
FastWave: Accelerating Autoregressive
Convolutional Neural Networks on FPGA

Shehzeen Hussain∗, Mojan Javaheripi∗, Paarth Neekhara†, Ryan Kastner† and Farinaz Koushanfar∗
∗UC San Diego Department of Electrical and Computer Engineering

†UC San Diego Department of Computer Science
Email: ssh028@eng.ucsd.edu, mojavahe@eng.ucsd.edu

Abstract—Autoregressive convolutional neural networks
(CNNs) have been widely exploited for sequence generation
tasks such as audio synthesis, language modeling and neural
machine translation. WaveNet is a deep autoregressive CNN
composed of several stacked layers of dilated convolution that
is used for sequence generation. While WaveNet produces
state-of-the art audio generation results, the naive inference
implementation is quite slow; it takes a few minutes to generate
just one second of audio on a high-end GPU. In this work, we
develop the first accelerator platform FastWave for autoregressive
convolutional neural networks, and address the associated design
challenges. We design the Fast-Wavenet inference model in
Vivado HLS and perform a wide range of optimizations
including fixed-point implementation, array partitioning and
pipelining. Our model uses a fully parameterized parallel
architecture for fast matrix-vector multiplication that enables
per-layer customized latency fine-tuning for further throughput
improvement. Our experiments comparatively assess the trade-
off between throughput and resource utilization for various
optimizations. Our best WaveNet design on the Xilinx XCVU13P
FPGA that uses only on-chip memory, achieves 66× faster
generation speed compared to CPU implementation and 11×
faster generation speed than GPU implementation.

I. INTRODUCTION

Autoregressive convolutional models achieve state-of-the-
art results in audio [1]–[4] and language domains [5], [6] with
respect to both estimating the data distribution and generating
high-quality samples. Wavenet [1] is an example of autoregres-
sive convolutional network, used for modelling audio for appli-
cations such as text-to-speech (TTS) synthesis and music gen-
eration. WaveNet has been rated by human listeners to provide
substantially more natural sounding audio when compared to
the best existing parametric and concatenative systems in TTS
applications for both English and Mandarin [1]. Popular cloud
based TTS synthesis systems such as Google Now and Google
Assistant, that produce natural sounding speech, are built on
WaveNet architecture [4], [7]. Alongside achieving state-of-
the art results in the audio domain, convolutional models
are prominent for natural language modeling tasks like text
generation and machine translation [5].

Generally, both autoregressive convolutional neural net-
works (CNNs) and Recurrent Neural Networks (RNNs) [8]
are widely popular for sequence modelling tasks. The main
advantage of CNN based models is that they can achieve
higher parallelism during training and can capture longer time-
dependencies as compared to RNN based models [9], [10].
However, this comes at a cost of slower inference, since

the inference still remains sequential and CNN based models
are usually very deep. However, to overcome this problem,
Fast-Wavenet [11] exploits the temporal dependencies by
caching redundant computations using fixed-length convolu-
tional queues and thus makes the generation time linear in
length of the sequence. Such efforts have made it feasible
to use autoregressive CNNs for practical sequence generation
applications, as an alternative to RNN-based models.

While the Fast-Wavenet algorithm provides a speed-up in
audio generation over naı̈ve Wavenet implementation, the
generation time is still high, even on a high-end GPU. It
takes 120 seconds to generate 1 second of audio using Fast-
Wavenet implementation on a NVIDIA TITAN Xp GPU. Prior
works have shown FPGAs to be successful in accelerating the
inference of pre-trained neural networks by providing custom
data paths to achieve high parallelism. A vast amount of
such research focuses on accelerating neural networks in the
image domain [12], [13], speech recognition [14], [15] and
language modelling [16]. To the best of our knowledge, similar
efforts have not been made for accelerating neural networks
for speech/audio synthesis.

