
High Throughput Channel Tracking for JTRS
Wireless Channel Emulation
Dajung Lee∗, Janarbek Matai†, Brad Weals‡, Ryan Kastner†

∗Electrical and Computer Engineering, †Computer Science and Engineering
University of California, San Diego
‡Toyon Research Corporation

Email: {dal064, jmatai, kastner}@eng.ucsd.edu∗†, bweals@toyon.com‡,

Abstract—Testing and verifying wireless systems in a real
world environments is a challenging but an important problem.
This is particular true for the Joint Tactical Radio System
(JTRS) where the modulation techniques are optimized towards
environments that are difficult to reproduce (e.g., ship to plane,
plane to satellite communications). Such cases necessitate a
wireless channel emulator to facilitate testing in the laboratory as
the protocols are being developed. Furthermore, the increasing
complexity of communications protocols and highly variable
network scenarios force the channel emulator to support an
accurate and complicated channel model that can scale to handle
a large number of radios that operate across a wide frequency
spectrum. We developed a unique channel impairment emulator
prototype to meet these requirements. It maximizes the scalability
and performance, operating in a frequency range of 2 MHz
to 2 GHz. Moreover, our emulator design accommodates radio
operation that use unknown frequency hopping techniques, which
is increasingly common in JTRS systems. This key feature to
this system is a high throughput channel tracker module that
handles high bandwidth intermediate frequency (IF) signals while
providing the scalability to handle a large number of channels.

I. INTRODUCTION

Evaluating a wireless system in an early stage of devel-
opment is crucial for the success of the system. The perfor-
mance of wireless network significantly depends on physical
environment, which is affected by various factors. Moreover,
as wireless devices become more common in our lives, the
network scenarios in which they are used are increasingly
congested and complicated. Researchers have to find a solution
to evaluate the wireless systems under development in an
efficient and effective manner. Field-testing provides a real
user environment, but it is expensive and almost impossible to
create repeatable tests. As such, channel emulators are used as
a virtual platform to simulate radio environment for testing in
laboratory. A channel emulator has a number of challenging
requirements in order to accurately construct a complete and
realistic wireless network.

The Joint Tactical Radio System (JTRS) is a standard for
software defined radio (SDR) systems. It has an advantage
of implementing a wide range of communication schemes in
a flexible manner. The standard operates over the 2 MHz to
2 GHz frequency band and provides next generation voice,
video, and data links.

Our system was built to support the demands of US
Navy applications for military scenarios based on SDR. They
required an extensible and programmable wireless channel
emulator for evaluating their current and future JTRS network
systems quickly. The requirements specified in two ways : (1)
the emulation of RF channels for a minimum of 8 full duplex
radios with the ability to expand to 100 full duplex radio
nodes and (2) the operation across 250 MHz bandwidths while

capable of covering the 2 MHz throughout 2G Hz spectrum
to support frequency hopping. To meet these requirements we
developed a software defined radio channel emulator using an
FPGA. We focused on the design of a single FPGA system that
can handle 8 radios. However, the system was designed in a
modular fashion, and it can be expand to handle additional
radios using multiple channel emulator modules connected
via a high speed digital link. In addition, JTRS waveforms
often switch their carrier frequency randomly among many
frequency channels. We need a channel tracker which enables
our channel emulator to quickly detect signals across the
large 2 MHz to 2 GHz band. The channel tracker detects
the frequency hopping by analyzing its power spectrum using
a correlation-based linear prediction method. The rest of this
paper will focus on describing the entire system operation and
the detailed hardware architecture of the channel tracker.

We designed the channel tracker using a state-of-the-art
high-level synthesis tool, Xilinx Vivado HLS, which allowed
for quick design space exploration and the agility to interface
with changing demands from other parts of the system.

In this paper, we describe the channel emulator require-
ments; we present our hardware design process using HLS
tools; and we provide a thorough design space exploration
using a variety of different optimization methods. The primary
contributions of our work are:

• Providing a system overview for a highly scalable channel
emulator including the interface between the analog and
digital components, and its network model to expand to
larger system.

• Designing an optimized hardware module to track a
carrier frequency in given signal spectrum based on linear
prediction for high resolution spectral analysis.

