
..

NETWORKS ON CHIP WITH PROVABLE
SECURITY PROPERTIES

..

IN SYSTEMS WHERE A LACK OF SAFETY OR SECURITY GUARANTEES CAN BE

CATASTROPHIC OR EVEN FATAL, NONINTERFERENCE IS USED TO SEPARATE DOMAINS

HANDLING CRITICAL (OR CONFIDENTIAL) INFORMATION FROM THOSE PROCESSING NORMAL

(OR UNCLASSIFIED) DATA FOR FAULT CONTAINMENT AND EASE OF VERIFICATION.

SURFNOC SIGNIFICANTLY REDUCES THE LATENCY INCURRED BY STRICT TEMPORAL

PARTITIONING.

......As multicore processors find
increasing adoption in domains such as aero-
space and medical devices, where failures have
the potential to be catastrophic, strong per-
formance isolation and security become first-
class design constraints. When cores are used
to run separate pieces of the system, strong
time and space partitioning can help provide
such guarantees. However, as the number of
partitions or the asymmetry in partition
bandwidth allocations grows, the additional
latency incurred by time multiplexing the net-
work can significantly impact performance.

The difficulty in designing such strong
separation functionality into typical networks
on chip (NoCs) is that they have many inter-
nal resources that are shared between packets
from different domains, which we would
otherwise wish to keep separate. These
resources include the buffers holding the
packets, the crossbar switches, and the indi-
vidual ports and channels. Such resource con-
tention introduces “interference” between
these different domains, which can create a
performance impact on some flows, pose a
security threat by creating an opportunity for
timing channels,1 and generally complicate
the final verification and certification process

of the system because all of the ways in which
that interaction might occur must be ac-
counted for. Noninterference means that the
injection of packets from one domain can
never have any effect on the delivery of pack-
ets from other domains, even in their timing.

These concerns are similar to, but distinct
from, the problem of providing quality-of-
service guarantees. Although QoS can mini-
mize the performance impact of sharing
between domains by providing a minimum
guaranteed level of service for each domain
(or class),2-5 as Wang and Suh show, QoS
techniques still allow some degree of timing
variations and thus do not truly support non-
interference.1 The only way to be certain that
the domains are noninterfering is to statically
schedule them on the network over time.
However, a straightforward application of
time multiplexing leads to significant in-
creases in latencies because each link in the
network is now time-multiplexed between
many domains.

The core idea behind our approach, for
meshes and tori, is that if a strictly time-multi-
plexed link is seen as an oscillating behavior,
we can stagger the phases of these oscillations
across the network such that a set of “waves”

Hassan M.G. Wassel

Google

Ying Gao

University of California,

Santa Barbara

Jason K. Oberg

University of California,

San Diego

Ted Huffmire

Naval Postgraduate School

Ryan Kastner

University of California,

San Diego

Frederic T. Chong

Timothy Sherwood

University of California,

Santa Barbara

0272-1732/14/$31.00�c 2014 IEEE Published by the IEEE Computer Society

...

57

is created. As these waves traverse the net-
work, they provide an opportunity for packets
of the corresponding domain to travel unim-
peded along with these waves (thus avoiding
excessive latency), while still requiring no
dynamic scheduling between domains (thus
preventing timing corruption or information
leakage). Channels in the same dimension
and direction appear to propagate different
domains such that after passing through the
pipeline of the router, the channel can for-
ward a packet coming from the same dimen-
sion and domain without any additional wait
(unless there is contention from packets of the
same domain). In this way, packets “surf” the
waves in each dimension. We identify the
many potential challenges of achieving nonin-
terference in a modern NoC router micro-
architecture using gate-level analysis, discuss
the details and ramifications of our surf sched-
uling methodology, and demonstrate that our
approach truly does not allow even cycle-level
cross-domain interference. (For information
on previous research, see the “Related Work
in Noninterference” sidebar.)

SurfNoC scheduling
The straightforward way to support time-

division multiplexing (TDM) is to operate
the whole network in time slices that are div-
ided between application domains. That is, a
packet waits at each hop until the network
begins forwarding packets from its domain.
This approach leads to a zero-load latency L0

that is proportional to the number of applica-
tion domains D, pipeline depth P, and the
number of hops H, as shown in Equation 1:

T0 ¼ HP þH D� 1ð Þ ð1Þ
This solution might work efficiently for two
to four domains, but in high-assurance appli-
cations, as many as tens or hundreds of
domains can be found.6

The most basic routing algorithm in
meshes and tori (k-ary n-cube networks) is
dimension-ordered routing. That is, a packet
walks through a dimension until it cannot
move further without going farther from the
destination, and then transfers to another
dimension. Thus, routing is linear in each
dimension, which provides an opportunity to
reduce wait time between hops. In SurfNoC

scheduling, different routers (in fact, differ-
ent ports of the same router) can forward
packets from different domains in the same
cycle. In this schedule, a packet waits until it
can be forwarded in one dimension (that is,
its output channel is forwarding packets from
its domain in this cycle) and then does not
experience any wait at any downstream
router in this dimension (assuming there is
no contention from packets from the same
domain). After finishing the first dimension,
the packet might experience another wait
until it can be forwarded in the next dimen-
sion. We call this schedule surf scheduling
because a packet is like a surfer who waits to
ride a wave to some location and then waits
to ride another wave. Equation 2 shows the
maximum zero-load latency and clearly
shows that the overhead is additive, not mul-
tiplicative as in the straightforward approach:

T0max ¼ HP þ n� 1½ � þ 2ð Þ D� 1ð Þ
ð2Þ

The term n� 1½ � þ 2ð Þ comes from the
n� 1 transition between dimensions and two
waits during injection and ejection. Note that
this is the maximum wait, not the typical one,
because the schedule might require less wait.

