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ABSTRACT
Field Programmable Gate Array (FPGA) implementations
of sorting algorithms have proven to be efficient, but ex-
isting implementations lack portability and maintainability
because they are written in low-level hardware description
languages that require substantial domain expertise to de-
velop and maintain. To address this problem, we develop a
framework that generates sorting architectures for different
requirements (speed, area, power, etc.). Our framework pro-
vides ten highly optimized basic sorting architectures, easily
composes basic architectures to generate hybrid sorting ar-
chitectures, enables non-hardware experts to quickly design
efficient hardware sorters, and facilitates the development
of customized heterogeneous FPGA/CPU sorting systems.
Experimental results show that our framework generates ar-
chitectures that perform at least as well as existing RTL
implementations for arrays smaller than 16K elements, and
are comparable to RTL implementations for sorting larger
arrays. We demonstrate a prototype of an end-to-end system
using our sorting architectures for large arrays (16K-130K)
on a heterogeneous FPGA/CPU system.

1. INTRODUCTION
Sorting is an important, widely studied algorithmic prob-

lem [13] that is applicable to nearly every field of computa-
tion: data processing and databases [6, 11, 20], data com-
pression [5], distributed computing [9], image processing,
and computer graphics [4, 15]. Each application domain
has unique requirements. For example, text data compres-
sion applications requires sorting arrays with few hundred
elements. MapReduce sorts millions of elements. Database
applications sort both large and small size arrays.

The importance of sorting has led to the development and
study of parallel sorting algorithms [1] on CPUs [8], GPUs
[22], and FPGAs [14]. Each platform has its advantages.
CPUs are relatively easy to program, but often lack perfor-
mance compared to GPU and FPGA counterparts. GPUs
are more difficult to program than CPUs, but they provide
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high performance. FPGAs typically provide the best per-
formance for per Watt compared to CPUs and GPUs, but
they are the most difficult to develop.

Designing efficient sorting applications using FPGAs is
difficult because it requires substantial domain specific knowl-
edge about hardware, the underlying FPGA architecture,
and the compiler tools. High-level synthesis (HLS) tools
aim to improve the accessibility of FPGAs by minimizing
required domain specific knowledge by raising the level of
programming abstraction, which results in an increase in
productivity. Unfortunately, HLS is not a panacea. As re-
ported in previous works, HLS generates efficient hardware
when the input code is written in a specific coding style
[10, 17], which we call restructured code. Therefore, cre-
ating optimized hardware using HLS still requires intimate
understanding of the underlying hardware architecture and
knowledge about how to effectively utilize the HLS tools.
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Figure 1: The Resolve sorting framework.

In this paper, we develop a framework that generates high
performance sorting architectures by composing basic sort-
ing architectures implemented with optimized HLS primi-
tives. This concept is shown in Figure 1. We note that this
is similar to std::sort routine found in standard template
library (STL), which selects a specific sorting algorithm from
a pool of sorting algorithms. For example, STL uses inser-
tion sort for small lists (less than 15 elements), and then
switches to merge sort for larger lists. We believe a routine
like std::sort for HLS is important to facilitate FPGA de-
signs for non-hardware experts. Our framework uses RIFFA
[12] to integrate sorting cores into a fully functional hetero-
geneous CPU/FPGA sorting system. The result is a system
that minimizes knowledge required to design high perfor-
mance sorting architectures for an FPGA.

The specific contributions of this paper are:

1. The design and implementation of highly optimized
sorting primitives and basic sorting algorithms.



2. A framework to generate hybrid sorting architectures
by composing these basic primitives.

3. A comparison of these generated sorting architectures
with other sorting architectures implemented on a FPGA.

4. Integration with RIFFA [12] to demonstrate full end-
to-end sorting system.

This paper is organized as follows: Section 2 provides a
case study of insertion sort to demonstrate HLS optimiza-
tions. Section 3 discusses related work. Section 4 describes
the optimization of standard sorting primitives, and how to
use them to create efficient architectures for ten basic sort-
ing algorithms. Section 5 presents our Resolve framework.
Section 6 provides experimental results. We conclude in Sec-
tion 7.

2. CASE STUDY: INSERTION SORT
Listing 1 shows a common implementation of an insertion

sort algorithm. Implementing this directly using a high-level
synthesis (HLS) tool would not provide an efficient archi-
tecture. We must optimize it specifically for a hardware
implementation.

1 void InsertionSort(int array[n])
2 {
3 L1:
4 int i, j, index;
5 for (i=1; i < n; i++)
6 {
7 L2:
8 index = array[i];
9 j = i;

10 while ( (j > 0) && (array[j-1] > index) )
11 {
12 L3:
13 array[j] = array[j-1];
14 j--;
15 }
16 array[j] = index;
17 }
18 }

Listing 1: Typical source code for insertion sort. This does not
create an optimized architecture using HLS tools.

HLS tools typically provide optimization directives that
are embedded in input source code as a pragma. Through-
out this work, we use semantics specific to the Xilinx Vivado
HLS tool. However, these ideas are generally applicable to
other HLS tools. Some common optimization directives are
pipeline, which exploits instruction level parallelism, unroll,
which vectorizes loops, and partition, which divides arrays
into multiple memories. We denote three potential locations
for these directives: L1, L2, and L3. For example, we can
direct the HLS tool to exploit instruction level parallelism
by applying the pipeline pragma to the body of the in-
ner for loop at point L3; similarly, we can apply other HLS
optimizations at L1, L2, and L3. Unfortunately, as we will
shortly see, designers cannot rely on these directives alone,
and must often write special code, which we call restruc-
tured code, to generate the best results. This restructured
code requires substantial hardware design expertise [10, 17].

Table 1 presents the Initiation Interval (II), achieved clock
period, and utilization (slices) results for five different opti-
mizations at the different locations L1, L2, and L3. Design
6 is a restructured implementation, i.e., it completely refac-
tors the code with an eye towards an HLS style of coding.
We will discuss Design 6 in more detail in Section 4.

