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ABSTRACT
Learning cumulative distribution functions (CDFs) is a widely
studied problem in data stream summarization. While cur-
rent techniques have e�cient software implementations, their
e�ciency depends on updates to data structures that are not
easily adapted to FPGA or ASIC implementation. In this
work, we develop an algorithm and a compact hardware ar-
chitecture for learning the CDF of a data stream and apply
our technique to the problem of on-chip run-time testing for
bias in the output of random number generators (RNGs).
Unlike previous approaches, our method is successful regard-
less of the expected output distribution of the RNG under
test.

1. INTRODUCTION
Computing the kth smallest element in a list is a common

problem in computer science, and in this work, we discuss
an approximate algorithm for doing so. Such statistics are
frequently used in stream mining and database analysis to
determine percentiles of network latency, assist server load
balancing, and rank streaming objects.

As mentioned in [1], learning manually spaced data quan-
tiles doesn’t necessarily provide su�cient knowledge about
a distribution. Without prior knowledge of some proper-
ties of the stream manual spacing may ignore areas where
greater curvature is present in the cumulative distribution
of the stream. One of the objectives of this paper is to ad-
dress this in constant space and time per update in a way
that does not depend upon the number N of elements in
the stream. To the best of our knowledge this is the first
algorithm implementing such an adaptive strategy in a way
easily amenable to e�cient hardware implementation.

While myriad applications exist for run-time quantile and
cumulative distribution function (CDF) estimation, in this
paper we apply our work to nonparametric run-time test-
ing for bias in random number generators (RNGs). Other
recent work [2, 3, 4, 5, 6, 7] focuses on implementing previ-
ous well-regarded tests [8] for bit-wise uniformity and inde-
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pendence. Our architecture generalizes this work in that it
can be used when testing for bias in random values drawn
from any distribution. This is particularly useful when many
stages of post-processing are involved prior to use of the vari-
ates in question. For example, assume that a trusted uni-
form and independent bit-generating pseudorandom number
generator (PRNG) generates integer variates used in an in-
version sampler [9] to allow sampling from a Poisson distri-
bution. Testing the output of the PRNG is useful, but the
error and/or attack surface also includes the implementa-
tion of the inversion sampling algorithm and all other post-
processing stages. Without a testing framework in place
immediately prior to the consumer of the random numbers
such an error could go undetected for a disturbingly long
time.

In terms of cryptographic techniques, the quality of the
random or pseudorandom number generation routine is of
utmost importance. Over the past several years many se-
curity flaws have been at least in part caused by bias in ei-
ther the method used to generate initial random variates, or
simple coding errors in the interpretation of random values.
E.g., as discussed in [10], a fencepost error created by using
 instead of < can significantly compromise the security of a
supposedly secure platform. While for o↵-line error checking
it is often feasible to use a more time consuming and resource
hungry technique such as an Anderson-Darling test [11], a
straightforward hardware implementation would add consid-
erable area to designs that may already be resource-starved.
Our approach addresses these concerns, and can mitigate
attacks that rely on manipulating the environmental or al-
gorithmic surface involved in either random and pseudoran-
dom number generation.

It is important to realize that the dangers of attacks or
errors involving random number generation routines are not
limited to cryptographic scenarios. Consider a hypotheti-
cal situation where one or several investing institutions use
Monte Carlo simulation routines—which often require vari-
ates from specific non-uniform distributions—running on FP-
GAs to model properties of financial indicators. It is a
well known result from the theory of dynamical systems
that small periodic perturbations at well-placed intervals
can cause a system previously thought to be stable to di-
verge dramatically [12]. If an attacker were to introduce a
subtle bias in the random number generation routine at the
right times, the model could be made to behave either errat-
ically, or more interestingly, according the the whims of the
attacker. Testing for bias immediately prior to use would
mitigate such concerns.



Algorithm 1 A Simple Quantile Learning Algorithm

Input: ~↵, Q̂0, �
Result: Q̂t ⇡ Q
t 0
while xt exists

for every j 2 [n]
Q̂t(↵j) Q̂t�1(↵j)� �sgn↵(Q̂t�1(↵j)� xt)

end for

t t+ 1
end while

In summary, this work provides

• A novel algorithm for adaptively spacing CDF estima-
tion points, designed to obtain higher precision in the
tails of completely unknown distributions.

