
Quantifying Timing-Based Information Flow in
Cryptographic Hardware

Baolei Mao∗, Wei Hu†, Alric Althoff†, Janarbek Matai†, Jason Oberg†, Dejun Mu∗,
Timothy Sherwood‡ and Ryan Kastner†

∗Northwestern Polytechnical University, PR China
Email:{maobaolei, mudejun}@nwpu.edu.cn
†University of California, San Diego

Email: {weh040, aalthoff, jmatai, jkoberg, kastner}@ucsd.edu
‡University of California, Santa Barbara

Email: sherwood@cs.ucsb.edu

Abstract—Cryptographic function implementations are known
to leak information about private keys through timing informa-
tion. By using statistical analysis of the variations in runtime
required to encrypt different messages, an attacker can relatively
easily determine the key with high probability. There are many
mitigation techniques to combat these side channels; however,
there are limited metrics available to quantify the effectiveness
of these mitigation attacks. In this work, we employ information
theoretic ideas to quantify the amount of leakage that can be
extracted from runtime measurements and reveal the influence of
individual key bits on the timing observations across a variety of
hardware implementations. By studying different RSA hardware
architectures (each with different performance optimizations and
mitigation techniques), we determine the effectiveness of these
information theoretic techniques against the success of attacks.
Our experimental results show that mutual information is a
promising metric to quantify timing-based information leakage
and it also correlates to the attack-ability of a cryptographic
implementation.

I. INTRODUCTION

Kocher’s seminal work on side channels demonstrates that
the time to compute a cryptographic function leaks a significant
amount of information about the secret key [1]. The attack
is simple and elegant. The attacker provides different plain
text messages to the cryptographic function and measures
the amount of time that it takes to perform the encryption.
Using knowledge of the cryptographic algorithm and statistical
techniques, the attacker can guess with high certainty the
individual bits of the secret key, which renders functionally
strong cryptographic algorithms useless.

The initial timing side channel attacks target timing vari-
ations due to properties of the software cryptographic imple-
mentation [1], [2], e.g., variable computational delay between
conditional branches that depend upon the value of the key
bits. A common countermeasure focuses on “fuzzing” the
timing signal by performing input blinding or forcing the
implementation to run in a random or constant time [1], [3].
This decouples the relation between the key bits and runtime
observations, which would otherwise be easily captured by
statistical analysis tools.

While there are numerous attacks and mitigation techniques
focusing on software timing channels, hardware timing chan-
nels are less studied. Ciet et al [4] used a parallel imple-

mentation of RSA with Residue Number Systems to resist
side channel attacks. Oberg et al [5] provide a framework for
detecting timing channels, and verifying timing channels in
designed caches, encryption cores, and interconnect networks
are eliminated. Regardless, timing attacks remain robust even
when applying mitigation techniques. Unless you are willing
to go to great lengths to eliminate the side channel, there will
be leakage. And given enough information, secret information
can be extracted. Therefore, a method to quantify the amount
of leakage is important to understand the risks inherent in the
hardware implementation.

Claude Shannon pioneered the notion of information theory
during World War II in order to measure channel capacity
of a transmitting medium. He developed the mathematical
foundation to answer the question: “How much data could
we maximally expect to transmit across the channel?”. The
underlying metrics that he devised including entropy and
mutual information; they play a fundamental role on deriving
these theoretical limits. In this work, we investigate how these
same information theoretic metrics can be used on timing side
channel between the encryption key and the time to compute
the corresponding cryptographic function.

Mutual information measures the dependence between two
random variables. In the context of a timing channel, the
mutual information between the key and the time to compute
the cryptographic function bounds the number of key bits
that is leaked through runtime observations. In theory, a high
mutual information between these two variables indicates the
strength of the timing side channel. Indeed, Köpf studied
the amount of information leakage versus performance and
provided bounds on the information flow [6], [7]. However, to
the best of our knowledge there is few work that determines
whether mutual information is a good metric for quantifying
the amount of leakage through the timing channel for given
hardware architectures. Nor is there work that shows any
relation between the amount of information leakage and the
attack-ability. This work provides a study on both of these
ideas.

In this work, we first show how secret key information
of a RSA core can be efficiently retrieved from runtime
measurements. We provide a methodology for quantifying the
information leakage of cryptographic hardware architectures

designed using different optimization techniques and timing
leakage mitigation strategies. We show that mutual information
provides key insights into the amount of information that
a particular hardware architecture provides about the secret
key. Using RSA as an exemplar application, we show how
mutual information can be used to quantify the amount of
information leaked through the timing side channel. This is
done by analyzing five different hardware implementations of
RSA cores with performance optimization and another five
with different mitigation techniques.

Our methods provide a better understanding of hardware
timing information flows, and they reveal the effects of ar-
chitectural optimizations and mitigation techniques on timing
channels. Specifically, this paper makes the following contri-
butions:

• Proposing a metric that enables designers to reason
about the security of their hardware design with re-
spect to timing side channels;

• Demonstrating how information theoretic methods
such as entropy and mutual information quantify
timing leakage in different hardware architectures of
RSA;

• Presenting experimental results that reveal the rela-
tionship between different timing channel mitigation
techniques and the reduction in leakage using infor-
mation theoretic measures.