Table 1: Case study for insertion sort optimization in HLS

Optimizations II Period Slices Category

1 L3: pipeline II=1 661 3.75 29 slow/small

2 L3: unroll factor=2 cyclic
partition array by fac-
tor=2

730 3.84 112 slow/small

3 L2: pipeline II=1 1194 3.06 47 slow/small

4 L2: unroll factor=2 and
cyclic partition array by
factor=2

1193 3.50 144 slow/small

5 L1: pipeline II=1 and
complete partition array

1 440.85 27291 faster/huge

6 Code restructuring 64 2.90 374 fastest/small

We categorize the performance and area results from Ta-
ble 1 into three groups: 1) slow/small, 2) faster/huge, and
3) fastest/small. Ideal design from HLS would be fast with
small area. The first four designs are very slow and have
small area. Design 5 achieves higher performance (II=1 and
very large clock period) with unrealistically large area due
to aggressive HLS optimizations. Design 6 is hand written
by an expert HLS designer to create an optimal architecture;
it achieves the highest performance with small area.

This case study demonstrates several concepts: First, writ-
ing efficient HLS code requires that the designer must un-
derstand hardware concepts like unrolling and partitioning.
Second, the HLS designer must be able to diagnose any
throughput problems, which requires substantial HLS tool
knowledge. Third, and most importantly, in order to achieve
the best results – high performance and low-area, it is typi-
cally required to re-write the software-centric code to create
an efficient hardware architecture.

The aim of this work is to make it easy to design optimized
sorting algorithms (like that of Design 6) from higher-level
languages by providing a framework of optimized sorting al-
gorithms in HLS. This requires several steps: 1) understand
the sorting algorithms, 2) study existing hardware imple-
mentations (often written in register transfer level Verilog or
VHDL), and 3) modify the sorting algorithms to optimally
synthesize to the FPGA. In the remainder of this paper, we
address each of these issues.

3. RELATED WORK
There are two main bodies of past work related to this

paper; these are hardware sorting architectures and high-
level synthesis code generation.

Hardware sorting architectures: The first body of work
focuses on implementing hardware sorters (usually a single
algorithm) on an FPGA. There are a variety of published
works exploring sorting architectures on FPGA platforms.
Several works have implemented a single sorting algorithm
on a FPGA [3, 7, 16, 18, 21, 23], and some have explored
high performance sorting of large size inputs [6, 7, 14].

All the above work focuses on designing a specific hard-
ware architecture for a particular algorithm. Our work en-
ables the user to generate a vast number of different sorting
architectures from high-level languages without writing low-
level code. Additionally, our work does this automatically
from high-level languages, where previous works have used
low level hardware description languages. Our framework
allows full parameterization, the composition of hybrid ar-



chitectures from multiple algorithms, and the ability to per-
form quick design space exploration. Finally, the sorting ar-
chitectures generated from our work can be integrated with
RIFFA to provide an an end-to-end system.

There are also a few works that study sorting in the con-
text of high-level languages. Arcas-Abella et al. [2] looked
at the feasibility of implementing bitonic sort and spatial
insertion sorting units using existing HLS tools (BlueSpec,
Chisel, LegUP, and OpenCL). This work is similar to ours
since it studies the implementation of sorting algorithms
using HLS tools. Zuluaga et al. [23] presented a method
for generating sorting network architectures from a domain-
specific language. At a high level, the use of a domain-
specific language seems similar to our architecture-generation
approach. There are several main differences between afore-
mentioned work and our work. First, we study multiple algo-
rithms instead of focusing on a single algorithm. Second, we
generate optimized sorting architectures by composing one
or more algorithms. Finally, we can address much larger
input sizes and the architectures generated from our work
are orders of magnitude better than [23]. Section 6 provides
a more detailed comparison of these works and the results
generated from our Resolve framework.

HLS code generation: The work by George et al. [10] pro-
posed a domain-specific language based FPGA design us-
ing existing high-level synthesis tools. This is similar to
our approach by allowing non-hardware designers to write
code (in their case using Scala) to generate optimized HLS
code. Their work targets specific computational patterns.
Our work targets a specific domain (sorting) and creates a
framework for the user to explore a vast number of differ-
ent sorting architectures using sorting primitives and basic
sorting algorithms.

4. HARDWARE SORTING
Figure 1 shows the structure of our framework. It has

three components: 1) Block 1 is a library of optimized pa-
rameterizable sorting primitives. These sorting primitives
are the building blocks of our framework. Block 2 repre-
sents our basic sorting algorithms. The algorithms use the
sorting primitives to implement all the basic sorting algo-
rithms on an FPGA using high-level synthesis. Block 3 is
the sorting architecture generator. Here we use the sort-
ing primitives and basic algorithms to generate optimized
hybrid sorting architectures to meet different system con-
straints. The following describes each of these components
in more detail.

4.1 Sorting Primitives
This section presents optimized HLS implementations of

sorting primitives. Previous works presented a list of several
common sorting primitives, e.g., compare-swap, select-value,
and a merge unit [14]. After analyzing more common sort-
ing algorithms, we added three more primitives to this list:
prefix-sum, histogram, and insertion-cell. Our basic sort-
ing algorithms (presented in Section 4.2) are implemented
efficiently in hardware using these six sorting primitives.
Figure 2 shows the initial hardware architectures generated
from HLS code for our sorting primitives. Section 2 de-
scribed how restructured HLS code is necessary to generate
an efficient hardware from HLS. We now present the opti-
mization of prefix sum, merge, and insertion-cell.
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Figure 2: Initial hardware architecture of sorting primitives
generated from HLS. a) compare-swap, b) select-value element,

c) merge, d) prefix-sum, e) histogram, f) insertion cell

1 #pragma PARTITION out
cyclic factor =4

2 #pragma PARTITION in
cyclic factor =4

3 for(i=0;i<SIZE;i++){
4 #pragma UNROLL

factor =4
5 #pragma PIPELINE
6 out[i]=out[i-1]+in[i]
7 }

Listing 2: Prefix sum (SW)

1 A=in[0];
2 #pragma PARTITION out

cyclic factor =4
3 #pragma PARTITION in

cyclic factor =4
4 for(i=0;i<SIZE;i++){
5 #pragma UNROLL

factor =4
6 #pragma PIPELINE
7 A = A+in[i];
8 out[i] = A;
9 }

Listing 3: Prefix-sum (HW)

Prefix Sum: Listing 2 shows “software-style” C code for
prefix sum. Even for this simple prefix sum primitive, we
have to restructure the code in non-intuitive ways to produce
optimized hardware. First, we apply unroll and pipeline op-
timizations to expose data and instruction level parallelism.
We also perform cyclic partitioning on the arrays in and
out to match the memory access patterns required by un-
rolling. By pipelining the loop, we expect to get II = 1,
and by unrolling, we expect to get a speed up by a factor of
4. However, the data dependencies between out[i − 1] and
out[i] prevent us from achieving the expected results. Fig-
ure 2 (d) shows the hardware architectures for the code in
Listing 2. Optimized architecture with an II = 1 is shown
in Figure 3 (a), and Listing 3 shows the HLS code for this
optimal hardware architecture.

