
Imprecise Security: Quality and Complexity Tradeoffs for
Hardware Information Flow Tracking

Wei Hu†, Andrew Becker‡, Armita Ardeshiricham†, Yu Tai§, Paolo Ienne‡,
Dejun Mu§ and Ryan Kastner†

†University of California, San Diego, La Jolla, CA 92093
‡École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
§Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China

{weh040, aardeshi, kastner}@ucsd.edu; {andrew.becker, paolo.ienne}@epfl.ch;
taiyu@mail.nwpu.edu.cn, mudejun@nwpu.edu.cn

ABSTRACT
Secure hardware design is a challenging task that goes far
beyond ensuring functional correctness. Important design
properties such as non-interference cannot be verified on
functional circuit models due to the lack of essential infor-
mation (e.g., sensitivity level) for reasoning about security.
Hardware information flow tracking (IFT) techniques asso-
ciate data objects in the hardware design with sensitivity
labels for modeling security-related behaviors. They allow
the designer to test and verify security properties related
to confidentiality, integrity, and logical side channels. How-
ever, precisely accounting for each bit of information flow
at the hardware level can be expensive. In this work, we
focus on the precision of the IFT logic. The key idea is to
selectively introduce only one sided errors (false positives);
these provide a conservative and safe information flow re-
sponse while reducing the complexity of the security logic.
We investigate the effect of logic synthesis on the quality and
complexity of hardware IFT and reveal how different logic
synthesis optimizations affect the amount of false positives
and design overheads of IFT logic. We propose novel tech-
niques to further simplify the IFT logic while adding no, or
only a minimum number of, false positives. Additionally, we
provide a solution to quantitatively introduce false positives
in order to accelerate information flow security verification.
Experimental results using IWLS benchmarks show that our
method can reduce complexity of GLIFT by 14.47% while
adding 0.20% of false positives on average. By quantitatively
introducing false positives, we can achieve up to a 55.72%
speedup in verification time.

1. INTRODUCTION
Digital hardware lies at the core of modern computing sys-

tems; it computes and manages every single piece of data in
a computer system. However, the sheer size and complex-
ity of the hardware design make it almost inevitable that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’16, November 07-10, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4466-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2966986.2967046

it will have security flaws, and there have been a number
of reports about hardware security issues in critical devices
responsible for protecting personal privacy, controlling high-
assurance systems, and operating military weapons [1, 4, 27].
This is largely due to the fact that the traditional hardware
design flow and tool-chain provide limited support for rea-
soning about security. Hardware designers are in desperate
need for tools that enable them to assess and understand
potential security vulnerabilities in their design.

A hardware design is typically described using a functional
circuit model, e.g., Boolean functions and gates. Such mod-
els do not carry the additional information required to un-
derstand its security. As a result, important security proper-
ties such as non-interference [7] cannot be verified on hard-
ware designs using existing tools. A classic technique called
information flow tracking (IFT) is frequently used to reason
about the security of a system [5, 26]. It is highly effec-
tive in modeling and enforcing security properties related to
confidentiality and integrity.

IFT has been widely deployed across the entire system
stack, including programing language/compiler [22], operat-
ing system [13], and instruction set architecture [23]. Gate
level information flow tracking (GLIFT) enforces informa-
tion flow security at the hardware level [25]. It captures
different types of logical flows (data flows, control flows and
timing flows) in a unified manner. GLIFT has been em-
ployed to prove isolation between IP cores of different trust
in SoC systems [12], detect and eliminate timing channels
in shared bus architectures such as I2C and USB [20], and
craft verifiably information flow secure architectures [24].

However, creating a precise GLIFT model that can accu-
rately measure each bit of information flow has been proved
to be an NP-complete problem [10]. A fast and common
method for deriving the GLIFT circuit (also called GLIFT
logic) uses a constructive technique [10]. This allows for
polynomial time generation but it also introduces a certain
amount of non-existent flows of information. These addi-
tional flows represent false positives. They may state that
a flow occurs when it actually does not. It is a safe and
conservative approach, i.e., it will never say a security prop-
erty holds when it in fact is violated. But it may falsely
state that the hardware violates the security property when
actually it does not.

Imprecise GLIFT logic is typically smaller in size since
the imprecise GLIFT model for logic primitives tends to
be simpler. This can reduce security verification time be-

cause there is evidence that smaller circuits are easier to
verify [19]. Additionally, the imprecise GLIFT logic may
catch an information flow violation earlier. To wit, we show
later in this paper that the verification of a security prop-
erty using imprecise GLIFT logic can be proven (i.e., the
verification solver will complete in a reasonable amount of
time) while the same property on the same hardware design
will not complete using precise GLIFT logic.

Imprecise GLIFT logic can be generated by adding false
positives. Such false positives indicate flows of information
when actually there is none. They can be introduced during
different phases of the design flow. As an example, logic
synthesis can affect the flow of information by changing the
connectivity of signals. In addition, one can create different
GLIFT models for logic primitives in the technology library
and perform mapping selectively.