• Developing a methodology for creating HLS designs with
high throughput constraints.

The rest of this paper is organized as follows: We review
related work in Section II. Section III provides an overview of
the channel emulation system. Section IV presents a hardware
design of the channel tracker focusing on two optimization
approaches targeting throughput and latency. Section V shows
the results, and we conclude in Section VI.

II. RELATED WORK

There are several projects related to developing wireless
channel emulators. Borries et al. presents a channel emulator
for 210 independent channel models between 15 nodes, but
they limits their emulation model in a specific frequency
range only for 802.11 wireless radios [1]. Eslami et al.
compares their FFT-based emulator in frequency domain to a

ADC data acquisition DAC data stream generation

RF Front
End ADC DDC

RF Front
End DAC DUC Channel

Effect Core

Base-band
signal

Base-band
signal

Digital signals Analog signals

Radio
signal

Radio
signal

250MHz

2M - 30MHz

FPGA Channel Emulator RF front end ADC/DAC

Channel
Tracker

(a)

FPGA
ASSY

RF Front
End

ADC/
DAC

Radio under
test

Radio under
test

Multiple channel emulators

Radio under
test

FPGA
ASSY

RF Front
End

ADC/
DAC

FPGA
ASSY

RF Front
End

ADC/
DAC

Radio under
test

Radio under
test

Upload and
control

scenarios
from PC

(b)

Fig. 1. We employ an off-the-shelf board from Pentek, which has ADCs,
DACs, and an FPGA. (a) The channel tracker receives data from the ADC
and informs the digital down converter (DDC) to current location in the
spectrum of the signal. This portion of the spectrum is then feed into a
core that simulates the channel. The resulting data is feed into a digital up
converter (DUC) which is provided to the DAC. (b) An extended system of
chained multiple channel emulators with a host computer. This larger system
is controlled by the host PC, and channel emulators are connected with high
speed digital links: Xilinx Aurora

conventional approach based on finite-impulse response (FIR)
filters in time domain [2]. They suggest a frequency domain
analysis to handle the complexity of temporal analysis in high
order network arrays. However, FFT analysis depends on the
number of sample points in FFT, which limits the flexibility
in the frequency range of analysis. Buscemi et al. presents
a cluster-based wireless channel emulator prototype in [3].
They decentralize computations of networks to minimize the
complexity in previous wireless channel emulators. Based on
this research, [4] introduces an expanded system and a scaling
study using FPGA clusters to support 1250 wireless devices.

We employ a statistical channel model making our design is
more scalable than previous works and flexible to accommo-
date broader bandwidths. The key feature of our system, a high
throughput channel tracker analyzes streaming data to find its
carrier frequency in the frequency hopping condition without
prescheduling and delivers them to the subsequent modules,
which is used as a preprocessing step for our previous work
of channel emulator core design [5].

III. SYSTEM OVERVIEW

We employed a commercial off-the-shelf digital signal pro-
cessor board, Pentek Cobalt PCIe hosted reference board. Its
key features are including a Xilinx Vertex 6 series FPGA
(XC6VSX315TFF1156-2), two 500 MHz analog to digital
converters (ADCs), two digital down converters (DDCs), two
800 MHz digital to analog converters (DACs), and a digital
up converter (DUC) with PCI Express (PCIe) interface.

Figure 1(a) describes an end-to-end flow for a single path
of simulated channel in our channel emulator. It is divided
into two path ways: ADC data acquisition for the transmit
path, and DAC data stream generation for the receive path.
In data acquisition path, an RF module takes radio signals

and converts them into a base band signal. An ADC module
converts these analog signals into digital data stream running
at 250 MHz. A channel tracker module in front of DDC
generates control signals for DDC by analyzing this 250 MHz
data stream. A DDC module accepts and downconverts it to
run in a channel effect core which operates at much lower rate.
The emulated signals from the output of the channel effect
core are converted into final radio output signals in the DAC
data stream generation path. A DUC translates them to an
intermediate frequency (IF) signal (250 MHz), and a DAC
converts these high sample rate signals to analog ones.