The reminder of this paper is organized as follows. Sec-
tion II describes the threat model. In section III, we cover
the basics of the RSA algorithm, the core ideas behind
the statistical and information theoretical measures that we
use as security metrics; we describe Kocher’s method to
attack a hardware implementation of the basic RSA algorithm.
Section IV discusses the effects of logic optimization and
mitigation techniques. Section V gives experimental results.
We briefly review the related work in Section VI. We conclude
in Section VII.

II. THREAT MODEL

We consider hardware components where the attacker aims
to gather critical information through a timing channel. We
use the RSA cryptographic function throughout the paper, but
the idea can extend to other components where the pertinent
information is a function of the computation time.

We assume that the attacker can determine the amount of
cycles for each execution of the hardware component. That is,
the attacker can determine the cycle in which the execution
begins and ends. In general, timing side channel attacks are
relatively robust to measurement noise, i.e., it is not necessary
to know the exact number of cycles. However, we do not
add any sort of noise into the timing measurements in our
experiments.

Finally, we have control over some of the inputs to the
function. For example, in the cryptographic function example,
we can change the plaintext, and determine the number of
cycles that the function requires to compute the ciphertext.
Note that it is common for cores to have input and output
ports that denote when the function is completed, and when

the component is capable of taking new data. These are used
for synchronization between components. Our experiments use
these ports to determine the number of cycles. Furthermore, we
assume that we can distinguish between the time of different
executions, e.g., in cases where the hardware performs multiple
encryptions in a parallel or pipelined manner.

Our experiments are performed on an FPGA. We create
different cryptographic function implementations, and add
control logic around these cores that allows us to provide it
with different input data, and determine the amount of cycles
required to compute the function for each different set of
inputs. The threat model extends beyond this experimental
setup. For example, it is also relevant to systems that provide
debug interfaces that give timing information on the different
subcomponents.

III. PRELIMINARIES

This section starts by showing the existence of a timing
channel in the basic RSA cipher. Then we cover some statisti-
cal analysis tools for understanding timing information flows
and retrieving secret information from runtime measurements.
Finally, we will briefly review Kocher’s timing attack method
on RSA implementation [1].

A. Basic RSA Algorithm

We focus our analysis on the RSA algorithm since it is
known to have a timing side channel, and it has a number of
attacks and mitigation techniques. Thus, it allows us to analyze
the effectiveness of the information theoretic techniques as a
metric for timing leakage.

RSA is a public key cipher that maintains a key pair for
encryption and decryption. Given a public key e, secret key
d, modular n, plain text m, the cipher text c is encrypted and
decrypted as follows:

c = me mod n

m = cd mod n
(1)

Equation (1) shows modular exponentiation, which is the
basic operation of RSA. Taking the decryption process as an
example, Algorithms 1 and 2 illustrates how modular expo-
nentiation is calculated through repeated square-and-multiply
from right-to-left and left-to-right respectively.

Algorithm 1 Modular exponentiation cd mod n calculated
using square-and-multiply (right-to-left)

1: m[0] := 1
2: s[0] := c
3: for k := 0 to w − 1 do
4: if d[k] == 1 then
5: m[k + 1] := m[k] * s[k] mod n
6: else
7: m[k + 1] := m[k]
8: end if
9: s[k + 1] := s[k] * s[k] mod n

10: end for
11: Return m[w]

Algorithm 2 Modular exponentiation cd mod n calculated
using square-and-multiply (left-to-right)

1: s[w] := 1
2: for k := w − 1 to 0 do
3: if d[k] == 1 then
4: m[k] := s[k + 1] * c mod n
5: else
6: m[k] := s[k + 1]
7: end if
8: s[k] := m[k] * m[k] mod n
9: end for

10: Return m[0]

The above algorithms perform modular multiplication
when the key bit under consideration is one (Lines 4-5 in
Algorithm 1 and Lines 3-4 in Algorithm 2). By comparison,
only a simple assignment is needed when the current key bit is
zero (Lines 6-7 in Algorithm 1 and Lines 5-6 in Algorithm 2).
Such runtime difference creates a timing channel that an
attacker can use to ascertain information about the key. We
will show how secret key can be recovered through simple yet
effective statistical analysis in Section III-C.

In our successive discussions, we assume that the attacker
knows the implementation details of the RSA algorithm, can
specify messages and keys as algorithm input and has the abil-
ity to measure the total runtime for processing each message
under a given key. We focus on 32-bit implementations of RSA
for the ease of result interpretation though our method applies
to RSA cores of arbitrary key length.

B. Definitions

Now we provide a quick overview of the statistical and
information theoretic techniques that we use in the remainder
of the paper. These are far from a complete description, and
we encourage an interested reader to consult other sources for
more information [8].

Variance is a measure of the relative distances of a set of
numbers from their mean. It is a parameter that describes the
probability distribution of the set of numbers. A small variance
indicates that the data samples tend to distribute close to the
mean, while a larger variance indicates that the data points
spread out from the mean.

Given a set of observed samples x1, x2, · · · , xn of a
random variable X . The variance of the data set is:

var(X) =

n∑
i=1

(xi −X)2 (2)

where X is the expected value of x1, x2, · · · , xn. Given two
independent random variables X and Y , we have

var(X ± Y) = var(X) + var(Y) (3)

Entropy measures the uncertainty of a random variable. Using
p(x) to denote the probability density function (pdf) of random
variable X , the Shannon Entropy is defined as:

H(X) = −
∑
x∈X

p(x) log p(x) (4)

Given two random variables X and Y , let p(X,Y) denote the
pdf of their joint distribution. The Joint Entropy of X and Y
is defined by (5).