In this paper, we investigate various tradeoffs in quality
and complexity of hardware IFT. We focus on the effects of
logic synthesis optimizations and different mapping strate-
gies on the precision and complexity of GLIFT logic. Specif-
ically, this paper makes the following contributions:

• Revealing the effect of logic synthesis techniques on
the precision and complexity of hardware IFT;

• Proposing techniques to simplify GLIFT logic while
adding no or a minimum amount of false positives;

• Providing a solution to quantitatively introduce false
positives to accelerate information flow security verifi-
cation and localize security vulnerability.

The reminder of this paper is organized as follows. Sec-
tion 2 covers how GLIFT measures hardware information
flows and the generation of GLIFT logic. In Section 3,
we discuss how logic synthesis can affect the precision and
complexity of GLIFT logic. We provide methods that al-
low tradeoff precision and design overheads through library
mapping in Section 4. Section 5 presents experimental re-
sults using IWLS benchmarks. We briefly review related
work in Section 6 and conclude the paper in Section 7.

2. BACKGROUND

2.1 Gate Level Information Flow Tracking
Gate level information flow tracking (GLIFT) is built upon

the notion that information flows from a signal A to B if
and only if the value of A has an influence on B. GLIFT
associates a label (sometimes called taint) with each data
bit in the hardware design to mark the information assets
one would like to track. The security labels for internal sig-
nals and output ports are calculated and updated according
to the type of logic operation performed. By checking the
security labels of the signals, one can determine if the de-
sign violates different security properties. Examples of such
properties include: 1) confidential data should never leak to
an unclassified domain, and 2) untrusted data should never
be allowed to overwrite a trusted memory location. GLIFT
captures explicit flows (also called data flows), implicit flows
(also known as control flows), and timing flows (information
flow through a timing side channel) in a unified manner since
they all appear in a similar form at the gate level.

2.2 GLIFT Precision and Complexity
It is possible to generate different variants of GLIFT logic.

The precision and performance depends on the granularity
of security label and label propagation policy used. For a
better understanding, consider a two-input AND (AND-2)
gate, whose Boolean function can be described as O = A · B.
We use At, Bt and Ot to denote the security labels of the
inputs and output, respectively. To make it easier to un-
derstand, we restrict to single bit variables and labels in
the following discussion. However, it is straightforward to
generalize to multi-bit variables.

Let At be 1 when A is Confidential and 0 when A is
Unclassified (similar for Bt and Ct). GLIFT can use an
imprecise policy shown in Equation (1) to determine Ot.

Ot = At +Bt (1)

This is secure since it precisely captures all possible con-
fidential information flows from either A or B to the out-
put. However, it can be imprecise since it may over esti-
mate actual flows of information. As an example, assume A
is Unclassified logical 0, and B is carrying Confidential

information, i.e., Bt = 1. In this case, O will be domi-
nated by A; the other confidential input has no effect on the
output. In other words, there is no flow of confidential infor-
mation. However, Equation (1) would conservatively state
that Ot = 1, i.e., O is Confidential.

GLIFT provides a more precise approach to calculate the
security label for the output. It determines a flow of infor-
mation from an input to the output when the value of the
input has an influence on that of the output. Consider again
the AND-2 example. When both inputs are Confidential,
the output will undoubtedly be Confidential. This intro-
duces the term At · Bt in the GLIFT logic. When A is
Confidential, the condition for it to be observable at the
output should be B = 1. This yields the term B · At in
the tracking logic. Similarly, A ·Bt should also be added to
track the Confidential information flowing from B to the
output when A = 1. From the above analysis, the GLIFT
logic for AND-2 can be formalized as:

Ot = A ·Bt +B ·At +At ·Bt (2)

Let Secret be a 32-bit Confidential value. After per-
forming the operation in Equation (3), the imprecise model
shown in Equation (1) will mark the entire Public signal as
Confidential, indicating there are 32 bits of information
flowing from Secret to Public (or simply there is a flow).

Public = Secret · 0x03 (3)

Using Equation (2), the Unclassified 0 bits in the sec-
ond operand will dominate the security labels of correspond-
ing output bits. Thus, only the lowest two bits of Public

will be labeled as Confidential, indicating there are two
bits of Confidential information flowing to Public.

However, this precision comes at the cost more complex
GLIFT logic. As an example, the precise GLIFT logic for
AND-2 shown in Equation (2) is more complicated than the
imprecise one shown in Equation (1). This may increase the
time for verification of security properties.

2.3 GLIFT Logic Generation
A fundamental problem involved in GLIFT logic gener-

ation is to determine if a tainted input can flow to some

(set of) signal(s). This reduces to several known hard prob-
lems such as Boolean satisfiability and controllability [6]. To
generate GLIFT logic in acceptable amount of time, one typ-
ically resorts to the constructive method as shown in Fig. 1.

Tech

mapping

GLIFT library

mapping

Tech
library

GLIFT
library

Logic

synthesis

Hardware
design

Design
netlist

GLIFT
logic

Derive

Figure 1: The constructive method for GLIFT logic
generation.