We aim to accelerate audio synthesis using the autoregres-
sive CNN model - WaveNet on FPGA. The primary challenges
in deploying auto-regressive CNN inference on FPGA are
designing modules for dilated convolutional layers, buffers for
storing redundant computations using convolutional queues,
and dealing with the large depth of these networks which
is necessary to maintain high audio quality. In this work,
we address these challenges of deploying large autoregressive
convolutional models on FPGAs and perform a wide range
of application and architectural optimizations. Furthermore,
we comprehensively analyze and compare the performance
of Fast-Wavenet implementation on FPGA with the CPU and
GPU counterparts.
Summary of Contributions:

• Creation of the first accelerator platform for autoregres-
sive convolutional neural networks. We deploy the fast
inference model Fast-Wavenet [11] on Xilinx XCVU13P
FPGA which achieves 11 times faster generation speed
than a high-end GPU and 66 times faster generation speed
than a high-end CPU.

• Development of reconfigurable basic blocks pertinent to
autoregressive convolutional networks i.e., dilated causal
convolutional layers, convolutional queues, and fully con-

nected layer. Our operations are powered by a fully-
customizable matrix-multiplication engine that uses two
levels of parallelism controlled by tunable parameters.

• Creation of an end-to-end framework that accesses only
on-chip memory thereby ensuring high throughput and
avoiding any latency caused by communication with off-
chip memory.

• Exploration of the design space using different architec-
tural and application optimizations, as well as comparing
the performance and resource usage. We present extensive
evaluation of throughput and power efficiency for our
fully optimized and baseline designs.

II. BACKGROUND

In this section, we provide a background on autoregressive
convolutional neural networks. We choose WaveNet as an
ideal representation of such models, and describe its overall
generative architecture. We first elaborate on the 1D convo-
lution operation as it is the core computation performed in
the WaveNet model. Next, we explain WaveNet and its more
efficient inference algorithm called Fast-Wavenet.

A. 1D Convolution
The 1D convolution operation is performed by sliding a one

dimensional kernel over a 1D input signal. Each output value
at position i is produced by calculating the dot product of the
kernel and the overlapping values of the input signal, starting
from position i. More formally, for an input vector a of length
n and a kernel k of length m, the 1D convolution is calculated
as follows:

(a � k)i = �m
j=1kj � ai−j+ m

2
(1)

where i is an arbitrary index in the output vector, which has
a total length of n�m+ 1. The subscripts denote the indices
of the kernel/input vectors.

B. WaveNet and Autoregressive CNNs
Autoregressive Neural Networks are popularly used for

sequence generation tasks which rely on ancestral sampling
i.e. the predictive distribution for each sample in the sequence
is conditioned on all previous ones. While RNNs are popular
autoregressive models, they do not exhibit high receptive field
making them unsuitable for modeling sequences with long-
term dependencies like audio [9]. In contrast, autoregressive
CNN based models use a stack of dilated convolutional
layers to achieve higher receptive field necessary for modeling
sequences with long-term dependencies.

Wavenet [1] is an autoregressive convolutional neural net-
work that produces raw audio waveforms by directly model-
ing the underlying probability distribution of audio samples.
This has led to state-of-the-art performance in text-to-speech
synthesis [2], [7], [17], [18], speech recognition [19], and
other audio generation settings [1], [3], [4]. The Wavenet
architecture aims to model the conditional probability among
subsequent audio samples. The joint probability distribution
of waveform sample points x = x0; x1; :::; xT can be written
as: P (xj�) =

∏T
t=1 P (xtjxt−1; ::; x0; �) where � denotes the

learnable parameters of Wavenet model. During inference,
next-sample audio (xt) generation is performed by sampling
from the conditional probability distribution given all of the
previous samples, P (xtjxt−1; :::; x1; x0; �).