H(X,Y) = −
∑

x∈X,y∈Y
p(x, y) log p(x, y) (5)

Mutual Information quantifies the reduced uncertainty of
random variable X when another random variable Y is known.
It is a measurement of how much information variable Y
contains about variable X . The mutual information between
X and Y is defined as:

I(X;Y) = H(X) +H(Y)−H(X,Y), x ∈ X, y ∈ Y
= H(X)−H(X|Y)

(6)

where H(X|Y) is the Conditional Entropy of X given Y .

With an understanding of the statistical and information
theoretic metrics, now we describe Kocher’s timing attack
method based on variance analysis.

C. Kocher’s Timing Attack

Kocher was the first to provide a comprehensive theo-
retical analysis on timing attack using variance analysis [1].
The attack is based on the assumption that the runtimes for
processing different key bits are independent, i.e., given a
number of messages, the runtime observations for different
key bits compose independent random variables. Let T denote
the vector that contains the total runtime observations for
processing N messages and ti (i = 0, 1, · · · , w − 1) denote
the vector that contains the runtime for the i-th key bit for
processing N messages. Using (3), we have

var(T) = var(

w−1∑
i=0

ti) =

w−1∑
i=0

var(ti) (7)

The attack makes guesses of the current key bit (assuming it
could be either zero or one) and obtains the runtime vectors t0i
and t1i through observation. For a correct guess tci (c ∈ {0, 1}),
var(T − tci) will decrease var(T) by var(ti); for the wrong
guess, t1−ci will be independent from the correct runtime
observations, and var(T − t1−ci) should theoretically increase
var(T) by var(t1−ci) according to Equation (3).

In a real attack, the runtime observation vectors are not
perfectly independent from each other due to the limited
number of samples. However, a correct guess still tends to
decrease the variance by a larger amount than a wrong guess.
In the following section, we will perform attack on the basic
RSA and show the intuition behind Kocher’s attack method.

We implement a 32-bit instance of RSA (Algorithm 1)
on an FPGA and use variance analysis to perform timing
attack. In our attack, only 4000 messages are tested, which
is a considerably small portion (4000/232 = 0.0001%) of
the state space. Table I shows the remaining variances and
the decrease in variance after each guess step. The bold italic
numbers correspond to wrong key bits guesses.

As seen in Table I, the initial variance of the total runtime
is 793.6. After the first key bit guess, the variance decreases by
32.3 to 761.3. After an additional guess, the variance further
decreases to 759.7; the decrease in variance is only 1.6. For the

key bit guessed correctly with zero decrease in variance such as
bit 4, there is an increase in the variance for the corresponding
wrong guess. From Table I, we see that correct guesses always
lead to a more significant decrease in variance, which agrees
with our theoretical analysis in Section III-C. The intuition is
that a large decrease in variance results in a higher confidence
about the bit guess. Or conversely, a small decrease in variance
is more likely to be incorrect. Table I shows that the wrong bit
guesses (in bolded italic) have a small decrease in variance.

From Table I, the runtime difference between different
algorithmic branches in the basic RSA makes it vulnerable to
simple yet effective timing attack. Among the 32 key bits, 26
are successfully recovered after testing only 4000 messages.
In the following section, we show how different hardware
RSA architectures are vulnerable/resistant to timing attacks.
Specifically, we generate a number of RSA architectures for
timing attack through logic optimization in Section IV-A
and build several mitigation techniques into hardware RSA
implementations in Section IV-B.

IV. RSA ARCHITECTURES

A. RSA Performance Optimizations

Hardware optimizations have a significant impact on tim-
ing. For example, architectures exploiting significant paral-
lelism or pipelining require a smaller number of clock cycles
than those that work in a sequential manner. We are interested
in understanding if and how these different optimizations affect
the amount of information leaked through their runtime.

High-level synthesis (HLS) is a design methodology that
can be used to generate different hardware implementations
from high-level language algorithm specifications. This allows
quick profile of various architectures of the same algorithm.
Optimizations are typically specified using pragmas that tell
the HLS tool how to optimize particular regions of the code,
e.g., pipeline, and unroll. In this work, we use Xilinx Vivado
HLS tool to generate five unique 32-bit RSA architectures
using different optimization strategies.

L1: for(i=0 to w-1){

#pipeline

#unroll

if(Key[i]==1)

 ModMult(…); //mod multiply

ModMult(…); //mod square

}

L2: for(i=0 to w-1){

#pipeline

#unroll

if() { …

 …

 … }

}

ModExp(Outer_Loop) ModMult(Inner_Loop)

for(i=0 to w-1){

 #pipeline

 #unroll

 if(Key[i]==1)

 ModMult(…); // mod multiply

 ModMult(…); // mod square

}

for(i=0 to w-1){

 #pipeline

 #unroll

 if(…) {

 }

}

L1: ModExp (Outer_Loop) L2: ModMult (Inner_Loop)

L1: for(i=0 to w-1){

#pipeline

#unroll

if(Key[i]==1)

 ModMult(…); //mod multiply

ModMult(…); //mod square

}

L2: for(i=0 to w-1){

#pipeline

#unroll

if(…) { …

 …

 … }

}

ModExp(Outer_Loop) ModMult(Inner_Loop)

...