We can expand our prototype into a larger system by making
connections between multiple channel emulators. The platform
consists of a host PC for control unit and multiple FPGA DSP
boards. The enclosure system has eight PCIe slots for FPGA
boards. Each single board is for one channel emulator, and
one channel emulator can connect equal or more than eight test
radios. Multiple boards can communicate to each other through
directly connected synchronous interfaces outside of PCIe and
act as one. We use Xilinx Aurora interface to link them in
a ring arrangement. They transfer downconverted signal data
in 30 MHz streaming along these connections. The host PC
controls this network using Ethernet.

IV. CHANNEL TRACKER

The channel tracker module focuses on accepting accepts
high throughput data stream and detecting the presence of a
signal somewhere within the data. Intermediate frequency (IF)
signals, input to the channel tracker module come from the
ADC. The ADC and the FPGA assembly share common clock
resources, and the FPGA part can accept this high sample rate
data directly from the DAC.

The channel tracker informs the programmable DDC mod-
ule how to convert the 250 MHz signal to a 30 MHz signal
which is easier for the channel effect core to process. There are
many small bandwidth slots with different center frequencies
in the initial bandwidth of 250 MHz. The data is capable
of changing its carrier frequency over 100 MHz between the
range of 3 MHz to 245 MHz.

A. Spectral Analysis Algorithm

Our goal is to detect a carrier frequency of incoming
signal that is hopping without prescheduling. We use a linear
prediction method to predict the current power spectrum by
calculating the correlation values and a linear combination of
sample streams in a current window. A Fast Fourier transform
(FFT) analysis is more frequently used for power spectral
analysis since it is more intuitive and understandable in
frequency domain. However, modern power spectral analysis
uses a linear prediction method to handle high resolution
spectrum. It is more accurate and makes less complex FPGA
design because it is a window filtering based operation in time
domain.

The channel tracker module makes an average of correlation
values in the window and estimates an angular frequency by
calculating an arctangent of averaged complex number. It is
transferable into a linear frequency by multiplying a constant
(2πf = w). This output value will be used to control the DDC.
The input signal includes noise and will switch between active
and inactive modes periodically. The channel tracker module

Algorithm 1 Latency Optimization
while Input do

temp1 ← task1(Input, temp1)
if Condition1(temp1) then

temp2 ← task2(Input, temp1, temp2)
if Condition2(temp2) then

temp3 ← task3(Input, temp1, temp2, temp3)
if Condition3(temp3) then

temp4 ← function1(Input, temp4)
Output1 ← function2(temp4)
Output2 ← 1

else
temp4 ← function1′(Input, temp4)
Output1 ← previous Output1
Output2 ← 0

end if
end if

end if
end while
return Output1, Output2

Algorithm 2 Throughput Optimization
while Input do

Module a(Input){
temp1−1 ← task11(Input)
temp1−2 ← task12(Input)
}
Module b(temp1−1){
temp2 ← function1(temp1−1, temp2)
Output1 ← function2(temp2)
}
Module c(temp1−2){
Output2 ← task1+2+3+α(temp1−2)
}

end while
return Output1, Output2

calculates the signal power to choose the valid signal and reject
transmit energy from the receive path.

B. Hardware Implementation

The DDC module has complex signal inputs, in-phase(I) and
quadrature (Q), coming from the ADC, and output narrows
down them into 30 MHz. It is controlled by a set of control
registers, mainly tuned by two parameters: tuning frequency
(center frequency) and decimation rate (sampling frequency).
The channel tracker module taps two input ports and analyzes
them to estimate the carrier frequency, which decides one
of these two parameters, the tuning frequency. The control
registers have another link from PCIe interface, and it is
used to make a direct communication between a host PC and
channel emulator.

We used HLS tools to perform design space exploration
and implement our hardware design. We targeted two different
optimization approaches, latency optimization and throughput
optimization.

Latency optimization is similar to a single threaded im-
plementation (Algorithm 1). In this structure, if conditions
and parameters are nested over several layers with significant
data dependency. The innermost functions, function1 and
function2, generate final outputs, but run only when it holds
several conditions in the behavior analysis. It would be more
efficient to reserve incoming data and calculate them when it
is necessary based on given conditions. However, this dynamic
operation makes scheduling difficult in hardware design that
requires high throughput performance.

