
Quantifying Hardware Security Using Joint Information Flow Analysis

Ryan Kastner, Wei Hu, and Alric Althoff
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093

{kastner, vhu040, aalthoff}@ucsd.edu

Abstract—Existing hardware design methodologies provide
limited methods to detect security flaws or derive a measure on
how well a mitigation technique protects the system. Information
flow analysis provides a powerful method to test and verify a
design against security properties that are typically expressed
using the notion of noninterference. While this is useful in
many scenarios, it does have drawbacks primarily related to
its strict enforcement of limiting all information flows – even
those that could only occur in rare circumstances. Quantitative
metrics based upon information theoretic measures provide an
approach to loosen such restrictions. Furthermore, they are
useful in understanding the effectiveness of security mitigations
techniques. In this work, we discuss information flow analysis
using noninterference and qualitative metrics. We describe how
to use them in a synergistic manner to perform joint information
flow analysis. And we use this novel technique to analyze security
properties across several different hardware cryptographic cores.

I. INTRODUCTION

Digital hardware is the foundation of modern computing
systems. It explicitly controls the actions of every single piece
of data across all of its execution. Thus, even the smallest
hardware vulnerability opens up the door for attacks across
the entire system stack. Simply stated, it is not possible to
construct a secure application upon insecure hardware. Despite
this fact, the vast majority of the security research has focused
on software. And while the hardware security research has
gained momentum in the past decade, there is still a desperate
need for hardware security design tools.

The limited focus on hardware security may be a conse-
quence of the lack of attacks focusing on hardware. However,
the number of hardware specific exploits is consistently in-
creasing. Hardware security flaws have broad ranging effects –
downgrading performance and reliability [1], opening door to
rootkits [2], or allowing root control over the system stack [3].
Security experts have shown that it is possible to downgrade
the cryptographic capability of Intel processors through a
simple yet difficult to detect modification, which may allow
an attacker to retrieve personal secrets in seconds [4]. Recent
attacks have also demonstrated the possibility to compromise
hardware deployed on a commercial jet through a hidden back
door, which provides cyber criminals a foothold to override the
flight control system [5]. What’s more, there is speculation that
hardware backdoors are present in military weapons, which
allows them to be remotely disabled [6].

Designing secure hardware is a challenging task. It goes far
beyond traditional testing and verification techniques that look
at functional correctness. First, it is impossible to fully verify
that a multibillion transistor chip is functionally equivalent to

its specification. Second, and perhaps more importantly, func-
tional correctness does not imply security; the specification can
never be entirely complete, and the uncertain portions of the
specification provide an opportune place for vulnerabilities.

Existing hardware design tools provide limited support for
detecting security flaws or deriving a measure on how well
a mitigation technique protects the system. Even the largest
semiconductor companies heavily rely on security auditing
teams, e.g., Intel’s Security Center of Excellence (SeCoE)
and the Qualcomm Product Security Initiative (QPSI) group,
to perform tedious, primarily manual inspection of hardware
designs. Thus, system designers are left to make qualitative
arguments such as: “our system will be more secure if we use
encryption” or “a hardware security module makes the system
less vulnerable to attack”. This is obviously less than ideal.

Secure hardware design requires quantitative measures on
the effectiveness of mitigation techniques. This would allows
designers to effectively reason about need for enhancing the
security of a system, which often is in direct competition with
traditional design metrics such as area, delay, throughput, and
power. A quantitative security metric enables the designer to
say “this modification adds 5% more area, and it requires 10%
more power, but makes the design 30% more secure” instead
of “I know it is costly in terms of area and power, but trust
me, it makes the design a lot more secure”. Effective metrics
that allow both hardware designers and security engineers to
quantitatively argue about the security of hardware designs are
an important and open research problem.

In this paper, we propose a novel hardware design method-
ology for analyzing and understanding the security of the
system. To the best of our knowledge, this is first time
that noninterference and information theoretic techniques have
been combined for secure hardware design. The major contri-
butions of this work are:

• Describing the benefits and drawbacks of noninterference
and information theoretic measures for understanding the
security of hardware designs.