The way to implement these different
“waves” is by scheduling different directions
in a router independently—an idea inspired
by dimension-slicing used in dimension-
ordered routing in meshes and tori. We used
what we call direction-slicing of the pipelines,
such that each direction has its own pipeline.
This pipeline is a virtual one going through
different routers (not in the same router). We
will describe this idea in the case of a 2D
mesh or torus.

In a 2D mesh or torus, each dimension
has two directions (east and west for the x-
dimension; north and south for the y-dimen-
sion). The pipelines of directions of the same
dimension (that is, north, south, east, and
west) run in opposite directions, as Figure 1
shows. In this technique, each port of a router
is scheduled independently of all other ports
in a pipelined way such that the downstream
router in the same direction will forward
packets from the same domain after P cycles,
where P is the router’s pipeline depth. These
schedules are imposed on each router’s

..

TOP PICKS

..

58 IEEE MICRO

output channels to avoid timing channels
based on contention in the allocator (as
detailed in the next section).

Figure 1 shows a 16-node 2D mesh sched-
ule of three domains (colored white, gray,
black). There are two waves, southeast (SE)
and northwest (NW), running in the mesh.

Each channel propagates packets according
to the schedule white, white, gray, and black
and repeats. Using such a schedule results
in half of the bandwidth being allocated
to the white domain, whereas the black and
gray domains guarantee only a quarter of
the bandwidth for each of them. This

..

Related Work in Noninterference
Our proposed solution to noninterference in networks on chip

(NoCs) touches on many problems that have been addressed in pre-

vious research, such as timing channels in microarchitectures, quality

of service (QoS) in networks on chip, and fault containment in systems

on chip.

Timing channels and noninterference in microarchitecture
Recently there has been renewed interest in the analysis of timing

channel attacks and mitigations through microarchitecture state such

as cache interference1-3 and branch predictors.4,5 One approach to

these problems is a technique that can verify noninterference of hard-

ware/software systems (including high-performance features such as

pipelining and caching) using gate-level information flow tracking.6-8

More recently, researchers proposed a NoC timing-channel protection

scheme for a system with security lattices.9 This priority-based arbi-

tration scheme ensures that information cannot flow from the domain

with a “high” label to the domain with a “low” label, but allows for

information flow in the other direction. It can be extended to multiple

security labels as long as they form a lattice. Our proposed technique

enables multiway noninterference in NoCs with low latency (allowing

even packets with noncomparable labels to share the network). How-

ever, the techniques working in tandem would still provide the great-

est possible benefit.

QoS in networks on chip
Techniques for achieving NoC quality-of-service guarantees have

been proposed based on solutions to analogous problems in macroscale

networks. These approaches attempt to limit the rates of each flow.10-13

However, quality-of-service guarantees are insufficient for timing-chan-

nel protection.9 Optimizations that allow flows to go over their desig-

nated rate when uncontended and the lack of fault containment are

problematic for high-assurance systems14 because of the high cost of

any unaccounted variation in such systems. Our time-division approach

provides for both fault containment and timing channel elimination.

Noninterference in NoCs
Noninterference in NoCs has been studied in the system-on-chip

domain to provide composability and fault containment as well as pre-

dictability of latency for real-time performance guarantees.15,16 Com-

posability means that the system can be analyzed as a set of

independent components, which allows for easier verification of the

overall system without having to verify all possible interleavings

of events in the system. This has been especially critical in high-

assurance systems that require a very high level of verification

because of the system’s safety ramifications. The Æthearal NoC is a

time-division multiplexed (TDM) virtual circuit-switching network that

provides guaranteed services for performance-critical applications

with real-time deadlines and a packet-switched best-effort network

for applications with fewer requirements.17 A lighter version that only

provides guaranteed service was proposed to further simplify

routers.18,19 More recently, Stefan and Goossens proposed a modifi-

cation to Æthearal that enables multipath routing, both static and

dynamic (based on a true random number generator), to enhance

security by using a nondeterministic path instead of the source-rout-

ing used in Æthearal.20 In addition, the need for real-time worst-case

execution time (WCET) analysis inspired a set of works, such as the

T-Crest project (www.t-crest.org), which tries to build a time-predict-

able multicore for real-time applications. T-Crest researchers pro-

posed an integer programming technique to minimize the static

schedule length of all-to-all circuit switching connections in a TDM

way.21 Dai Bui and his colleagues proposed an on-time NoC using

real-time packet scheduling, admission control, and runtime path con-

figuration.22 We believe that such an admission-control technique is

orthogonal to SurfNoC. SurfNoC can be augmented by an admission

control mechanism to provide time-predictable packet delivery.

Availability is handled in the Tile64 iMesh networks by separating

(and in fact physically separating) the network accessible by user

applications from the network used by the OS and I/O device traffic.23

Our scheme can protect against denial-of-service (DoS) and band-

width depletion attacks between domains because of the static time

allocation to different domains.