• An e�cient FPGA hardware architecture for quantile
and CDF estimation, requiring only constant storage
independent of the length of the stream.

• A technique and architecture for discovering bias in
random number generation pipelines, regardless of source,
expected distribution, and true vs. pseudorandom-
ness.

2. RELATED WORK
While a näıve algorithm for determining a quantile is

O(N logN)—sort ascending and pick the kth element—for
the large number N of elements found in many databases,
or when N !1 as in a stream of data which is later sum-
marized and discarded, such an algorithm is impossible to
apply. Even substantially less intuitive approaches such as
Quickselect [13] require O(N) space. To address this issue,
many algorithms have been developed for quantile approxi-
mations, (see [14, 15, 16] for recent examples,) that require
a small fraction of the space of prior work. While these al-
gorithms may have a very e�cient software implementation,
an e�cient FPGA architecture would require implementing
and maintaining the update algorithms and complex data
structures that make these approaches possible, and hence
require substantial overhead. In this work we develop an
FPGA architecture—and introduce several nontrivial exten-
sions—for the algorithm presented in [17] and [18] that only
require constant space and time for both storage and up-
dates. This algorithm is not as precise as those in the work
mentioned above, and only achieves minimal error when the
data stream elements are processed in time independent or-
der. An algorithm without this requirement would return
an estimate within ✏ of the true quantile function even when
given a sorted stream—which is very nearly the worst case
for our algorithms. In many situations this is a serious draw-
back, but in several important applications this can be quite
advantageous, such as our bias tester in section 3.4, or other
applications where testing for time independence is among
the goals.

Hardware for testing RNGs related to our work here has
been developed in many recent publications [3, 4, 6, 7, 5,
2]. The method of [7] implements several of the NIST [8]
tests using dynamic reconfiguration due to the large hard-
ware requirements of all 15 implementations of these tests.
In [5] the authors implement versions of two of the NIST
tests and optimize them by identifying common operations

between tests and approximating the statistical thresholds
used. The work of [4]—which is closest to our own—extends
this by e�ciently implementing eight of the 15 tests recom-
mended by NIST, and approximating the thresholds. The
work of [6] and [2] address this issue and provide extension
to true—and in [2], non-ideal—random sources, but these
works focus on RNGs where the output can be only one of
two values, and are potentially insensitive to programming
errors or post-processing-based attacks. In [3] the authors
of [2] address environmental attacks on true RNGs—those
RNGs extracting randomness from their physical environ-
ment—and use empirical tests to determine the behavior of
the statistical features they extract. Several of the papers
mentioned above present work designed to detect problems
at the output of the RNG in accordance with the health

test paradigm discussed in the relevant U.S. National In-
stitute of Standards and Technology recommendation [19].
Our contribution addresses a gap in the taxonomy: nonpara-
metric testing of random variables from any distribution at
the point of use—as opposed to near the RNG.

3. BACKGROUND AND METHODOLOGY

3.1 Quantiles
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Figure 1: Results from Algorithms 1 (left) and 2. The
blue curved line is the ideal true CDF. The points of the
red steps are the learned result for n = 8, � = 10�2, and
⇣ = 10�4. Algorithm 1 misses detail in the tail regions,
while Algorithm 2 starting from a equally spaced ↵ vector
adapts to represent the tails more densely.

An empirical quantile of some random variable X ⇠ fX ,
where fX is a probability density, is the value at a location
in a sorted array L of unique entries drawn from fX , where
“location” is stated in terms of a fraction of the length of
the array. That is to say, if Q is the quantile function of a
probability density fX , and N is the number of values drawn
from fX , sorted, and placed in L, then Q(↵) = L[dN · ↵e] is
the empirical ↵-quantile of fX . This implies that the median
equals the ↵ = 0.5 quantile, and quartiles are the ↵ = [0.25,
0.5, 0.75] quantiles.