One possible method for modeling the probability den-
sity is via a stack of causal convolutional layers as de-
picted in Figure 1(a). The input passes through this stack
of convolutional layers and gated activation functions and
finally through a softmax layer to get the posterior proba-
bility P (xtjxt−1; :::; x1; x0). The downside of this approach
is that in order to model long temporal dependencies from
samples far in the past, the causal convolutional network
requires either many layers or large filters to increase the
receptive field. In general, the receptive field is calculated as
of layers + filtersize + 1 which gives a receptive field
of 5 in the architecture shown in Figure 1(a). To address this
problem, WaveNet leverages dilated convolutions [20], [21]
which deliver higher receptive fields without significant in-
crease in computational cost of the model. Dilated convolution
is equivalent to performing convolutions with dilated filters
where the size of the filter is expanded by filling the empty
positions with zeros. In practice, this is achieved by performing
a convolution where the filter skips input values with a certain
step.

Fig 1(b) illustrates a network with dilated causal convolu-
tions for dilation values of 1, 2, 4, and 8. Here, the input
nodes are shown with color blue and the output is shown
with orange. Each edge in the graph correspond to a 1-
dimensional convolution (See section II-A), more generally
a matrix multiplication. Due to the binary tree structure of
the network, the time complexity of computing output at
each time-step is O(2L) where L is the number of layers
in the network, which gets highly undesirable as L increases.
Similarly, the total memory required to store the inputs, output,
and the intermediate layer features is O(2L).

(a)

(b)

Fig. 1: a. (Left) Stacked causal convolution layers without any
dilations. b. (Right) Stacked causal 1-d convolution layers with
increasing dilation. (Figures from WaveNet paper [1]).

C. Fast-Wavenet
The naı̈ve implementation in Figure 1(b) has many redun-

dant computations when generating a new sample, that is,
it recomputes activations that have been already computed
for generating previous samples. Fast-Wavenet [11] proposed
an efficient algorithm that caches these recurrent activations
in queues instead of recomputing them from scratch while
generating a new sample. Fast-Wavenet uses a per-layer first-
in-first-out queue to cache the states to be used in future
timestamps.

The queue size at each layer is determined by its corre-
sponding dilation value. Figure 2 demonstrates an example
4-layer network and their corresponding queues. For the first
layer, the dilation value is 1 and therefore the corresponding
queue (Q1) only keeps one value. Similarly, the output layer
has a dilation value of 8, which means that its queue (Q4)
will store 8 recurrent values. By removal of redundant compu-
tations due to the queue storing mechanism, the computational
complexity of Fast-Wavenet is O(L) where L is the number
of layers. The overall memory requirement for queues as
well as the intermediate values remains the same as the nav̈e
implementation, i.e., O(2L).

The basic queue operations performed in the Fast-Wavenet
are as follows (refer to Figure 2):

1) Pop phase: The oldest recurrent states are popped off the
queues in each layer and fed as input to the generation
model. These popped off states and the current input are
operated with the convolutional kernel to compute the
current output and the new recurrent states.

2) Push Phase: Newly calculated recurrent states (orange
dots) are pushed to the back of their respective layer
queues to be used in future time stamps.

Maintaining the convolutional queues in the above manner al-
lows us to handle the sparse convolutional operation and avoid
redundant computations and makes the generation algorithm
linear in terms of length of the sequence.

Q4

Q3

Q2

Q1

Queue Pop

Queue Push

Convolutional Queues Generation Model

Fig. 2: Basic queue operations (Push and Pop) performed in
Fast-Wavenet to achieve linear time in audio generation.

III. METHODOLOGY

Our primary objective is to accelerate the inference of
autoregressive CNNs for sequence generation on FPGAs. As
an ideal candidate for autoregressive models, we choose the
WaveNet model for raw audio generation from random seed
inputs. The computation and storage complexity of such state-
of-the-art autoregressive CNNs is very high, particularly our

FastWave architecture comprises of 28 convolutional layers
with 128 channels each in order to maintain high audio
quality. When designing an accelerator for such models, it is
important to be aware of the system restrictions, particularly
those of memory access bandwidth [12], [22]. Accessing off-
chip memory is expensive and can limit the throughput of
our network, making it important to compress DNNs into an
optimal model for efficient inference.