Fig. 1. The basic RSA algorithm implemented with two nested loops.
The outer loop calculates modular exponentiation; the inner loops performs
modular multiplication.

We implement Algorithm 1 in synthesizable C code, which
consists of two nested loops as shown in Figure 1. The outer-
loop (L1) performs computations from Lines 3-10 in Algo-
rithm 1. The inner loop (L2) performs the modular multiply
or the modular square in Line 5 and Line 9. While there are
many optimization pragmas in HLS, pipeline and unroll are
the most important for performance optimization. The pipeline
pragma is used to pipeline the iterations of loops. The unroll
pragma allows multiple iterations of the loop to be executed

at the same time. We use both pragmas in different places in
the code as shown in Figure 1.

Using these two pragmas, we generate 16 different archi-
tectures using different high level synthesis directives. How-
ever, only 5 of them were relatively unique, i.e., the others are
similar to these five and thus not interesting enough to discuss.
Table II summarizes these five designs.

Figure 1 shows the potential locations of the pragmas used
to generate the designs in Table II. These designs use a subset
of these pragmas as specified in the table. The table also
shows the average latency for the RSA encryption in terms
of clock cycles. The dash symbol indicates no optimization
is performed for that loop. And design Original is the basic
design where we are going to implement performence opti-
mization.

Design Original does not have any optimization; it is
largely sequential. The second design pipelines the modular
multiply (L2). Design Unroll fully unrolls the modular multiply
loop. Design Pipe&unroll 1 partially unrolls and pipelines
the modular multiply loop. Design Pipe&unroll 2 unrolls the
modular multiply loop and pipelines the modular exponentia-
tion loop.

B. RSA Timing Mitigation Techniques

As we will show in the experimental results section, differ-
ent performance optimizations will change the amount of time
to execute the function, which may make the resulting design
easier or harder to attack. However, it may not completely
eliminate the timing channel.

Mitigation techniques make changes in the algorithm itself
in order to reduce timing-based leakage. These mitigation tech-
niques typically fall to two categories, either making runtime
measurements constant or random [3], [9]. The simplest way
to hide timing variations from observations is to make the
total runtime for encrypting all messages constant [3]. This
completely eliminates the timing side channel. However, it
comes at a high performance penalty since all executions
will have the worst case execution time. A more intelligent
alternative is to quantize all RSA computations. Encryption
times are bounded to multiples of some predefined time quan-
tum [10]. This method can help reduce computation cost but
cannot fully eliminate timing leakage. Other possible defenses
attempt to decouple runtime measurements from plain texts.
These include performing dummy modular multiplication even
when the key bit is zero [3], moving the modular square into
the conditional statements [3], inserting additional reduction
in the Montgomery algorithm even if unnecessary [9], and
introducing some random number into RSA computation (i.e.,
RSA blinding) to make the runtime observation unrelated to
the plain text [3].

The timing leakage is primarily caused by latency differ-
ence when the encryption takes different algorithmic flows
(see Algorithms 1 and 2). Thus, minimizing the timing
difference of the different conditional branches provides a
way to mitigate the timing channel. Other approaches keep
the latency difference there but focus on the attack method,
e.g., making the total runtime independent of the message. In
our analysis, we consider several RSA implementations with

TABLE I. VARIANCE ANALYSIS USING KOCHER’S TIMING ATTACK METHOD.

Init. & Bits 0 - 9
Variance 793.6 761.3 759.7 725.2 725.2 685.1 649.2 646.0 600.6 597.7 567.4
∆ Var – 32.3 1.6 34.5 0.0 40.2 35.9 3.1 45.4 2.9 30.3

Bits 10 - 20
Variance 535.0 495.0 495.0 451.1 413.3 413.3 365.8 365.8 361.2 322.7 291.4
∆ Var 32.4 40.0 0.0 44.0 37.7 0.0 47.5 0.0 4.7 38.5 31.3

Bits 21 - 31
Variance 257.1 224.0 223.7 189.9 154.8 117.2 86.49 83.60 52.44 52.44 52.44
∆ Var 34.3 33.1 0.4 33.7 35.1 37.6 30.7 2.9 31.2 0.0 0.0

TABLE II. FIVE UNIQUE RSA ARCHITECTURES GENERATED USING
DIFFERENT HLS OPTIMIZATIONS. ’-’ INDICATES NO OPTIMIZATION FOR

THAT LOOP.

Designs L1 L2 Avg. Clock Cycles

Original - - 3023
Pipeline - pipeline 1646
Unroll - unroll 2699
Pipeline&unroll 1 - pipeline unroll 665
Pipeline&unroll 2 pipeline unroll 1475

built-in mitigation techniques. These designs include constant
runtime (Base design), Left-to-right multiply always, Power
ladder and Montgomery multiplication. Figure 2 shows the
algorithm details of these different architectures.