1 #pragma HLS DATAFLOW
2 // omitted partition
3 // pragmas
4 stage1(IN, TEMP);
5 ...
6 stage(TEMP , OUT);
7 }

Listing 4: Prefix sum dataflow

1 stage1(in, t) {
2 for(i=0; i<SIZE;

++i) {
3 #pragma HLS UNROLL

factor =4
4 #pragma HLS

PIPELINE
5 t[i] =

in[i-1]+in[i];
6 }}

Listing 5: Prefix sum stages

if (old_val==val)

in

out

+
acc

values

[old_val]

histacc

else
acc [val]

(a) (b)

+

+

Figure 3: Optimal hardware architectures for prefix sum and
histogram that give II = 1

As an additional example, we present another optimized
HLS block for prefix sum which implements the reduction



pattern. The reduction pattern uses log(n) parallel stages
to compute a prefix sum of size n in parallel. The individual
stages do not have the data dependency seen in the previ-
ous example. Listing 4 shows a high-level prefix sum imple-
mentation using a reduction pattern. The stage functions
are implementations of the parallel stages without the data
dependency. Listing 5 shows the code for the first stage

function. Since there is no data dependency, it is straight-
forward to get a speed up of 4× or more by unrolling and
cyclically partitioning as in Listing 5. Multiple versions of
optimized sorting primitives such as in Listing 3 and List-
ing 4 will facilitate to do easy design space exploration with
these primitives. For example, the prefix sum in Listing 3
achieves the desired unrolling factor with reduced frequency,
while the prefix sum in Listing 4 with the same unrolling fac-
tor achieves higher frequency.

1 void MergeUnit(hls::stream <int > &IN1 ,
hls::stream <int > &IN2 , hls::stream <int > &OUT ,
int n){

2 int a,b;
3 int subIndex1 = 1, subIndex2 = 1;
4 IN1.read(a); IN2.read(b);
5 for(int i=0; i < n; i++){
6 #pragma HLS PIPELINE
7 if(subIndex1 == n/2+1) {
8 OUT[i] = b;
9 IN2.read(b);

10 subIndex2 ++;
11 } else if (subIndex2 == n/2+1) {
12 OUT[i] = a;
13 IN1.read(a);
14 subIndex1 ++;
15 } else if (a < b) {
16 OUT[i] = a;
17 IN1.read(a);
18 subIndex1 ++;
19 } else {
20 OUT[i] = b;
21 IN2.read(b);
22 subIndex2 ++;
23 }
24 }
25 }

Listing 6: FIFO based streaming merge primitive

Merge: The merge primitive combines two sorted n/2 size
arrays into a sorted array of size n. Figure 2 (c) shows the
hardware architecture. Listing 6 shows the HLS implemen-
tation of streaming FIFO-based merge unit. Implementa-
tion of merge unit with C arrays is straightforward. Here
the IN1 and IN2 are two sorted arrays and OUT is the merged
output. The for loop in Line 5 runs n times where n/2 is
the size of IN1 and IN2. It reads one element from either
IN1 or IN2 on each iteration and writes it to the output until
the end of the FIFO is reached. We pipelined this loop to
get an II = 1 so it does one read operation every cycle.

Insertion Cell: Insertion cell is a hardware sorting primi-
tive for insertion sort algorithms. The hardware architecture
has an input, an output, a comparator, and a register – see
Figure 2 (f). The insertion-cell compares the current input
with the current value in current register. The smaller (or
larger depending sort direction) of current register and the
current input is given as an output.

1 T InsertionCell(hls::stream <int > &IN,
hls::stream <int > &OUT){

2 static int CURR_REG =0;
3 int IN_A=IN.read();
4 if(IN_A >CURR_REG) {
5 OUT.write(CURR_REG);

6 CURR_REG = IN_A;
7 } else
8 OUT.write(IN_A);
9 return CURR_REG;

10 }

Listing 7: The code for the sorting primitive insertion-cell.

The code for insertion-cell is shown in Listing 7. The func-
tion takes one input argument IN and one output argument
OUT. It uses a hls::stream<> type to indicate that these in-
put and outputs can use a FIFO interface. The cell holds
the previous value in the CURR_REG static variable. It must
save this value across function calls, and thus declares it as a
static variable. The architecture compares the input value
to the previous value, and outputs the larger of these two
values. The next section shows how to use this primitive to
create a linear insertion sort algorithm.

4.2 Sorting Algorithms
In this section, we elaborate on the HLS implementations

of four kinds of sorting algorithms: nested loop, recursive,
non-comparison, and sorting network. Table 2 summarizes
the results of our HLS implementations.

4.2.1 Nested Loop Sorting Algorithms
The selection sort algorithm iteratively finds the mini-

mum element in an array and swaps it with the first element
until the list is sorted . This algorithm runs in O(n2), where
n is the number of array elements. In HLS, we can pipeline
the inner loop to get II = 1, which still gives us O(n2) time.
We can create a better design by sorting from both “sides”,
i.e., finding the minimum and maximum elements in paral-
lel, which reduces the number of iterations in the outer loop
by 2×. This gives us O(n2/2) time. In general, selection
sort does not translate into high performance hardware us-
ing HLS. However, selection sort can be used to produce an
area-efficient sorting algorithm implementation.