Design Flow: We start with an open source TensorFlow
implementation of the Fast-Wavenet algorithm. We save the
weights of the convolutional and fully connected layers of
our trained model which are used in the inference stage for
generating audio. We implement the Fast-Wavenet inference in
NumPy without using any high level deep learning libraries.
This implementation serves as a bridge between the high level
TensorFlow and the low level Vivado HLS implementation
in C++. On the FPGA platform, we then accelerate the
audio generation process from random seeds, and perform
optimized operations using queue buffers and matrix-vector
multiplications to generate raw audio.

A. Model Architecture and Training on GPU

Block
No.

Layer
No.

Filter
Width

Queue
Length

Input
Channels

Output
Channels

Queue
Size

1 1 2 1 1 128 1
1 2 2 2 128 128 256
1 3 2 4 128 128 512
1 4 2 8 128 128 1024
1 5 2 16 128 128 2048
1 6 2 32 128 128 4096
1 7 2 64 128 128 8192
1 8 2 128 128 128 16384
1 9 2 256 128 128 32768
1 10 2 512 128 128 65536
1 11 2 1024 128 128 131072
1 12 2 2048 128 128 262144
1 13 2 4096 128 128 524288
1 14 2 8192 128 128 1048576
2 1 2 1 128 128 128
2 2 2 2 128 128 256
2 3 2 4 128 128 512
2 4 2 8 128 128 1024
2 5 2 16 128 128 2048
2 6 2 32 128 128 4096
2 7 2 64 128 128 8192
2 8 2 128 128 128 16384
2 9 2 256 128 128 32768
2 10 2 512 128 128 65536
2 11 2 1024 128 128 131072
2 12 2 2048 128 128 262144
2 13 2 4096 128 128 524288
2 14 2 8192 128 128 1048576

TABLE I: Details of Fast-Wavenet Architecture. The column
Queue Size denotes the number of floating point numbers
stored in each queue and is equal to QueueLength �
InputChannels.

We use an open-source TensorFlow implementation of Fast-
Wavenet [11] to pre-train our network in Python. The network
architecture we use is a stack of two dilated convolutional
blocks. Each block consists of 14 convolutional layers with
kernel size (filter width) = 2 and dilation increasing in powers
of 2. Therefore each of the kernels is a 3-dimensional array of
shape 2� inputchannels� outputchannels. The number of

output channels in each layer is 128 in the baseline implemen-
tation. After each convolutional layer there is a tanh activation
function which serves as the non-linearity in our model as
used in the original WaveNet paper [1]. A tanh activation
normalizes values between -1 and 1 and also allows us to better
utilize fixed point data-types in the Vivado implementation
without compromising on accuracy.

After the two convolutional blocks, we have a single fully
connected layer which maps the activation of size 100 from
the last convolutional layer to an output vector of size 256
followed by a softmax normalization layer. The output after
the softmax layer is the generated distribution. The target audio
is quantized linearly between -1 and 1 into 256 values. The
one-hot representation of each sample of size 256 serves as
the target distribution at each time-step. The cross entropy
loss between the generated and target distribution is back-
propagated to train the convolutional kernels and weights of
the fully connected layer.

Memory challenges: The primary memory bottle-neck in
implementing the Fast-Wavenet inference is not the parameters
of the convolutional kernels, but convolutional queues which
cache the intermediate outputs of the convolutional layers to be
used for future predictions. The size of these queues increases
exponentially with the depth of the block in the neural net-
work. As highlighted in Table I, the 14th convolutional queue
in each of the blocks stores 1; 048; 576 floating point numbers
(� 33Mb). One way of addressing this challenge is to reduce
the number of channels in the 13th and 14th convolutional
layers via pruning. However in our experiments, we found
pruning to degrade the quality of generated audio. To address
this memory challenge without pruning the network, we utilize
both BRAMs and URAMs available on our FPGA board. We
store all convolutional queues on the BRAMs by default and
off-load the 14th convolutional queue of each block onto the
URAMs on our board. In this way, we are able to utilize
only on-chip memory and achieve higher bandwidth without
compromising on audio quality.