Put somewhat more formally, Q is the inverse of the CDF
FX of fX . Assuming we treat a stream element xt, taken at
time t from the stream, as a sample from fX , the CDF of
that data stream is F (z) = Pr(xt  z), and so the quantile
function can be written

Q(↵) = F�1
X (↵) = inf {x 2 supp(FX) : ↵  FX(x)} (1)

3.2 Stochastic Approximation of Quantiles
For each stream element xt we use the update equation



defined in [18] for our approximation. This is

Q̂t(↵) Q̂t�1(↵)� �sgn↵(Q̂t�1(↵)� xt) (2)

where

sgn↵(z) =

(
�↵ if z < 0

1� ↵ if z � 0
(3)

Given a family of ↵j values at which to approximate the
quantile function of a univariate stream we can run this up-
date equation in parallel for each ↵j .

Theorem: Q̂t(↵) in Algorithm 1 converges to the ↵-quantile
of the data stream generating xt.

Proof Sketch: Informally, we begin with ↵ = 0.5, and the
reasoning for all ↵ 2 [0, 1] flows naturally from this case.
Let xt be a stream element available at time t. Recall that
by assumption xt and xt�1 are independent in time for all t,
and so have an equal chance of being both above the median,
both below the median, or one on either side of the median.
Assume Q̂t(0.5) has converged. Then half of the time xt

cancels out xt�1 because sgn0.5(xt) 2 {�0.5, 0.5}, and so
Q̂t(0.5) stays in place on average.
Next, assume Q̂t(0.5) has not converged. If Q̂t(0.5) is be-

low the median, then there is a probability greater than 0.5
that xt � Q̂t(0.5) and so Q̂t(0.5) will increase by 0.5� at a
rate equal to that probability. This will continue until con-
vergence, i.e. until xt � Q̂t(0.5) with probability 0.5, which
occurs exactly when Q̂t(0.5) is within � of the median of the
observed stream elements. When considering any particular
↵ the intuition remains the same.

3.3 Learning Cumulative Distributions
Algorithm 1 is useful when we desire Q̂(↵) for a fixed set

of ↵ values that we choose a priori. Now we will introduce a
modification that allows us to learn ↵ under the constraint
that for j 2 [n] the Q̂(↵j) values be equally spaced through
the range of the distribution, with the exception that both
↵1 and ↵n remain fixed at their a priori values. These recov-
ered ↵ values under this constraint form the CDF computed
at equally spaced points over the domain of fX . This implies
that the ↵ values that we learn have relatively greater den-
sity in areas of low probability, which leads to more accurate
tail estimates.
We accomplish this adaptation by adding the second finite

di↵erence of all Q̂t(↵), denoted �2[Q̂] in the sequel, to the
set of ↵s at each recursive step after attenuation to a small
value in the range of the CDF. That is to say

↵j  ↵j + ⇣�2[Q̂] (4)

where ⇣ is a suitable step size. We advise practitioners to
take care when selecting ⇣. A heuristic is to set ⇣ = (C ·n)�1,
for some large constant C. This is because (a) all CDFs are
sharply bounded in [0, 1], and (b) we are simultaneously
learning Q̂t(↵), and too great a change in ↵ can destabilize
other algorithmic components. Note that if ⇣ is not su�-
ciently small then this algorithm can fail, and oscillations in
the results indicate that a smaller step size is required. For
a visual comparison between the results of Algorithms 1 and
2 see Figure 1.

Theorem: Q̂t(↵) in Algorithm 2 converges to equally spaced
points over between Q̂t(↵1) and Q̂t(↵n), while these two

Algorithm 2 A Distribution Learning Algorithm

Input: ~↵, Q̂0, �, ⇣
Result: ~↵ ⇡ FX

t 0
while xt exists

for every 1 < j < n
Q̂t(↵j) Q̂t�1(↵j)� �sgn↵(Q̂t�1(↵j)� xt)
↵j  ↵j + ⇣�2[Q̂t]

end for

t t+ 1
end while

converge to those ↵-quantiles of the data stream generating
xt.

