Keywords:
high-throughput
image analysis,
high-speed imaging,
GPU image
processing,

cellular morphology

Strategies for Implementing
Hardware-Assisted
High-Throughput Cellular

Image Analysis

Henry Tat Kwong Tse,’

2 Pingfan Meng,3 Daniel R. Gossett,

Dino Di Carlo, Ph.D.
University of California
Los Angeles, CA

? Ali Irturk,” Ryan Kastner,’ and
Dino Di Carlo’**

'"Department of Bioengineering, Umverszty of California Los Angeles, Los Angeles, CA
2California NanoSystems Institute, Los Angeles, CA
3Department of Computer Engineering, University of California San Diego, La Jolla, CA

ecent advances in imaging technology for

biomedicine, including high-speed microscopy,
automated microscopy, and imaging flow cytometry are
poised to have a large impact on clinical diagnostics, drug
discovery, and biological research. Enhanced acquisition
speed, resolution, and automation of sample handling are
enabling researchers to probe biological phenomena at an
increasing rate and achieve intuitive image-based results.
However, the rich image sets produced by these tools are
massive, possessing potentially millions of frames with
tremendous depth and complexity. As a result, the tools
introduce immense computational requirements, and,
more importantly, the fact that image analysis operates at
a much lower speed than image acquisition limits its ability
to play a role in critical tasks in biomedicine such as
real-time decision making. In this work, we present our
strategy for high-throughput image analysis on a graphical
processing unit platform. We scrutinized our original
algorithm for detecting, tracking, and analyzing cell
morphology in high-speed images and identified

*Correspondence: Dino Di Carlo, Ph.D., Department of
Bioengineering, University of California Los Angeles, California
NanoSystems Institute, 420 Westwood Plaza, 5121E Engineering V,
Los Angeles, CA 90095; Phone: +1.310.983.3235; E-mail: dicarlo@
seas.ucla.edu

2211-0682/5$36.00

Copyright © 2011 by the Society for Laboratory Automation and
Screening

doi:10.1016/j.jala.2011.08.001

inefficiencies in image filtering and potential shortcut
routines in the morphological analysis stage. Using our
“grid method” for image enhancements resulted in an
8.54x reduction in total run time, whereas origin
centering allowed using a look up table for coordinate
transformation, which reduced the total run time by
55.64x. Optimization of parallelization and implementa-
tion of specialized image processing hardware will
ultimately enable real-time analysis of high-throughput
image streams and bring wider adoption of assays based
on new imaging technologies. (JALA 201 | ;m:m—m)

INTRODUCTION

Imaging is ubiquitous in industrial processing,
medicine, environmental science, and cell biology.
Given the diverse modes of imaging that exist, an
image can contain a wealth of information about an
object. Process quality control in semiconductor
manufacturing and particle synthesis uses a number
of spatial metrics from images from scanning electron
microscopy, transmission electron microscopy,
atomic force microscopy, and optical microscopy.'~
Imaging tools including positron emission tomogra-
phy, X-ray, magnetic resonance imaging, and com-
puted tomography are widely used in medicine for
diagnostic and prognostic purposes. Ocean and
waterway monitoring, a critical charge of environ-
mental science, can be performed with high-speed

JALA XXXX 2011 1

mailto:dicarlo@seas.ucla.edu
mailto:dicarlo@seas.ucla.edu
http://dx.doi.org/10.1016/j.jala.2011.08.001

camera-coupled flow cytometry whereby the diversity and
density of microscopic organisms, key indicators of ecosystem
health, can be identified.** In cell biology, for example, cell
size, morphology, and location can be extracted from bright-
field or phase-contrast images. And, the presence or location
of biomolecules within cells can be obtained from fluorescence
images of chemically labeled cells, which has recently been im-
plemented with automated fluid handling and imagers for
high-content analysis.’ As technology improves, imaging rates
and resolution increase and the cost of acquiring image sets de-
creases but this can burden the end user or associated analysis
or sorting systems with large image backlogs. Ultimately, both
extreme high-speed bright-field imaging and high-content
analysis systems based on fluorescence imaging now have the
propensity to generate truly massive image-based data sets
and will require a method to accommodate the time require-
ments of the user or system (e.g., real-time results will be re-
quired for cell sorting in medicine and cell biology). Only if
automated image analysis can extract useful information and
operate at meaningful rates will emerging image-based tech-
nologies find utility.

