
Tinker: Generating Custom Memory Architectures for Altera’s OpenCL Compiler

Dustin Richmond Jeremy Blackstone Matthew Hogains Kevin Thai Ryan Kastner
Department of Computer Science and Engineering

University of California San Diego

Abstract—Tools for C/C++ based-hardware development have
grown in popularity in recent years. However, the impact
of these tools has been limited by their lack of support for
integration with vendor IP, external memories, and communi-
cation peripherals. In this paper we introduce Tinker, an open-
source Board Support Package generator for Altera’s OpenCL
Compiler. Board Support Packages define memory, communi-
cation, and IP ports for easy integration with high level syn-
thesis cores. Tinker abstracts the low-level hardware details of
hardware development when creating board support packages
and greatly increases the flexibility of OpenCL development.
Tinker currently generates custom memory architectures from
user specifications. We use our tool to generate a variety of
architectures and apply them to two application kernels.

1. Introduction

The use of High Level Synthesis languages has grown in
recent years from academic tools to industry standards. The
current generation of industry High Level Synthesis tools
use a common language like C/C++ to create hardware IP
cores. C/C++ High Level Synthesis tools attempt to raise the
abstraction of hardware development from the RTL level,
to the system design level. However, integrating these ip
blocks into working systems still requires a communication
framework and hardware design experience to deploy an IP
core in a system.

Thus, academics and FPGA vendors have developed
end-to-end tools for deploying C/C++ code onto accelerator
cards using a parallel runtime like OpenCL or CUDA [1],
[2], [3]. This technique uses a C/C++ high level synthesis
tool to compile computation kernels into IP Cores, system
design tools to integrate the result into pre-specified devel-
opment cards, and software to integrate the working system
into an application. The board and vendor specific informa-
tion these tools rely on to eliminate the details of system
integration are called Board Support Packages. Depending
on the vendor, Board Support Packages define memory and
custom IP interfaces, memory and system address maps,
data-memory layout, timing parameters and pin locations,
to name a few.

These end-to-end frameworks completely eliminate low-
level RTL development within the framework. However,
the Board Support Packages can also be a hindrance to

development. For example, in Altera’s OpenCL Compiler
board support packages are static, difficult to modify. They
typically provide a subset of board IP for high level synthesis
developers to avoid waste. Modifications require significant
hardware design expertise. Given these drawbacks, the only
attractive option is to allow developers to specify a board
architecture prior to compilation.

One particular frustration in our research has been the
inability to easily design custom memory architectures in
Altera’s OpenCL Compiler. At a high level a memory
architecture defines the memory interfaces available on a
board are grouped, resources are shared, and the interleaving
pattern. A memory architecture can have profound impacts
on timing closure, resource utilization, and performance of
an OpenCL Kernel.

To address these issues we have developed Tinker,
an open-source memory architecture generator for Altera
OpenCL. Tinker generates custom memory architectures
from user specifications, handling top level files, constraints,
and IP instantiation, in one portable tool. Our tool is written
in Python and Tcl and is available under a BSD 3-clause
license at https://github.com/drichmond/tinker.

In this paper, we use our tool to demonstrate our pre-
liminary work generating memory architectures and perform
experiments to demonstrate its utility. Using our tool we
compare the vendor-produced board to a generated board
with identical parameters to evaluate our tool relative to
baseline performance. Next, we use our tool to vary the
memory type available and demonstrate application kernels
using QDR memories.

There are three main contributions of this paper:

• An open-source tool for creating custom board sup-
port packages

• A study on the performance of our tool compared
to existing board support packages

• Preliminary results using our tool to generate custom
architectures for the Altera OpenCL Compiler

Section 2 describes the organization of an Altera Board
Support Package and all the necessary details for under-
standing our tool, Tinker, described in Section 3. Section 4
describes the results of our experiments with baseline com-
parisons and heterogeneous optimizations. Section 5 con-
cludes the paper.

OpenCL User
Logic

Memory
System N

(Secondary)

Vendor IP

PCIe
Endpoint DMA

Controller

Memory
System 1
(Primary)

…

Support Logic

Figure 1. Hardware components of an OpenCL Board Support Package.
Green wires indicate data busses, blue indicates clock networks.