The rank sort algorithm sorts by computing the rank of
each element in an array, and then inserting them at their
rank index. The rank is the total number of elements greater
than or less than the element to be sorted. Sequential rank
sort has a complexity of O(n2). The rank sort algorithm
can be fully parallelized in HLS: sorting an array of size n
has n units operating in parallel computing the rank of each
element. However, this process uses 2 × n2 storage to sort
the array of size n. Rank sort can be useful when designing
sorting hardware in HLS because it is a good algorithm for
exploring area and performance trade-offs.
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Figure 4: Hardware architecture of linear insertion sort

Insertion sort iterates through an input array maintaining
sorted order for every element that it has seen. Insertion



Table 2: Sorting Algorithms evaluations when implementing them using HLS. n=number of elements to sort. *n=number of insertion
sort cells, t*= number of compare-swap elements

Parallel HLS Implementation

Algorithm name SW Complexity Parallel tasks Complexity (II) Storage Main Sorting Primitives

Selection sort O(n2) 2 O(n2/2) O(2 × n) Compare-swap
Rank sort O(n2) n O(n) O(n2) Histogram, Compare-swap
Bubble sort O(n2) 2 O(2 × n2) O(2 × n) Compare-swap
Insertion sort O(n2) - O(n) n* Compare-swap, insertion-cell

Merge sort O(n logn) - O(n) O(2 × ∑
logn) Merge Unit

Quick (Sample) sort O(n logn) or O(n2) t O(n/t logn/t) O(n × t) Prefix sum

Counting sort O(n × k) (k=3) 3 O(n) O((k − 1)n Prefix sum, Histogram
Radix sort O(n × k) (k=4) 4 O(n) O((k − 1)n Prefix sum, Histogram, Counting Sort

Bitonic sort - t O(log2n) O(n × t) Compare-swap
Odd-even transposition sort O(n2) t* O(n2/t∗) O(t∗) Compare-swap

sort has a complexity of O(n2). Listing 1 shows a software-
centric HLS implementation of insertion sort. We discussed
some naive HLS optimizations for insertion sort in Section 2.
These used different optimization directives (pragmas) in an
attempt to create a better hardware implementations. These
designs (Designs 1 - 5 in Table 1 did not result in the optimal
implementation. Design 6 give the best result. Here we
describe code restructuring optimizations of Design 6.

An efficient hardware implementation of insertion sort
uses an linear array of insertion-cells [2, 3, 16, 21] or a sorting
network [19]. Here we focus on a linear insertion sort imple-
mentation; we discuss sorting network implementation later.
Figure 4 shows architecture from Arcas-Abella et al. [2]. In
this architecture a series of cells (insertion-cell primitives)
operate in parallel to sort a given array. It compares the
current input (IN) with the current value in current regis-
ter (CURR REG). The smaller of current register and the
current input is given as an output to OUT .

Listing 8 shows the source code that represents the hard-
ware architecture in Figure 4. A cascade of insertion-cells
is implemented in a pipelined manner using the dataflow

pragma, and series of calls to the InsertionCell function
from Listing 7. Note that we have four different versions
of the function – InsertionCell1, InsertionCell2, etc.. It
is necessary to replicate the functions due to the use of the
static variable. Each of these functions has the same code
as in Listing 7. This implementation achieves O(n) time
complexity to sort an array of size n.

1 void InsertionSort(hls::stream <T> &IN,
hls::stream <T> &OUT){

2 #pragma HLS DATAFLOW
3 hls::stream <T> out1 , out2 , out3;
4 // Function calls;
5 InsertionCell1(IN, out1);
6 InsertionCell2(out1 , out2);
7 InsertionCell3(out2 , out3);
8 InsertionCell4(out3 , OUT);
9 }

Listing 8: Insertion Sort code for HLS design based on the
hardware architecture in Figure 4. The InsertionCell functions

use the code from Listing 7.

4.2.2 Recursive Algorithms
A pure software implementation of merge sort and quick

sort are not possible in HLS due to the use of recursive func-
tions. HLS tools (including Vivado HLS) typically do not
allow recursive function calls. Changing from a recursive

implementation to one that is synthesizable requires a mod-
ification of software implementation to remove the recursive
function calls in the code.

Merge sort has two primary tasks. The first task par-
titions the array into individual elements, and the second
merges them. The majority of the work is performed in the
merging unit, which is implemented with a merge primitive.
This was described in Section 4.1.

Merge sort is implemented in hardware using merge sorter
tree [14] or using odd-even merge sort. Listing 9 provides
an outline of the code for streaming merge sorter tree. In
this code, IN1, IN2, IN3 and IN4 are n/4 size inputs, and
OUT is a size n output. MergePrimitive1 and MergePrim-

itive2 merges two sorted lists of array size n/4 and n/2,
respectively. Using the dataflow pragma, we can perform a
functional pipeline across these three functions. Merge sort
based on odd-even merge also uses merge sorting primitive
to sort a given n size array with II of n. Merge sort can be
optimized in hardware by running n log n tasks in parallel.

1 void CascadeMergeSort(hls::stream <int > &IN1 ,
2 hls::stream <int > &IN2 , hls::stream <int > &IN3 ,
3 hls::stream <int > &IN4 , hls::stream <int >

&OUT){
4 #pragma HLS DATAFLOW
5 #pragma HLS stream depth=4 variable=IN1
6 for(int i=0;i<SIZE /4;i++) {
7 // read input data
8 }
9 MergePrimitive1(IN1 , IN2 , TEMP1);

10 MergePrimitive1(IN3 , IN4 , TEMP2);
11 MergePrimitive2(TEMP1 , TEMP2 , OUT);
12 }

Listing 9: FIFO based streaming merge sorter tree

Quick sort uses a randomly selected pivot to recursively
split an array into elements that are larger and smaller than
the pivot. After selecting a pivot, all elements smaller than
pivot are moved left of the pivot, i.e., they are in a lower
index in the array. This process is repeated for the left
and right sides separately. The software complexity of this
algorithm is O(n2) in the worst case and O(n log n) in the
best case. Non-recursive (iterative) version of quick sort can
be implemented in HLS with slow performance. Instead, we
chose to implement a parallel version of quick sort known
as sample sort. In sample sort, we can run t tasks to divide
the work of pivot_function to sort n size array into n/t.
The integration of t results from tasks can be done using the
prefix sum primitive. Essentially, this implementation sorts
an n size array in O(n) time with higher BRAM usage.