Streaming output
(pulse & index)

Complex number multiplication for
correlation

Complex number multiplication for
power calculation

X Constant

Find tuning frequency

Adder tree Adder tree

CORDIC

Accumulate power

Thresholding

Streaming input
(I&Q complex number)

FIFO FIFO
copy

Channel tracker module

a

b c

FIFO index FIFO copy pulse

LUT

Fig. 2. A diagram of the channel tracker module. Part (a) performs correla-
tion and power analysis through complex number multiplication. Correlation
also requires a summation of the multiplied signals. Part (b) uses CORDIC
to determine the angular frequency and a finding tuning frequency module
that generates a 6 bit index value corresponding the linear frequency. Part (c)
calculates the power of the signal and is used as a threshold in order to reject
cases when there is noise.

For the high throughput operation, the computational units
should run concurrently: in a parallel or pipelined manner.
DATAFLOW is one of pragmas Vivado HLS provides to
optimize and specify it, particularly pipelining in functional
level. Algorithm 2 shows the transformed structure of Algo-
rithm 1 for pipelined design to use DATAFLOW pragma. This
altered design minimizes data dependency and rearranges the
procedures to force them run in parallel. The operation of
key parts does not depend on the if conditions. We utilize
Output2 signal in Algorithm 1 as a flag. All of the modules
are run regardless of the condition, and the task1+2+3+α()
module generates a flag that indicates when the output is valid.

To achieve the target performance in pipelined design, the
clock frequency should be at least 250 MHz in channel tracker
in order not to miss any samples, and the modules should run
in pipelined way to keep up with the inputs. The module with
the largest latency decides the overall performance in pipelined
operation. Our optimization process focuses on minimizing
the clock period while iteratively optimizing the module with
the longest latency. Figure 2 shows all operations of channel
tracker in detail. We assigned twenty samples per window in
our experiment, and the system pipeline is also based on the
window size.

1) Module a (Complex multiplications): Two FIFO mem-
ories accept I&Q streaming inputs and transfer them to
partitioned buffers.The partitioned buffer in HLS is a set
of registers, and each of these elements can be accessed
simultaneously. That makes the first module for complex
multiplications accesses these registers and calculations cor-
relations in parallel. They are averaged by adder trees and the
final output is translated into angular frequency by arctangent
operation.

2) Module b and Module c: Mathematically, the arctangent
result is converted into the linear frequency value, and it finds

100	
150	
200	
250	
300	

10	 20	 30	 40	 50	

Th
ro
ug
hp

ut
	 	

(M
sp
s)
	

The	 size	 of	 input	 samples	

(a)

93600	

952.65	
313.5	 284	 0.534	 1.05	

31.9	

263.16	

0.1	
1	
10	
100	
1000	

100	

1000	

10000	

100000	

MATLAB	 Baseline	 HLS	 Latency	
Op>miza>on	

Throughput	
Op>miza>on	

Th
ro
ug
pu

t	
(M

sp
s)
	

La
te
nc
y	
(n
s)
	

(b)

Fig. 3. (a) A pattern of throughput with the different size of input samples
(b)A comparison of performances in different implementations: MATLAB,
Baseline, Latency Optimization, and Throughput Optimization

its best matching frequency from a fixed frequency table. This
index is a final output, index in Figure 2. We optimized this
searching process by implementing our own CORDIC module
and using a LUT. CORDIC produces one digit output, 1/0
for +/−, in every iteration while minimizing the precision
error. We used this output digit sequence as an address of the
LUT that provides the 6 bit index of the frequency table. The
frequency table is another LUT to translate a 6 bit number
into 32 bit data corresponding to the center frequency. It sets
up a tuning frequency to control the DDC. Also, this module
produces the power sum to make a pulse, which will be used
as an enable signal in control registers.

V. RESULTS

We synthesized our RTL design using Xilinx Vivado HLS
2012.3 and implemented using ISE 14.3. We focused on two
things when optimizing the hardware architecture to achieve
high throughput: minimizing the bottleneck module latency and
maximizing the clock frequency.