B. Accelerator Design Overview

GPU

TensorFlow
Training on

Audio samples

 Random Seed Input

Output Stream

Weights

On-Chip
Memory

w

w

Convolutional Queues

FPGA
….

Fig. 3: Acceleration Methodology

The primary objective of our system is to generate an output
stream given a seed input. Figure 3 shows the overview of our

accelerator design. Given a seed input, our system generates
an output stream in an autoregressive manner, one-sample at a
time. The output sample produced at each time-step is fed back
as input to generate the next output sample. During each cycle,
as the input goes through all the convolutional layers, the
corresponding convolutional queues are updated using push
and pop operations as explained in section II. It is important to
note that the entire model including the convolutional queues
and the parameters does not use any off-chip memory and
are stored in the BRAM and URAM available on the FPGA
board. We describe the details of implementing the convolution
operations, queue updates and output generation using the fully
connected layers in the following section.

IV. IMPLEMENTATION DETAILS

Our design is composed of 5 main elements: (i) The dilated
convolution layers, (ii) the queue control unit, (iii) the fully-
connected layer, (iv) the matrix multiplication engine, and (v)
the network description module. We implement and accelerate
the inference of WaveNet on the Xilinx XCVU13P FPGA.

A. Dilated Convolution Layer

As explained in the Section II-C, Fast-WaveNet leverages
queues to implement the dilated convolutional layers. A
convolution of size = 2 is used in the WaveNet architecture,
and can be implemented as two matrix-vector multiplications
followed by vector addition in the manner explained below.
Notations used for our variables along with the shapes are
listed below:

ICn : Number of Input channels of layer n.
OCn : Number of Output channels of layer n.
O[n](OCn×1) : Output of convolutional layer n.
K[n](2×OCn×ICn) : Convolutional kernel of layer n.
Q[n](queueLength×ICn) : Convolutional queue of layer n.

O1[n] = K[n][0](OCn×ICn) �Q[n][0](ICn×1)

O2[n] = K[n][1](OCn×ICn) �O[n� 1](ICn×1)

O[n]OCn×1 = O1[n](OCn×1) +O2[n](OCn×1)

In other words, we matrix-multiply the first component of
the convolutional kernel with the first element of the queue,
and the 2nd component of the kernel with the previous layer’s
output and then add the two products to obtain the output
of any layer. The details of the matrix-vector multiplication
engine have been provided in Section IV-D.

The output of the convolution layer is then passed to
tanh activation function. We use the CORDIC implementation
available in Vivado HLS math library for applying tanh
allowing us to optimize our design and memory usage. The
output of the dilated convolution module is a vector of length
equal to the number of layer output channels.

B. Cyclic Queue Buffer Unit
In order to reduce the number of operations, Fast-Wavenet

aims to remove redundant convolution operations by caching
previous calculations in a Queue, thereby reducing the com-
plexity of synthesis to O(L) time. This means that after
performing a convolutional operation, we push the compute
into the end of the queue and pop the out the first element.
These push and pop operations are shown in figure 3. As
described above the queue in each layer Q[n] is a 2-d array of
shape QueueLength� InputChannels. The QueueLength
depends on the dilationFactor of the layer and is equal
to 2dilationF actor. We aim to fit our queue computations
in the on-chip memory BRAMs and URAMs. Our baseline
queue implementation in Vivado HLS used shift operations to
perform pop and push functionalities of a queue. The longest
queue in our model is of size 8192 � 24. The shifting of a
large number of elements in the queue resulted in very high
latency.

To make queue push and pop operations computationally ef-
ficient, we implemented our queues using fixed length circular
arrays for each layer. This is a lot more efficient than shifting
all the elements present in the queue. The push and pop
operations are reduced to just overwriting one column of our
circular array which is indexed using modulo QueueLength
index.