• Introducing a information flow analysis that combines
noninterference and information theoretic techniques to
provide a metric for hardware security.

• Utilizing our novel approach to identify security vulnera-
bilities, and understanding the effectiveness of hardware
mitigation techniques.

The reminder of this paper is organized as follows. Sec-
tion II describes information flow analysis, noninterference,
and quantitative security metrics. Section III introduces our



methodology for identifying and mitigating security vulner-
abilities. In Section IV, we demonstrate our method with
design examples. Section V discuses about potential research
opportunities and challenges. We conclude in Section VI.

II. INFORMATION FLOW ANALYSIS

Information flow analysis associates data with a security
label (also called taint) and monitors the propagation of
this label through the system. It can be used to determine
whether the system adheres to security properties related to
confidentiality and integrity. This analysis is used across the
system stack – in the compiler [7], operating system [8], [9],
architecture [10], [11], [12], and hardware [13], [14], [15].

Information flow analysis most commonly uses the notion of
noninterference in order to specify security properties, which
we discuss in Section II-A. In Section II-B, we argue that
quantitative metrics are necessary in many scenarios.

A. Noninterference

The notion of noninterference was introduced by Goguen
and Meseguer as a means to specify and prove security
properties [16]. They stated that “one group of users, using a
certain set of commands, is noninterfering with another group
of users if what the first group does with those commands has
no effect on what the second group of users can see”.

Figure 1 provides some insight on noninterference at the
hardware level. Here we show the idea behind gate level
information flow tracking (GLIFT). The original digital circuit
under inspection is a four-input AND gate implemented using
a cascade of two-input AND gates. Each of the three AND
gates is augmented with GLIFT analysis logic as shown in
Figure 1 (b). The analysis logic for one 2-input AND gate
has four inputs – the two inputs to the original gate, and
their security labels. It outputs one value, which is the label
associated with the output of the original circuit. To facilitate
explanation, assume that these labels can be LOW or HIGH and
we wish to prove properties about confidentiality. Here a LOW
label means low security (e.g., public information) and a HIGH
value means high security (e.g., top secret information). The
same logic can also be used for properties related to integrity,
which is the dual of confidentiality.

Assume that LOW = 0 and HIGH = 1. We wish to deter-
mine when the output can be HIGH, or logical 1. If both inputs
are HIGH, then the output is HIGH. A more interesting case is
when there is a mix of LOW and HIGH inputs. A conservative
approach would be to mark the output as HIGH if any of
the inputs are HIGH. However, assume input A is labeled as
LOW and its value is 0, and input B is HIGH. The output of
the AND gate is 0 regardless of the value of B. Thus, we
can learn nothing about the HIGH input. This is the idea of
noninterference – by observing the final LOW outputs one can
learn nothing about the HIGH values. If either of the inputs
is 1 and the other input is HIGH, then the output is HIGH
since we know what the HIGH input value is in this case; this
is the logic as shown in Figure 1 (b). We can constructively
combine the GLIFT analysis logic in a manner as shown in

Figure 1 (a). An interested reader can find information about
generating the GLIFT logic in [17].

A Bt B At Bt

O1t

At

(a) (b)

GLIFT

AND-2A
At

Bt

O1

GLIFT

AND-2

GLIFT

AND-2
B
Ct

C
Dt

D

O2
O3

O1t

O2t

O3t

Fig. 1. GLIFT augments the original logic with analysis logic. Part (b) shows
the analysis logic corresponding to the first GLIFT AND-2 component.

Continuing with the example in Figure 1, assume that only
input A holds confidential information (e.g., a bit of your
password). We would mark the security labels At = HIGH
and Bt, Ct, Dt = LOW. Finally, assume the output O3 feeds
into a memory location visible to any program. We want to
know if O3t = HIGH, i.e., that output contains information
about your password. Equivalently, we taint A, and then use
information flow analysis to determine if O3 is tainted.

