vicinity of the swarm broadcasting in the same fre-

quency band. To combat these issues, the acoustic data is

preprocessed before correlating each pair of audio tracks.

The preprocessing is described in Sec. IV A. Temporal
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smoothing is also employed to reject spurious arrivals

caused by missing data or other noise sources in the vicinity

of the array, described in Sec. IV B.

A. Preprocessing and noise correlations

Each AUE, indexed by i, records a pressure signal that

we denote as ~piðtÞ. Before correlations are performed

between different vehicles, the noise is preprocessed similar

to work focused on estimating the acoustic impulse response

between receivers.21,23,29,30 These preprocessing steps help

suppress spurious arrivals in the noise correlation function,

allowing the noise correlations to focus on the dominant

source. The first pre-processing step is to whiten the signal’s

frequency spectrum (the absolute whitening described in

Brooks et al.29 was chosen) as well as defining the

bandwidth, Bx, that will be correlated over. The whitening

weighs each frequency band equally across the defined band-

width, Bx, in the computation of the noise correlations

instead of having a few high energy bands dominate. Next,

time series values with high amplitudes are truncated to the

fourth standard deviation of each ~piðtÞ signal. More insight

into these preprocessing steps can be found in the litera-

ture.21,23,29,30 We define the preprocessed version of ~piðtÞ as

pi(t) and compute the normalized noise correlation between

two signals, pi(t) and pj(t) as

Ci;j;tc sð Þ ¼
ðtcþðTr=2Þ

tc�ðTr=2Þ
pi tð Þpj tþ sð Þdt

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtcþðTr=2Þ

tc�ðTr=2Þ
pi tð Þ2dt

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtcþðTr=2Þ

tc�ðTr=2Þ
pj tð Þ2dt

s
; (9)

FIG. 2. (Color online) Experiment setup: (left) Five acoustic pingers, shown by green diamonds, are moored along the perimeter of the deployment, which

took place off of the coast of La Jolla. The bathymetry as well as the shoreline are shown by colors (darker blue is deeper, black denotes the shoreline). These

pingers collect GPS data and take turns transmitting a linearly modulated chirp (8–15 kHz). Eight AUEs, deployed inside the red box, hold a depth of 6 meters

and float with the subsea currents. The trajectories of the AUEs are estimated using time of flight measurements from the five acoustic pingers. While the

AUEs were deployed, a boat circled the swarm twice (once at approximately 11 m/s and once at approximately 4 m/s) and the GPS trajectory of the boat is

shown with the start and end positions indicated. The right panel shows a close up of the AUE trajectories where the red bounding box matches the box on the

left panel. Deployment times for both the boat and AUE trajectories are shown by the colorbar on the right.

FIG. 3. (Color online) Range and bearing of the boat: (a) The bearing of the boat in relation to the center of the AUE swarm. (b) The distance between the

boat and the center of the AUE swarm. The bearing plot shows a change in the derivative of the bearing around 400 s into the deployment as the boat slows its

speed [from 1.1 deg/s (11 m/s) to 0.4 deg/s (4 m/s)]. (b) The range plot shows that the boat is in the far field of the AUE swarm for the entire deployment (e.g.,

the boat is 2–3 times further away than the aperture of the swarm). (c) The same information is shown in polar form.
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where tc controls the center time of the signal and Tr the

length of the correlation window. The normalized cross-

correlation allows us to make comparisons between different

correlation times by removing the total energy at each time

step. The noise correlations effectively have two user defined

parameters: Tr and Bx. For our experiments, we took Tr¼ 3 s

and Bx¼ [0.1–1.0 kHz].

The envelope of the noise correlation between two dif-

ferent pairs is shown by the colorbar in Fig. 4. Each row is a

short time noise correlation centered at the center time, tc,
indicated on the y-axis. The center times are spaced one sec-

ond apart. As expected, the noise correlations are dominated

by the circling boat. The noise correlation changes as the

boat moves around the vehicles.

B. Temporal smoothing

While the SNR of the boat is large for most correlations,

the short time windows and hydrophone dropouts from

buoyancy adjustment create peaks in the noise correlations

that are not from the boat or eliminate peaks in the correla-

tions entirely. To overcome some of these difficulties and

improve the estimation, the detections are smoothed along

the deployment time axis to enforce the constraint that the

peak in the noise correlation must vary continuously in time.