There are numerous applications where images have sev-
eral advantages over other types of signal outputs and are of-
ten the preferred method of analysis. Qualitatively, images
are most effective in conveying certain types of messages.
They may also confer some measurable advantages. For ex-
ample, flow cytometry measures scattered light to assess cell
size and granularity, but theses values are only relative.®
Analysis of microscopic images, on the other hand, yields
an exact value of size. Image analysis can also be used to dis-
tinguish between cells, debris, and clusters of cells where flow
cytometry would yield erroneous results. Spectroscopic read-
ings of biochemically labeled cells in microtiter plates lack
the sensitivity to detect rare cell populations’ and can
vary greatly with cell seeding density. In contrast, high-
throughput automated microscopy coupled with automated
image analysis can be used to identify and measure proper-
ties of single cells with multiple spectra, high spatial and tem-
poral resolution for measuring dynamic processes, and with
high bit depth. This is a powerful tool for studying complex
biological pathways or measuring heterogeneous response to
stimuli. Further, new tools are being introduced to take im-
ages of cells in flow. High-speed CMOS cameras, with high
frame rates, fast shutter speeds, and high sensitivities, have
recently enabled novel studies of highly dynamic events such
as bubble rupture and microscale phenomena in particle-
laden flow.*”!" Other recent advances in computing, optics,
and electronics have enabled imaging flow cytometry. This
technology has shared roots in flow cytometry and micros-
copy, and can be applied to problems that would tradition-
ally require multiple pieces of equipment and users trained
in both. The ImageStream system (Amnis Corporation,
Seattle, WA) acquires multispectral/multimodal images at
a rate of 1000 cells per second with sufficient resolution to ex-
tract features such as fluorescence intensity, morphology,
and signal localization.'? It will be a useful tool for complex

2 JALA XXXX 2011

problems such as detecting tumor cells in body fluids and
studying hematopoietic cells.'*!?

Cell morphology has been studied extensively and is a clini-
cally useful biomarker for several diseases. In this Article,
a high-throughput imaging cytometry system examines mor-
phological features of cells. The dramatic morphological
change that occurs following stimulation of granulocytes
is one example where imaging cytometry will be useful
(Fig. 1). The Amnis ImageStream system has been used to
characterize morphological changes associated with the matu-
ration processes of erythroid cells; traditional biomolecular la-
bels were correlated with morphological changes in size, shape,
texture, and nucleus to cytoplasm ratios.'® Additionally, mul-
tispectral imaging flow cytometry has been used for the identi-
fication of morphological changes such as ruffle formations on
HIV-1 infection T-cells.'* In the clinic, cell blocks and smears
are scrutinized for cells with shape and size characteristics that
are indicative of infections and cancer. These examples illus-
trate the importance of image analysis of morphology. How-
ever, the current stage of morphological analysis relegates it
to the role of cell classification, whereas biochemical bio-
markers are used for critical applications in cell sorting. The
ability to sort cells (requiring real-time measurement and anal-
ysis) would greatly enhance the utility of morphology, and this
ability will only be obtained by improvements to image analy-
sis algorithms and processes.

However, these new technologies introduce challenges, es-
pecially in image processing and informatics.'> Images can be
very complex signals, with blurring occurring if an object’s
motion is faster than the shutter speed of the camera, and
nonuniform illumination in wide field-of-view (FOV) images.
Filtering, measuring, tracking, and fitting data from, for
example, 3D confocal images'® to complex multivariable
models requires lengthy computation. Further, imaging flow
cytometry and high-speed microscopy can produce hundreds
of thousands of images per second. The qualities of these im-
ages (multispectral, high spatial and temporal resolution, and
high bit depth) make the files tremendously large'® adding to
computational requirements. In general, these technologies
require offline image analysis. Gradually, increased comput-
ing power will increase image analysis speed and methods
such as cloud computing image analysis'’ will help share
computing power with users on demand. But, for these tech-
nologies to be immediately accessible a new strategy that en-
hances the efficiency of image analysis algorithms is required.