This seemingly simple approach provides a powerful
method to analyze systems against different security prop-
erties. For example, GLIFT was used to test for isolation
between users on shared communication protocols [18]; it was
used to prove timing-based noninterference for a network-on-
chip architecture [19]; and it verified that software processes
running on a microkernel were provably isolated on processor
modified to eliminate interference [20]. Additionally, GLIFT
marks interference caused by a timing channel [21]. This was
used to show that data is a cache was isolated, and shared
resources on a system on chip would not leak any information
either explicitly or through a timing channel [22], [23].

Yet, despite all these successes in analyzing systems for
different security properties, information flow analysis based
upon noninterference has its drawbacks. These are due to the
fact that noninterference takes an all or nothing approach.
For example, to determine properties related to integrity, we
would label “untrusted” data as tainted, and determine if that
data ever affects critical resources. The discrete nature of this
labeling process can quickly lead to a “taint explosion” where
the entire system is determined to be untrusted. However,
in many scenarios this is not as serious as it may seem.
Those critical cases are either exceedingly rare or difficult
to exploit in a real-life attack. And many systems have a
security policy that allows a limited amount of these flows.
Thus, noninterference does not correctly reflect the security
of the system in many situations.

B. Quantitative Metrics

Relaxing the strict property of noninterference, and devel-
oping a quantitative metric on “how much” information flows
from one location to another allows the designer to understand
the risk associated with leaking this information. And there
are often cases where some leakage is justifiable. E.g., a
password system leaks information by telling the user when
the password is incorrect. Yet, we are often willing to allow
this for a limited number of attempts.



Quantitative security metrics are a generalization of nonin-
terference. And there is past research that uses information the-
oretic measures to determine the exact amount of information
contained in a tainted label. Denning proposed using entropy
to model relationships between statements in a program [24].
Miller provided a relationship between noninterference and
mutual information using deterministic state machines [25].
McLean described the flow model security property [26]; Gray
formalized this by relating noninterference to the maximum
rate of flow between variables [27]. Mica and Morgan use
conditional entropy to calculate the channel capacity of a
program [28]. Newsome et al. [29] use channel capacity as
a quantitative measure of the influence of the inputs on the
outputs of a program using x86 binaries. Information theory
measures, e.g., the worst-case mutual information [30] and
min-entropy [31], are used to determine the difficulty of
breaking into the system. Kopf and Durmuth use information
theory to analyze time-based side channel attacks [32].

We aim to create similar quantitative metrics for hardware
design. Figure 2 uses the same example as Figure 1. Here,
we measure the mutual information from input A to signals
O1, O2, and O3, i.e., I(A;O1), I(A;O2), and I(A;O3),
respectively. It also shows I(O1;O2) and I(O2;O3). Intu-
itively, mutual information I(X;Y ) is a measure of how much
information we learn about variable X given that we have
complete knowledge of variable Y .

A

B

C

D

O1
O2

O3

0.31 bits
0.29 bits

0.21 bits

0.14 bits
0.07 bits

Fig. 2. Information flow through four-input AND gate.

Notice that the mutual information through an AND gate is
not always the same: I(A;O1) = 0.31 bits, I(A;O2) = 0.14
bits, and I(A;O3) = 0.07 bits. Mutual information is not a
local property; it is a more complex function of the entire
system and more precisely the distribution of the inputs. In
this example, we use a uniform distribution on the inputs A,
B, C, and D. The distribution on the inputs to the “later” AND
gates changes. E.g., the distribution of O1 is skewed toward 0
and away from 1; this changes the mutual information. This
is even more prevalent between A and O3. Again, A has an
even distribution between 0 and 1. But O3 is mostly 0. Thus
it is difficult to learn anything about A because O3 is almost
always 0. And this value occurs when A is both 0 and 1.