To do this, the Viterbi algorithm31 was implemented to esti-

mate the sequence of TDOA values, d̂i;j;t for tc¼ [1, 2,…,

tend]. The implementation is heuristic in that the choices of

probability distributions are not rigorously justified but were

chosen so that the estimates visually tracked the peaks in the

correlation well. Note that this temporal smoothing may not

be needed in cases where the detection is strong throughout

the duration of other deployments.

The Viterbi algorithm requires two probabilities to be

defined, one describing transition probabilities between

d̂i;j;t�1 and d̂i;j;t, and the other the probability of the noise

correlation having the observed structure given the true

TDOA value, di,j,t– 1. We define the transition probabilities

as Gaussians centered around the last state

Pðdi;j;t ¼ bjdi;j;t�1 ¼ cÞ ¼ N ðc; r2Þ: (10)

For the observation probability, we use a heuristic that

the probability of the noise correlation observation given

that the TDOA measurement is equal to b is related to the

envelope of the normalized noise correlation evaluated at b,

PðCi;j;tjdi;j;t ¼ bÞ / envðCi;j;tðbÞÞ; (11)

where env(�) denotes the envelope operator.

For our purposes, this algorithm tries to accumulate the

most correlation energy while only allowing small variation

in the time value of consecutive correlation peaks. This tem-

poral constraint on the peaks of the correlation function can

be adjusted by the standard deviation choice of the transition

probability. We chose r¼ 0.3 ms, which visually tracked the

peaks well for the pairs examined. In our case, this variable

was not optimized, but could be chosen given a priori
knowledge of expected movement of a source in relation to

the vehicles. Given these probabilities, the Viterbi algorithm

produces the most likely sequence of TDOA values, d̂i;j;t,

based on the time evolution of the noise correlations. This

smoothing is performed for noise correlations between all

pairs of vehicles.

FIG. 4. (Color online) Noise correlations: (a), (b) The envelope of the noise correlations are shown between two different pairs of AUEs while the boat is cir-

cling the array. Each row is the envelope of a short time cross-correlation with the amplitude shown by the colorbar. The center time of the cross-correlation is

shown by the deployment time on the y-axis. The expected peaks of each noise correlation are shown by green “þ” and were computed using the GPS position

from the boat and the estimated locations of the AUEs from the five acoustic pingers. The red dots show the estimated location of the peaks, d̂ i;j;t, for each

deployment time after the smoothing operation of Sec. IV B is performed. The detected peaks in the noise correlation match the expected peaks, meaning that

the boat is the main dominating source in the noise correlation. This provides confidence that the estimated signal shown by dots can be used to self-localize

the swarm. Parameters: Tr¼ 3 s and Bx¼ [0.1–1.0 kHz].
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The accuracy of the detection for every pair of vehicles

is summarized in Fig. 5. For this figure, the value of tc is

shown on the x axis and multiple statistics about the discrep-

ancy between d̂i;j;t and di,j,t (i.e., the “þ” and “�” of Fig. 4)

are shown for all pairs. Also shown is the expected uncer-

tainty of this difference, which is based on the bandwidth of

the correlation process (uncertainty of 0.5 ms), the uncer-

tainty in the sound speed (0.5 ms assuming a sound speed

uncertainty of 20 m/s and vehicle separation of 50 meters)

and the uncertainty of the AUE positions (2 ms) for a total of

3 ms. Figure 5 shows that the residuals do not have a mean

of 0 for much of the deployment time, but this bias is usually

under 1 ms. The extrema of the discrepancy are typically

under the expected uncertainty with some exceptions. The

spike that was visible in the correlations given in Fig. 4 (see

the right panel at tc¼ 700 s) is also visible in Fig. 5. What is

difficult to deduce in Fig. 5 but is visible in Fig. 4 is that the

errors are not distributed around the expectation (plotted by

“þ” in Fig. 4). Figure 4 shows that the detected correlation

peaks frequently have a constant offset from the estimated

correlation peaks. This could be a result of slight inaccura-

cies in the “ground truth” positions of the AUEs, or incorrect

assumptions about the sound speed structure, both of which

would effect the value of di,j,t. This is important because this

error is clearly not a result of a white Gaussian process and

cannot be modeled as such when we try to understand the

robustness of the solution using simulations in Sec. VI. In

fact, the results in Sec. V have better outcomes than what

would be expected if the error is modeled as a Gaussian pro-

cess with a standard deviation as high as what is reported in

Fig. 5. This indicates that while the estimates of the TDOA,

d̂i;j;t, do not exactly match the expected TDOA, di,j,t, they

still provide a consistent model that generates an answer

similar to what we expect from the “ground truth” locations

of the AUEs.