This constructive method first constructs a GLIFT logic
library (GLIFT library) consisting of the GLIFT logic for
each primitive gate in a technology library. The hardware
design is then synthesized and mapped to that technology
library. Each logic primitive in the mapped design netlist
is instantiated with GLIFT logic from the GLIFT library
discretely. In this way, the complexity of the GLIFT logic
generation problem is dominated by logic synthesis (and
technology mapping) since mapping logic primitives in the
design netlist to the GLIFT library can be completed in lin-
ear time. However, the GLIFT logic generated in this con-
structive manner can be imprecise, i.e., it may contain false
positives that indicate non-existent flows of information [10].

Logic synthesis and the target technology library have a
significant effect on the generated GLIFT logic. Different
logic synthesis strategies can lead to significantly different
representations of a given hardware design, e.g., collapsed
PLA or BDD tree. The technology library determines the
required GLIFT library (there should be GLIFT logic cor-
responding to each gate in the technology library). Changes
in the logic synthesis strategy and/or the technology library
can lead to variable GLIFT logic. The differences primarily
lie in two aspects: precision and complexity. We measure
precision using the amount of false positives while quanti-
fying complexity with parameters such as area, delay, and
verification time. In the following, we attempt to reveal
the effect of logic synthesis on the precision and complexity
of GLIFT logic in Section 3. Then we provide various ap-
proaches to trade off precision and design overheads through
GLIFT library mapping in Section 4.

3. LOGIC SYNTHESIS OPTIMIZATIONS
Logic synthesis affects the precision and complexity of

GLIFT primarily due to the fact that different function-
ally equivalent logic networks can result in variable GLIFT
logic. The difference in the logic network may affect the way
in which signal flows through hardware design. Consider a
two-input XOR (XOR-2) example with 11 as a don’t-care
input condition. The XOR can be simplified to a two-input
OR (OR-2) gate, which is relatively smaller. The GLIFT
logic for XOR-2 is the same as Equation (1) while the GLIFT
for OR-2 is shown in Equation (4). In this case, simplifying
the design will increase the complexity of the GLIFT logic.

Ot = A ·Bt +B ·At +At ·Bt (4)

Logic synthesis changes the precision of the GLIFT logic
in two ways. On one hand, logic synthesis can reduce de-

sign redundancy. Consider the absorption law [2] shown in
Equation (5) that is frequently used for logic optimization.

A+A ·B = A+B (5)

The GLIFT logic for the left-hand side of Equation (5) is:

Ot = At +A ·Bt (6)

By comparison, the GLIFT logic for the right-hand side is
shown in Equation (4). Comparing Equations (4) and (6),
we see that logic synthesis can possibly make the GLIFT
logic more precise. This is because logic synthesis eliminates
the reconvergent fanout at A.

On the other hand, logic synthesis tends to increase re-
source sharing in order to reduce area consumption. This
will typically make the resulting GLIFT logic less precise
because the resource sharing will lead to additional recon-
vergent fanout regions. Generally, precision and complexity
are contradictory design choices. We present experimental
results to show such tradeoffs in Section 5.1.

4. GLIFT LIBRARY MAPPING

4.1 Creating Simplified GLIFT Library
The GLIFT library can be created by enumerating truth

tables for primitive gates since these logic primitives usu-
ally have a limited number of inputs. Figure 2 shows the
Karnaugh maps of GLIFT logic for AND-2 given in Equa-
tions (2) and (1). These represent the most precise and
imprecise GLIFT logic for AND-2, respectively.

1 1 1

1 1

1 1 1

00 01 10 11

00

01

10

11

1 1

1 1 1 1

1 1

1 1 1 1

00 01 10 11

00

01

10

11

(a) (b)

Figure 2: Karnaugh maps of different GLIFT logic
for AND-2. (a) Precise GLIFT logic for AND-2 de-
rived from Equation (2). (b) An imprecise version
of GLIFT logic for AND-2 corresponding to Equa-
tion (1).

Additional GLIFT logic can be derived by gradually flip-
ping the minterms that differ between the two Karnaugh
maps. For the four minterms that show a difference, there
are a total of 24 − 1 = 15 (excluding the “all flipped” case,
which corresponds to the least precise) possible combina-
tions. After testing all these 15 combinations, we derive
two additional versions of GLIFT logic for AND-2 that lies
between the most and least precise. These are:

Ot = Bt +B ·At

Ot = At +A ·Bt

(7)

Using a similar approach, we can derive additional ver-
sions of GLIFT logic for the OR-2. However, this method be-
comes intractable even for a three-input AND gate (AND-3),
which has 28 different minterms between the most and least
precise GLIFT logic. This yields a total of 228 − 1 possible
combinations for the simple AND-3. However, the above

example reveals how different versions of GLIFT logic can
be derived by flipping non-tainted minterms.

We take a more efficient approach to derive simplified
GLIFT logic for more complex Boolean gates. We observe
that precise GLIFT logic more accurately measures informa-
tion flows because it takes into account the value of variables
in label propagation. Thus, we can gradually relax precision
and move towards the least precise by ignoring the values.
Figure 3 shows such a solution using AND-3 as an example.