2. Board Support Packages

A Board Support Package contains three parts:

1) Libraries and drivers for communication [4]
2) A hardware system, project file, top level file, with

kernel interfaces.
3) A metadata with hardware interfaces, address map,

and data layout for the OpenCL Compiler.

2.1. Software

The software libraries in a board support package are
broken down into two sub-components: A Memory-Mapped
device library implementing memory-transfer API functions
for OpenCL, and a Kernel-Mode PCIe driver for transferring
data. We defer a discussion of the the Altera OpenCL
Software stack to [4].

2.2. Hardware

There are three pieces that comprise the hardware system
of an OpenCL Board Support Package:

1) A QSys system, instantiating the PCIe Endpoint,
DMA Engine, memory interfaces, and other IP.

2) A top level file instantiating ports, the QSys Sys-
tem, and redefining wires to match the QSys Sys-
tem ports (If applicable).

3) A project file with timing, I/O and pin constraints.

A memory architecture defines how available memory
instances are grouped into memory systems. Figure 2 shows
a memory system composed of M memory instances and
Figure 1 shows a memory architecture with two memory
systems. A memory instance is a physical package, e.g. a
DIMM. A memory system defines how low-level resources
like PLL’s, DLL’s are shared to reduce resource usage and
clock crossings. Each of the memory instances in a memory
system provide a single non-uniform access memory port to
compiler generated logic.

Memory
Instance 1
(Primary)

Memory
Instance 2

(Secondary)

Memory
Instance M
(Secondary)

…

Bank
Divider

Clock
Output

DMA Port

Kernel
Interface 1

Kernel
Interface 2

Kernel
Interface M

Figure 2. A simple memory system instantiating M memory instances,
each providing a kernel interface, and a bank divider providing a contiguous
memory space on top of an interleaving pattern

Figure 1 shows a simple memory architecture with two
memory systems, with two memory instances in each sys-
tem. A memory architecture defines the interleaving pattern,
bandwidth, and data placement. Consequently a memory ar-
chitecture has profound impacts on timing closure, resource
utilization, and kernel performance.

Section 3 describes how memory roles (Primary, Sec-
ondary and Independent) affect memory architectures and
systems.

2.3. Metadata

The central component of a Board Support Package is
the board spec.xml file that defines the memory architecture
described in Section 2.2. An example board spec.xml is
shown in Listing 1; The global mem tag describes a mem-
ory system and its bandwidth. An interface tag describes a
memory instance, the kernel port name, width address size
and latency in nanoseconds. These parameters are described
in more detail by [4].

3. Tinker

We describe Tinker, our tool for customizing memory
architectures in board support packages.

3.1. Setup

To generate a custom memory architecture, Tinker re-
quires a skeleton project that defines pin locations and
parameters and instantiates the QSys system.

Creating a Tinker skeleton project is simple: First, engi-
neer creates a top level file defining the host communication
interface, memory, IP, and reference clock pins. Pins are
guarded by ‘ifdef macros, which are placed in a board-
specific XML file, described in Section 3.2. Second, the
engineer instantiates the QSys wrapper for the OpenCL
System, and uses System Verilog’s auto-connection semantic
(.*), which connects pins and ports during compile time.

Listing 1. An example board spec.xml file.
1 <board version="0.9" name="de5net_a7">
2 <global_mem max_bandwidth="25600">
3 <interface port="kernel_mem0" width="512" address="0x00000000" size="0x80000000"

latency="240"/>
4 <interface port="kernel_mem1" width="512" address="0x80000000" size="0x80000000"

latency="240"/>
5 </global_mem>
6 </board>

Finally, the engineer creates a quartus project file, with pin
locations, I/O Standard, and timing constraints.

With the pin definitions, top level instantiations, and
macros no further verilog modifications are necessary in
Tinker. We emphasize that many vendors provide “Golden”
skeleton projects with pin locations, I/O standard, and timing
constraints pre-defined so we envision that board Vendors
can easily support Tinker this as part of their standard
OpenCL Board Package.