Here we present a high-throughput image analysis strategy
for a bright-field flow cytometry application with an image
acquisition rate of over 140,000 frames per second. Analysis
of bright-field images is in some respects more difficult than
fluorescence images because of the more complex variation
in intensities that are observed, such that our described strat-
egies should also be compatible with fluorescence-based or
other image sets. We first examine bottlenecks in the original
detection and analysis algorithm, then design an alternative,
less computationally demanding filtering algorithm, put in
place a new detection strategy, and implement the algorithm

Non-Activated

Activated

0.95

0.65

Circularity

Figure |. An example of cellular morphology differences from changes in cell states. High-speed microscopic images of a granulocyte (left)
and a granulocyte activated by a N-formyl-methionine-leucine-phenylalanine (fMLP) chemical treatment (right) with associated measure of
circularity as a characterization of the morphological differences of each cell.

on a graphical processing unit (GPU). Realization of real-
time or near real-time analysis will enable systems like this
one to be clinically relevant. The strategy that we describe
here should be considered for future implementations of
high-speed image analysis in hardware.

ALGORITHM DESCRIPTION
Image Enhancement and Cell Detection Method

The automated analysis script was built in MATLAB
v2009a (MathWorks, Natick, MA). The algorithm examines
high-speed bright-field microscopic images (208 x 32
pixels x 142,857 frames/s) of cells in a high-throughput flow-
through system. The algorithm (1) performs image adjust-
ments, (2) detects the presence of an object, (3) tracks its
motion, and (4) performs a measurement of morphology. The
analysis is implemented frame by frame at a FOV of 23 x 20
pixels at an upstream location. The cell image signature is en-
hanced by bottom-hat filtering, which highlights intensity dif-
ferences in a local area to allow for measurement extractions.
When a cell is detected in the first FOV, the morphological
analysis algorithm extracts morphological features. The same
cell is then tracked downstream to examine changes in mor-
phology. Analysis continues by moving the FOV downstream
stepwise until the cell is within the FOV. Analysis continues
until the cell is tracked out of the field where then the FOV re-
sets to the upstream location for the detection of the next cell.

Morphological Analysis Routine

On detection of a cell in the FOV, the image is interpolated
and resized 10x (230 x 200 pixels) to enhance the accuracy of
centroid analysis and the extraction of morphological features
of interest: area, diameter, and topography. The centroid

method examines the bottom-hat filtered image using a 70-
pixel disk (the expected average cell size) to locate the centroid
followed by a polar to Cartesian image transformation. The
cell walls are highlighted by locating the local maximums in
pixel intensity (Fig. 2). Final data outputs are radius measure-
ments at intervals of 4° per cell at each frame.

HARDWARE ACCELERATION

Recent work in hardware-assisted image analysis acceleration
platforms have been implemented for various high-
throughput applications.'® In this section, first, we discuss
acceleration platform modalities suited for high-throughput
image analysis and their advantages and disadvantages.
However, to fully use these hardware platforms for image
analysis of cells or particles, the underlying algorithms
for (1) image enhancement, (2) detection, (2) tracking, and
(3) morphological analysis must be optimized for the specific
platform. A systematic review of algorithm bottlenecks in the
MATLAB-based CPU-run algorithms is first performed and
algorithm components with the most intensive computing
requirements are redesigned to optimize performance for
GPU implementation. Converting CPU to GPU processing
alone will not be sufficient to achieve the significant increase
in throughput for real-time analysis, thus we have designed
unique GPU-efficient image filtering and GPU-implemented
transformation algorithms that will enable image signature-
based high-throughput analysis for sorting of biological and
biomedical applications. Lastly, we compare the performance
enhancements obtained with the GPU over the CPU
algorithm.

JALA XXXX 2011 3

Automated Cell Tracking and Analysis

Image Filter

Crop FOV)

Morphological Analysis

Centroid analysis

Wall detection

Yes

Cell present in FOV?

No

Next frame

Resize 10x

(r,6) (x,y)

Continue measurement

on sequence Data
N Y .
Yes o] 10001000
Cell present in FOV? €— Move FOV oL
No
End of sequence?
Yes

Figure 2. Automated cell tracking and analysis algorithm framework. The raw video frame is first contrast enhanced by the image filter
algorithm, and the cell detection algorithm examines the field of view (FOV) (in red) for presence of a cell. When a cell is located in
the FOV, the frame is cropped and resized by 10x. The morphological analysis algorithm starts by performing centroid analysis to determine
origin of the polar to Cartesian coordinate transformation. The diameters are then extracted from the mapped image. The analysis is then
iterated on the remaining cell image series until the FOV tracks out of frame.