L1: for(i=0 to w-1){
#pipeline
#unroll
if(Key[i]==1)
 ModMult(…); //mod multiply
ModMult(…); //mod square
}

L2: for(i=0 to w-1){
#pipeline
#unroll
if() { …
 …
 … }
}

ModExp(Outer_Loop) ModMult(Inner_Loop)

L1: for(i=0 to w-1){

#pipeline

#unroll

if(Key[i]==1)

 ModMult(…); //mod multiply

ModMult(…); //mod square

}

L2: for(i=0 to w-1){

#pipeline

#unroll

if(…) { …

 …

 … }

}

ModExp (Outer_Loop) ModMult (Inner_Loop)

L1: for(i=w-1 to 0){

if(Key[i]==1)

 ModMult(…); //mod multiply

Else

 ModMult(…); //dummy multiply

ModMult(…); //mod square

}

Left to Right Multiply Always

ModExp

L1: for(i=w-1 to 0){

if(Key[i]==1) {

 ModMult(…); //mod multiply

 ModMult(…); //mod square }

Else {

 ModMult(…); // mod multiply

 ModMult(…); //mod square

}}
Power Ladder

ModExp

MontPre(); //convert to montgomery form

L1: for(i=0 to w-1){

if(Key[i]==1)

 MontMult(…); //montgomery multiply

MontMult(…); // montgomery square

}

MontRed();//convert from montgomery form

Montgomery Multiplication

ModExp

L1: for(i=w-1 to 0){

if(Key[i]==1)

 ModMult(…); //mod multiply

Else

 m[k] :=s[k+1];

ModdMult(…); //mod square

AddDelay(); }

Base Design

ModExp

Fig. 2. Algorithmic flows of RSA architects with different mitigation
techniques.

The Base design selects a maximum runtime that is safe to
complete encryption for all messages and key pairs, inserts ad-
ditional delays beyond the actual runtime needed for encrypt-
ing each message, and thus makes the runtime observations
invariant to either the key or the plain text. The Left-to-right
multiply always algorithm inserts a dummy multiply in the
else statement of the conditional branch. This reduces the key
dependent delay difference and helps mask the timing feature
that causes key leakage. The Power ladder algorithm carefully
re-designs the algorithmic flow. It moves the modular square
operation into the conditional branch and always performs both
modular multiply and square regardless of the current key bit.
For these previous two architectures, the runtime of a modular
multiplication operation is not constant; there is timing differ-
ence for different messages. The Montgomery multiplication
algorithm uses a different modular multiplier (i.e., MontMult).
The runtime of a modular multiplication operation using this
new multiplier is totally determined by the modulus. Although
there is still a timing difference caused by the conditional
branch in the algorithm flow, it eliminates the timing difference
resulting from different messages. Thus, the variance of the

runtime is constantly zero for both key bit guesses, making it
impossible to decide the correct key bit. Table III summarizes
the different designs with mitigation techniques used in our
analysis. In the next section, we will show how these different
optimizations and mitigation techniques affect the amount of
information leaked due to timing.

TABLE III. RSA ARCHITECTURES WITH DIFFERENT MITIGATION
TECHNIQUES.

Designs Mitigation Technique Avg. Clock Cycles

Base Const. total runtime 4500
L-2-R always Dummy modular multiply 1975
Power ladder Re-design algorithm flow 2099
Montgomery Const. time modular multiply 1768

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement our timing attack framework using three
modules: test vector generation, statistical analysis, and RSA
timing. Figure 3 illustrates our experimental setup. In the
test vector generation module, we use OpenSSL to generate
RSA key-pairs (key and modulus) of specific length and pro-
duce random messages with Python’s pseudo-random number
generator. In the statistical analysis module, we compute the
variances to guess each key bit using Kocher’s timing attack
method. We calculate the mutual information between the key
bits and the total runtime to quantify information leakage. We
implement the different RSA architectures on a Xilinx VC707
FPGA board.

RSA Timing Wrapper

Serial

Port RSA

Python

Control

PySerial

Call

OpenSSL

Call

Modesim

Call

OpenSSL

Statistical Analysis

Timing

RSA

(a) VC707 Implementation (b) Modelsim Simulation

Statistical

Analysis

Key, Modulus,

Plaintext

Run Time

RSA Timing Wrapper

Serial

Port
RSA

Python

Control

PySerial

Call

OpenSSL

Statistical

Analysis

Key Modulus

Plaintext

Run Time

Serial

Port

Python

Control
PySerial

OpenSSL

Statistical

Analysis

Key, Modulus

Message

Run Time

RSA Timing Wrapper

FPGA

RSA Core

Numpy

FIFO

Fig. 3. Framework of timing attack. We implement the RSA core on an
FPGA, and use serial to transmit information to and from the FPGA.

B. Design Optimized for Performance

For the first set of experiments, we use five different 32-
bit RSA cores optimized for performance (see Table II in Sec-
tion IV-A). We profile runtime samples of 1000 different 32-bit
key pairs for each of the five different architectures. In order
to understand the relationship between hardware architecture
and key information leakage, we perform an analysis based on
Equation (6):

I(ki;T) = H(ki) +H(T)−H(ki, T) (8)

where ki denotes the value of the i-th key bit and T is the
observed encryption time for the entire key. This shows how

much information leaks from the i-th key bit when encryption
time is known. That is, how much does the total runtime
depend on the i-th bit of the key. As we will later show, this
mutual information I(ki;T) provides a measure of the timing
side channel.