3.2. Generating an Architecture

To generate a custom memory architecture, the user
writes a memory architecture specification in a text file with
required architecture and grouping parameters, and optional
parameters like interleaving pattern [4]. Tinker reads the
specification and generates a complete board support pack-
age from the skeleton project that can be used in the OpenCL
Compiler.

During generation Tinker decides how to group instances
and assign roles to improve timing performance, share lim-
ited resources like PLLs, DLLs and On-chip Termination
pins, and leverage physical locality (encoded in the board-
specific XML file). Roles do not affect kernel interfaces,
but they do affect kernel-data layout, host-memory transfer
performance and timing closure. How these roles affect
instantiation is described in Section 3.3. Each memory in-
stance can theoretically take one of three roles, shown in
Figure 2

• A primary memory instantiates it’s own PLL, drives
the bank divider, and the clock output. It is the mas-
ter for PLL, DLL, and OCT sharing relationships.

• A secondary memory instance shares all PLLs,
DLLs and OCT pins from a primary memory in-
stance, and thus operates in the same clock domain.

• An independent memory instance instantiates its
own PLL and DLL, and can share an OCT pin. An
independent memory operates in a separate clock
domain with clock crossing interfaces.

Finally, the tool determines the role of each memory
system to build the architecture. A memory system of M
memory instances is shown in Figure 2. A primary memory
system drives the clock of the DMA Engine, and an sec-
ondary memory system operates in its own clock domain
and instantiates clock crossing logic.

Tinker sets the memory architecture by writing two files:
First, a board.vh verilog macro file to enable pins in the top
level file. Second, Tinker creates a board specification.xml,
an extension of the board spec.xml files shown in List-
ing 1. The board specification.xml file defines how memo-
ries are instantiated and connected during compilation. The
board specification.xml file is necessary because Quartus
fails to compile when the board spec.xml file contains
unknown tags.

Listing 2 shows how the board specification.xml has ad-
ditional parameters that define the role of each memory sys-
tem, a unique index, type, clock frequencies frequency, and
the fabric-to-memory-clock ratio under the global memory
section. Each memory instance is assigned an id correspond-
ing to a memory interface id in the board-specific xml file,
a role, and if the interface is not primary, which interfaces
are shared.

3.3. Compiling a board

During compilation, all IP on a custom board must be
instantiated and connected according to the user specifica-
tion. This is done using parameterized Tcl scripts, replacing
unparameterized .qsys files used by board vendors.

The process of instantiating starts with a script we have
written called Tinker.tcl. Tinker.tcl instantiates DMA, PCIe,
support and status logic, and then instantiates the memory
systems. Memory systems are generated using the parame-
ters defined in board specification.xml. These scripts instan-
tiate clock crossing logic (non-primary) or pipeline stages
(primary) and memory instances. Each memory instance
instantiates clock-crossing logic (independent) or a pipeline
stage (primary, secondary), provides reset and clock inputs,
outputs and sharing interfaces, and instantiates support logic.

Using layers of .tcl scripts provides the abstraction of
unified ports and parameters between different types of
memory types of memory (e.g. DDR, QDR, and Local).

4. Results

We now present preliminary results using Tinker. These
results demonstrate that our tool can generate architectures
with comparable in resource consumption and performance,
and provide alternative avenues for optimization.

Our tests were compiled using the Altera OpenCL
compiler and Quartus Prime 15.1, for a Terasic DE5-Net
FPGA Development with 2 800-MHz DDR3 banks, and

Listing 2. An example board specification.xml file that defining a Tinker memory architecture.
1 <board version="0.9" name="de5net_a7">
2 <global_mem name="DDR0" max_bandwidth="25600" interleaved_bytes="1024" type="DDR3"

index="0" mem_frequency_mhz="800.0" ref_frequency_mhz="50.0" ratio="Quarter"
role="primary" width="512">

3 <interface port="kernel_0_ddr3a_rw" width="512" address="0x00000000"
size="0x80000000" latency="240" id="a" role="primary" />

4 <interface port="kernel_0_ddr3b_rw" width="512" address="0x80000000"
size="0x80000000" latency="240" id="b" role="secondary" primary="a"
shared="pll,dll,oct"/>

5 </global_mem>
6 </board>

4 450-MHz QDRII banks. We have compiled our kernels
for three Board Support Packages: A Vendor BSP with
2 DDR3 instances (Vendor BSP), a Tinker board with 2
DDR3 instances (2x DDR 2GB), and a Tinker board with
4 QDRII instances (4x QDR 8MB). All board settings that
could influence area such as maximum burst size, number
of in-flight requests or responses, and clock-crossing depths
were consistent across architectures.