Hardware-Assisted Image Analysis Acceleration
Platforms

GPUs provide a high-performance, low-cost platform for
hardware-assisted image analysis. GPUs use a task parallel
architecture that is primarily targeted toward accelerating
graphics applications. However, they are being used more
widely across other domains including databases,' weather
forecasting®® and cryptography.’! They are also broadly used
in digital image processing and the medical imaging
field.?> >* GPUs use a pipeline designed for efficient indepen-
dent processing of data, and multiple pipelines are used to
exploit task level parallelism. GPUs outperform the CPUs
by one to two orders of magnitude. They tend to perform
well on highly parallel applications with limited number of
memory accesses. Furthermore, they are ill-suited for appli-
cations with substantial amount of control flow, for example,
branching and looping. GPUs are programmed using custom
languages and application programming interfaces (APIs);
for example, the compute unified device architecture
(CUDA) is an extension of the C programming language de-
veloped by NVIDIA for programming their GPUs. This and
other GPU programming languages work using a stream
model of computation where the application is divided into
a set of parallel threads, which explicitly defines parallelism
and communication.

Field-programmable gate arrays (FPGAs) are another op-
tion for hardware acceleration, which is also used in a wide
variety of applications. FPGAs use fine-grained programma-
ble logic elements that implement basic Boolean logic func-
tions (e.g., AND, OR, XOR). This creates the opportunity
for substantial customization leading to significant perfor-
mance increases over both CPUs and GPUs. As a concrete
example, an FPGA implementation of the Viola-Jones object
detection algorithm is about four times faster and uses an

4 JALA XXXX 2011

order of magnitude less power than the same algorithm run-
ning on a GPU.? The high degree of customization afforded
by FPGAs is both a blessing and a curse. It provides great
flexibility in terms of the design of an application, yet it sub-
stantially increases the programming complexity. FPGA de-
sign tools require a significant amount of hardware design
expertize. These design environments are a far cry from those
used to program microcontrollers, microprocessors, digital
signal processors, and even GPUs. Therefore, the fundamen-
tal tradeoff when using an FPGA boils down to the need for
high performance versus the ease of development.

In summary, FPGAs are typically the best option to create
a high-performance hardware accelerator. However, GPUs
tend to be easier to program and more readily allow for

Replace the pixel with the minimum value among the
local minimums that are inside the erosion disk

T B
s NN N
rrr R I
o 11
| | |J' 1| 1a— Local
1o d 1! T _ Mini
k\L \k EPIE / Minimums
S e
/ "™ N
Erosion
Disk . . o 5
n " " n

Figure 3. The grid method filter algorithm. The image is divided
into several grids and each grid is analyzed for the local minimums
or maximums (dots). For each pixel of the erosion or dilated
image, the pixel value is determined by searching the grid for local
minimums and maximums, respectively, within the disk mask.

A dc?nmt:au
etectin
Calculate r,0 Input: r8 d
Input: x, y ro > Cell Wall
" Procasser . Processor >
Store
J Address vaddress" Read
pixels
Memory Memo
Read) i
corresponding
pixel
B Cellwall
L; detecting
Cell Wall
Input: r8 |. Processor |———>
X,y

LUT Address\

Read
pixels

Memory

Figure 4. (A) Original morphological analysis algorithm. (B) Modified morphological analysis algorithm, where a LUT lowers computation
demands for the (r, 8) — (x, y) transformation. Additionally, memory access is reduced as the polar coordinate image is not used.

experimentation in parallelized algorithm design. Our initial
analysis presented in the remainder of this article was done
on GPUs because of reduced development complexity. The
transition to FPGA implementation will build on the work
here emphasizing the design of novel efficient parallelization
routines.

Bottleneck Analysis

To identify components of the algorithm that were most
computationally intensive, we used MATLAB v2009a and

its profiler to obtain the run times of three parts of the algo-
rithm: image filter for image enhancement, morphological
analysis, and other minor operations (detection and track-
ing). The run time associated for each part breaks down to
33.02%, 59.55%, and 7.42%, respectively. These results
show that the image filter and morphological analysis consti-
tute most of the computing demands. Therefore, we focused
on accelerating these two parts of the algorithms on the GPU
platform.

These two computationally intensive algorithms are natu-
rally suitable for GPU parallelization because they call on

Figure 5. Recentering field of view (FOV) before coordinate transformation. (A) In the original algorithm, the cell center is not at the
coordinate origin, thus requiring computing time to map each unique coordinate for the polar to Cartesian transformation from the
(a, b) origin. (B) When a recropping event for a new FOV based on the centroid location, this enables the use of the (r,) — (x, y) trans-

formation look up tables per mapping event.