V. RESULTS

The estimation procedure described by Eqs. (6) and (8)

was applied to the data described in Fig. 4 and Fig. 5.

Examples of two solutions with different center times, to¼ 160

and to¼ 945, and a time window of 30 s (i.e., tw¼ 15 s), are

shown in Fig. 6. The left panel of Fig. 6 compares the estimate

of the vehicle geometry (shown by “*” markers) to the ground

truth estimate (shown by “�” markers for the center time).

The estimated ground truth motion of each AUE around the

center time is shown by black dots. Since we only estimate the

geometry in a relative sense, the comparison is given after an

optimal rigid transformation is computed between the esti-

mates using the algorithm described in Arun et al.32 The root

mean square error (RMSE) in meters is reported after this fit is

applied. The results show good agreement, on the order of one

or two meters for the two cases shown. The results show prom-

ise for the method proposed in Sec. II; without any knowledge

of the position of the noise source, or any prior information on

the relative geometry of the vehicles, we are able to estimate

the relative geometry, �Rto , as well as the angle of arrivals of

the noise source ato;tw
.

Another way to evaluate the estimation is to compare

the estimated angles of arrival with the true angles of arrival.

The RMSE is reported, in degrees, for the discrepancy

between the estimated angles of arrival and the known

angles of arrival from the GPS measurements of the boat.

This RMSE is reported after the rotation from the rigid trans-

formation was applied to match coordinate frames. We can

see that the angle estimates match well to what they are

expected to be, with an RMSE of 2.9 degrees and 0.48

degrees for the top and bottom figures, respectively. In this

frame of reference, the estimation recovers the geometric

interpretation of the soundscape, which can be useful for

passive sensing in ocean environments.

It is important to put the results in Fig. 6 into the context

of Fig. 5, which showed that the detection results do not per-

fectly agree with their expectation. In fact, Fig. 5 shows that a

2 ms error between the expected time value of the noise corre-

lation function and the measured time value is not uncom-

mon. This could translate to an RMSE on the order of a few

meters. The source of the discrepancies in Fig. 5 are difficult

to understand. As previously mentioned, the positions of the

AUEs from the high frequency pinging system are also esti-

mates of the AUE positions and are expected to have an accu-

racy around 1–3 meters. A static sound speed of c¼ 1500 m/s

is assumed in the calculation of Eqs. (3) and (8) and this may

have a slight effect on the accuracy. In reality, most of the

error probably results from the small angles that are used for

the estimation. We can see that the error is perpendicular to

the angle of arrivals, especially in the bottom panel of Fig. 6.

This is the direction that is the most difficult to resolve given

the angle of arrivals of that deployment time.

FIG. 5. (Color online) Discrepancy between the detected, d̂ i;j;t, and expected

noise correlation peaks, di,j,t, for all pairs: The mean (black solid), standard

deviation (blue dashed) and the maximum and minimum (red dotted) dis-

crepancies are shown as a function of deployment time for all combination

of pairs of vehicles. Also shown (black dotted) is the uncertainty of the com-

puted discrepancy based on the uncertainty of the AUE locations (2 ms), the

uncertainty in the sound speed profile (0.5 ms), and the bandwidth of the

correlation (0.5 ms) for a total of 3 ms. The expected noise correlation peaks

do not perfectly match the measured correlation peaks, and there is at least

one pair that is off by more than 1 ms at every deployment time. There is a

spike close to deployment time 700 s where many of the noise correlations

jumped to another peak, shown in Fig. 4(b). These discrepancies may

adversely affect the comparison between the estimated relative trajectories

from the boat noise and the measured ones from the high frequency pinging

system. However, for most deployment times the discrepancies are within

the estimated uncertainty.

2818 J. Acoust. Soc. Am. 144 (5), November 2018 Naughton et al.



The estimation results of Eq. (8) are not similar across

the entire deployment time. Figure 7 shows a time

(to¼ 110 s) that resulted in a solution that was not close to

the geometry of the swarm. In the top solution of Fig. 7,

there is greater variation in the true angles of arrival than

what we see in Fig. 6. Despite this extra time window (here

tw¼ 30 s) and azimuthal variation, the solution provided in

the top panel of Fig. 7 is not a good estimate, both in terms

of estimating the relative geometry of the swarm and also

the angle of arrival of the noise. However, as we increase the

window length to add more variation to the angle of arrivals,

we eventually get a solution that is more comparable to the

solutions reported in Fig. 6. This example shows that

increasing the angle of arrivals provides more stability even

if it increases the total magnitude of the vehicle motion dur-

ing the time window (the vehicle motion for the time win-

dow is shown by black dots). It also highlights the difficulty

of understanding the interplay of all the different factors that

could influence the performance the estimation. These fac-

tors are examined through simulations in Sec. VI.