For our preliminary results we test two application
kernels: Dense-Matrix Multiply (DMM) and Sparse-Matrix
Multiply (SMM). Each kernel instantiated a single work-
item on the FPGA without annotation-based optimizations.
Performance results are reported as average Integer Opera-
tions Per Second (IOPS) over 10 runs, normalized to 250
MHz.

Our results are shown in Tables 1, and 2.

TABLE 1. AREA AND PERFORMANCE RESULTS FOR DMM

Board Type % ALMs % DSPs % M20Ks IOPS
Vendor BSP 20 3 17 220M
2x DDR 2GB 16 3 18 210M
4x QDR 8MB 10 3 8 236M

Table 1 demonstrates three results: First, comparing the
Vendor BSP on (Line 1) and our Tinker board (Line 2) we
can see that our tool produces an architecture with similar
resource consumption and performance. Second, comparing
all three BSPs, we can see that using different types of
memories can reduce resource consumption. Finally, by
comparing the performance results in the final column we
can see that our BSPs perform comparably to the vendor
BSP. Line 3, using QDR memories, has slightly higher
performance that either DDR based board. Our current
theory is that QDR provides slightly higher performance
because of its simultaneous read-write ports. However, we
emphasize that in an embarassingly parallel algorithm like
Dense Matrix Multiply, DDR still has higher performance
potential due to its bandwidth capacity. For this reason, we
also demonstrate results from Sparse Matrix Multiply, which
has a more random access pattern and less parallelism.

Table 2 corroborates the results found in Table 1.
Resource consumption of the Vendor BSP and our two-
DDR BSP are roughly equivalent. One surprising result
from Sparse Matrix Multiply is that QDR does not per-
form substantially better, even though it supports better

TABLE 2. AREA AND PERFORMANCE RESULTS FOR SMM

Board Type % ALMs % DSPs % M20Ks IOPS
Vendor BSP 20 2 17 228M
2x DDR 2GB 16 2 18 238M
4x QDR 8MB 11 2 8 245M

random-memory and read/write performance. Because the
performance results in Table 2 and Table 1 are of similar
magnitude, we suspect that the performance is limited by
the kernel frequency, and we intend to explore the benefits
of using QDR with random memory access patterns in depth
in our future work.

5. Conclusion

In this paper, we have demonstrated our initial results
from Tinker, our tool to create custom memory architectures
for Altera’s OpenCL Compiler. Our results demonstrate
that our tool produces Board Support Packages that are
comparable to those provided by vendors. Our future work
will build on this, creating heterogeneous boards, and using
them to solve larger problems, such as graph traversal.

References

[1] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh, “From opencl to
high-performance hardware on fpgas,” in Field Programmable Logic
and Applications (FPL), 2012 22nd International Conference on.
IEEE, 2012, pp. 531–534.

[2] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and W.-
M. Hwu, “Fcuda: Enabling efficient compilation of cuda kernels onto
fpgas,” in Application Specific Processors, 2009. SASP ’09. IEEE 7th
Symposium on, July 2009, pp. 35–42.

[3] L. Wirbel, “Xilinx sdaccel: A unified development environment
for tomorrows data center,” 2014. [Online]. Available: http:
//www.xilinx.com/publications/prod mktg/sdx/sdaccel-wp.pdf

[4] A. Corporation, Altera SDK for OpenCL: Custom Platform
Toolkit User Guide, Altera Corporation. [Online]. Avail-
able: https://www.altera.com/content/dam/altera-www/global/en US/
pdfs/literature/hb/opencl-sdk/ug aocl custom platform toolkit.pdf