To the best of our knowledge, our scheme is the first to provide a

packet-switched general-purpose network that can guarantee two-

way (or multiway) noninterference and timing-channel protection in a

way that both is provable down to the gate-level implementation and

provides low-latency overhead.

References
1. O. Aciiçmez, “Yet Another MicroArchitectural Attack:

Exploiting I-Cache,” Proc. 2007 ACM Workshop Computer

Security Architecture (CSAW 07), 2007, pp. 11-18.

...

MAY/JUNE 2014 59

illustrates the benefit of our schedule in stati-
cally allocating nonuniform bandwidth to
domains.

Router microarchitecture
The microarchitecture of the SurfNoC

router has two main goals:

� Ensuring a timing-channel-free con-
tention between packets—that is, con-
tention can occur between packets
from the same domain but not between
packets from different domains.

� Scheduling the output channels of
each router in a way that maintains

2. Z. Wang and R.B. Lee, “New Cache Designs for Thwarting

Software Cache-Based Side Channel Attacks,” Proc. 34th

Ann. Int’l Symp. Computer Architecture (ISCA 07), 2007,

pp. 494-505.

3. Z. Wang and R.B. Lee, “A Novel Cache Architecture

with Enhanced Performance and Security,” Proc. 41st

Ann. IEEE/ACM Int’l Symp. Microarchitecture, 2008,

pp. 83-93.

4. O. Aciiçmez, C.K. Koç, and J.-P. Seifert, “Predicting Secret

Keys via Branch Prediction,” Proc. 7th Cryptographers’ Track

at the RSA Conf. Topics in Cryptology (CT-RSA 07), 2007,

pp. 225-242.

5. O. Aciiçmez, C.K. Koç, and J.-P. Seifert, “On the Power of

Simple Branch Prediction Analysis,” Proc. 2nd ACM Symp.

Information, Computer, and Comm. Security (ASIACCS 07),

2007, pp. 312-320.

6. M. Tiwari et al., “Execution Leases: A Hardware-Supported

Mechanism for Enforcing Strong Non-interference,” Proc.

42nd Ann. IEEE/ACM Int’l Symp. Microarchitecture, 2009,

pp. 493-504.

7. M. Tiwari et al., “Crafting a Usable Microkernel, Processor,

and I/O System with Strict and Provable Information Flow

Security,” Proc. 38th Ann. Int’l Symp. Computer Architecture

(ISCA 11), 2011, pp. 189-200.

8. M. Tiwari et al., “Complete Information Flow Tracking from

the Gates Up,” Proc. 14th Int’l Conf. Architectural Support

for Programming Languages and Operating Systems

(ASPLOS 09), 2009, pp. 109-120.

9. Y. Wang and G. Suh, “Efficient Timing Channel Protection for

On-Chip Networks,” Proc. 6th IEEE/ACM Int’l Symp. Net-

works on Chip (NoCS 12), 2012, pp. 142-151.

10. B. Grot et al., “Kilo-NOC: A Heterogeneous Network-on-Chip

Architecture for Scalability and Service Guarantees,” Proc.

38th Ann. Int’l Symp. Computer Architecture (ISCA 11),

2011, pp. 401-412.

11. B. Grot, S.W. Keckler, and O. Mutlu, “Preemptive Virtual

Clock: A Flexible, Efficient, and Cost-Effective QoS Scheme

for Networks-on-Chip,” Proc. 42nd Ann. IEEE/ACM Int’l

Symp. Microarchitecture, 2009, pp. 268-279.

12. B. Grot, S.W. Keckler, and O. Mutlu, “Topology-Aware Qual-

ity-of-Service Support in Highly Integrated Chip Multiproc-

essors,” Proc. Int’l Conf. Computer Architecture (ISCA 10),

2010, pp. 357-375.

13. J.W. Lee, M.C. Ng, and K. Asanovic, “Globally-Synchronized

Frames for Guaranteed Quality-of-Service in On-Chip

Networks,” Proc. 35th Ann. Int’l Symp. Computer Architec-

ture (ISCA 08), 2008, pp. 89-100.

14. J. Rushby, Partitioning in Avionics Architectures: Require-

ments, Mechanisms, and Assurance, NASA Contractor

Report CR-1999-209347, NASA Langley Research Center,

1999.

15. A. Hansson et al., “CoMPSoC: A Template for Composable

and Predictable Multi-Processor System on Chips,” ACM

Trans. Design Automation of Electronic Systems, vol. 14, no.

1, 2009, pp. 1-24.

16. R. Obermaisser and O. Hoftberger, “Fault Containment in a

Reconfigurable Multi-Processor System-on-a-Chip,” Proc.

IEEE Int’l Symp. Industrial Electronics (ISIE 11), 2011,

pp. 1561-1568.

17. K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal

Network on Chip: Concepts, Architectures, and Im-

plementations,” Design & Test of Computers, vol. 22, no. 5,

2005, pp. 414-421.

18. A. Hansson, M. Subburaman, and K. Goossens, “Aelite: A

Flit-Synchronous Network on Chip with Composable and Pre-

dictable Services,” Proc. Design, Automation & Test in

Europe Conference & Exhibition (DATE 09), 2009, pp. 250-

255.