VI. SIMULATIONS

A. Simulation description

This section aims to decouple some of the effects that

influence the results shown in Figs. 6 and 7 through simula-

tions. Simulations are first shown for two different vehicle

geometries to demonstrate that the vehicle geometry

influences the solution and are later shown for random real-

izations of the vehicle geometry to show that some results

generalize to many geometries.

The first set of simulations use two different geometries

for the swarm, R, which are shown later in Figs. 9(a) and

9(d). In order to understand the effects of vehicle motion on

our solution, simulations when the stationary assumption is

exact (Rto ¼ Rto;tw ) are compared to simulations when the sta-

tionary assumption is only approximate (Rto � Rto;tw ). In

Figs. 9(a) and 9(d), the total movement for the vehicles is

shown by small black dots for each of 60 time instances (an

arbitrarily number of time instances, but similar to the exam-

ples shown in Figs. 7). The center time is chosen as the posi-

tion of the vehicles when the stationary assumption is exact,

which is also considered the ground truth position when the

vehicles have motion. Figures 9(b) and 9(e) show results

when there is movement and Figs. 9(c) and 9(f) show times

when the vehicles are completely stationary. Sixty source

positions, St, are defined in polar coordinates with r¼ 1000 m

and various values of at0;tw
.

We define at0;tw
as 60 source positions evenly spaced in

angle from at0�tw to at0þtw , and describe at0;tw
using two

parameters: the center angle, at0 , and the “span” of the

angles, (at0þtw � at0�tw ). Figure 8 shows a visual explanation

of these values. The span refers to the total azimuthal range

in degrees and is a measure of the amount of azimuthal

information that is given by the source. For example, a span

of 40� with a center angle of at0 ¼ 0� means that the 60

FIG. 6. (Color online) Example solutions: The solutions to Eq. (8) are shown for two different deployment times, to¼ 160 s and to¼ 945 s. In the left panels,

small black dots represent the GPS pinger estimated positions of each vehicle for each second in the chosen 30 s window (tw¼ 15 s), the positions at the center

time, to, are marked by an “�.” The swarm geometry estimated from the noise is shown by “*” after an optimal translation and rotation is applied to put the

estimate in the same coordinate frame as the ground truth estimates. The RMSE in meters is reported between the position at the center time and the estimate

after the fit is performed. On the right panels, the angles of arrival are reported for both the ground truth (on the outside ring) and the angle of arrival estimates

(on the inside ring) after the optimal rotation is applied. The RMSE error is shown, in degrees, for the angles at each time step. From these two examples, we

can see that the method is accurately able to estimate the relative geometry of each vehicle and the angle of arrival of the dominant source.
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source positions are evenly spaced from �20� to 20�. A large

azimuthal span means that there are adequate angles for the

estimation problem to be well conditioned. A small azimuthal

span means that all the angles are similar, and the estimation

will be challenged. In order to understand the interaction

between the swarm geometry, R, and the angles of arrival,

at0;tw
, the choices of at0;tw

are varied while keeping the rela-

tive motion constant. For each of the lines in Figs. 9(b), 9(c),

9(e), and 9(f) the center angle, at0 , is shown for increments of

45� as indicated by the legend. The center angles are defined

with respect to the vehicle geometry in Figs. 9(a) and 9(d).

The x axis describes the span of angles (i.e., at0þtw � at0�tw ).

With the defined parameterizations of the source positions

and vehicle geometry, TDOA values are calculated using Eq.

(1) (c¼ 1500 m/s). The relative geometry of the vehicles was

estimated using these TDOA values in Eqs. (3) and (8) after

zero mean Gaussian noise with a standard deviation of 0.8

meters was added to the cD terms of Eqs. (3) and (8). This

process was repeated 200 times with different noise realiza-

tions, and the median results are shown.