III. JOINT INFORMATION FLOW ANALYSIS

Information flow analysis is a powerful technique for deter-
mining whether a system adheres to a variety of different types
of security properties. We have built many different hardware
designs that act in accordance to security properties based
upon noninterference. However, in many cases, we found these
properties to be overly strict. In these cases, we need a more
quantitative assessment of the security.

A. Motivation

Consider again our running example from Figures 1 and 2.
Assume that we want to ensure that the password (stored in
variable A) does not leak to the unprotected memory location
(denoted by output O3). Specifying this as a noninterference
property would mark A as tainted (or HIGH), and information
flow analysis (e.g., GLIFT) would show that A can flow to
O3, i.e., the label of O3 could be HIGH. If we are relying
solely on noninterference properties, at this point we would
have to redesign the system until there is no flow between A
and O3, i.e., GLIFT indicates that the label of O3 is LOW.

Instead of going through a redesign, we could otherwise
quantify the amount of information flowing from A to O3.
Using mutual information (as shown in Figure 2) determines
that there are on average 0.07 bits of information moving from
A to O3 after propagating along only three levels of gates.
Depending on the threat model, this may be an acceptable risk.
It is not possible to provide such a quantitative measurement
using information flow analysis built upon noninterference.

We propose a joint analysis technique using noninterference
and information theoretic measures. The key idea is to use
noninterference properties as a first step. This allows us to
leverage our substantial work using GLIFT. However, when-
ever these properties are violated, we can fallback on more
quantitative metrics to provide a better understanding about
the security of hardware designs.

B. Usage Scenarios

Analyzing Cryptographic Cores: Cryptographic engines are
ubiquitous in secure systems for protecting confidentiality, data
integrity, authentication, and non-repudiation. However, there
is a fundamental problem when attempting to prove properties
about the cryptographic system – the ciphertext output is by
definition a function of the secret key.

Many security properties related to cryptographic cores
attempt to insure that the key is not leaked. Thus we wish
to mark the key as HIGH and write properties about where it
should and should not flow. However, information flow analy-
sis will rightly determine that the key flows to the ciphertext,
and then this often leads to a taint explosion; it flows to a large
part of the system. However, the key is mathematically secure
at the ciphertext. Thus, it should not be marked as flowing
there. There are ways around this using noninterference based
information flow analysis by declassifying the ciphertext data
(e.g., forcing the labels of the ciphertext to LOW). But this
requires separate analysis to insure that it is sound. In Section
IV-A show that quantitative information theoretic methods can
handle this in a more natural manner.

Quantifying Effectiveness of Mitigation Techniques: Se-
curity mitigation techniques are often not formally validated.
For example, a technique may be shown to be more effective
against certain attacks in a particular situation. But it is often
laborious to formally prove that a system is secure with respect
to that property. Additionally, even if a mitigation technique
is known or proven to be effective, it might be difficult to



implement precisely to the specification. And a subtle devia-
tion could lead to additional security vulnerabilities. Finally,
there are often many different mitigation techniques that one
can use to secure a system. For example, there are a large
number of techniques to make a memory system more secure.
Yet, it may not be clear which technique is best especially for
the system under development. The joint analysis technique
that we propose will enable designers to measure the effect
of mitigation techniques on their hardware design. Section IV
provides an example of how we can use quantitative measures
to understand the effect of different mitigation techniques on
the security of RSA IP cores.

IV. DESIGN EXAMPLES

In this section, we analyze hardware cryptographic designs
using noninterference and quantitative security properties.
Throughout the section, we use an AES and a RSA core from
opencores.org. Both cores are implemented according to their
standard specifications and tested by the designers to make
sure that they are functionally correct. We also use a Mini-
AES core that we designed (see Figure 3); it is small-scale
version of AES that we use largely for illustration purposes.
Each of the crypto cores encrypt plaintexts under given key to
produce ciphertexts. They use a ready signal to indicate when
the ciphertext is valid.

S ...

Key scheduler ...