4.2.3 Non-comparison based
Counting sort has three stages. First the counting sort

computes the histogram of elements from the unsorted in-
put array. The second stage performs a prefix sum on the
histogram from the previous stage. The final stage sorts the
array. Final stage first reads the value from the unsorted in-
put array. Then it finds the first index of that element from
the prefix sum stage and writes it to the output array. Then
it increments the index in the prefix sum by one. Figure 5
(a) shows an example of the counting sort algorithm on an
8 element input array. The first stage performs a histogram
on the input data. There are only three values (2, 3, 4), and
they occur 3, 2, and 3 times in the unsorted input array,
respectively. The second stage does a prefix sum across the
histogram frequencies. This tells us the starting index for
each of the three values. The value 2 starts at index 0; the
value 3 starts at index 3; and the value 4 starts at index 5.
The final stage uses these prefix sum indices to fill in the
sorted array. Parallel counting sort can be designed using
function pipelining of three stages. It runs in O(n) time
using O(n× k) (k is constant) memory storage.
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Figure 5: An example hardware architectures for counting sort
and radix sort

Radix sort works by applying counting sort for each digit
of the input data. For example, to sort 32-bit integers, we
can apply counting sort four times to each of the four hex-
adecimal (radix 8) digits. We can implement a fully par-
allel radix sort in HLS using functional pipelining of each
counting sort. An individual counting sort operation has a
throughput of n, thus fully parallel radix sort will also have
a throughput of n. To store the outputs of intermediate
stages, we need n× k storage. Here k is usually 4 for 32-bit
number or 8 for 64-bit number. Thus to sort 32-bit number
in parallel, we use 3 × n storage (3 intermediate memory
storage) as shown in Figure 5 (b).
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Figure 6: a) Bitonic sort, b) Odd-even transposition sort

4.2.4 Sorting networks
Sorting networks [19] is a set of compare-swap primitives

connected by wires. Bubble sort is an instance of a sorting
network. Two examples of sorting networks (bitonic and
odd-even transposition) are shown in Figure 6. For each
vertical connection, the minimum of two inputs is assigned
to the upper wire and the maximum goes to the lower wire.

Due to parallel nature of sorting networks, they are easier
to implement in HLS than other sorting algorithms. How-
ever, sorting networks does not scale well in hardware [14]

due to required IO throughput. This requires balancing the
parallelism and area in HLS and will be discussed later. For
example using parallel n compare-swap elements, odd-even
transposition sort can sort an n size array in O(n).

5. SORTING ARCHITECTURE GENERATOR
In this section, we describe our framework for generating

sorting architectures. A user can perform design space ex-
ploration for a range different application parameters. And
once she has decided on a particular architecture, the frame-
work generates a customized sorting architecture that can
run on out of the box on a heterogeneous CPU/FPGA sys-
tem. It creates the RTL code if the user wishes to integrate
it into the system in another manner.

The flow for our sorting framework is shown in Figure 8.
We define user constraint as a tuple UC(T, S,B, F,N) where
T , S, B, F and N are throughput, number of slices, num-
ber of block rams, frequency, and the number of elements
to sort. We define V as a set of sorting designs that can
perform sorting on an input array of size N . The sorting
architecture generation is a problem to find a design D of
the form D(T, S,B, F,N) that satisfies the UC.

Sort ::=  
         | SS n 
         | RS n 
         | BS n 
         | IS n 
         | MS n 
         | QS n 
         | RD n 
         | BtS n 
         | OET n 
         | OEM n 
 | Merge (Sort,  Sort)     

match Sort (n, v)::=  
                     | SS n     emit SS (v) 
                     | RS n    emit RS (v) 
                     | BS n    emit BS (v) 
                     | IS n    emit IS (v) 
                     | MS n    emit MS (v) 
                     | QS n    emit QS (v) 
                     | RD n    emit RD (v) 
                     | BtS n    emit BtS (v) 
                     | OET n    emit OET (v) 
                     | OEM n    emit OEM (v)

RD::= | RD v1 | RD v2| BD v3| RD v4| RD v5 
BtS::= | BtS v1 | BtS v2| BtS v3| BtS v4| BtS v5 
…  

a)
 

b)

 

c)

 

Figure 7: Grammar of domain-specific language. SS=Selection
sort, RS=Rank sort, BS=Bubble sort, IS=Insertion sort,

MS=Merge sort, QS=Quick sort, RD=Radix sort, BtS=Bitonic
sort, OET=Odd-even transposition sort, OEM=Odd even
merge sort. a) Sorting architectural variants for particular
algorithm, b) Sort function grammar, c) Code generator

from components import InsertionSort 
from components import MergeSort 
from components import RadixSort 
 
.... 
 
conf = Configuration.Configuration(…) 
#sort = RadixSort(10, “RadixSort”, 32, 4) 
  
Input_array = [1,2,3,..]    
@TopLevel 
def sort(input_array_a, BW, options=[]): 
    //Write python sorting 
        … 
 
#Call   
sort(input_array, 32, fastest) 

Sorting 
Architecture 

Selection 

ISE/Vivado 

bitstream 

HLS/ 
synthesize/ 

Simulate/P &R 

1 

2 

3 

Figure 8: Design flow of Resolve.

Our framework is implemented as a small domain-specific
language. Figure 7 shows simplified grammar of the lan-
guage. The sorting architectures defined in previous sec-
tions are defined by types for instance, RD and IS. Each



sorting algorithm has a number of different implementa-
tions, called variants. For example, radix sort (RD) has
five variants: RD v1, RD v2, RD v3, RD v4, RD v5,. The
sort function can use any sorting algorithm or a composi-
tion of one or more algorithms. If we wanted to create an
implementation that sorts n elements, we could define it as
any of the basic sorting algorithms from Figure 7. For ex-
ample, SS n creates a selection sort implementation, and BS

n uses the bubble sort algorithm for the implementation.
If we wish to create a hybrid sorting architecture we could
perform Merge(QS n/2, QS n/2), which uses quick sort on
the two halves of the input data and merges the results to-
gether. The expression: Merge(Merge(RD n/4, RD n/4),

Merge(RD n/4, RD n/4)) splits the input data into quar-
ters, and then merges them twice. The elements for the
quarter arrays can be sorted using different sorting algo-
rithms in our framework. In this example, radix sort is
used to sort the quarter arrays. Based on the Sort func-
tion, the emit function generates specific variant of sorting
architecture. Thus our framework completely abstracts the
underlying architectural details from the user, and allows
the user to generate an optimized architecture in a matter
of minutes.