Proof Sketch: This is easy to see when considering that
adding ⇣�2[Q̂t], for small ⇣, forces the second finite di↵er-
ence toward zero, ⇣�2[Q̂t] toward a constant, and thus Q̂t

towards linearity. If Q̂t(↵) are equally spaced, then ↵ are
equal to points on the CDF FX , where Q(↵) = F�1

X (↵), and

Q̂t(↵) ⇡ Q(↵).

3.4 PRNG and RNG Monitoring
To determine whether our RNG under test is biased, we

may compute at regular intervals a p-value as

zj = ↵j �
|Q̂t(↵j)�Q(↵j)|

�t
(5)

p = min
j

(
2n

 ✓
↵j

zj

◆zj
✓
1� ↵j

1� zj

◆1�zj
!t)

(6)

where t is the number of values tested so far. Incorporating
the factor of 2n corrects the probability for both the two-
tailed nature of the test, and the fact that 1  j  n. We
derive p from the Cherno↵-Hoe↵ding tail bound on sums of
independent Bernoulli random variables.

If the input stream is arriving in an independently and
identically distributed manner with true ↵-quantile equal to
Q(↵), then p from Eqn. (6) will be on the order of 2n. If
the input stream is biased, then p will be very small. So for
a fixed false rejection probability ✓

Reject = p  ✓ (7)

To simplify this computation, a user can choose the update
interval for p to be as long as they wish. For the example
in Figure 6 p is computed once per thousand observations.
This has little e↵ect other than to make the time until de-
tection last until the end of an interval—recall that Q̂(↵)
is updated continuously—and allows us to take a leisurely
approach to updating p using whatever method is most prac-
tical. In practice, a user can numerically compute the values
of |Q̂t(↵j) � Q(↵j)| for which Eqn. (6) equals their chosen
✓. For example, minimizing

J(zj) =

 
2n

�����

✓
↵j

zj

◆zj
✓
1� ↵j

1� zj

◆1�zj
�����

t

� ✓

!2

(8)

with respect to |Q̂(↵j) � Q(↵j)| will yield a threshold for
the absolute di↵erence instead, and simplify computation
at each interval. The values of Q̂(↵j) can be reset after
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Figure 2: A comparison of p-values from Anderson-Darling
(AD) and Kolmogorov-Smirnov (KS) tests against those of
our statistic (see Eqn. (6)). Each row are results given a
di↵erent initial probability distribution, points are p-values
at varying degrees of bias. The top row is from a normal
distribution with µ = 0 and � = 1, 000, second is a beta
distribution with parameters (a, b) = (2, 10), and the bottom
row is a Poisson distribution with parameter 4. Each point
is a p-value computed given a sequence of three thousand
observations with n = 6 and � = 10�4. Note that the AD
test for p-values < 6⇥ 10�9 are thresholded to 6⇥ 10�9 due
to the excessive computation necessary to determine smaller
p-values.

a reasonable number of intervals to avoid storing many of
these thresholds for di↵erent t.

Because the Cherno↵ bound assumes independence, and
the movements of Q̂(↵) are dependent on the underlying
CDF, Eqn. (6) is imprecise. In order to compute the precise
probability of a deviation Q̂(↵) under the null hypothesis
we would need to compute the probability at every step.
However, if � is small enough such that a �-step of Q̂(↵) does
not appreciably change the probability of Q̂(↵) increasing or
decreasing, then Eqn. (6) holds quite well. “Small enough”
will depend on the probability distribution under test, but
there is no � too small for this application, barring obvious
numerical issues.

We can see in Figure 2 that the statistic closely follows
the well-known Kolmogorov-Smirnov (KS) and Anderson-
Darling (AD) test statistics with varying bias for several
distributions. Note also that neither the KS or AD test has a
trivial extension to a streaming environment. Additionally,
our test is sensitive to autocorrelation—an issue that is not
possible to detect with either a KS or AD test.

4. IMPLEMENTATION

4.1 A Q̂(↵) Functional Unit

>=M
U
X

Output

Figure 3: A hardware estimator for a single Q̂(↵)

A Q̂(↵) unit with n = 1 leads to the hardware architecture
depicted in the block diagram of Figure 3. All Q̂(↵) hard-
ware units are independent except for the read-only value
x. On account of this, increasing n, and hence the number
of ↵ values, creates a group of nearly identical Q̂(↵) units.
We implemented our designs using Xilinx Vivado High Level
Synthesis (HLS) targeting a Zynq-7020 SoC.