B. Simulation analysis

There are some emerging trends from the simulation

results. The first trend is that movement degrades the self-

localization estimate. This is especially apparent when the

span of at0;tw
is small. The median RMSE values of the solu-

tion are large when there is small azimuthal variation and

movement [Figs. 9(b) and 9(e)], but are small when the

vehicles are stationary, Figs. 9(c) and 9(f). More subtly, the

stationary cases always have a smaller median value of the

RMSE than the cases with movement. This result is

expected, as the model assumes that the relative geometry of

the vehicles is stationary.

We can also see that the angle of arrival with respect to

the geometry of the swarm plays a role in the results from

the different curves shown in Fig. 9. Some of the curves

FIG. 7. (Color online) Challenges: Similar plots to Fig. 6, but here the time window length is varied (top tw¼ 30 s, bottom tw¼ 45 s) for the same deployment

time, to¼ 110 s. This figure demonstrates that some angles of arrival are more challenging to the estimation procedure. The estimation is poor in the top panel

using a 60 s time window because of the lack of noise sources North or South of the swarm. Therefore, it is hard to estimate distances between the AUEs along

this direction. By increasing the time window to 90 s (to¼ 45 s), the levels of accuracy that were reported in Fig. 6 are achieved because the angles of arrival

now span the North-South direction. More insight into the interplay between the angle of arrival, vehicle motion, and vehicle geometry is investigated through

simulations in Sec. VI.

FIG. 8. (Color online) Simulation explanation: A visual definition of the

parameters used in the simulations (Figs. 9 and 10). The span dictates the

magnitude of the angles used, while at0 describes the orientation of angles in

relation to the vehicles.
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have lower RMSE for the same azimuthal span [compare

at0 ¼ 0� which is better than at0 ¼ 45� in Fig. 9(b)]. Again,

this is especially apparent in the simulations with movement,

where we can see that there is a separation in the median

RMSE curves as a function of the center angle of arrival.

The angle of arrivals that result in the best RMSE curve are

not consistent across the different swarm geometries.

Additionally, the RMSE curve is also not symmetric in

angles even though the swarm geometries are symmetric.

This last fact is likely due to the small scale relative motion

in the vehicles, which is constant across the noise

realizations and geometries—the relative motion favors

some angles of arrival more than others.

In order to show that the trends of Figs. 9(b) and 9(e)

generalize to geometries that are not shown, Fig. 10 is given.

Figure 10 shows similar information to Figs. 9(b) and 9(e)

but this time the vehicle positions are chosen randomly in a

box (0< x< 50, 0< y< 50). For each realization of the vehi-

cle geometry, the same motion vectors and noise levels are

assigned that were given in Figs. 9(a) and 9(d). Figure 10

shows that the trends are similar to what was reported in Fig.

9 except the effects of the center angle at0 are not as apparent

FIG. 9. (Color online) Simulations are provided for two different swarm geometries, (a) and (d). (a) and (d) show the position of the floats for each of 60 s

with black dots. A close up of one of the vehicles is provided in the inset to show an example of the vehicle movement. The vehicle movement is similar to

what is seen in the real data. The simulations are computed for vehicles that are moving, (b) and (e), as well as for vehicles that are stationary, (c) and (f). The

stationary case uses the center time of the defined trajectory for each vehicle. The simulations are computed similar to what was shown in Figs. 6 and 7 where

the swarm geometry and angle of arrival are computed using noisy TDOA measurements. In (b) and (c) and (e) and (f), the center angle of arrival, ato , for each

line is given in the legend. The total variation of the angles is shown on the x axis and the median RMSE of 200 iterations between the ground truth and the

estimated geometry are shown. These simulations show the effects of swarm geometry, motion, and angle of arrival on the total accuracy. More details are

described in the text.

FIG. 10. (Color online) Simulation with random positions: In order to show that the trends in Fig. 9 are typical of most deployments, this figure shows the

same setup as Fig. 9 except that for each of 200 iterations, a random geometry is chosen in the box.
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after averaging over the different geometries. In summary,

the simulations shown in Figs. 9 and 10 demonstrate three

points: (1) motion degrades the localization estimate, (2) this

degradation can be overcome by adding more azimuthal

span, and (3) the center angle and the vehicle geometry plays

some role in the results. These points are also consistent

with the results shown when examining real data in Figs. 6

and 7.