0 6
0.7
0.8
0.9

1

io
nI

(k
i,T

)/
bi

t

Original Pipeline

Unroll Pipeline&unroll_1

Pipeline&unroll_2

0
0.1
0.2
0.3
0.4
0.5
0.6

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

M
u

tu
al

 I
nf

or
m

at
i

Key Bits(0-31)

Fig. 4. Mutual information between different key bits and the total runtime
for RSA architectures generated from high level synthesis.

Figure 4 shows the experimental results. We can see that
Original architecture leaks about 0.6 bits of information on
average while the Unroll architecture shows a little less key bit
leakage than the Original design. The Pipeline design reduces
information leakage to 0.4. Pipeline&unroll 1 further reduces
this leakage to around 0.2; this design results in constant time
to perform the modular multiply though it still leaks informa-
tion through control that is a function of the message. All these
designs are implemented using one modular-multiply function,
so multiply and square operations execute sequentially. The
pipeline and unroll directives in high level synthesis change the
structure of inner-loop, which reduces key information leakage.
The general trend is that the more parallelism, the lower the
amount of leakage. Or conversely a sequential implementation
leaks more information than a parallel one.

Design Pipeline&unroll 2 leaks almost no key bit infor-
mation except for the most significant bits. This design has a
special architecture – the synthesis tool generates two modular
multipliers, one for modular-multiply and one for the modular-
square. These two modular multipliers run in parallel for each
key bit iteration, and each iteration finishes in the same number
of clock cycles. In addition, their modular multiply time and
control logic time is constant, diminishing the effect from
different messages. We can see that for most of the key bits, the
leakage is very close to 0 but the curve increases dramatically
at the end. That is due to the fact that architecture stops its
execution after it reaches the most significant ’1’ bit of the
key. Thus, we can determine with great accuracy where this
one ’1’ bit resides due to the overall runtime of the algorithm.
For example, the longest runtime will have a ’1’ bit in the
most significant bit. If that most significant bit is ’0’, then it
will have a shorter runtime since the algorithm will terminate
sooner.

Another way of viewing this is using Equation (6) to derive
the following:

I(ki;T) = H(T)−H(T |ki) (9)

The entropy of the total runtime H(T) is constant; the decrease
in conditional entropy H(T |ki) contributes to the increase in
I(ki;T). While the decrease in the conditional entropy means
that the uncertainty of total runtime T given ki decreases. In

other words, the high key bits have a more significant effect
on I(ki;T) by dominating the total runtime.

Note that there is no information leakage for the first two
key bits in any of the architectures. This is due to the fact
that these two bits are the same across all of the different
keys due to requirements on how RSA keys are generated
(i.e., they must be odd). Mutual information is symmetric,
i.e., I(ki;T) = I(T ; ki). Think about this in the opposite
direction, i.e., how much can we learn about a constant bit from
a runtime? – the answer is nothing. Therefore, I(ki;T) = 0.

60%

70%

80%

90%

100%

s G
ue

ss
ed

 C
or

re
ct

ly

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pe
rc

en
ta

ge
 o

f K
ey

 B
its

Key Bits(0-31)

Original Pipeline
Unroll Pipeline&unroll_1
Pipeline&unroll_2

Fig. 5. The percentage of key bit guessed correctly for RSA architectures
optimized for performance, i.e., those generated from high level synthesis from
Table II.

We conduct a timing attack using Kocher’s method on each
design. The attack results are shown in Figure 5. This shows
the percentage of correct guesses using the attack for each
key bit. Design Pipeline&unroll 2 is difficult to attack; we are
guessing around 50% correct, which is equivalent to randomly
guessing the key bit. This should not be surprising given that
this architecture has very little leakage as we discussed earlier.
Correspondingly the mutual information in Figure 4 is mostly
near 0. Note that the most significant bits have a slightly higher
success rate in the attack, which corresponds to the strong
up-tick in the mutual information at the most significant bits.
Visually the remainder of the attacks follow a similar trend.
We look more closely into the relationship between mutual
information and the success of the attack in Section V-D.

C. Designs Using Mitigation Techniques

The second set of experiments focus on the architecture
implemented with different mitigation techniques. These are
originally discussed in Section IV-B and summarized in Ta-
ble III and Figure 2. Assuming these mitigation techniques
are effective, the mutual information for these should be lower
than for those designed without mitigation, i.e., those designs
described in the previous section. Then we profile runtime
samples of the same 1000 different key pairs as Section V-B.
And Figure 6 shows the mutual information results.

The Base design has a zero mutual information across all
key bits. This is because the total runtime is constant. We
cannot learn any information about the key upon observation
of the runtime. The Left-to-right multiply always and Power
ladder algorithms have mutual information of 0.2 bits and
0.3 bits, respectively. Montgomery multiplication reduces key
information leakage to 0.1 bits. In this case the synthesis tool

0.6

0.7

0.8

0.9

1
on

 I
(k

i,T
)/

b
it Base L-2-R

L-2-R always Power ladder

Montgomery

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 121314151617 18192021 222324252627282930 31

M
ut

ua
l I

nf
or

m
at

io

Key Bits(0-31)

Fig. 6. Mutual information between different key bits and the total runtime
for RSA architectures with mitigation techniques.

generates one architecture with constant modular multiplica-
tion time and constant control logic time, removing the effect
of different messages. But two modular multiply operations
still run in a sequential way, so lower key bit leakage is not
eliminated as it is in design Pipeline&unroll 2.