Plaintext

Key

NibbleSub ShiftRow MixColumnAddKey

rk1

Cipher

rk2 rk3

Fig. 3. The Mini-AES cryptographic function. Other cryptographic cores have
a similar interface but perform different computations.

A. Functional and Timing Flow Analysis

It is important to understand where the key flows in the
cryptographic system. Thus, we label it as tainted (HIGH) to
indicate that it is something that we wish to track. Then we
use the Mentor Graphics Questa Formal tool to check which
signals can be tainted, i.e., we want to know where the key can
flow. The results show that the key flows to the ciphertext for
Mini-AES, AES, and RSA, which is expected. Information
flow tracking techniques using noninterference will always
indicate that there are flows from both the key and plaintext
to the ciphertext. That is, if we mark either the key or the
plaintext as tainted, the ciphertext should be tainted at the time
when the ready signal is asserted. This is because both the
key and plaintext always have an influence on the ciphertext.
From the perspective of noninterference, a change in the key
or plaintext will always be observed at the ciphertext.

Information theoretic measures differ in an important way
– the mutual information between the key and ciphertext is
zero bits when the key is a constant. Thus, it correctly states
that one cannot learn any information about the key by merely
observing the varying ciphertexts. This states that a correctly
implemented and configured cryptographic function will not

leak information about the key through the ciphertext. Addi-
tionally, the mutual information will indicate that the plaintext
fully flows to the ciphertext. This is because cryptographic
functions essentially perform one to one mapping from the
plaintext to the ciphertext using a given key. This is a necessary
condition to insure that the ciphertext can be decrypted. It
should be noted that the mutual information would be non-
zero if the key varies. In this case, you are learning information
about the key, i.e., the key has been changed.

This shows that information flow tracking can be overly
conservative. Despite the fact that there is no information flow
from the key to the ciphertext as shown by the mutual infor-
mation results, the GLIFT results tend to indicate otherwise.
Nevertheless, it is possible to use these GLIFT and mutual
information in concert to analyze the security of the system
more efficiently and effectively. If GLIFT indicates no in-
formation flow (i.e., noninterference), the mutual information
measurements will be zero. If GLIFT indicates a possible flow,
we can further use mutual information to determine the actual
amount of information flow.

The noninterference analysis declares that the key flows to
the ready signal in the RSA core. In other words, GLIFT shows
that the ready output of the RSA core may reveal information
about the secret key. More specifically, this indicates that there
is a timing channel in the RSA implementation since the key
affects ready in a timing manner. By comparison, there is no
timing channel in the AES or Mini-AES cores. This is because
the time needed to compute these encryptions is invariant, and
does not depend on the key.

We have detected a timing channel in the RSA core using
GLIFT. The next question that one may ask is how much
information if conveyed through this timing channel? Thus, we
investigate if it is possible to use quantitative security measures
to determine the amount of information that leaks from the key
through the timing channel.

B. Analysis of Mitigation Techniques

In this subsection, we will use information theoretic met-
rics to measure the timing leakage in a number of RSA
architectures each of which employs different timing channel
mitigation techniques. We compare these measurements with
the success of the attacking the timing side channel in order to
understand if these metrics can serve as a measure of security.

The basic operation of RSA is modular exponentiation,
which can further implemented using modular multiplication.
The runtime variations originate from the unbalanced condi-
tional branches in these two operations. We apply mitigation
techniques to these two modules and create six unique 32-bit
RSA architectures as shown in Table I.

R-to-L and L-to-R implement the right-to-left and left-to-
right repeated squaring algorithms respectively. These two
architectures are reference designs without any mitigation. L-
to-R always adds a dummy modular multiply operation to the
conditional branches in the modular exponentiation module of
the L-to-R implementation in order to balance the delay differ-
ence. Power ladder re-designs the algorithm flow to balance



TABLE I
RSA ARCHITECTURES WITH DIFFERENT MITIGATION TECHNIQUES. THE
FIRST COLUMN IS THE NUMBER USED FIGURE 4. THE SECOND COLUMN

HAS THE NAME WE USE IN THE TEXT. MITIGATION TECHNIQUE
DESCRIBES THE CHANGE IN THE DESIGN. TIME IS THE AVERAGE NUMBER

OF CYCLES REQUIRED BY EACH DESIGN.