Ot = ABCt + ACBt + BCAt + ABtCt + BAtCt + CAtBt + AtBtCt

Ot = BCt + CBt + BCAt + BtCt Ot = CAt + ACt + ACBt + AtCt Ot = ABt + BAt + ABCt + AtBt

Ot = Ct + CAt + CBt Ot = At + ABt + ACt Ot = Bt + BAt + BCt

Ot = At + Bt + Ct

A
B

C

C A B

A
C

B A B
C

Figure 3: Deriving simplified IFT logic for AND-3.

At the top level, we have the most precise GLIFT logic for
AND-3, where A, B, C and O are the inputs and output of
AND-3; At, Bt, Ct and Ot are their security labels, respec-
tively. By setting any of the inputs to don’t-care, we can
obtain three simplified versions of GLIFT logic as shown at
the second level. Now by eliminating an additional remain-
ing input in the simplified versions of GLIFT logic, we can
get another three further simplified versions of GLIFT logic
shown at the third level. When the last remaining input
is eliminated, we reach the least precise (and most simpli-
fied) GLIFT logic for AND-3, shown at the bottom level. In
this way, we reduce the complexity of the problem to O(2n),
where n is the number of inputs to a Boolean gate. This is
tractable since most Boolean gates in the technology library
only have a limited number of inputs.

Now that we can create a simplified GLIFT library, we can
map logic primitives to each alternative version of its GLIFT
logic in order to trade off precision and complexity. In Sec-
tion 4.2, we provide a new method to simplify GLIFT logic
without affecting its precision. We propose another new
approach to simplifying GLIFT logic while adding a small
number of false positives in Section 4.3. We also present a
solution to quantitatively introduce false positives in Sec-
tion 4.4 to speed up information flow security verification.

4.2 Deriving Simplified GLIFT Logic With-
out Adding False Positives

Our first approach to GLIFT logic simplification is based
on formulating Quantified Boolean Formulas (QBFs) to en-
able GLIFT logic replacement. We check the QBFs’ satisfi-
ability (SAT) and recover corresponding valid replacements.
In short, this approach asks a QBF-SAT solver to find where
and how to replace precise GLIFT logic with less-precise al-
ternatives such that the entire GLIFT circuit is simplified
while preserving the overall precision.

We begin by mapping the design netlist to the most pre-
cise GLIFT logic. Then, we map each GLIFT element to a
multiplexer, selecting from some alternative replacements:
less-precise variants. See Fig. 4 for an example of what
each multiplexer looks like, where “SH2” is the most pre-
cise, “SH3” less precise, and so on. Formally, the vari-
ables controlling the multiplexer’s select lines compose the

existentially-quantified vector ~h in the following formula:

∃~h ∀~i : inst(~h, ~i)⇔ spec(~i) (8)

Equation (8) allows the QBF-SAT solver to find simpler
logic, or replacements of certain gates which do not change
the observable behavior of the entire GLIFT circuit.

Figure 4: GLIFT logic for AND-2 is mapped to a
multiplexer selecting between the precise AN2 SH2
model and the simpler but less-precise alternatives.

To target the search for better configurations, we use the
idea of Becker et al. [3] to ensure the solver finds a config-
uration of a certain quality. We use the number of GLIFT
replacements as a proxy for quality. Because the original
logic is selected by an all-0 select line, we OR-reduce each
multiplexer’s select line (each such h∗ in Fig. 4) to a sin-
gle bit, and sum them all. This sum represents the number
of GLIFT logic replacements with alternatives. The sum is
then compared to a threshold value τ , which must be reached
to satisfy the QBF. This gives the final QBF, where thresh
is the thresholding function:

∃~h ∀~i : (inst(~h, ~i)⇔ spec(~i)) ∧ thresh(~h, τ) (9)

The last step of the process is to run a binary search on τ .
Figure 5 shows how it all fits together for one iteration of the
binary search. Starting at τ = 1, these QBF problems are
formulated, solved, and have their solutions recovered; the
difference between the maximum known succeeding value for
τ and the minimum known failing value for τ is halved; and
the next iteration proceeds with that value. This proceeds
until we find a final known maximum succeeding value for τ

and a corresponding configuration for ~h.
Note that this technique maximizes the number of replace-

ments, not the simplicity of entire GLIFT circuit. It is pos-
sible that the simplest result does not have the maximum
number of replacements: simply, some replacements are bet-
ter than others. Still, in general, additional replacements
almost always improve the result.

Further studies may broaden the scope of considered alter-
natives. For example, we might consider varying precision
levels of both OR-2 and using the GLIFT logic for XOR-2
as replacements for an OR-2, an idea which will be visited
thoroughly in Section 4.3.

4.3 Deriving Simplified GLIFT Logic with
Minimum Additional False Positives

Figure 5: Overview of the instrumented GLIFT logic
before being fed to the solver. Note the two condi-

tions: on the left, that ~h corresponds to at least
τ replacements; on the right, that with these re-
placements, the GLIFT logic is functionally identi-
cal to the original. Note that the “Inst” logic in the
dashed box in the upper-right is not connected to
the equivalence check: only GLIFT primary outputs
are checked for equivalence.