Similar to the design Pipeline&unroll 2, several designs
see an increase in mutual information for the higher key
bits. The increase in mutual information I(ki;T) is caused
by decrease in conditional entropy H(T |ki). This reveals
that the higher key bits have a dominate effect on the total
runtime. For designs that use either the left-to-right (Left-to-
right multiply always and Power ladder designs) or right-to-
left (Montgomery) algorithmic flow, the leftmost non-zero bit
always determines the total number of algorithmic iterations
and thus significantly influences the total runtime.

60%

70%

80%

90%

100%

G
u

es
se

d
C

or
re

ct
ly

Base L-2-R

L-2-R always Power ladder

Montgomery

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P
er

ce
n

ta
ge

 o
f

K
ey

 B
it

s
G

Key Bits(0-31)

Fig. 7. Percentage of key bit guessed correctly for RSA architectures with
mitigation techniques.

Then we conduct Kocher’s attack on these mitigation RSA
designs, the results are shown in Figure 7. The designs with
mitigation techniques are more difficult to attack than Left-
to-right design. Power ladder design is easier to attack than
Left-to-right multiply always design, but Montgomery and Base
designs have success rate around 50%, which is much less than
Left-to-right multiply always and Power ladder designs.

When comparing these results with the mutual information
results in Figure 6, we see two trends. First, a higher mutual in-
formation value indicates a higher likelihood of attack success.
Second, there is an increase in the most significant bits in both
mutual information results and attack success rate results for

Power Ladder, Left-to-right multiply always and Montgomery
designs. We will describe these relationship in next section
using statistical analysis.

D. Statistical Correlation

To better determine the connection between mutual infor-
mation and leakage, we rely on Spearman’s ρ, a correlation
measure between the sample means across all the bits. That is
to say, n−1

∑31
i=0 I(ki;T) and mean attack success rate (shown

in Figure 5 and Figure 7). We take these means for each mutual
information and for each success rate, yielding a pair for each
design of the five mitigation and five performance optimized
architectures. We justify using the arithmetic mean by testing
the null hypothesis that the data are normally distributed using
a Kolmogorov-Smirnov (KS) goodness-of-fit test after data
standardization. While the mutual information is not strictly
normally distributed we confirm that for bits 2–24 variation
is well described by a Gaussian, though we do not exclude
these data when computing correlation or significance. By
failing to reject the null hypothesis of a KS test, we can
safely assume that the arithmetic mean is a sensible measure
of central tendency.

If for two length n variables X and Y , xi and yi are their
values at position i, let di = xi − yi. ρ is computed between
two variables X and Y as:

ρ = 1− 6

∑n
i=1 d

2
i

n(n2 − 1)
(10)

Spearman’s ρ is nonparametric, which in this case means that
the measure does not assume data comes from a particular
distribution. This measure is well-suited to cases where the
sample size is small. High correlation is achieved when one
variable is a monotonic function of the other regardless of what
this function may be. While significance of ρ may be computed
according to several distribution-based measures, we compute
this value using an exact permutation test on account of the
presence of a tie in the data between the means of the attack
results. Briefly, a permutation test generates all non-redundant
permutations of the variable with ties and reports as the p-
value the exact probability that ρ on data under permutation
exceeds ρ on the sample.

Using a one-tailed permutation test we see that p = 0.018.
Therefore at the α = 0.05 level we reject the null hypothesis
that the mean mutual information and mean success rate
are uncorrelated. This allows us to say that for a greater
value of the mean mutual information we will see a greater
mean success rate—indicating greater information leakage. In
other words, both success rate and mutual information are
able to describe timing leakage for cryptographic hardware
architectures. Based on the timing channel leakage of these
architectures, mutual information is positively correlated with
the attack success rate.

VI. RELATED WORK

There are numerous work that use information theoretic
methods to ascertain the security of a system by analyzing
the behavior of the software. Denning is amongst the first to
relate security and information theory [11], using entropy to
model relationships between statements in a program. McLean

first describes the flow model security property [12]; it is later
formalized quantitatively by Gray as an applied flow model,
which relates noninterference to the maximum rate of flow be-
tween variables [13]. Clark et al. use different information the-
oretic measures to bound the information leaked from “while”
programs [14]. Mica and Morgan use conditional entropy to
calculate the channel capacity of a program [15]. McCamant
and Ernst [16] present a technique to more precisely quan-
tify how much information is revealed by the public output
of C-like programs. Malacaria and Heusser [17] introduce
quantitative information analysis for C code and show that
the information leakage vulnerabilities in the Linux Kernel.
Newsome et al. [18] use channel capacity as a quantitative
measure of the influence of the inputs on the outputs of a
program using x86 binaries. Information theory measures, e.g.,
the worst case mutual information [19] and min-entropy [20],
are used at the system level to determine the difficulty of
breaking into the system. None of these techniques deal with
hardware designs as we describe in this work.