To use the framework, the user writes Python code as de-
scribed in Figure 8. It has three components: Part 1© is a
library of the template generator classes for existing sort-
ing algorithms (e.g., InsertionSort, MergeSort). There
are currently eleven classes, some with multiple architec-
ture variants. All these classes inherit from base class called
Sorting. The Sorting class provides common class meth-
ods and members (e.g., size, bit width) for all the sort-
ing algorithms. Each class provides parameterizable func-
tions tailored to specific sorting algorithm. For example,
RadixSort.optimized II1(size, bit−width) generates opti-
mized Radix sort with II = 1, while functional pipelining
(size, bit width) generates a dataflow pipelined radix sort
for a given parameters. Part 2© is HLS project generator
and configuration class. The configuration class accepts sev-
eral parameters. These are the FPGA device, frequency,
clock period, simulate true, implement true, and name of
the module. If simulate_true=1 then the generated design
is simulated and verified with a selected simulator inside
HLS. If the implement_true=1, then the design is physically
evaluated by RTL synthesis.

The users write their top level function in Part 3©; this
calls the sorting routine. TopLevel is a Python decorator
which allows us to add additional information to the exist-
ing Python function. Once TopLevel decorator starts ex-
ecuting, it does several things. First, it generates a cus-
tomized sorting architecture tailored to user provided pa-
rameters using Algorithm 1. Here V is a set of all differ-
ent variants of existing sorting architectures, and D and R
are returned sorting design and respective simulation/im-
plementations results. The user provides UC. UC must
contain at least one element which is size of array to sort
(N). If UC is one, then sorter generates a design from exist-
ing designs which has the highest throughput using Sorter-

Generator function. The emitCode function generates opti-
mized sorting architectures using existing HLS architectures
(templates) wrapped in python code. The SorterGenera-

tor includes CalculateThroughput function that calculates
throughput TS of current design using initial II of each
variant. We assume the II of each variant is known. For

Algorithm 1: Customized Sorting Architecture Gener-
ation

Data: UC={T, S,B, F,N}, V={V1, V2, ..Vm},
P={N/2, N/4..}

Result: D=architecture for UC, R=performance area
results

1 if UC is 1 then
2 [D,R]=SorterGenerator(V, N)
3 end
4 else
5 foreach (P ) do
6 [D,R]=SorterGenerator(V, P)
7 if CheckUserConstraints(UC) then
8 emitMerge(D, P)
9 if sim/impl is 1 then

10 R = Simulate D
11 R =Implement D

12 end

13 end

14 end

15 end
16 Procedure SorterGenerator(V, N )

Data: V,N
Result: D : Design,R : Report

17 TS(1, 2, ..,m)=CalculateThroughput(V,N)
18 S = min(V1(t), V2(t), ..Vm(t))
19 [D,R]=emitCode S
20 if sim/impl is 1 then
21 Simulate D Implement D
22 end

example, we know linear insertion sort (LIS) has II = 1,
so the TS(LIS) = 1 × N . Then it generates design D
and returns report R. In the case of |UC| > 1, we must
satisfy user constraints; In Algorithm 1, we present a case
where there is not a design in the current pool that satis-
fies UC (other case where there is a D that satisfies UC
is straightforward). We use a heuristic approach that con-
tinuously divides N into halves until it finds a design that
satisfies UC. For a returned design D from SorterGener-

ator, we call CheckUserConstraints to check these condi-
tions: UC(T ) > D(T ), UC(S) < D(S), UC(B) < D(B),
UC(F ) > D(F ). If these conditions meet, then emitMerge
generates HLS code from pre-wrapped templates in python.

6. EXPERIMENTAL RESULTS
In this section, we present the performance and utiliza-

tion results for a representative set of architectures gener-
ated by our framework, and the end-to-end (CPU/FPGA)
implementation of selected sorting architectures. Finally, we
compare our designs with existing implementations of sort-
ing hardware architectures.

Basic Sorting Algorithms: We implemented basic sort-
ing algorithms – selection sort, rank sort, linear insertion
sort, merge sort (two variants), sample sort, radix sort (two
variants), bitonic sort, and transposition sort (two variants)
– for three different problem sizes (32, 2014, 16384). The
results are shown in Table 3. Results presented in Ta-
ble 3 are obtained after RTL synthesis targeting the Xilinx
xc7vx1140tflg1930-1 chip using Vivado HLS 2014.3. The
performance results are presented in terms of megabytes per



Table 3: Implementation results for different sorting architectures. Tasks=number of parallel sorting processes. Entries with ’-’ are
omitted since the sorting architecture is not good for that particular size (e.g., the utilization is too high to fit on the target device).

32 1024 16384

Algorithm name Tasks Slices BRAM Freq MB/s Slices BRAM Freq MB/s Slices BRAM Freq MB/s

Selection sort 2 26 0 266 50 410 12 232 3.5 599 192 171 97
Rank sort 2 119 4 389 508 162 16 419 4 504 256 348 < 10
Linear insertion sort n 374 0 345 1380 12046 0 310 1243 - - - -
Merge sort (P) logn 1526 18 164 954 2035 40 239 482 484 608 155 1244
Merge sort (UP) logn 666 18 180 550 1268 40 281 899 2474 832 177 567
MergeStream (P) logn 529 8 211 794 1425 20 189 756 2487 140 166 666
Sample sort - - - - - 2777 218 228 911 5174 2838 127 510
8-bit Radix sort 4 1420 19 227 42 1500 36 230 202 1743 456 222 220
4-bit Radix sort 8 2146 30 353 223 2470 60 362 356 3352 960 289 289
Bitonic sort - 4391 0 268 1073 3239 56 268 1048 7274 1280 230 922
Odd-even trans 8*2 929 33 342 96 1254 36 301 15 1361 128 225 0.8
Odd-even trans 16*2 1326 0 323 70 2209 68 270 29 2370 128 212 1.64

Merge (Stream) - 221 0 395 1407 231 0 374 1490 255 0 368 1474
Merge4 + Radix - - - - - - - - - 1010 168 244 411
Merge8 + Radix - - - - - - - - - 2584 240 245 782
Merge16 + Radix - - - - - - - - - 4786 320 148 858

second (MB/s). We show a broad set of implementations to
highlight the ability of our framework to create a broad num-
ber of Pareto optimal designs rather than simply show the
best results.

