
(12) United States Patent
Kastner et al.

USOO93051 66B2

(10) Patent No.: US 9,305,166 B2
(45) Date of Patent: Apr. 5, 2016

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

METHOD AND SYSTEMIS FOR DETECTING
AND SOLATING HARDWARE TIMING
CHANNELS

Applicant: The Regents of the University of
California, Oakland, CA (US)

Inventors: Ryan Kastner, La Jolla, CA (US);
Jason Oberg, La Jolla, CA (US); Sarah
Meiklejohn, La Jolla, CA (US);
Timothy Sherwood, Santa Barbara, CA
(US)

Assignee: The Regents of the University of
California, Oakland, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 30 days.

Appl. No.: 14/201,230

Filed: Mar. 7, 2014

Prior Publication Data

US 2014/O259.161 A1 Sep. 11, 2014

Related U.S. Application Data
Provisional application No. 61/774,712, filed on Mar.
8, 2013.

Int. C.
G06F 2/55 (2013.01)
U.S. C.
CPC G06F2I/556 (2013.01)
Field of Classification Search
CPC ... GO6F 21 F556
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,870,309 A * 2/1999 Lawman GO6F 17,5054
T16,102

8,091,128 B2 * 1/2012 Yu GO6F 21,556
T26.1

8,381,192 B1* 2/2013 Drewry et al. 717/128
2007/0107058 A1* 5, 2007 Schuba et al. T26/23
2013/0139262 A1* 5, 2013 Glew GO6F 21,56

T26/23
2015.0128262 A1* 5, 2015 Glew GO6F 21,554

T26/23
OTHER PUBLICATIONS

Acimez, O., et al., “Trace-driven cache attacks on AES (short
paper)”, ICIS (2006), pp. 112-121.
Berstein, Daniel, J., "Cache-timing attacks on AES”. Technical
Report (2005), 37 pages.
Crandall, Jedidiah R., et al., “Minos: Control Data Attack Prevention
Orthogonal to Memory Model', MICRO 2004, (2004), pp. 221-232.
Dalton, Michael, et al., “Raksha: A Flexible Information Flow Archi
tecture for Software Security”. ISCA 2007, Jun. 9-13, 2007, pp.
482-493.

(Continued)

Primary Examiner — Saleh Naijar
Assistant Examiner — Louis Teng
(74) Attorney, Agent, or Firm — Greer, Burns & Crain, Ltd.
(57) ABSTRACT
A method for detecting a timing channel in a hardware design
includes synthesizing the hardware design to gate level. Gate
level information flow tracing is applied to the gate level of
the hardware design via a simulation to search for tainted
flows. If a tainted flow is found, a limited number of traces are
selected. An input on the limited number of traces is simu
lated to determine whether the traces are value preserving
with respect to taint inputs, and to determine that a timing
flow exists if the traces are value preserving with respect to
the taint inputs.

9 Claims, 8 Drawing Sheets

ke.g. ii. 33.

Aggy Sii;t

Saša gas

12 N & wax - - &gg: Si:::::::

Estigs; 3::FE

14
-1ater- ses

16 us'-o'- - ---

Fit Fi:3&tista: Figgs

18

$33:38.8333333
taxes; 38 seats

38s at
8x: xierer texts

8x irfix ratic Ficy y rareer sixia if airing f$38

F3s. 32:g: irring Ciaras:

US 9,305,166 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Gray, III, J. W., “ON introducing noise into the bus-contention chan
nel”. Proceedings of the 1993 IEEE Symposium on Security and
Privacy, (1993), pp. 90-98.
Gullasch, David, et al., "Cache Games—Brining Access-Based
Cache Attacks on AES to Practice'. Proceedings of the 2011 IEEE
Symposium of Security and Privacy, (2011), pp. 490-505.
Hu, M., et al., “Reducing timing channels with fuzzy time'. Proceed
ings of the 1991 IEEE Symposium of Security and Privacy, (1991),
pp. 8-20.
Kemmerer, Richard A., “Shared Resource Matrix Methodology: An
Approach to Identifying Storage and Timing Channels'. ACM Trans.
Compt. Syst., (1983) pp. 256-277.
Krohn, Maxwell, et al., “Information Flow Control for Standard OS
Abstractions”, SOSP 07, Oct. 14-17, 2007, pp. 321-334.
Li, Xun et al., "Caisson: A Hardware Description Language for
Secure Information Flow”. PLDI 11, Jun. 4-8, 2011, pp. 109-120.
Oberg, Jason, et al., “Information Flow Isolation in I2C and USB'.
Proceedings of Design Automation Conference (DAC) 2011, Jun.
5-10, 2011, pp. 254-259.
Osvik, Dag Arne, et al., "Cache Attacks and Countermeasures: The
Case of AES'. Proceedings of The 2006 the Cryptogrophers' Track at
the RSA conference on Topics in Cryptography, (2006), pp. 1-20.