JALA XXXX 2011 5

high repetition of the same operations. For both image filter
and morphological analysis, the algorithm can be divided
into many identical operations (e.g., (1) local search opera-
tions that find minimum values; (2) repetition of simple
transformation algebraic expressions). In a serial CPU pro-
gram, these operations execute sequentially on the pixels.
Because these operations execute the same computation on
similar data types and without data dependency (e.g., one
operation does not affect the others in a sequence), the image
filter and morphological analysis algorithms can be imple-
mented with GPUs very well and significant speedups can
be expected.

Algorithm Modification

The architecture of GPUs and CPUs are significantly dif-
ferent in terms of thread scheduling?® and on-chip memory.?’
If the CUDA program has inefficient thread scheduling or
memory access, GPU platforms will be no better than CPUs.
This fact makes it necessary to modify algorithms for effi-
ciency and minimal memory access before implementing it
with GPUs.

In the image filter algorithm, the computing usage is dom-
inated by image adjustment techniques. The main filtering al-
gorithm is the bottom-hat filter, which uses dilation and
erosion operations. These two operations use a mask to
search either for maximum or minimum values, respectively,
in a local area of the image. The pixel corresponding to the
center of the mask is replaced by the maximum or minimum
value that is found in the local area.?® In the algorithm, the
mask used is a disk area with an area of 16,357 pixels. This
large size is required to ensure higher fidelity in the centroid
analysis process. In the dilation and erosion operations, up-
dating every pixel requires a maximum or minimum value
search among all 16,357 elements at each pixel of the FOV.
Resulting in over 46,000 calls per image (FOV: 230 x 200
pixels).

In the conventional dilation and erosion operations, each
mask area shares an overlapping region with the next mask.
To minimize researching of these sections, we developed the
“grid method,” which organizes the image on to a grid sys-
tem then reuses the minimum or maximum search result of
this common area by recording minima and maxima of each
grid (Fig. 3). The pixels on the eroded or dilated image are
then replaced by the corresponding value among the local
minima or maxima in each grid. Further adjustments are
possible by tuning the grid size to manage computing load
for balancing resolution and efficiency. For a grid size of
40 x 40, the minimum or maximum search operation for
each image will be 16 elements instead of 16,357 elements.

In the morphological analysis algorithm, the morphologi-
cal features of the cell (e.g., diameters) are extracted to char-
acterize the shape of the cell. The main operation of this
algorithm is a centroid analysis of the cell to establish the or-
igin for a polar to Cartesian coordinate transformation. The
mapped image is then examined by a threshold analysis to

6 JALA XXXX 2011

Kernel 1
Block 0 Block N
GPU
Thread
\
1 A\
, \ \ Each grid is assigned to
. athread
AR .
Image| . a
alm
|
L |
n . . .
. . L .
Kernel 2
Block 0 Block N
GPU
Thread
Ll
[/]
_ Each disk is assigned
gt N to a thread
: : : TV] m
[| FE AL .
LA IE)
/ ~_ Y " pr .
. [}
Erosion
Disk . s | " .
2 B = 5 Image of Grids with Local
Minimums

Figure 6. Graphical processing unit (GPU) programming model
for grid erosion algorithm. In kernel I, the local minimum (dots)
search operations are executed in parallel by assigning each grid
to a thread. In kernel 2, the eroded pixel value is found in parallel
by assigning each disk to a thread.

outline cell walls and output the diameter at intervals of 6.
In this original state, the algorithm is not suitable for GPU
implementation for two reasons: (1) the centroid defined at
each iteration is not located at the coordinate origin, thus
creating scheduling inefficiencies for each GPU thread; and
(2) the polar and Cartesian coordinate systems have different
memory storage patterns, which increase the memory access
latency thus limiting run-time speedups (Fig. 4A).

To address these parallelization limitations, we made ad-
justments to both the centroid algorithm and data storage
and access strategies. First, on finding the centroid, the image
is adjusted such that the centroid coordinate is also the origin
of the polar coordinate (Fig. 5). Because the transformation
from (r,) — (x, y) are the same for all frames, the computa-
tion load for each GPU thread is predictable making it possible
to assign threads efficiently in the GPU programming model.
We next changed the memory storage and access strategy
(Fig. 4B). Instead of searching along all possible (r,) values,

the new method accesses a (r, #) — (x, y) look-up-table (LUT)
memory to find a corresponding pixel in the polar coordinate
instead of algebraically converting the entire image into a Car-
tesian coordinate system. This strategy will result in quicker
access times for mapping (r, §) — (x,).