C. Comparing the simulations and data

The simulations of Fig. 9 support the findings that were

presented in the data analysis (Figs. 6 and 7). Figures 9(b)

and 9(e) show that when the relative geometry of the

vehicles is not stationary, there are certain angles of arrival

that produce worse results [e.g., ato ¼ 45� for Fig. 9(b) and

ato ¼ 135� for Fig. 9(e)]. The angles that perform worse are

dictated by the relative geometry of the swarm and the

motion of the vehicles. This result is also seen in the experi-

mental results. Figure 7 shows an example of a challenged

angles of arrival that are coming from approximately 180�.
For these angles of arrival, the solution required a larger

span of angles to obtain a good solution than the solutions in

Fig. 6. This larger span of angles was needed in order to

accurately estimate distances between the AUEs in two

dimensions (e.g., sound sources needed to be located North

or South of the swarm before the distances of the AUEs

were accurately estimated in the North-South direction).

Conversely, the simulations show that for some center

angles, only a small span of angles is needed to consistently

recover a solution (e.g., 0� for both plots), which is consis-

tent with the data presented in Fig. 6. The simulations also

show that when there is no movement between the vehicles,

small angles can be used to successfully recover the swarm

geometry. Inter-vehicle movement could be a factor in the

difference between the results presented in Figs. 6 and 7,

especially since the vehicle movement in the simulations is

not large (it does not stray further than one meter away from

the position at the center time).

VII. CONCLUSION

This work demonstrated a self-localization solution for

moving vehicles using low frequency noise with dominant

noise directions. The movement between vehicles changes

the propagation path and forces the solution to consider short

time scales. A solution was proposed that was able to jointly

estimate the array geometry as well as the angle of arrival of

the noise sources using short time windows. Experimental

validation was provided using a moving boat with known

location to dominate the ambient soundscape, which allowed

us to verify that our solution was able to produce accurate

direction of arrival estimates without any a priori knowledge

of the source location. Simulations were provided that

showed that small azimuthal variation, coupled with vehicle

movement degrades the solution. Therefore, having azi-

muthal variety is important to the stability of the solution.

The stability of the solution was also dependent on the inter-

action between array geometry and the angles of arrival of

the source; different center angles resulted in different

accuracies for the solution in both data and simulations.

Ultimately, the self-localization solution provides a new and

passive way to track the movement of a swarm of underwa-

ter vehicles, providing a spatial estimate to the data they col-

lect. This is useful for many coordinated surveys, especially

those that require high endurance missions.
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matic system for acoustic microphone geometry calibration based on mini-

mal solvers,” arXiv:1610.02392 (2016).
29L. A. Brooks and P. Gerstoft, “Green’s function approximation from

cross-correlations of 20-100 Hz noise during a tropical storm,” J. Acoust.

Soc. Am. 125(2), 723–734 (2009).
30K. G. Sabra, P. Roux, and W. A. Kuperman, “Emergence rate of the time-

domain Green’s function from the ambient noise cross-correlation

function,” J. Acoust. Soc. Am. 118(6), 3524–3531 (2005).
31A. Viterbi, “Error bounds for convolutional codes and an asymptotically opti-

mum decoding algorithm,” IEEE Trans. Inf. Theory 13(2), 260–269 (1967).
32K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-

D point sets,” IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987).

J. Acoust. Soc. Am. 144 (5), November 2018 Naughton et al. 2823

https://doi.org/10.1109/JOE.2005.850908
https://doi.org/10.1109/JOE.2006.880431
https://doi.org/10.1103/PhysRevE.80.066605
https://doi.org/10.1121/1.1797754
https://doi.org/10.1121/1.1797754
https://doi.org/10.1121/1.1830673
https://doi.org/10.1121/1.1835507
https://doi.org/10.1121/1.2960937
https://doi.org/10.1121/1.4776775
https://doi.org/10.1121/1.4776775
https://doi.org/10.1121/1.4731231
https://doi.org/10.1121/1.4731231
https://doi.org/10.1109/MSP.2016.2555198
http://arxiv.org/abs/arXiv:1610.02392
https://doi.org/10.1121/1.3056563
https://doi.org/10.1121/1.3056563
https://doi.org/10.1121/1.2109059
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TPAMI.1987.4767965

	s1
	l
	n1
	s2
	s2A
	s2B
	s2C
	d1
	d2
	f1
	d3
	s2C
	d4
	d5
	d6
	d7
	s2D
	s2E
	d8
	s3
	s4
	s4A
	d9
	f2
	f3
	s4B
	d10
	d11
	f4
	s5
	f5
	s6
	s6A
	f6
	s6B
	f7
	f8
	f9
	f10
	s6C
	s7
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32