Selection sort and rank sort both have small utilization
with limited throughput especially as the input size increases.
Linear insertion sort has very high throughput, but it does
not scale well as the number of slices has a linear relation-
ship (to sort n size array, n insertion-cell is required) with
the input size since we are directly increasing the number of
insertion sort cells. Thus linear insertion sort architecture
should only be used to sort arrays with small sizes (e.g, 512).

The designs Merge sort (P) and Merge sort (UP) are
pipelined and unpipelined versions of cascade of odd-even
merge [13]. Merge Stream (P) is the streaming version of
the cascade of odd-even merge sort. Pipelined version of
merge sort achieve better II except for size 1024. This is
caused because HLS tool is doing loop level transformations
when we do not have pipeline for size 1024. Sample sort
tends to achieve higher throughput but uses more BRAMs
than other sorting architectures.

The 8-bit radix sort has four parallel tasks; the 4-bit radix
sort has eight parallel tasks. Radix sort provides a good
area-throughput tradeoff. In the 4-bit implementation, dou-
bling the area produces a greater than 4× speedup for 32
inputs. This trend does not continue for larger input sizes
though the throughput does increase in all cases. This in-
dicates that radix sort is suitable for medium size arrays.
Bitonic sort achieves high throughput for, but it tends to
use more BRAMs than merge sort. Thus, bitonic sort is
suitable for sorting medium size arrays.

In the second part of Table 3, we present four hybrid
sorting architectures. Merge (Stream) is a streaming ver-
sion of merge sort that operates on pre-sorted inputs. It is
designed for heterogeneous CPU/FPGA sorting where the
smaller arrays are pre-sorted in CPU. Merge4+Radix is gen-
erated with the user constraints UC(T = H,n = 16384, S <
1500, B < 170). This architecture uses merge primitve to
combine four 4096-element radix sorts, which gives the high-
est throughput design with less than 170 Block RAMs (B <
170). Merge8+Radix and Merge16+Radix architectures di-
vides the input array (similar to Merge4+Radix except they

use more parallelism 8-way and 16-way) into 8 and 16, re-
spectively. Then uses radix sort to sort the sub arrays.

Table 3 presents some of the basic sorting architectures.
Once we have these kinds of sorting architectures, it is straight-
forward to generate even more sorting architectures for dif-
ferent user constraints. For example, we presented slices,
achieved clock period and throughput results for streaming
merge sort (pipelined (P) and unpipelined (UP)) in Fig-
ure 9. These results are obtained for different sizes and
different user specified clock period. We only presented one
case study here; we can generate broad number of Pareto op-
timal designs for aforementioned different sorting algorithms
to meet different user constraints.

End-to-end sorting system: To the best of our knowl-
edge, there is no published end-to-end system implementa-
tion of large sorting problems using architectures created
from HLS. We implemented and tested a number of dif-
ferent sorting algorithms on a hybrid CPU/FPGA system
using RIFFA 2.2.1 [12]. The HLS sorting architectures use
AXI stream. The corresponding AXI signals are connected
to signals of RIFFA. We present the area and performance
of the several prototypes (sizes) in Table 4. In the first
row of Table 4, we present the area results for RIFFA using
only loop-back HLS module (i.e., an empty HLS module).
This shows the overhead of RIFFA. The remaining results
include RIFFA and the sorting algorithm. Results for 16384
and 65536 are obtained using the xc7vx690tffg1761-2 FPGA
running at 125MHz, and PC with Intel Core i7 CPU at 3.6
GHz and 16 GB RAM. The CPU is used only to transmit
and receive data. The sorting implemented on the FPGA
can sort data at a rate of 0.44 - 0.5 GB/s. Our end-to-end
system does not overlap communication and sorting times.
Thus, it has an average throughput of 0.23 GB/s. The last
line of Table 4 shows hybrid sorter results for 131072 size
formed by two 65536 size sorters. CPU merges outputs of
sub sorters. These results can be improved linearly by using
more channels on RIFFA or increasing the clock frequency.

Comparison to previous work: We compare the re-
sults from our framework with the sorting networks from the
Spiral project [23], interleaved linear insertion sort (ILS) [21],
and merge sort [14]. We selected these because insertion
sort is usually best suited for small size arrays, sorting net-
works are used for both small and medium size arrays, and a
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Case study: Merge sort design space exploration

Figure 9: Design space expiration of generated architectures: P X (X is user specified clock period and X = 3 to 10): piplelined and
UP X (X=3 to 10): unpipelined versions of merge sort.

Table 4: Area and performance of end-to-end system. *HLS
result of 131072 size hybrid sorter. +indicates CPU merging

time).

Design Size FF/LUT BRAM II

RIFFA N/A 19472/16395 71 N/A

RIFFA+Sorting IP 16384 25118/20368 141 18434
RIFFA+Sorting IP 65536 26353/21707 333 73730

RIFFA+Sorting IP 131072 38436/31816 609 *73730+

merge sort is best for larger size arrays. Finally, we compare
against the sorting architectures implemented in various dif-
ferent high-level languages [2].