We can express the final throughput of entire pipelined
system as

(throughput) =
w

c× f(w)
=

w

c× (w − 1)
(1)

where w is the number of samples in one window, c is a
clock period achieved, and f(w) is the number of clock cycles
in a bottleneck module, which is a function of size of the
window and decides the performance of whole system. In HLS
design, buffering needs at least w − 1 cycles, which sets the
minimum latency for the overall design. We have optimized
all of the other modules to achieve this minimum latency.

In our design we set w = 20, and therefore our target is to
achieve the latency in each module less than 19 cycles. The
modules copying inputs and outputs from FIFOs to buffers
and vice versa takes 19 cycles (Input buffering and Output
buffering modules). It takes 10 cycles for complex number
multiplication and adder tree operations (Module a) and 18 cy-
cles for CORDIC operation and searching from frequency
table index (Module b). Accumulating power values for energy
thresholding spends 19 cycles (Module c). All modules are
optimized to accomplish the 250 MHz clock frequency. As a
result, channel tracker module achieves 250 Msps throughput
running in 250 MHz, and its total latency is 71 clock cycles
or 284 ns.

Figure 3(a) shows a pattern of throughput results with the
different size of inputs. The size of the buffer in theory
effects the accuracy of the tracker. However the buffer size
also changes the performance. The buffering module is the
bottleneck. Therefore, the throughput keeps around 250 Msps
with the larger number of input samples. The 40 and 50 input
sample throughput is lower than 20 and 30 due to a larger
clock period. Also, as the window size is smaller, buffering
module does not decide the overall performance anymore, and
Module b would be the bottleneck that spends 18 cycles of
latency. Therefore, only for the case of the small window, 10,
it shows the different throughput, 138 Msps.

Figure 3(b) shows the performance results from different
software and hardware designs. The throughput optimization is
superior compared to all others in terms of throughput. When
comparing the latency results, the latency optimization design
could show less clock cycles, but it takes more latency than
throughput optimization on average because the bottleneck
module behavior depends on conditional statements.

TABLE I
AREA USAGES OF THE DIFFERENCE IMPLEMENTATIONS: BASELINE HLS,

LATENCY DESIGN, THROUGHPUT DESIGN

Baseline
HLS

Latency
Optimization

Throughput
Optimizatoin

SLICE 2613 1873 940
LUTs 6299 4914 2104

FFs 8081 5860 2338
DSPs 51 33 112

BRAMs 4 4 3

VI. CONCLUSION

Wireless channel emulators are an attractive way to test
radio systems under complex scenarios. However, the increas-
ing complexity of wireless systems forces significant perfor-
mance constraints on the emulator. In particular, the operating
frequency of the radios can span a width range making a
high throughput channel tracker a key component for digital
channel emulation systems. We implemented a programmable
and extensible channel emulator based on an FPGA hardware.
It can track the digital baseband data stream in 250 MHz
to accommodate the wide band frequency hopping. For high
resolution power spectral analysis, we estimate the power
spectrum based on linear prediction method. This module
is the most challenging part for a real-time system, which
required design space exploration to accomplish the target
throughput.

REFERENCES

[1] K. C. Borries, G. Judd, D. D. Stancil, and P. Steenkiste, “Fpga-based
channel simulator for a wireless network emulator.” in VTC Spring, 2009.

[2] H. Eslami, S. V. Tran, and A. M. Eltawil, “Design and implementation
of a scalable channel emulator for wideband mimo systems,” Vehicular
Technology, IEEE Transactions on, vol. 58, no. 9, pp. 4698–4709, 2009.

[3] S. Buscemi and R. Sass, “Design and utilization of an fpga cluster to
implement a digital wireless channel emulator,” in Field Programmable
Logic and Applications (FPL), 2012 22nd International Conference on.
IEEE, 2012, pp. 635–638.

[4] S. Buscemi, W. Kritikos, and R. Sass, “A range and scaling study of
an fpga-based digital wireless channel emulator,” in Field-Programmable
Custom Computing Machines (FCCM), 2013 IEEE 21st Annual Interna-
tional Symposium on. IEEE, 2013, pp. 137–144.

[5] J. Matai, P. Meng, L. Wu, B. T. Weals, and R. Kastner, “Designing
a hardware in the loop wireless digital channel emulator for software
defined radio,” in FPT, 2012, pp. 206–214.