GPU Programming Model

The GPU program for the grid method bottom-hat filter
consists of two modules: (1) erosion and (2) dilation. These
two modules are very similar to each other erosion being
a search for minimum values and dilation being a search
for maximum values. Otherwise, the GPU programming
models are the same for both modules. Here, we describe
the GPU programming model for erosion.

The grid erosion algorithm consists of two phases: (1) find-
ing a local minimum for each grid and (2) replacing the pixel
on the erosion image with the minimum value among the lo-
cal minimums of all grids inside or intersecting with the disk
mask. The GPU grid erosion program model can parallelize
these two phases using two kernels (Fig. 6). In the first ker-
nel, we assigned a thread to each grid. The thread executes
the local minimum value searching for the correspondent
grid. In the second kernel, we assigned a thread to each pixel
that is to be updated. The thread searches for the minimum
value among the local minimums found in the first phase.

The morphological analysis GPU programming model uses
a parallel threading scheme. Each thread is scheduled to oper-
ate at a defined @, for the (r,) — (x, y) transformation. Fur-
ther parallelization can be achieved by a reduction of GPU

thread arrangement. The reduction method is not implement-
able for this version of the program, but in future revisions this
process will aid in further decreasing run times. At this state,
we have kept the minimum gray-scale pixel searching as a serial
process within each GPU thread (Fig. 4B).

Results

Image filter algorithm optimization using the grid erosion
bottom-hat method results in distortion at the peripheries of
the image (Fig. 7A). The interior of the image displays min-
imal differences against the conventional bottom-hat method
(Fig. 7B). Error analysis of the grid erosion method high-
lights the top left corner in the final bottom-hat image with
higher error when comparing between the grid method and
conventional method. This artifact is due in part to the grid
erosion disk mask starting the grid analysis method at the
upper left corner. These errors are compounded with the di-
lation operation to produce the high local error in final filter
output. The final total error of the top left region is approx-
imately 30% difference compared with the conventional
method. Additionally, by using the grid method, high local
intensity variations are completely smoothed out. These er-
rors are not expected to interfere significantly with final mor-
phological output as morphological analysis routine uses
maxima threshold rules to extract diameter measurements.
However, one can decrease the filtering error by adjusting
to a smaller grid size.

Lastly, we compared the optimized image filter and mor-
phological algorithm for GPU processing to the native

A Gray Scale Images Before and After Bottom-Hat Filter

n-
.
3

Unfiltered

Bottom-hat

GE bottom-hat

B Grid Erosion Bottom Hat Filter Error Analysis

Erosion

‘ |
‘| L_J 0

Dilation

GE Bottom-hat

Figure 7. Results of bottom-hat filter using the grid erosion method. (A) Visual comparison of the gray-scale images of original bottom-hat
filtered image (middle) versus the grid erosion method bottom-hat filtered image (right). (B) Error analysis of the grid erosion bottom-hat
filter method against the naive bottom-hat filter method illustrating that the highest errors are along the edges of the image, while interior

pixel values are conserved.

JALA XXXX 2011 7

Image Filter Morphological Analysis
1 -‘ T T
£ 2.15x 2.88x
= 08 A1 : :
<
=
o
T 0.6 A
N
©
E
2 04 - 8.54x 55.64x
0.2 A
0

Figure 8. Run-time improvements against baseline algorithm.
The grid erosion (GE) routine for the bottom-hat filter method
achieves a 2.15x run-time improvement on a CPU, and an
8.54x run-time improvement when implemented on a graphical
processing unit (GPU). The coordinate transformation look-up-
table (LUT) routine achieves a 2.88x run-time improvement on
a CPU, and a 55.64x run-time improvement when implemented
on a GPU.

CPU code. The testing was done on a 64-bit Intel Core i7
1.60 GHz machine with 6 GB RAM and NVIDIA
GT230M GPU. Our first benchmark compared the conven-
tional bottom-hat filter against the grid method. The grid
method bottom-hat filter algorithm resulted in a 2.15x
speedup against the baseline algorithm (Fig. 8). When this
is implemented on GPU hardware, we see a total decrease
of 8.54x speedup.