Number Name Mitigation Technique Time

1 R-to-L No mitigation 3023
2 L-to-R No mitigation 1558
3 L-to-R always Dummy modular multiplication 1975
4 Power ladder Re-design algorithm flow 2099
5 Montgomery Constant modular mult 1768
6 Constant time Constant total runtime 4500

the delay difference of the conditional branches. Montgomery
uses a constant time Montgomery multiplier so that the total
runtime is dominated by the key. One cannot attack the design
by specifying different plaintexts and observing the runtime
differences. Constant time adds additional delay to make the
total runtime constant for all keys and plaintexts. The last
column of the table shows the average number of clock cycles
needed by each architecture to compute a RSA encryption.

We use entropy and mutual information as security met-
rics to quantify the amount of timing leakage. We take the
above mentioned six RSA implementations and test 2000
non-redundant keys for each to collect the total runtime
measurements T . The plaintext is set to constants in our test
so that the runtime measurements is only dependent on the
key. We calculate the entropy of runtime samples T and the
mutual information between key bit vectors ki (1 ≤ i ≤ 32)
and T . Then, we use Kocher’s method [33] to attack each of
the designs and obtain the success rates.

1 2 3 4 5 6

Entropy 9.3638 8.6432 7.3277 8.0153 5.7197 0

1 0.923044 0.782556 0.855988 0.610831 0

1 2 3 4 5 6

Entropy 1 0.923044 0.782556 0.855988 0.610831 0

Mutual information0.560283 0.379768 0.234389 0.303262 0.165808 0

Success of attack0.798938 0.696353 0.626126 0.690347 0.517205 0.502344

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1 2 3 4 5 6

Entropy

Mutual information

Success of attack

N
o
rm

al
iz

ed
 e

n
tr

o
p
y
,

av
er

ag
e 

m
u
tu

al
 

in
fo

rm
at

io
n
 a

n
d
 a

v
er

ag
e 

su
cc

es
s 

o
f 

at
ta

ck

RSA architectures (1 ~ 6)

Fig. 4. Normalized entropy, average mutual information and average attack
success rate over all key bits for different RSA architectures.

Figure 4 plots the normalized entropy, the average mutual
information measurements along with the average success of
attack over all key bits. Both entropy and mutual information
measurements increase or decrease in accordance with the
attack success rates, which indicates that entropy and mutual
information may serve as a metric of timing leakage. It
also provides insight about how effective a mitigation tech-
nique could be. Specifically, the designs with no mitigation
techniques have relatively higher timing leakage. The Power
ladder technique is relatively less efficient than L-to-R al-

ways in mitigating a RSA timing channel. By contrast, the
Montgomery is the most effective yet practical technique. The
Constant time implementation completely mitigates the timing
channel, resulting an attack success rate around 50%, which is
pretty much random guess. However, it comes at a significant
cost of performance.

From our observations, the number of unique runtime
samples is the key parameter to model timing characteristics. If
the runtime samples spread in a wider range, the probability of
observing each sample will decrease. According to information
theory, a rare event carries more information when it hap-
pens. Thus, observing each runtime sample will reveal more
information about the key. If the runtime samples distribute
within a smaller range, each runtime sample may correspond
to multiple possible keys and thus provides less information
about the key. Mathematically, the amount of timing leakage
revealed by each runtime sample can be modeled by self-
information. Let p(tj) denote the probability of observing tj ,
the following formalizes the amount of leakage.

Is = log2 p(tj), tj ∈ T

Entropy is the expected value of self-information. It mea-
sures the average amount of information leakage over all
runtime observations. Thus, entropy can be a metric for
quantifying timing leakage. However, entropy only considers
the runtime observations. This works well in our test, where
we use non-redundant keys. Entropy measurements can be
imprecise when considering different distributions of the key.
Mutual information moves a step further and takes the distribu-
tion information of key into account. Thus, mutual information
can be a more effective metric for quantifying the amount of
timing information flow.