Our observation is that GLIFT logic generated using the
constructive method can be further simplified without signif-
icantly affecting precision. This is because the design netlist
is created by logic synthesis tools and thus is highly opti-
mized. However, the GLIFT logic is generated by directly
mapping the design netlist to the GLIFT library, which does
not involve any optimization. Therefore, the GLIFT logic
may contain a considerable amount of redundancy. To bet-
ter understand, consider the two-input multiplexer (MUX-2)
example as shown in Fig. 6.

(a) (b) (c)

GLIFT

IV

GLIFT

IV

GLIFT

AND-2

GLIFT

AND-2

GLIFT

AND-2

GLIFT

AND-2

GLIFT

OR-2

GLIFT

XOR-2

Figure 6: The GLIFT logic for MUX-2 created using
the constructive method can be further simplified.
(a) Design netlist of MUX-2. (b) Precise GLIFT
logic for MUX-2. (c) Simplified GLIFT logic for
MUX-2.

Figure 6 (a) shows the synthesized netlist for MUX-2. It
consists of two AND-2, an OR-2 and an inverter. Figure 6
(b) shows the precise GLIFT logic of MUX-2 after mapping
the design netlist to a GLIFT library. We have observed that
the tracking logic for OR-2 in Fig. 6 (b) can be replaced by
the tracking logic for XOR-2. Let A, B, O be the inputs and
output of OR-2 and XOR-2. Use At, Bt and Ot to denote
their security labels. The GLIFT logic for OR-2 and XOR-2
are shown in Equations (4) and (1) respectively.

By comparison of Equations (4) and (1), mapping the

OR-2 to the GLIFT logic for XOR-2 in the MUX-2 example
may lead to further simplification of the entire GLIFT cir-
cuit. In addition, logic equivalence checking shows that the
simplified GLIFT logic for MUX-2 is functionally equivalent
to the precise one. Thus, the GLIFT logic for MUX-2 has
been simplified without adding false positives.

Similarly, one can selectively map the logic primitives in
the design netlist to alternative simplified versions of track-
ing logic in the GLIFT library. However, it is important to
understand the tracking logic for which gates can be replaced
without introducing a significant amount of false positives.

In order to map an OR-2 gate to the tracking logic for
XOR-2 in the GLIFT library, we need to search for OR-2
gates that can be replaced by XOR-2 without changing the
functionality of the original hardware design. Although the
truth tables (0111 for OR-2 and 0110 for XOR-2) for these
two gates differ from each other, such a replacement is still
possible due to internal don’t-cares. Consider the MUX-2
example, the input combination 11 will never be observed
at the OR-2 gate due to correlation caused by reconvergent
fanout. In this case, the truth table for OR-2 can be reduced
to that for XOR-2. Similarly, one may reduce the truth table
for AND-2 (0001) to that for NXOR-2 (1001), whose GLIFT
logic can also be described as Equation (1).

Now that we understand logic primitives can possibly be
mapped to a simpler version of tracking logic in the GLIFT
library, an additional step would be searching for logic prim-
itives with internal don’t-cares, which is a well-studied prob-
lem in logic synthesis. It is necessary to point out that there
can be a few gate pairs both with don’t-cares but cannot be
replaced at the same time (the don’t-care condition for one
gate is dependent on the other). If we replace both gates in
such pairs, it may cause a small amount of false positives.
We will show how this method can lead to significant sim-
plification of GLIFT logic while adding a minimum amount
of false positives in the experimental results section.

4.4 Quantitatively Introducing False Positives
Some information flow security properties can take a long

time to prove on a precise GLIFT model, e.g., proving po-
tential key leakage caused by a Trojan triggered under a rare
condition. A precise GLIFT model will indicate no harmful
flow of information in most cases, resulting in a false con-
clusive proof. In such cases, the proof process can be sig-
nificantly accelerated by creating imprecise GLIFT models
with a certain amount of false positives. Figure 7 illustrates
such a solution.

100% 50% 25% 12.5% …%

…

Figure 7: Creating imprecise GLIFT models with
different amounts of false positives. The gray parts
show the gates mapped to imprecise GLIFT logic.

We start from the least precise GLIFT model by mapping
all gates in the design netlist to the most imprecise version of
tracking logic. This will cause a significantly higher amount
of information to flow to the output and allow formal tools

Table 1: Complexity and precision of GLIFT logic created using different synthesis commands in ABC.

Benchmarks
Area False positives

orig bal. bdd resyn resyn2 comp. comp.2 orig bal. bdd resyn resyn2 comp. comp.2
alu2 4076 3754 3505 3384 3195 3384 3192 1.65% 1.65% – 1.66% 1.74% 1.65% 1.64%
alu4 7226 6818 20093 6291 5799 6274 5602 2.00% 2.00% – 2.02% 2.13% 2.02% 2.14%