19. R. Stefan et al., “A TDM NoC Supporting QoS, Multicast, and

Fast Connection Set-Up,” Proc. Design, Automation Test in

Europe Conf. & Exhibition (DATE 12), 2012, pp. 1283-1288.

20. R. Stefan and K. Goossens, “Enhancing the Security of Time-

Division-Multiplexing Networks-on-Chip through the Use of

Multipath Routing,” Proc. 4th Int’l Workshop Network on

Chip Architectures (NoCArc 11), 2011, pp. 57-62.

21. M. Schoeberl et al., “A Statically Scheduled Time-Division-

Multiplexed Network-on-Chip for Real-Time Systems,” Proc.

IEEE/ACM 6th Int’l Symp. Networks-on-Chip (NOCS 12),

2012, pp. 152-160.

22. D. Bui, A. Pinto, and E.A. Lee, On-Time Network On-Chip:

Analysis and Architecture, tech. report UCB/EECS-2009-59,

Electrical Engineering and Computer Science Dept., Univ. of

Calif., Berkeley, 2009.

23. D. Wentzlaff et al., “On-Chip Interconnection Architecture

of the Tile Processor,” IEEE Micro, vol. 27, no. 5, 2007,

pp. 15-31.

..

TOP PICKS

..

60 IEEE MICRO

the surf schedule across the whole
network.

To achieve these goals, we used a static par-
titioning of virtual channels (VCs) and care-
fully designed the VC and switch allocators to
be timing-channel free. In essence, the VC allo-
cator is divided into several allocators that allo-
cate VCs belonging to the same domain
because VCs are statically divided between
domains. The resources (switch I/O ports) in
the switch allocator, on the other hand, can be
requested from multiple domains. Moreover,
switch inputs are shared between VCs belong-
ing to different domains. To solve this problem,

we use input speedup of D to remove this
contention. This observation was discovered
through gate-level information flow analysis of
the allocator microarchitecture. The scheduling
of output channels is done through masking
requests from packets to the switch allocator
until its turn to use the output channel arrives
in the wave pipeline. Traversing the switch
does not require any router modification
because all resources have been arbitrated for.

Pipelining and separation
We have so far discussed separation with

respect to each pipeline stage separately, but

S

R

S

R

S

R

S

R

S

R

S

R

(a) (b) (c)

(f)(e)(d)

Figure 1. Surf scheduling in a 16-node 2D mesh with three application domains (denoted by white, gray, and black) assuming

single-cycle routers for illustration purpose. The schedule runs as white, white, gray, and black and repeats, giving the white

domain half the bandwidth. A packet (the white box under the node S) belongs to the white domain and is sent from the node

marked S to the node marked R. The figure contains six consecutive cycles. At T¼ 1, the packet is forwarded on the S port in

the y-dimension (which is scheduled to forward white packets). It keeps moving in the y-dimension until T¼ 3, when it needs

to move in the x-dimension on the W port. The packet waits two cycles (T¼ 4 and T¼ 5) until it is the white domain’s turn on

the W port, and finally it is forwarded to its destination on T¼ 6. Another wait may happen again in the destination router (R) to

forward the packet on the ejection port waiting for the white domain’s turn.

...

MAY/JUNE 2014 61

the question remains whether pipelining and
pipeline stalls can cause interference. We will
discuss each pipeline stage, with the basic
idea being to ensure that stalls do not induce
interference between separate domains.

Buffer write and route computation. BW/RC
is the first stage of the pipeline, and because
we are assuming a credit-based flow control,
flits do not enter the router unless there is a
guaranteed space in the buffer for them. Spa-
tial separation is ensured because VC alloca-
tion is done in the upstream router. Route
computation can be done in parallel for all
flits at the front of all VCs (waiting for RC).
No interference can be caused in this stage.

Virtual channel allocation. At the VA stage,
all flits send requests to the VC allocator.
Using our design, interference can happen
between VCs from the same domain but not
between channels from distinct domains.
Stalled flits resulting from a lack of free VCs
(in the downstream router) prevent only flits
from the same domain from making prog-
ress. This can be ensured by recording the
state in the pipeline for each VC—that is,
stalls due to VC allocation must be per VC
(not per input port).

Switch allocation. SA can fail owing to con-
tending flits for switch ports (limited to VCs
from the same domain), which cause stalls
in the pipeline. We avoid stalling the whole
port (which leads to interference between
domains) by having a separate state in the
pipeline stage for each VC. SA can also be
stalled because of lack of buffering in the
downstream router—that is, waiting for a
credit. The effect of this stall is limited to a
single VC, and can be handled the same way
we addressed a stall resulting from a failed
SWallocation.

The key idea here is that stalls can affect
flits in the stalled stage and all previous stages
only from the same VC. Thus, we can guar-
antee separation because we statically assign
VCs to domains.