V. DESIGN CHALLENGES AND OPPORTUNITIES

Methods for Efficiently Calculating Security Metrics: Our
security metrics are typically dependent on statistical analysis.
The primary computational step in calculating these metrics is
to estimate the distribution of random variables. An interesting
question would be how to achieve an estimation close to the
actual distribution while collecting as few samples as possi-
ble. This process also benefits from a hardware accelerated
emulation framework for collecting and analyzing data.

Nonparametric Measures for Hardware Security Metrics:
We have identified that the strengh of mutual information
lies in its incorporation of knowledge about the key, and the
importance of distribution estimation. Alternative measures
which do not require assumptions about the data distribution—
whatever data we find to be useful—are nonparametric values
such as Kendall’s τ or Spearman’s ρ. These rank correlation
methods allow testing for associations regardless of distribu-
tion, and may provide insight when the connection between
observations and design security is highly nonlinear.

Languages for Specifying Security Properties: The security
properties must be specified in a formal and succinct manner.
This must be balanced with expressibility and usability of
the language. Ideally, it does not require a security expert



to write the properties especially considering they require
understanding of the hardware. Thus the language must be
usable by both security and hardware experts. Furthermore, a
language similar to that used in hardware design (e.g., System
Verilog) would be easier to invoke using existing hardware
testing and verification tools.

VI. CONCLUSION

We need better tools to determine the security of hardware
designs. Up until this point, hardware information flow analy-
sis has used noninterference as a model of security. However,
information theoretic metrics can more precisely quantify the
amount of information flow. We propose a joint information
flow analysis that combines noninterference with quantitative
measures that enables hardware designers to specify and check
if a system adheres to the desired security properties. Design
examples have demonstrated that our method can be used to
model security flaws and measure the effectiveness a different
mitigation techniques.

ACKNOWLEDGMENT

This work was supported by NSF grant 1527631.

REFERENCES

[1] S. Wasson, “Errata prompts intel to disable tsx in haswell, early
broadwell cpus,” August 2014, http://techreport.com/news/26911/.

[2] L. Constantin, “Design flaw in intel processors opens door to rootkits, re-
searcher says,” August 2015, http://www.pcworld.com/article/2965872/.

[3] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and implementing malicious hardware,” in Proc. of the 1st
Usenix Workshop on Large-Scale Exploits and Emergent Threats, ser.
LEET’08, Berkeley, CA, USA, 2008, pp. 5:1–5:8.

[4] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in Proc. of the 15th International
Conference on Cryptographic Hardware and Embedded Systems, ser.
CHES’13. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 197–214.

[5] R. Waugh, “Could a vulnerable computer chip allow hackers to down
a boeing 787? ‘back door’ could allow cyber-criminals a way in,” May
2012, http://www.dailymail.co.uk/sciencetech/article-2152284/.

[6] S. Adee, “The hunt for the kill switch,” IEEE Spectr., vol. 45, no. 5, pp.
34–39, May 2008.

[7] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE J. Sel. Areas Commun., vol. 21, p. 2003, 2003.

[8] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard os abstractions,”
in Proc. of 21st ACM SIGOPS Symposium on Operating Systems
Principles. New York, NY, USA: ACM, 2007, pp. 321–334.

[9] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris, “Labels and event
processes in the asbestos operating system,” in Proc. of the Twentieth
ACM Symposium on Operating Systems Principles, ser. SOSP ’05. New
York, NY, USA: ACM, 2005, pp. 17–30.

[10] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” SIGOPS Oper. Syst.
Rev., vol. 38, no. 5, pp. 85–96, Oct. 2004.

[11] J. Newsome and D. Song, “Dynamic taint analysis: Automatic detection,
analysis, and signature generation of exploit attacks on commodity
software,” in Proc. of the Network and Distributed Systems Security
Symposium, Feb. 2005.