C. Fully-connected Layer
The fully connected layer in WaveNet is a linear layer

after all the convolutional layers. This layer is characterized
by a weight matrix Wchannels×OutputSize and a bias vector
b1×OutputSize. The fully connected layer performs the follow-
ing operation on ConvOut: the output of the last convolution
layer:

FinalOutput = ConvOut�W + b

In our design, the weight matrix W has shape 100 � 256
and bias b has shape 1 � 256. We use arg-max sampling on
the final vector of length 256 to obtain the quantized output
value between -1 and 1.

D. Matrix Multiplication Engine
The most computationally-intensive operation in DNN exe-

cution is matrix-vector multiplication. FPGAs are equipped
with DSP units which offer a high computation capacity
together with the reconfigurable logic. The basic function of
a DSP unit is Multiplication Accumulation (MAC). Layers in
a convolutional neural network take as input a vector XN×1

and compute the output vector YM×1 as formulated below:

Y = f(WX + b) (2)

where f(.) is a nonlinear function, WM×N is the 2D matrix of
the weights and bM×1 is a vector of bias values. As can be
seen, each layer is computing a vector-matrix multiplication
and a vector-vector addition. In order to optimize the design
and make efficient use of the DSP blocks, we proposed
a parallelized approach to convert layer computations into

multiple MAC operations. Figure 4 presents our method to
parallelize the matrix-vector multiplication computations.

Fig. 4: Schematic representation of the matrix multiplication
engine and the corresponding parallelization factors.

We define two levels of parallelism for our engine
which control the parallel computations with parameters
num parallel in and num parallel out, denoting the level of
parallelism in the input and output, respectively. For the first
level of parallelism, multiple rows of the weight matrix are
processed simultaneously by dividing it into chunks, each
having num parallel out rows. In each round, a chunk of the
weights matrix is copied to one of the weight buffers while
the other weight buffer is fed into the dot product modules
together with a copy of the input vector. The iterations end
when all rows of the weight matrix have been processed.
For the second level of parallelism, each dot-product function
partitions its input vectors into num parallel in chunks and
concurrently executes MAC operations over the partitioned
subsets. The accumulated results of the subsets are then
added together within the reduce sum function to compute
the final output. The reduce sum module performs a tree-base
reduction algorithm as outlined in Figure 5. The reduction
function takes an array of size 2M as its input (array a) and
oscillates between 2 different modes. In mode 0, the function
reduces a by using temp as a temporary array. In mode 1,
temp is reduced using a. The result is returned based on the
final mode.

The aforementioned parameters num parallel in and
num parallel out are individually defined for each of the
layers to enable fine-tuning according to the per-layer require-
ments. Due to the limited number of available resources on the
FPGA platform, it is not possible to define high parallelization
factors for all layers. As such, we give priority to layers
with higher computational complexity, i.e., higher number of
input and output channels, by instantiating their correspond-
ing matrix multiplication engines with larger parallelization
parameters.
E. Network Description Module

In this module, we implement the overall architecture of our
network as a stack of dilated conventional layers and perform
queue update operations followed by a fully connected layer.

Resource Utilization Performance Correctness
BRAM
(Mb)

URAM
(Mb)

FF
(K)

LUT
(K) DSP48E Latency Clock-Cycle

Time (ns)
Throughput

(Hz) MSE LSD

Design / Available Resources 94.5 360 3456 1728 12288
FloatingPointBaseline 93 (98%) 144 (40%) 35 (1%) 86 (5%) 288 (2%) 12110989 8.83 9.4 0 0
FloatingPointCQ 93 (98%) 144 (40%) 35 (1%) 83 (5%) 330 (3%) 6170104 8.83 18.4 0 0
FloatingPointPipeline 93 (99%) 144 (40%) 231 (7%) 231 (13%) 475 (4%) 612952 8.88 183.7 0 0
FixedPointUnrolling 79 (84%) 144 (40%) 22 (1%) 146 (8%) 660 (5%) 293914 8.75 388.8 0.006 0.104
FixedPointMME (Best) 90 (96%) 144 (40%) 425 (12%) 1669 (97%) 540 (4%) 78275 8.66 1475.2 0.006 0.104