Noninterference verification
To prove noninterference between do-

mains of our arbitration scheme, we

used gate-level information-flow tracking
(GLIFT) logic.7,8 GLIFT logic captures all
digital information, including implicit and
timing-channel flows, because all informa-
tion flows represent themselves in decision-
making circuit constructs, such as multi-
plexers and arbiters. For example, an arbitra-
tion operation leaks information if the
control bits of the multiplexers depend on
one of the two domains, but it will not leak
information (or cause interference) if arbitra-
tion is based on a static schedule. GLIFT
tracking logic can accurately capture this fact
because it is precise (that is, not conservative
in the primitive shadow gates but conserva-
tive in the compositional shadow circuit) and
sound (that is, it will definitely capture illegal
information flows). For example, a shadow-
AND gate propagates a label of “high” only
if the output of the AND gate depends on
the “high” input (that is, if one input of a
two-input AND gate is “low” zero, the out-
put is guaranteed to be zero and thus does
not depend on the “high” input). GLIFT
automatically generates conservative shadow
logic that can be used to prove noninterfer-
ence between domains for a given circuit.
Shadow logic is a tracking logic used as a veri-
fication technique (and is not intended to be
part of the final system, thus does not cost
any area or power). Using gate-level analysis,
we discovered interference in the switch allo-
cator during initial designs of the system.
Moreover, contention between domains on
the crossbar switch input ports was discov-
ered using the same analysis technique
(hence, our input-speedup idea). In essence,
we used GLIFT analysis to design the archi-
tecture in addition to verifying the final
design.

We integrated the scheduler circuit,
enforcing the surf schedule, into a Verilog
implementation of a switch allocator.9 We
used a two-domain allocator that allocates
requests of different VCs to output ports. We
modified the allocator to have a request per
VC rather than per input port (as in the origi-
nal design9). We synthesized the allocator
using the Synopsis design compiler, then gen-
erated its shadow logic and verified the sepa-
ration property using simulation of the
resulting circuit. We assigned a “low” label
for VC 0 requests and a “high” label for

..

TOP PICKS

..

62 IEEE MICRO

VC 1. We tested inputs for VCs sharing the
same input port requesting different and
same output ports. In all cases, grant signals
had the same label of their respective VC,
which proves that grants are independent of
requests from the other domain. We also
reversed labels of VC 0 (high) and VC 1
(low) to verify that separation holds for the
other direction of information flow (domain
0 to domain 1). This proves that the crossbar
arbitration, and consequently the sharing of
the physical channel, are timing-channel free,
which (in addition to static VC allocation)
ensures network noninterference. Freedom of
two-way information flow, or complete non-
interference, was verified.

Evaluation
We evaluate the performance of our Surf-

NoC scheme and compare the area and power
overhead to a mesh network without nonin-
terference support. A more detailed evalua-
tion can be found in the original paper.10

Experimental setup
We implemented a model of the SurfNoC

router in BookSim 2.0,11 a cycle-level inter-
connection network simulator. The simulator
is warmed up until steady state is reached and

statistics are reset, then a sample of the pack-
ets is measured from the time it enters the
source queue until it is received. For latency
measurements, the simulation runs until all
packets under measurement leave the net-
work. Table 1 lists the simulation parameters
used for different schemes. We evaluated four
schemes, two that do not provide separation
guarantees, and two that support strong sepa-
ration. The nonseparation baselines are an
input-queued router with minimal resources,
which achieves almost 40 percent saturation
throughput (baseline-small), and a similar
router that has many more resources (buffers
and input-speedup in the crossbar switch),
which we call baseline-fast. We used two
baselines because the separation-supporting
router includes more resources and would
achieve more throughput than a baseline
with minimal area, which will hide the lost
throughput due to the static scheduling. The
noninterference-supporting schemes are a
straightforward time-division multiple access
(TDMA), where the whole network forwards
packets from the same domain, and an
input-queued router, which enforces the surf
schedule (Surf). Table 2 shows the different
configurations used for different numbers of
domains for Surf and TDMA.

Table 1. Simulation parameters.

Parameter Baseline-small Baseline-fast Surf and TDMA

Virtual channels (VCs) 12 32 See Table 2

Buffers per VC 4 4 See Table 2

Input speedup 1 32 See Table 2

Flits per packet 1

Router delay 4 cycles

SW and VC allocators Separable (input-first)

Routing Dimension-ordered routing

Table 2. Different configurations of partitioned schemes.

Number of domains

Parameter 1 2 4 8 16 32

No. of VCs per port 16 16 16 32 32 32

No. of flits per VC 8 8 8 4 4 4

Input speedup 1 2 4 8 16 32

...

MAY/JUNE 2014 63

Impact on latency
We first examine the impact of our nonin-

terference support on latency with a different
number of domains, and a different number
of nodes under the uniform random traffic
pattern. To understand the effect of TDM of
channels, we measure zero-load latency
(latency at offered load of 0.1 percent of
capacity for only one domain) and plot it for
different numbers of domains in Figure 2. In
this figure, we plot latency in cycles (y-axis)
versus number of domains on the x-axis for
network sizes of 64 nodes (Figure 2a) and

256 nodes (Figure 2b). It is clear that the
latency overhead of Surf scales much better
than TDMA for the same network size (for
example, the overhead is reduced from 66
(19.1) to 19 (4.6) cycles by 71.3 percent
(75.8 percent) for network sizes of 64 nodes
with 16 (4) domains. The savings is even
greater (up to 84.7 percent) for a 256-node
network.