apex6 5200 5074 21987 4967 4926 4936 4905 0.78% 0.78% – 0.83% 0.83% 1.04% 1.04%
C1908 2106 2057 521783 2020 1826 1928 1972 19.70% 19.70% – 19.70% 19.70% 19.70% 19.70%
C2670 3675 3938 25967 3701 3870 3748 3808 2.95% 1.68% – 1.45% 1.47% 1.45% 1.47%
C432 1494 1488 22540 1338 1290 1417 1243 6.31% 6.31% – 6.29% 6.29% 6.28% 6.25%
C880 2292 2220 177382 2226 2196 2145 2164 1.28% 1.28% – 1.27% 1.27% 1.28% 1.27%
frg2 12268 11838 61429 7400 5128 7269 5018 2.16% 2.16% – 2.19% 2.19% 2.30% 2.26%
k2 13612 11358 446236 10033 9899 9873 9674 0.43% 0.43% – 0.42% 0.42% 0.42% 0.42%
rot 7079 6901 82054 5231 4351 5087 3927 2.27% 2.47% – 2.21% 1.08% 2.19% 1.67%
x3 8241 8370 36963 5446 4506 5541 4813 1.06% 1.06% – 1.09% 2.38% 1.09% 2.37%
x4 4736 4619 11205 2885 2709 2878 2781 0.80% 0.80% – 0.88% 0.90% 0.88% 0.81%

to capture a possible violation in a shorter amount of time.
However, we need to further check this is a bona fide security
issue rather than a false alarm. This can be done by gradu-
ally decreasing the amount of imprecise gates and seeing if
the violation still arises. If formal tools continue to report
the same violation when only a small amount of gates in the
GLIFT model are imprecise, we have some confidence that
it is a real security issue. In the meanwhile, we can local-
ize the security vulnerability that causes the violation to a
relatively smaller portion of the entire design.

5. EXPERIMENTAL RESULTS
This section presents our experimental results. Section 5.1

shows how different logic synthesis optimizations lead to
variations in precision and complexity of the GLIFT logic.
Then, Section 5.2 shows how GLIFT logic can be simplified
while introducing no, or a small amount of false positives,
and Section 5.3 demonstrates that these false positives can
result in reductions of security verification time.

5.1 Logic Optimization Analysis
To show the effect of logic optimizations on the precision

and complexity of GLIFT logic, we use different ABC [16]
commands to synthesize IWLS benchmarks [11] for GLIFT
logic generation. We use area as the measure of complexity
and quantify precision using the percentage of false positives.

We tested the balance, bdd, resyn, resyn2, compress, and
compress2 commands. The balance command is frequently
used to create a balanced logic network before further op-
timization; bdd can be used to generate false positive free
GLIFT logic [10]. resyn2 (compress2) performs similar op-
timization to resyn (compress) but using higher effort. The
synthesized logic networks are directly mapped to the GLIFT
library in order to eliminate the effect of technology map-
ping on GLIFT logic generation. The GLIFT logic is synthe-
sized using the resyn2 command and mapped to the mcnc
library. Then we perform simulation across 220 random vec-
tors generated by a linear feedback shift register (LFSR)
using ModelSim to count the percentage of false positives.

Table 1 shows how different synthesis commands can lead
to variations in complexity and precision of the GLIFT logic.
The GLIFT logic generated using the bdd command is al-
ways the most precise and thus used as the baseline for
counting false positives. However, such precision comes at
significant cost in complexity. The GLIFT logic generated
using the balance command is close to that generated from
the original design in both precision and complexity. By

comparison of GLIFT logic generated using resyn and resyn2
(also compress and compress2), a higher optimization effort
tends to reduce the complexity of GLIFT logic while intro-
ducing additional false positives.

5.2 Optimized Mapping Analysis
We use the methods from Sections 4.2 and 4.3 to simplify

the GLIFT logic. A GLIFT library containing different ver-
sions of tracking logic for AND-2 and OR-2 created using
the method introduced in Section 4.1 is maintained for our
test. We use Yices to solve QBFs and ABC to search for
don’t-care conditions in the design netlist.

We perform precision and complexity analysis in a similar
way to Section 5.1 and count the total number of times for
the output labels to be logical 1. We use this count value
as a measure of tainted flows. Table 2 shows complexity
and precision of GLIFT logic before and after simplification
using several IWLS benchmarks [11].

Take the des benchmark as an example, the area of the
original GLIFT logic is 32295. By comparison, the areas
of the simplified GLIFT logic are 26665 and 25476 respec-
tively. The precise and imprecise methods updated 2120
and 1785 out of the 4072 gates in the design netlist respec-
tively. There are 17.4% and 21.1% reductions in area for
the two solutions. The imprecise solution adds only 0.05%
of false positives. On average, there is 14.47% reduction in
area while adding only 0.20% of false positives. We can see
that the GLIFT logic can be simplified with only a small
amount of false positives added. The reduction in complex-
ity of GLIFT logic will lead to improved performance in
information flow security verification.

5.3 Verification Time Analysis
We use four RSA cores for verification time analysis. We

choose RSA because it is possible to verify the same security
property on similar designs of different sizes for comparison.
We first use a precise GLIFT library to create tracking logic
for these cores and verify the security property that the se-
cret key leaks to the ciphertext ready output. For all the
cores tested, the property cannot be proved within 10 min-
utes. We then use the method described in Section 4.4 to
make a certain percentage of gates imprecise and create sev-
eral imprecise GLIFT circuits. We prove the same security
property on these imprecise GLIFT circuits to see how our
technique can speed up information flow security verifica-
tion. Figure 8 shows the verification time results.