The morphological analysis algorithm when modified with
the transformation LUT also decreased the run time dramat-
ically. When compared with the original method without co-
ordinate correction and the use of the transformation LUT,
there is a 2.88x decrease in run time on a CPU, and when
implemented on GPU, there is a 55.64x decrease in run time.
As discussed in the previous section, we can expect further
decreases in run time as we adjust the degree of batch-
image processes. Determining the optimal batch rate is an
on-going investigation.

CONCLUSION

In our approach to hardware-assisted high-throughput
image analysis, we have shown that through improvements
to algorithm design, execution of data management short-
cuts, and optimization of image filters for implementation
in parallelization schemes, the computational requirements
for image analysis routines can be diminished dramatically.
The baseline algorithm processes 260,800 frames in

8 JALA XXXX 2011

approximately 200 min. To date, after algorithm adjustments
and processing done on the GPU, processing time is reduced
to under 10 min on a single processing unit (a 20.30x reduc-
tion). Parallel jobs will allow for even greater improvement.
However, to achieve real-time analysis capabilities work re-
mains to further improve the algorithms and eventually tran-
sition from a GPU to an FPGA. This shift often imparts an
additional speedup that will ultimately be necessary to elicit
wider adoption of biomedical technologies, which require
computationally demanding image analysis.

ACKNOWLEDGMENTS

Competing Interests Statement: The authors certify that they have no relevant

financial interests in this article and that any/all financial and material support

for this research and work are clearly identified in the Acknowledgments

section of this article.

REFERENCES

1.

Witt, W.; Kohler, U.; List, J. Direct imaging of very fast particles opens
the application of the powerful (dry) dispersino for size and shape charac-
terization. International Conference for Particle Technology. Nuremberg,
Germany. 2004.

. Provder, T. Challenges in particle size distribution measurement past,

present and for the 21st century. Prog. Org. Coatings 1997, 32, 143—153.

. Culverhouse, P. F.; et al. Automatic image analysis of plankton: future

perspectives. Mar. Ecol. Prog. Ser 2006, 312, 297—309.

. Sieracki, C. K.; Sieracki, M. E.; Yentsch, C. S. An imaging-in-flow sys-

tem for automated analysis of marine microplankton. Mar. Ecol. Prog.
Ser 1998, 168, 285—296.

. Starkuviene, V.; et al. High-content screening microscopy identifies

novel proteins with a putative role in secretory membrane traffic.
Genome Res 2004, 14, 1948—1956.

6. Shapiro, H. M. Practical Flow Cytometry. New York: Wiley-Liss; 2003.

. Di Carlo, D.; Lee, L. P. Dynamic single-cell analysis for quantitative

biology. Anal. Chem 2006, 78, 7918—7925.

. Di Carlo, D.; Irimia, D.; Tompkins, R. G.; Toner, M. Continuous iner-

tial focusing, ordering, and separation of particles in microchannels.
Proc. Natl. Acad. Sci 2007, 104, 18892—18897.

. Gossett, D. R.; Di Carlo, D. Particle focusing mechanisms in curving

confined flows. Anal. Chem 2009, 81, 8459—8465.

. Hur, S. C.; Tse, H. T. K.; Di Carlo, D. Sheathless inertial cell ordering

for extreme throughput flow cytometry. Lab Chip 2010, 10, 274.

. Bird, J. C.; de Ruiter, R.; Courbin, L.; Stone, H. A. Daughter bubble cas-

cades produced by folding of ruptured thin films. Narture 2010, 465, 759—762.

. Basiji, D. A.; Ortyn, W. E.; Liang, L.; Venkatachalam, V.; Morrissey, P.

Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med
2007, 27, 653—670.

. McGrath, K. E.; Bushnell, T. P.; Palis, J. Multispectral imaging of

hematopoietic cells: where flow meets morphology. J. Immunol. Methods
2008, 336, 91-97.

. Nobile, C.; et al. HIV-1 Nef inhibits ruffles, induces filopodia, and mod-

ulates migration of infected lymphocytes. J. Virol 2010, 84, 2282—2293.

. Pepperkok, R.; Ellenberg, J. High-throughput fluorescence microscopy

for systems biology. Nat. Rev. Mol. Cell. Biol 2006, 7, 690—696.

17.

18.

20.

21.

22.

23.

. Lin, G.; et al. Automated image analysis methods for 3-D quantification

of the neurovascular unit from multichannel confocal microscope
images. Cytometry A 2005, 66, 9—23.