We can see that there is one exception to
this reduction in latency. It is a subtle case
that occurs only for five domains, because the
packet leaves the router after one cycle of
switch traversal (ST), spends one cycle for
link traversal (LT), and after two cycles of
buffer write (BW) and VA in the upstream
router (a total of four cycles during which the
upstream router propagates packets from
other domains), it becomes ready for SA
without any wait using TDMA, leading to
the same latency overhead of surf scheduling.
One would also notice that the benefits are
higher for larger networks because of the
increased average number of hops.

To clearly understand how the overhead
scales with network size or average number
of hops, we replotted zero-load latency of
2D mesh networks of sizes varying from 16
to 256 nodes with 16 domains under the
uniform random traffic pattern in Figure 3.
The latency of both baselines increases with
network size due to a higher average number
of hops. The overhead of surf scheduling is
almost independent of network size (average
number of hops), leading to a line parallel
to the baseline with a constant overhead of
19 cycles (except for 16 nodes) because the
packet wait time depends only on the num-
ber of dimensions and domains. On the
other hand, the larger the network, the
higher the overhead for TDMA scheduling
because a packet must wait for its turn at
each hop in the path to its destination. This
clearly shows that our scheme is scalable
with network size and proves our intuition
of latency overhead independent of the
number of hops. We can conclude that, in
general, the savings of surf scheduling are
more scalable with larger networks and a
higher number of domains.

Zero-load latency is just one latency met-
ric. Thus, we now study latency as a function
of network offered load. Figure 4 shows

200
Baseline-small,64 Baseline-fast,64

TDMA,64 Surf,64

180

160

140

Z
er

o-
lo

ad
 la

te
nc

y
(c

yc
le

s)
Z

er
o-

lo
ad

 la
te

nc
y

(c
yc

le
s)

120

100

80

60

40

20

0

400

350

300

250

200

150

100

50

0

2 7 12 17 22
Number of domains

27 32

2 7 12 17 22

Number of domains

27 32

Baseline-small,256 Baseline-fast,256

TDMA,256 Surf,256

(a)

(b)

Figure 2. Zero-load latency for different network sizes and a different

number of security domains: 64 nodes (a) and 256 nodes (b). The two

baselines overlap because zero-load latency does not depend on buffers

and crossbar input speedup.

..

TOP PICKS

..

64 IEEE MICRO

average latency measured after convergence
as a function of offered load for a 2D mesh
network of 64 nodes under uniform random
traffic patterns. We vary aggregate offered
load on the x-axis—that is, if we have D
domains, the value of the x-axis is the sum of
the offered load of all D domains. We used
two domains in this experiment. We can see
that surf scheduling maintains its latency sav-
ings at all offered load values lower that the
saturation point of the network.

Throughput
In Figure 4, although we can see that satu-

ration throughput is reduced by about 11.7
percent, aggregate throughput loss is limited
to 4.9 percent for two domains. Noninterfer-
ence configurations have a higher saturation
throughput than the small baseline because
they use more resources, and lower than the
fast baseline that includes the same resources
because of unused time slots due to schedule
enforcement.

To verify the benefits of assigning band-
width nonuniformly, we performed an
experiment on a 2D mesh network with 64
nodes and three domains. Bandwidth (VCs
and time slots in the schedule) is assigned as
follows: a quarter of the bandwidth is
assigned to domain 0 and domain 1, each;
and half of the bandwidth is assigned to
domain 2. This nonuniform allocation is
done by devising a schedule with four slots
and assigning domain 3 time slots to domain
2. Saturation throughput, as expected, is 0.09
for both domain 0 and 1, and 0.21 for
domain 2. Latency at a 5 percent injection
rate is 36 (53) cycles for domain 2 and 39
(53) cycles for domains 0 and 1 using surf
scheduling (straightforward TDMA). This
shows that our scheme can have both latency
and throughput benefits by designing a non-
uniform surf schedule.

Area and power overhead
The main source of power and area over-

head is the increased size of the crossbar with
an input speedup of D. This increases both
the crossbar and switch allocator area and
power consumption linearly with D. Having
an input speedup of D might be prohibitive
in cases of large D. However, there is a per-
formance/resources trade-off between wait

time at the switch allocator and input
speedup of the crossbar switch. Keeping our
surf schedule in place while arbitrating the
crossbar input port between VCs from differ-
ent domains in a static deterministic round-
robin manner (regardless of requests) is the
most straightforward approach. For example,
in the case of 32 domains, we can use an
input speedup of 4 instead of 32, and a flit
will wait up to seven cycles before entering
the crossbar. In general, if input speedup is S

200

180

160

140

Z
er

o-
lo

ad
 la

te
nc

y
(c

yc
le

s)

120

100

80

60

40

20

0
0 50 100 150

Number of nodes

200 250

Baseline-small Baseline-fast

TDMA Surf

Figure 3. Zero-load latency versus different network size with 16 domains.

The two baselines overlap because zero-load latency does not depend on

buffers and crossbar input speedup.

100

90

80

70

60

50

40

30
0 0.1 0.2 0.3

Network offered load (flits/cycles)

A
ve

ra
g

e
la

te
nc

y
(c

yc
le

s)

0.4 0.5 0.6

Baseline-small Baseline-fast

TDMA Surf

Figure 4. Average latency as a function of aggregate offered load of all

domains for a 2D mesh network of 64 nodes. Latency is stable below the

network saturation point.

...