[12] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible infor-
mation flow architecture for software security,” in Proc. of the 34th
Annual International Symposium on Computer Architecture, ser. ISCA
’07. New York, NY, USA: ACM, 2007, pp. 482–493.

[13] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in Proc. of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS XIV.
New York, NY, USA: ACM, 2009, pp. 109–120.

[14] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper:
A language for hardware-level security policy enforcement,” in ACM
SIGARCH Computer Architecture News, vol. 42, no. 1. ACM, 2014,
pp. 97–112.

[15] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” in Proc. of the
20th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS15), 2015.

[16] J. A. Goguen and J. Meseguer, “Security Policies and Security Models,”
in IEEE Symp. on Sec. and Privacy. Los Alamitos, CA, USA: IEEE,
1982, pp. 11–20.

[17] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “Theoretical fundamentals of gate level information flow
tracking,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 30, no. 8, pp. 1128–1140, 2011.

[18] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner,
“Information flow isolation in i2c and usb,” in 48th Design Automation
Conference (DAC’11). IEEE, 2011, pp. 254–259.

[19] H. M. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T. Chong,
and T. Sherwood, “Surfnoc: a low latency and provably non-interfering
approach to secure networks-on-chip,” ACM SIGARCH Computer Ar-
chitecture News, vol. 41, no. 3, pp. 583–594, 2013.

[20] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood, “Crafting a usable micro-
kernel, processor, and i/o system with strict and provable information
flow security,” in Computer Architecture (ISCA), 2011 38th Annual
International Symposium on. IEEE, 2011, pp. 189–199.

[21] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “A practical
testing framework for isolating hardware timing channels,” in Proc.
of the Conference on Design, Automation and Test in Europe. EDA
Consortium, 2013, pp. 1281–1284.

[22] J. Oberg, T. Sherwood, and R. Kastner, “Eliminating timing information
flows in a mix-trusted system-on-chip,” IEEE Des. Test. Comput.,
vol. 30, no. 2, pp. 55–62, 2013.

[23] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “Leveraging
gate-level properties to identify hardware timing channels,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 9, pp. 1288–
1301, 2014.

[24] D. E. Robling Denning, Cryptography and data security. Addison-
Wesley Longman Publishing Co., Inc., 1982.

[25] J. K. Millen, “Covert channel capacity,” in 2012 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 1987, pp. 60–60.

[26] J. McLean, “Security models and information flow,” in Security and
Privacy, Proc. of 11th IEEE Computer Society Symposium on. IEEE,
1990, pp. 180–187.

[27] J. W. Gray III, “Toward a mathematical foundation for information flow
security,” Journal of Computer Security, vol. 1, no. 3, pp. 255–294,
1992.

[28] A. McIver and C. Morgan, “A probabilistic approach to information
hiding,” in Programming methodology. Springer, 2003, pp. 441–460.

[29] J. Newsome, S. McCamant, and D. Song, “Measuring channel capacity
to distinguish undue influence,” in Proc. of the ACM SIGPLAN Fourth
Workshop on Programming Languages and Analysis for Security. ACM,
2009, pp. 73–85.

[30] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden, “Anonymity
protocols as noisy channels,” in Trustworthy Global Computing.
Springer, 2007, pp. 281–300.

[31] G. Smith, “On the foundations of quantitative information flow,” in Foun-
dations of Software Science and Computational Structures. Springer,
2009, pp. 288–302.

[32] B. Kopf and M. Durmuth, “A provably secure and efficient coun-
termeasure against timing attacks,” in Computer Security Foundations
Symposium, 2009. CSF’09. 22nd IEEE. IEEE, July 2009, pp. 324–335.

[33] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in CRYPTO ’96: Proc. of the 16th
Annual International Cryptology Conference on Advances in Cryptology.
London, UK: Springer-Verlag, 1996, pp. 104–113.