Referring to the HLS code for this operation, shown in
Figure 4, we initialize �(1�↵) and ��↵—in Figure 3 these
are arrays pos and neg respectively—only once before use,
and these values remain constant throughout. In practice
this loop may be unrolled manually or using #pragma HLS
UNROLL to minimize impact on latency. Also note that
the ternary statement is necessary to ensure that the multi-
plexer is generated as desired. FPGA area and performance
estimates are listed in Table 1.

Table 1: Area and Performance Estimates for a Single Q̂(↵)
Unit. Latency (Lat) is in cycles, Throughput (Tp) in MHz

Lat Tp FF LUT DSP

8-bit int 2 164 33 67 0

32-bit int 2 164 129 267 0

32-bit float 7 143 400 867 2

Users should make sure to select matching data types for
both Q̂(↵) and the arrays pos and neg as shown in Figure 4.
If these data types do not match, the user (or tool) will have
to insert a (relatively) expensive conversion to the highest
precision type, which is often floating point, for the sub-
traction. This is almost never beneficial or necessary. The
most common case, where Q̂(↵) is integer and �↵ is not,
can be easily solved by rounding �↵ and interpolating to
find something near the true value. If �↵ loses an unaccept-
able amount of precision by doing this, it is very likely that
the domain of the distribution of interest is small enough
to require a fixed or floating point version. Now is a good
time to reenforce that the resulting Q̂(↵) estimate can be as
much as � away from Q(↵) at any time when the input is
completely independent in time, which would be the ideal
case.

While Algorithm 1 can be implemented e�ciently in hard-
ware with relative ease, Algorithm 2 is somewhat more chal-

for (int j = 0; j < n; ++j)

Q_hat[j] -= (Q_hat[j] > x) ? pos[j] : neg[j];

Figure 4: HLS Code for Algorithm 1. See discussion in
section 4.1.



Algorithm 3 An Approximation of Algorithm 2

Input: ~↵, Q̂0, �, ⇣
Result: ~↵ ⇡ FX

t 0
while xt exists

for 1 < j < n

b 
(
� if Q̂t�1(↵j) � xt

0 otherwise

g  
(
⇣ if �2[Q̂t](↵j) � 0

�⇣ otherwise

Q̂t(↵j) Q̂t�1(↵j)� (b� [�↵]j)
[�↵]j  [�↵]j + g

end for

t t+ 1
end while

Table 2: Comparison with Previous Work [4]
This work* [4] all 8 tests

FF 774 Sum of 8 = 519

LUT 402 Sum of 8 = 934

Throughput (MHz) 164 Min of 8 = 132

* The architecture shown in Figure 3 with n = 6

replications.

lenging. Our adaptations are described in the next section
and result in Algorithm 3.

4.2 A Hardware Friendly Approximation
Algorithm 3 is an approximation of Algorithm 2. To make

Algorithm 3 hardware amenable, we eliminate multiplica-
tions completely, and replace the very small ⇣�2[Q̂t] values
with small constants. Algorithm 3 updates �↵ at every time
step instead of ↵, and so in in order to obtain the ↵ values
as viable points on the CDF in question, ↵ must be divided
by �. If a group of ↵ values are needed at every time step,
then this division might be prohibitive, but if it is possible
for us to choose � to be a power of two, then these concerns
are obviated for the most part. Replacing ⇣�2[Q̂t] with ⇣
has the asymptotic e↵ect of adding an error of at most ⇣ to
the output.