From Fig. 8, larger RSA designs with the same percentage

Table 2: Complexity and precision of GLIFT logic before and after simplification.

Benchmarks
Area Gates/Updated Tainted flows

False positives
orig precise imprecise orig precise imprecise precise imprecise

alu2 2480 2211 2174 337 113 90 4903084 4908794 0.12%
alu4 4706 4081 3920 701 291 230 6769210 6781287 0.18%

C3540 17014 14876 14239 2477 851 733 18950789 18959193 0.04%
C5315 24019 21160 20318 3706 1422 1151 88917526 89558249 0.72%
C7552 20783 18260 17696 3693 1716 1393 78408952 78868299 0.59%

des 32295 26665 25476 4072 2120 1785 193447264 193535901 0.05%
i10 19912 18082 17392 3119 951 810 121081605 121179641 0.08%
pair 13860 13613 13111 2175 446 420 90218906 90766169 0.61%
t481 231 129 120 47 17 14 983091 983091 0.00%

too large 2118 2067 2094 281 7 7 1493984 1493984 0.00%
ttt2 1108 1073 1031 168 29 29 13436887 13436887 0.00%
x1 2132 2071 2073 300 4 4 17616423 17616423 0.00%

6.25% 12.50% 25% 50% 100%
RSA-32 134 130 115 100 61 54.48% 0.25373134 0.14179104
RSA-64 282 271 254 216 134 52.48% 0.23404255 0.09929078
RSA-96 463 454 339 332 205 55.72% 0.28293737 0.26781857
RSA-128 480 462 433 393 298 37.92% 0.18125 0.09791667

50

100

150

200

250

300

350

400

450

500

6.25% 12.50% 25% 50% 100%

RSA-32 RSA-64 RSA-96 RSA-128

Percentage of imprecise gates (%)

V
er

if
ic

at
io

n
 t

im
e

(s
ec

)

Figure 8: Verification time for different sized RSA
cores with different percentages of imprecise gates.

of imprecise gates tend to take longer to verify. For the same
RSA design, making a higher percentage of gates impre-
cise can lead to more significant speedup of the verification
process. In design practice, some security properties may
only be conclusively proved after a certain number of time
frames. However, such incomplete proofs may mean some
security vulnerabilities lurk in the design. It may be bene-
ficial to start the proof from an imprecise model to identify
a potential security issue. One can then gradually increase
the model’s precision and determine if it’s a false alarm.
Although our approach requires running multiple verifica-
tions, which may introduce additional design overheads, it
still can be beneficial if a security property takes a long time
to prove on the precise GLIFT logic. Our method allows a
quick profiling of potential security vulnerabilities. There
can be significant reduction in verification and debugging
time if we can use the knowledge from the initial profiling
to restrict our analysis to a smaller region of the design.

6. RELATED WORK
There are many works that address security problems us-

ing information flows. Denning was amongst the first to
take an information theory approach to reason about secu-
rity [21]. McLean [17] and Gray [8] pioneered the formaliza-
tion of security properties using an information flow model.
More recent research work focuses on employing information
flow analysis across different layers of the computer system
stack [22, 13, 23, 25, 28, 29]. A number of these use infor-

mation flow analysis to build secure hardware.
It has been argued that using the correct abstraction is an

important factor in reducing the complexity of the security
analysis [15]. For instance, we could model the system at
the register transfer level (RTL), and use RTL information
flow analysis tools such as [14, 28, 29]. This would allow
a designer to assign a one bit label to an entire variable –
that would make verification faster, but the results would
not present any bit level flows. However, there are many
scenarios that require a lower level (gate level) IFT model,
e.g., detecting some hardware Trojans [9]. Picking the cor-
rect abstraction is an important decision for system security
modeling, and one that provides a complementary approach
that could be used to further tradeoff between the precision
and complexity ideas that we present in this work.

There is some relevant work in the logic optimization do-
main. Mishchenko et al. use the complete don’t-care set for
logic optimization [18]. Their technique uses a SAT solver
to compute a complete don’t-care set in local reconvergent
fanout regions and leverages these don’t-care conditions to
optimize the design. As discussed in Section 3, logic synthe-
sis tools will significantly change the structure of the design.
As a result, the security labels of internal signals may be
synthesized away. Our technique preserves the security la-
bels while optimizing the design.

7. CONCLUSION
This work discusses the tradeoffs in precision and com-

plexity of hardware IFT during logic synthesis and library
mapping. It reveals how logic synthesis can affect the preci-
sion in two distinct directions. In addition, it proposes two
novel methods that leverage the internal don’t-care condi-
tions to reduce the complexity of GLIFT logic while adding
a minimum amount of false positives. It also provides a tech-
nique to allow quantitatively introduction of false positives
in order to accelerate the security verification process.

8. ACKNOWLEDGMENTS
This work was supported by the National Science Foun-

dation under grant NSF CNS-1527631.

9. REFERENCES
[1] S. Adee. The hunt for the kill switch. Spectrum, IEEE,

45(5):34–39, May 2008.

[2] N. Balabanian and B. Carlson. Digital Logic Design
Principles. Wiley India Pvt. Limited, 2007.