TABLE II: Resource Utilization, Performance and Measured Error in generation for each design implementation. The error
metrics namely, Mean Squared Error (MSE) and Log-Spectral Distance (LSD) is measured by comparing the generated audio
from FPGA implementations against audio generated from corresponding GPU implementation. The percentages reported
indicate percentage of resources utilized by the design.

Fig. 5: Realization of the tree-based vector reduction algo-
rithm.

This module instantiates the corresponding function for each
network layer and manages the layer inter-connections. Since
each layer is independently instantiated, we can use custom
dilation, channels and parallelization parameters for each layer.
After the last fully connected layer, to make audio generation
deterministic we use arg-max sampling. This allows us to
bypass the final softmax layer since we can directly apply the
arg-max function on the output of our final fully connected
layer.

V. RESULTS AND EXPERIMENTS

In this section, we evaluate the effect of our optimiza-
tions, namely cyclic queues, pipelining, loop unrolling and
customized matrix multiplication engine, by conducting ex-
tensive design space exploration. Our design experiments are
synthesized for the Xilinx XCVU13P board using Xilinx
Vivado HLS 2017.4. In particular, we discuss the experimental
techniques applied to reduce resource utilization and latency
of our baseline implementation. We further provide a com-
prehensive comparison of our best designs with CPU and
GPU implemented baselines in terms of throughput and power
efficiency.
A. Evaluation Metrics

To evaluate the accuracy of our implementation we compare
the output generated from our FPGA implementation with the
golden output generated by the TensorFlow GPU implemen-
tation for the same initial seed. We use the following metrics
to compare any two audio signals x1, x2 of the same length:

• Mean Squared Error (MSE): The mean squared error
(MSE) between any two given signals x1; x2 is the

mean squared error between their representations in time
domain as a sequence of floating point numbers. That is,
MSE = mean((x1 � x2)2). The MSE losses reported
are from the comparison of the entire waveform i.e. the
total mean squared error from all 32000 samples.

• Log-Spectral Distance (LSD): The log-spectral dis-
tance [23] is a commonly utilized metric, obtained as
the root mean square error between the normalized log-
spectra of given signals. Given two signals x1, x2, we
calculate log-spectral distance between them as follows:

ps1 = (abs(stft(x1)))2

ps2 = (abs(stft(x2)))2

ls1 = normalize(log(ps1))

ls2 = normalize(log(ps2))

LSD = RMSE(ls1; ls2)

(3)

Here ps1, ps2 are the power spectra and ls1, ls2 are the
normalized log spectra of signals x1, x2 respectively. The
normalization is performed across all frequencies in the
log spectrograms.

• Qualitative Evaluation: Along with the quantitative re-
sults, we also provide log-spectrogram visualizations of
the audio signal generated using our FPGA implementa-
tion and the golden-output audio signal generated from
the TensorFlow implementation in Figure 6 (c).

B. Design Space Exploration
We implement the following designs to study the effect

of various optimization techniques in isolation and in com-
bination with other techniques. The resource utilization, per-
formance (throughput) and error in the generated audio, for
each of the following designs have been reported in Table II.
Throughput measures the number of audio samples generated
per second by our implementation of an autoregressive model.
Note that one second of audio contains 16000 samples if audio
is sampled at 16KHz.

1) Baseline Floating Point Implementation (FloatingPoint-
Baseline): The baseline design of our network is comprised
of modules to implement the basic functionality of each layer,
queue, initialization of weights from stored data files and
forward propagation. We use a array-shifting implementation
of queue which results in a fairly high latency as shown in
Table II because of the very long queues (length = 8192 and