First we compare our results (streaming merge sort) to
sorting architectures from the Spiral project [23]. We used
the same parameters in both cases: 32-bit fixed point type
for all architectures, Xilinx xc7vx690tffg1761-2, streaming
width of one (one streaming input and one streaming out-
put), and 125 MHz frequency. Spiral generates five different
sorting architectures (SN1, SN2, SN3, SN4, and SN5). SN1
and SN3 are high performance fully streaming architectures
with large area. SN2 and SN4 balance area and through-
put. And SN5 is an architecture optimized for area [23]. We
compare against SN1, SN2, and SN5 because they provide
a good balance between performance and area. For SN2,
we generate fully streaming (SN2 S) and iterative (SN2 I)
versions. We only compared our result against to the SN5
fully steaming version because the iterative version of SN5
has a very low performance (e.g., throughput of SN5 itera-
tive version for size 1024 is 102621). We implemented these
designs (SN1, SN2 I, SN S, and SN5) using Vivado 2015.2.
All of the results are presented after place-and-route.

Table 5 compares the four architectures from Spiral to
our work. The throughput (II) is the number of clock cy-
cles need to sort an array of n elements. We obtained Spi-
ral throughput results from the report generated by online
tool (http://www.spiral.net/hardware/sort/sort.html). The
throughput of our work is obtained from Vivado HLS co-
simulation. In each case, this is the II for sorting one n
size array. The best design (fastest, small area) from Spiral
project is SN2 S for 1024. SN S uses 17.9× more BRAMS,
4.6× more FFs, 2.1× more LUTs than our merge sort imple-

mentation for the 1024 element array. The smallest design
from Spiral is SN2 I. For example, to sort a 16384 element
array, SN2 I uses 13.7× more BRAMs, and its throughput
is 14× worse than our merge sort implementation. SN1 and
SN5 for 16384 size could not fit on target device (e.g., SN5
requires 8196 BRAMs while target device has only 1470).

We also compared our results to work by Chen et al. [7]
which designs an energy efficient bionic sort on the same
target device. Their designs uses 19927 LUTs and 2 BRAMS
for sorting 1024 elements, and it uses 36656 LUTs and 88
BRAMs for sorting 16384 elements. The LUTs and BRAMs
are calculated using the utilization percentage from [7].

Table 6: Streaming insertion sort generated in this paper
(Resolve) vs. Interleaved linear insertion sorter (ILS) [21].

64 128 256

ILS Throughput (MSPS) [21] 4.6 2.33 1.16
Resolve Throughput (MSPS) 5.3 2.54 1.29
Ratio 1.13X 1.08X 1.1X

ILS Slices [21] 1113 2227 4445
Resolve Slices 792 1569 3080
Ratio 0.7X 0.7X 0.69X

Table 6 presents the throughput and utilization results of
interleaved linear insertion sorter (ILS) and our streaming
insertion sort for different sizes (64, 128, 256). We calcu-
lated the slices of ILS by using slices per node × number of
elements (size). The slices per node for w = 1 is obtained
from [21]. The throughput is the number of MSPS for a
given size (64, 128, 256). Our insertion sorter has average
1.1X better throughput while using 0.6X fewer slices.

Arcas-Abella et al. [2] develop a spatial insertion sort and
bitonic sort using Bluespec, LegUp, Chisel, and Verilog. Ta-
ble 7 shows comparison of our spatial insertion / bitonic sort
designs to implementations of this work. We achieve higher
throughput and use less area. Our bitonic sort achieves the
same throughput with comparable area results.

Koch et al. [14] use partial reconfiguration to sort large
arrays. They achieve a sorting throughput of 667 MB/s to
2 GB/s. We can improve our throughput by increasing the
frequency (our HLS cores run at 125 MHz) and using addi-
tional RIFFA channels. Our system consumes more BRAMs
because they implement a FIFO-based merge sort using a



Table 5: Comparison to Spiral [23]. II is the number of clock cycles to produce one sorted array.

64 1024 16384

FF/LUT BRAM II FF/LUT BRAM II FF/LUT BRAM II

Spiral SN1 5866 / 1775 10 64 34191 / 28759 162 1024 - - -
Spiral SN2 I 2209 / 880 5 397 4053 / 2002 45 10261 6790/2547 964 229405
Spiral SN2 S 5912 / 1803 10 64 16165 / 5991 125 1024 62875 /2744884 1395 / 16384 16384
Spiral SN5 9386 / 3023 18 64 27130 / 11104 225 1024 - - -

Resolve 1560 / 1401 2 68 3486 / 2848 7 1028 6515 / 4901 70 16388

Table 7: Comparison of our work to [2]. * calculated with II=1

Spatial Insertion Bitonic

FF/ LUT MB/s LUT/FF MB/s

Verilog 2081/ 641 1301 10250/ 2640 38016
BSV 2012/ 1701 1310 10250/ 2640 38326
Chisel 2012/ 720 1317 10272/ 2649 38447
LegUp 1115/ 823 3.13 4210/ 5180 1034

Resolve 605/ 661 1415 6404/ 9827 38016*

shared memory blocks for both input streams. Writing to a
FIFO using two different processes during functional pipelin-
ing is not supported by HLS tools that we used.

7. CONCLUSION
The Resolve framework generates optimized sorting ar-

chitectures from pre-optimized HLS blocks. Resolve comes
with a number of highly optimized sorting primitives and
sorting architectures. Both the primitives and basic sorting
algorithms can be combined in countless manners using our
domain specific language, which allows for efficient design
space exploration to enable a user to meet all of the nec-
essary system design constraints. The user can customize
these hardware implementations in terms of sorting element
size and data type, throughput, and FPGA device utilization
constraints. Resolve integrates these sorting architectures
with RIFFA, which enables designers to call these hardware
accelerated sorting functions directly from a CPU with a
PCIe enabled FPGA card.
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JournalâĂŤThe International Journal on Very Large
Data Bases, 21(1):1–23, 2012.

[20] R. Mueller, J. Teubner, and G. Alonso. Data process-
ing on fpgas. Proceedings of the VLDB Endowment,
2(1):910–921, 2009.

[21] J. Ortiz et al. A streaming high-throughput linear
sorter system with contention buffering. International
Journal of Reconfigurable Computing, 2011.

[22] N. Satish et al. Designing efficient sorting algorithms
for manycore gpus. In IPDPS, pages 1–10. IEEE, 2009.

[23] M. Zuluaga et al. Computer generation of streaming
sorting networks. In Design Automation Conference,
pages 1245–1253. ACM, 2012.