There are major efforts focus on using mutual information
as a distinguisher function for differential power analysis. Gier-
lichs et al. [21] introduce this concept of mutual information
analysis. They are inspired by Standaert et al. [22], who use
mutual information to measure the amount of side-channel
leakage for an implementation. Batina et al. [23] have a
comprehensive study on mutual information analysis including
the effects of estimating the probability distribution functions
on the attacks. All of these use information theoretic metrics to
attack the design, with a focus on power side channels. None
of these works attempts to understand the effects of a particular
hardware architecture or optimization on the side channel as
we do in this work.

Perhaps the most similar work to ours is that done by
Köpf et al. [6], [7]. They provide a bound on the information
leakage through a timing channel based upon the number
of observations. They use conditional entropy to derive that
bound. This is similar in spirit to what we do in our work in
that we are trying to derive a metric for security. However, we
are looking at orthogonal variables – they look at the effect
of the number of measurements on the leakage, while we are
trying to understand how a design itself effects the leakage.

VII. CONCLUSION

In this paper, we study the potential for using the mutual
information as a metric to quantify the amount of information
a hardware architecture leaks through a timing channel. We
design a number of different RSA hardware architectures that
are optimized for performance and to mitigate the timing chan-
nels. We show that mutual information indicates lower leakage
of data on those architectures using mitigation techniques. And
we show that the mutual information and success of the attack
is correlated, that is the higher the mutual information, the
more likely that the attack will be successful. Our work shows
that mutual information is a promising metric to quantify the
information leakage through timing side channels.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” Advances in Cryptology - CRYPTO’96,
Springer-Verlag Lecture Notes in Computer Science, vol. 1109, pp. 104–
113, 1996.

[2] W. Schindler, “A timing attack against rsa with the chinese remainder
theorem,” in Cryptographic Hardware and Embedded Systems-CHES
2000. Springer, January 2000, pp. 109–124.

[3] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701–716, 2005.

[4] M. Ciet, M. Neve, E. Peeters, and J.-J. Quisquater, “Parallel fpga
implementation of rsa with residue number systems-can side-channel
threats be avoided?” in Circuits and Systems, 2003 IEEE 46th Midwest
Symposium on. IEEE, December 2003, pp. 806–810.

[5] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “Leveraging
gate-level properties to identify hardware timing channels,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 33, no. 9, pp. 1288–1301, 2014.

[6] B. Köpf and M. Dürmuth, “A provably secure and efficient counter-
measure against timing attacks,” in Computer Security Foundations
Symposium, 2009. CSF’09. 22nd IEEE. IEEE, July 2009, pp. 324–335.

[7] B. Köpf and D. Basin, “An information-theoretic model for adaptive
side-channel attacks,” in Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 2007, pp. 286–296.

[8] T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd
Edition (Wiley Series in Telecommunications and Signal Processing).
Wiley-Interscience, July 2006.

[9] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-
L. Willems, “A practical implementation of the timing attack,” in Smart
Card Research and Applications. Springer, 2000, pp. 167–182.

[10] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box mitiga-
tion of timing channels,” in Proceedings of the 17th ACM conference
on Computer and communications security. ACM, 2010, pp. 297–307.

[11] D. E. Robling Denning, Cryptography and data security. Addison-
Wesley Longman Publishing Co., Inc., 1982.

[12] J. McLean, “Security models and information flow,” in Research in
Security and Privacy, 1990. Proceedings., 1990 IEEE Computer Society
Symposium on. IEEE, 1990, pp. 180–187.

[13] J. W. Gray III, “Toward a mathematical foundation for information flow
security,” Journal of Computer Security, vol. 1, no. 3, pp. 255–294,
1992.

[14] D. Clark, S. Hunt, and P. Malacaria, “Quantified interference for a while
language,” Electronic Notes in Theoretical Computer Science, vol. 112,
pp. 149–166, 2005.

[15] A. McIver and C. Morgan, “A probabilistic approach to information
hiding,” in Programming methodology. Springer, 2003, pp. 441–460.

[16] S. McCamant and M. D. Ernst, “Quantitative information flow as
network flow capacity,” ACM SIGPLAN Notices, vol. 43, no. 6, pp.
193–205, 2008.

[17] J. Heusser and P. Malacaria, “Quantifying information leaks in soft-
ware,” in Proceedings of the 26th Annual Computer Security Applica-
tions Conference. ACM, 2010, pp. 261–269.

[18] J. Newsome, S. McCamant, and D. Song, “Measuring channel capacity
to distinguish undue influence,” in Proceedings of the ACM SIGPLAN
Fourth Workshop on Programming Languages and Analysis for Secu-
rity. ACM, 2009, pp. 73–85.

[19] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden, “Anonymity
protocols as noisy channels,” in Trustworthy Global Computing.
Springer, 2007, pp. 281–300.

[20] G. Smith, “On the foundations of quantitative information flow,”
in Foundations of Software Science and Computational Structures.
Springer, 2009, pp. 288–302.

[21] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual information
analysis,” in Cryptographic Hardware and Embedded Systems–CHES
2008. Springer, 2008, pp. 426–442.

[22] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified frame-
work for the analysis of side-channel key recovery attacks (ex-
tended version),” Cryptology ePrint Archive, Report 2006/139, 2006,
http://eprint.iacr.org/.

[23] L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and
N. Veyrat-Charvillon, “Mutual information analysis: a comprehensive
study,” Journal of Cryptology, vol. 24, no. 2, pp. 269–291, 2011.