MAY/JUNE 2014 65

and D is the number of domains (where
1 � S � D), flits can wait up to an extra
ðD=S � 1Þ cycles to enter the crossbar and
would wait longer than D� 1ð Þ in turns.
This is one way to avoid excessively large
crossbars (and the slower clock rates they
incur) as well. We use Equation 3 to find the
maximum zero-load latency of such a
scheme:

T0max ¼ HP þ n� 1½ � þ 2ð Þ D
D

S
� 1

� �

þH
D

S
� 1

� �
3ð Þ

This essentially creates a continuum of design
between a strict TDMA (in fact, slightly
worse for S ¼ 1) and a full surf schedule
(S ¼ D).

P rogrammers are increasingly asked to
manage a complex collection of com-

puting elements, including a variety of cores,
accelerators, and special-purpose functions.
Although these many-core architectures can
be a boon for common case performance and
power efficiency, when an application de-
mands a high degree of reliability or security,
the advantages becomes a little less clear. On
one hand, the ability to spatially separate
computations means that critical operations
can be physically isolated from malicious or
untrustworthy components. There are many
advantages to providing physical separation,
which have been explored in the literature.
On the other hand, real systems are likely to
use different subsets of cores and accelerators
based on an application’s needs and thus will
require a shared communication network.
When a general-purpose interconnect is
used, analyzing all the ways in which an
attacker might influence the system becomes
far more complicated. The problem is hard
enough if we restrict ourselves to considering
only average case performance or packet
ordering, but it becomes even more difficult
if we attempt to prevent even cycle-level
variations.

High-assurance systems are often divided
into a set of domains, which are kept sepa-
rate. These domains should have no effect on
one another. For example, the Mars Curiosity
rover software runs on a RAD750 processor,

a single-core radiation-hardened version of
the Power architecture with a special-purpose
separation kernel. The kernel partitions the
tasks such as guidance, navigation, and the
various science packages from one another to
help prevent cascading failures. Future space
missions are looking to use multicore systems
that add another layer of communica-
tion,12,13 but there are serious concerns about
the introduction of opportunities for interfer-
ence between system components.14,15 Such
interference can be catastrophic or even fatal.

The SurfNoC scheduling technique for
meshes and tori reduces latency overhead
while maintaining noninterference. Perhaps
more importantly, it shows that security prop-
erties of on-chip networks can be reasoned
about rigorously and that doing so has impor-
tant ramifications on the network microarchi-
tecture. Of course our design is not the end-
all design point: there are certainly inefficien-
cies remaining in our design and how this
work can extend to more general and modern
NoC techniques remains to be seen. How-
ever, by coupling our design efforts with gate-
level information flow analysis, we show that
verifying noninterference properties at the
level of gates and wires for a full router micro-
architecture is indeed possible.

We do not foresee the trend toward
larger and more diverse NoCs on systems
reversing anytime soon. Thus, we believe
the techniques we’ve described will con-
tinue to grow in importance. SurfNoC
might be extended to support more general
routing functions, bandwidth sharing
through time donation between domains
in a security lattice, a reconfigurable router
microarchitecture design, and predictable
latency through throttling of source nodes.
Similar design and analysis techniques
could be extended beyond regular packet-
switched networks to include virtual cir-
cuit-switching and irregular SoC-style
interconnects. Although it is not clear
where the limits are between security and
performance in this space, if we are to avoid
the continuing loop of “patch-and-pray”
that inevitably falls out of the ad hoc
approach we traditionally have taken to
computer systems security, we will increas-
ingly have to involve the architecture, hard-
ware design, and verification teams in

..

TOP PICKS

..

66 IEEE MICRO

providing a formally sound foundation for
integration. MICRO

Acknowledgments
This work was funded in part by grants

CNS-1239567, CNS-1162187, and CCF-
117165. Jason K. Oberg is funded by a US
National Science Foundation graduate
research fellowship. The views and conclu-
sions contained herein are those of the
authors and should not be interpreted as
necessarily representing the official policies
or endorsements, either expressed or im-
plied, of the sponsoring agencies.

..
References
1. Y. Wang and G. Suh, “Efficient Timing

Channel Protection for On-Chip Networks,”

Proc. 6th IEEE/ACM Int’l Symp. Networks

on Chip (NoCS 12), 2012, pp. 142-151.

2. B. Grot et al., “Kilo-NOC: A Heterogeneous

Network-on-Chip Architecture for Scalability

and Service Guarantees,” Proc. 38th Ann.

Int’l Symp. Computer Architecture (ISCA

11), 2011, pp. 401-412.

3. B. Grot, S.W. Keckler, and O. Mutlu,

“Preemptive Virtual Clock: A Flexible, Effi-

cient, and Cost-Effective QoS Scheme for

Networks-on-Chip,” Proc. 42nd Ann. IEEE/

ACM Int’l Symp. Microarchitecture, 2009,

pp. 268-279.

4. B. Grot, S.W. Keckler, and O. Mutlu,

“Topology-Aware Quality-of-Service Sup-

port in Highly Integrated Chip Multiproc-

essors,” Proc. Int’l Conf. Computer

Architecture (ISCA 10), 2010, pp. 357-375.

5. J.W. Lee, M.C. Ng, and K. Asanovic,

“Globally-Synchronized Frames for Guaran-

teed Quality-of-Service in On-Chip Net-

works,” Proc. 35th Ann. Int’l Symp.