The hardware block diagram in figure 5 shows a three-
point CDF estimator. ↵ of the two extreme end points are
fixed, and so we reuse the Q̂(↵) functional units as shown
in Figure 3 for them. Like the Q̂(↵) units, the area of this
architecture scales as O(n), as all elements shown in the
figure must be duplicated for each additional ↵, minus one
subtract unit and the end-point Q̂(↵) units. For area and
performance results for a an implementation when n = 3 see
Table 3

We compare our implementation to the closest prior work
[4]—an implementation of approximations of eight tests from
the NIST Statistical Test Suite—in Table 2. We have made
an e↵ort to make the comparison fair by working under the
assumption that all eight of these tests are implemented si-
multaneously on the same FPGA, and (as stated in [4]) are
not sharing resources. So we compare to the sum of the
area consumption of the eight tests from [4]. The through-
put of the test supporting the slowest clock will dictate the

rate at which other tests, and the RNG under test, can be
run. Thus we take the minimal throughput from [4] for our
comparison. For our work, we select a 32-bit implementa-
tion of Q̂(↵) with n = 6 replications with di↵ering ↵s. This
is not the most hardware e�cient implementation we have
proposed, but it is the most fair comparison.
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Figure 5: A hardware architecture for CDF estimation at
three points.

Table 3: Area and Performance for a 3-point CDF Estima-
tor. Latency (Lat) is in cycles, Throughput (Tp) in MHz

Lat Tp FF LUT DSP

32-bit float 25 117 1,030 2,107 4

5. EXPERIMENTAL RESULTS
We compare three of the PRNGs mentioned in [6] in our

experiment (see Table 4). LFSR and BigMod are known to
be biased. LFSR over-represents small values, while BigMod
has a slightly “lumpy”histogram. Note that we have verified
that neither of these passes the NIST Statistical Test Suite
(STS), (0/15 for LFSR, 1/15 for BigMod), while Twister
passes 14/15 of these tests with test parameters set to the
defaults. For our STS tests we used 550 groups of 16,000
bits each, making 8.8⇥ 106 bits in all.

5.1 Inversion Sampling Bias Test
For our example, we test the three PRNGs listed in Ta-

ble 4. Our null hypothesis is that these PRNGs produce a
uniformly random sequence of integers in the range [1, 231�
1]. Most importantly, we do not test the outputs x of the
PRNGs directly, instead, we post-process each, to make x0,
using inversion sampling according to the following:

x0 = F̂�1
X (x/(231 � 1)) · (231 � 1) (9)

where F̂�1
X is an fine grained approximation to the quan-

tile function of a standard normal distribution and we set
Q(↵)—our null model—accordingly. F̂�1

X is approximate in
that we bin the 231 � 1 unique values from the PRNGs into
22, 734 bins equally spaced over [�1⇥ 1010, 1⇥ 1010].

Table 4: PRNGs Scored in Figure 6.
PRNG Implementation

Twister Mersenne Twister [20] generating 31 bit integers

LFSR x x31 + x28 + 1

BigMod x 1583458089 · x mod (231 � 1)
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Figure 6: A comparison of p-values over a sequence of three
million observations from the PRNGs in Table 4, with n = 6.
✓ (dashed line) is a constant threshold computed for a false
positive rate equal to 2�40. See section 5.1 for discussion.

p-values computed at intervals of 103 for n = 6 during
three million observations are shown in Figure 6. See equa-
tion (6) for the details of p-value computation.

Using the rather relaxed ✓ = 2�40, we reject the null hy-
pothesis the first time the test statistic crosses the reject
threshold ✓. We can see from Figure 6 that even a signif-
icantly larger ✓ would not reject Twister, but would reject
the others considerably sooner.

6. CONCLUSION
In this work we have developed an algorithm for learn-

ing values, Q̂(↵), and probabilities, ↵, of an unknown CDF,
and included modifications to ease hardware implementa-
tion. We demonstrated the usefulness of the technique for
uncovering bias in sources of randomness when considering
the entire random number generation pipeline as opposed
to only the RNG or PRNG. We have also shown that our
work compares favorably in terms of both area consump-
tion and throughput with previous less flexible approaches
to run-time bias detection.

A notable drawback of our algorithm is that in order to
function optimally it requires the stream under analysis to
generate variates in a time independent manner. While this
is ideal for testing RNGs, it will give suboptimal results for
ordered data. In our future e↵orts we will work to mitigate
this algorithmic deficiency, and apply our approach to more
general run-time on-chip statistical monitoring.
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