[3] A. Becker, D. Maksimovic, D. Novo, M. Ewaida, A. G.
Veneris, B. Jobstmann, and P. Ienne. Fudgefactor:
Syntax-guided synthesis for accurate RTL error
localization and correction. In 11th International
Haifa Verification Conference, HVC’15, pages
259–275, Nov. 2015.

[4] G. T. Becker, F. Regazzoni, C. Paar, and W. P.
Burleson. Stealthy dopant-level hardware trojans. In
the 15th International Conference on Cryptographic
Hardware and Embedded Systems, CHES’13, pages
197–214, Berlin, Heidelberg, 2013. Springer-Verlag.

[5] D. E. R. Denning. A lattice model of secure
information flow. Communications of the ACM,
19(5):236–243, May 1976.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[7] J. A. Goguen and J. Meseguer. Security policies and
security models. In Security and Privacy, 1982 IEEE
Symposium on, pages 11–11, April 1982.

[8] J. W. Gray III. Toward a mathematical foundation for
information flow security. Journal of Computer
Security, 1(3):255–294, 1992.

[9] W. Hu, B. Mao, J. Oberg, and R. Kastner. Detecting
hardware trojans with gate-level information-flow
tracking. Computer, 49(8):32–40, August 2016.

[10] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood,
D. Mu, and R. Kastner. On the complexity of
generating gate level information flow tracking logic.
IEEE Transactions on Information Forensics and
Security, 7(3):1067–1080, June 2012.

[11] IWLS. Iwls benchmarks ver. 3.0, 2005.
http://iwls.org/iwls2005/benchmarks.html.

[12] R. Kastner, J. Oberg, W. Hu, and A. Irturk.
Enforcing information flow guarantees in
reconfigurable systems with mix-trusted IP. In
International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA), 2011.

[13] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information flow
control for standard os abstractions. In 21st ACM
SIGOPS Symposium on Operating Systems Principles,
SOSP ’07, pages 321–334, New York, NY, USA, 2007.

[14] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R.
Rajarathinam, R. Kastner, T. Sherwood,
B. Hardekopf, and F. T. Chong. Position paper:
Sapper – a language for provable hardware policy
enforcement. In Proceedings of the Eighth ACM
SIGPLAN Workshop on Programming Languages and
Analysis for Security, PLAS ’13, pages 39–44, New
York, NY, USA, 2013.

[15] X. Li, M. Tiwari, B. Hardekopf, T. Sherwood, and
F. T. Chong. Secure information flow analysis for
hardware design: Using the right abstraction for the
job. In the 5th ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security,
PLAS ’10, pages 8:1–8:7, New York, NY, USA, 2010.

[16] Berkeley Logic Synthesis and Verification Group. Abc:
A system for sequential synthesis and verification,

release 10216.
http://www.eecs.berkeley.edu/˜alanmi/abc.

[17] J. McLean. Security models and information flow. In
1990 IEEE Computer Society Symposium on Research
in Security and Privacy, pages 180–187, 1990.

[18] A. Mishchenko and R. K. Brayton. Sat-based
complete don’t-care computation for network
optimization. In Design, Automation and Test in
Europe, pages 412–417, March 2005.

[19] E. Nudelman, K. Leyton-Brown, H. H. Hoos,
A. Devkar, and Y. Shoham. the 10th International
Conference on Principles and Practice of Constraint
Programming, CP’04, chapter Understanding Random
SAT: Beyond the Clauses-to-Variables Ratio, pages
438–452. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004.

[20] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood,
and R. Kastner. Information flow isolation in I2C and
USB. In Design Automation Conference (DAC), pages
254 –259, June 2011.

[21] D. E. Robling Denning. Cryptography and data
security. Addison-Wesley Longman Publishing Co.,
Inc., 1982.

[22] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, Jan 2003.

[23] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information
flow tracking. SIGOPS Oper. Syst. Rev., 38(5):85–96,
Oct. 2004.

[24] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin,
B. Hardekopf, R. Kastner, F. T. Chong, and
T. Sherwood. Crafting a usable microkernel,
processor, and i/o system with strict and provable
information flow security. In the 38th Annual
International Symposium on Computer Architecture,
ISCA ’11, pages 189–200, New York, NY, USA, 2011.

[25] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore,
F. T. Chong, and T. Sherwood. Complete information
flow tracking from the gates up. In international
conference on Architectural support for programming
languages and operating systems, ASPLOS’09, pages
109–120, New York, NY, USA, 2009.

[26] D. Volpano, C. Irvine, and G. Smith. A sound type
system for secure flow analysis. J. Comput. Secur.,
4(2-3):167–187, Jan. 1996.

[27] R. Waugh. Could a vulnerable computer chip allow
hackers to down a boeing 787? ‘back door’ could allow
cyber-criminals a way in, May 2012. http:
//www.dailymail.co.uk/sciencetech/article-2152284/.

[28] D. Zhang, A. Askarov, and A. C. Myers.
Language-based control and mitigation of timing
channels. In the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’12, pages 99–110, New York, NY, USA, 2012.

[29] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A
hardware design language for timing-sensitive
information-flow security. In the Twentieth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’15, pages 503–516, New York, NY, USA,
2015.