Computer Architecture (ISCA 08), 2008,

pp. 89-100.

6. J. Rushby, Partitioning for Avionics Archi-

tectures: Requirements, Mechanisms, and

Assurance, NASA contractor report CR-

1999-209347, NASA Langley Research Cen-

ter, 1999.

7. M. Tiwari et al., “Crafting a Usable Micro-

kernel, Processor, and I/O System with

Strict and Provable Information Flow

Security,” Proc. 38th Ann. Int’l Symp.

Computer Architecture (ISCA 11), 2011,

pp. 189-200.

8. M. Tiwari et al., “Complete Information

Flow Tracking from the Gates Up,” Proc.

14th Int’l Conf. Architectural Support for

Programming Languages and Operating

Systems (ASPLOS 09), 2009, pp. 109-120.

9. M. Kinsy and M. Pellauer, Heracles: Fully

Synthesizable Parameterized MIPS-based

Multicore System, tech. report MIT-CSAIL-

TR-2010-058, MIT Computer Science and

Artificial Intelligence Laboratory, Massachu-

setts Institute of Technology, 2010.

10. H.M.G. Wassel et al., “SurfNoC: A Low

Latency and Provably Non-Interfering Ap-

proach to Secure Networks-on-Chip,” Proc.

40th Ann. Int’l Symp. Computer Architec-

ture (ISCA 13), 2013, pp. 583-594.

11. W. Dally and B. Towles, Principles and Prac-

tices of Interconnection Networks, Morgan

Kaufmann, 2003.

12. M. Malone, talk on OPERA RHBD Multi-

core, Military and Aerospace Programmable

Logic Devices (MAPLD) Workshop, Green-

belt, MD, Aug. 2009; https://nepp.nasa.

gov/mapld_2009/talks/083109_Monday/03_

Malone_Michael_mapld09_pres_1.pdf.

13. J.-L. Terraillon, “Multicore Processors—The

Next Generation Computer for ESA Space

Missions,” keynote address, 17th Int’l

Conf. Reliable Software Technologies, 14

June 2012; www.cister.isep.ipp.pt/ae2012/

keynote#MP.

14. E. Ong, O. Brown, and M.J. Losinski,

“System F6: Progress to Date,” Proc. Small

Satellite Conf.: Enhancing Global Awareness

through Small Satellites, 2012, p. 7; http://

digitalcommons.usu.edu/smallsat/2012/

all2012/10/.

15. W.R. Otte et al., “F6com: A Component

Model for Resource-Constrained and Dy-

namic Space-Based Computing Environ-

ments,” Proc. 16th IEEE Int’l Symp. Object/

Component/Service-Oriented Real-Time

Distributed Computing, 2013; www.isis.

vanderbilt.edu/node/4552.

Hassan M.G. Wassel is a software engineer
at Google, working in the Platforms group.

...

MAY/JUNE 2014 67

His research includes computer architecture
and its interaction with software and novel
hardware technologies in order to build
energy-efficient, high-performance, and reli-
able systems. Wassel has a PhD in computer
science from the University of California,
Santa Barbara, where he performed the work
for this article. He is a member of IEEE and
the ACM.

Ying Gao is a PhD student in computer
engineering at the University of California,
Santa Barbara. Her research focuses on
security computer architectures and improv-
ing program security by using intelligent
hardware. Gao has a BS in optoelectronics
from Tianjin University, China.

Jason K. Oberg is a PhD candidate in the
Computer Science and Engineering Depart-
ment at the University of California, San
Diego. His research interests include testing
and verification methods for secure hardware
design and methodologies for identifying tim-
ing-based side channels in hardware. Oberg
has an MS in computer engineering from the
University of California, San Diego.

Ted Huffmire is an assistant professor of
computer science at the Naval Postgraduate
School. His research focuses on the intersec-
tion of computer architecture and computer
security. Huffmire has a PhD in computer
science from the University of California,
Santa Barbara.

Ryan Kastner is a professor in the Depart-
ment of Computer Science and Engineering
at the University of California, San Diego.
His research focuses on embedded system
design, particularly the use of reconfigurable
computing devices for digital signal process-
ing as well as hardware security. Kastner has
a PhD in computer science from the Uni-
versity of California, Los Angeles.

Frederic T. Chong is the director of the
Greenscale Center for Energy-Efficient Com-
puting, director of the Computer Engineering
Program, and a professor of computer science
at the University of California, Santa Barbara.
His research interests include emerging tech-
nologies, multicore and embedded architec-
tures, computer security, and sustainable
computing. Chong has a PhD in electrical
engineering and computer science from the
Massachusetts Institute of Technology.

Timothy Sherwood is a professor in the
Department of Computer Science at the Uni-
versity of California, Santa Barbara. His
research focuses on the development of novel
computer architectures for security, introspec-
tion, and embedded applications. Sherwood
has a PhD in computer science from the Uni-
versity of California, San Diego. He is a mem-
ber of IEEE and the ACM.

Direct questions and comments about this
article to Hassan Wassel, 1600 Amphithe-
ater Pkwy, Mountain View, CA 94043;
hwassel@gmail.com.

..

TOP PICKS

..

68 IEEE MICRO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