Simagis Live Technology use cases—simagis live. at <http://live.
simagis.com/cases> (accessed May, 2011).

Owens, J. D.; et al. A survey of general-purpose computation on
graphics hardware. Comput. Graph. Forum 2007, 26, 80—113.

. Govindaraju, N. K.; Lloyd, B.; Wang, W.; Lin, M.; Manocha, D. Fast

computation of database operations using graphics processors. Proceedings
of the 2004 ACM SIGMOD international conference on Management of
data, 2004; Paris, France: pp 215—226. doi:10.1145/1007568.1007594.
Michalakes, J.; Vachharajani, M. GPU acceleration of numerical weather
prediction. Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium, 2008; Miami, Florida, USA: pp 1-7. doi:10.
1109/TPDPS.2008.4536351.

Manavski, S. A. CUDA Compatible GPU as an Efficient Hardware
Accelerator for AES Cryptography. Signal Processing and Communica-
tions, 2007. ICSPC 2007. IEEE International Conference, 2007; Dubai,
United Arab Emirates: pp 65—68. doi:10.1109/ICSPC.2007.4728256.
Stone, S. S.; et al. Accelerating advanced MRI reconstructions on
GPUs. J. Parallel Distr. Com. 2008, 68, 1307—1318.

Fung, J.; Mann, S. Using graphics devices in reverse: GPU-based Image
Processing and Computer Vision. Multimedia and Expo, 2008 IEEE

24.

25.

26.

27.

28.

International Conference, 2008; Hannover, Germany: pp 9—12. doi:10.
1109/ICME.2008.4607358.

Mueller, K.; Fang Xu. Practical considerations for GPU-accelerated CT.
Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Sym-
posium, 2006; Arlington, Virginia, USA: pp 1184—1187. doi:10.1109/
ISBI.2006.1625135.

Hefenbrock, D.; Oberg, J.; Nhat Thanh; Kastner, R.; Baden, S. B.
Accelerating Viola-Jones Face Detection to FPGA-Level Using
GPUs. Field-Programmable Custom Computing Machines (FCCM),
2010 18th IEEE Annual International Symposium, 2010;
Charlotte, North Carolina, USA: pp 11-18. doi:10.1109/FCCM.
2010.12.

Ryoo, S.; et al. Optimization principles and application performance eval-
uation of a multithreaded GPU using CUDA. Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel pro-
gramming, 2008; Salt Lake City, Utah, USA: pp 73—82. doi:10.1145/
1345206.1345220.

Ryoo, S.; et al. Program optimization space pruning for a multithreaded
GPU.Proceedings of the 6th annual IEEE/ACM international symposium
on Code generation and optimization, 2008; Boston, Massachusetts,
USA: pp 195—204. doi:10.1145/1356058.1356084.

Sonka, M.; Hlavac, V.; Boyle, R. Image processing, analysis, and
machine vision. Stamford, CT: Thompson Learning. 2008.

JALA XXXX 2011 9

http://live.simagis.com/cases
http://live.simagis.com/cases
http://dx.doi.org/doi:10.1145/1007568.1007594
http://dx.doi.org/doi:10.1109/IPDPS.2008.4536351
http://dx.doi.org/doi:10.1109/IPDPS.2008.4536351
http://dx.doi.org/doi:10.1109/ICSPC.2007.4728256
http://dx.doi.org/doi:10.1109/ICME.2008.4607358
http://dx.doi.org/doi:10.1109/ICME.2008.4607358
http://dx.doi.org/doi:10.1109/ISBI.2006.1625135
http://dx.doi.org/doi:10.1109/ISBI.2006.1625135
http://dx.doi.org/doi:10.1109/FCCM.2010.12
http://dx.doi.org/doi:10.1109/FCCM.2010.12
http://dx.doi.org/doi:10.1145/1345206.1345220
http://dx.doi.org/doi:10.1145/1345206.1345220
http://dx.doi.org/doi:10.1145/1356058.1356084

	 Strategies for Implementing Hardware-Assisted High-Throughput Cellular Image Analysis
	Introduction
	Algorithm Description
	Image Enhancement and Cell Detection Method
	Morphological Analysis Routine

	Hardware Acceleration
	Hardware-Assisted Image Analysis Acceleration Platforms
	Bottleneck Analysis
	Algorithm Modification
	GPU Programming Model
	Results

	Conclusion
	References