Ristenpart, Thomas, et al., “Hey, You, Get Off of My Cloud: Explor
ing Information Leakage in Third-Party Compute Clouds'. Proceed
ings of CCS 2009, Nov. 9-13, 2009, pp. 199-212.
Sabelfeld, Andrei, et al., “Language-Based Information-Flow Secu
rity, IEEE Journal on Selected Areas in Communications, vol. 21.
No. 1, Jan. 2003, pp. 1-15.
Suh, G. Edward, et al., “Secure Program Execution via Dynamic
Information Flow Tracking, ASPLOS’04, Oct. 7-13, 2004, pp.
85-96.
Tiwari,Mohit, et al., “Complete Information Flow Tracking from the
Gates Up', ASPLOS'09, Mar. 7-11, 2009, 12 pages.
Tiwari, Mohit, et al., “Execution Leases: A Hardware-Supported
Mechanism for Enforcing Strong Non-Interference” MICRO'09,
Dec. 12-16, 2009, pp. 493-504.
Tiwari, Mohit, et al., “Crafting a Usable Microkernel, Processor, and
I/O System with Strict and Provable Information Flow Security”.
Proceedings of ISCA 2011, Jun. 4-8, 2011, pp. 189-200.
Tolstrup, Terkel, K.,"Language-based Security for VHDL. PhD
Thesis, Informatics and Mathematical Modelling, Technical Univer
sity of Denmark, DTU. (2007), 158 page.
Wassel, Hassan, M.G., et al., "SurfNoC: A Low Latency and Prov
ably Non-Interfering Approach to Secure Networks-On-Chip',
ISCA 13, (2013), pp. 583-594.
Wray, John C., “An Analysis of Covert Timing Channels'. Proceed
ings of the 1991 IEEE Symposium on Security and Privacy, (1991),
pp. 8-20.

* cited by examiner

U.S. Patent Apr. 5, 2016 Sheet 1 of 8 US 9,305,166 B2

s

US 9,305,166 B2 Sheet 2 of 8 Apr. 5, 2016 U.S. Patent

&&&&&&&&&&&&
edoos?año, euatuouaud ?eas?ad

smola uoneuluoju adeaegaeq:{

US 9,305,166 B2

- sis

Sheet 3 of 8

i.

Apr. 5, 2016 U.S. Patent

U.S. Patent Apr. 5, 2016 Sheet 4 of 8 US 9,305,166 B2

an
S.

CD
LL

Ex.

s: CC
k S.

C2
L

U.S. Patent Apr. 5, 2016 Sheet 5 of 8 US 9,305,166 B2

U.S. Patent Apr. 5, 2016 Sheet 6 of 8 US 9,305,166 B2

U.S. Patent Apr. 5, 2016 Sheet 7 of 8 US 9,305,166 B2

U.S. Patent Apr. 5, 2016 Sheet 8 of 8 US 9,305,166 B2

S. OO
s

US 9,305,166 B2
1.

METHOD AND SYSTEMIS FOR DETECTING
AND SOLATING HARDWARE TIMING

CHANNELS

PRIORITY CLAIMAND REFERENCE TO
RELATED APPLICATION

This application claims priority under 35 U.S.C. S 119 from
prior provisional application No. 61/774,712, filed Mar. 8,
2013, which is incorporated by reference herein.

FIELD

A field of the invention is data security. The invention
concerns the detection, isolation and evaluation of hardware
timing channels. The invention is widely applicable to digital
devices and microprocessor based systems. A particular
application is to the analysis of embedded computer systems
to detect timing flows that compromise security or safety
critical embedded systems.

BACKGROUND

Timing channels are a form of a so-called side channel. A
side channel is created by a circuit element that leaks infor
mation unintentionally. Side channels can be exploited by
adversaries to extract secret information or compromise the
correct operation of high integrity components. For example,
a side channel can be used to extract a secret encryption key
or to affect the time in which a braking system in a car
responds to the press of the brake pedal.
Modern embedded computing systems, e.g., medical

devices, airplanes, and automobiles, increasingly rely upon
embedded computing systems. Such systems often include a
system-on-chip. A system-on-chip includes multiple cores,
controllers or processors on integrated single microchip. The
movement of information in Such systems should be tightly
controlled to ensure security goals. This is challenging
because information can flow through timing channels, which
are difficult to detect. In turn, hardware designs that are insus
ceptible to timing channels are difficult to provide because the
designs can’t be effectively tested for possible flaws that
Support timing channels.

Seminal work by Kemmerer R. A. Kemmerer, “Shared
resource matrix methodology: an approach to identifying
storage and timing channels. ACM Trans. Comput. Syst., pp.
256-277, 1983, described an informal shared-resource
matrix to pin-point potential timing channels. Effective at
higher computing abstractions, this technique becomes diffi
cult to apply to embedded and application-specific designs.
A number of Ad-hoc approaches M. Hu, “Reducing tim

ing channels with fuzzy time in Proceedings of the 1991
IEEE Symposium on Security and Privacy, pp. 8-20, 1991, I.
C. Wray, “An analysis of covert timing channels.” in Proceed
ings of the 1991 IEEE Symposium on Security and Privacy,
pp. 2-7, 1991 focus on introducing random noise into a
system to make extracting information stochastically diffi
cult. These methods make a timing channel harder to exploit
(lower signal-to-noise ratio), but fail to identify whether a
channel is timing-based. In addition, previous work using
GLIFT has shown that strict information flow isolation can be
obtained in a shared bus J. Oberg, et al., “Information flow
isolation in I2C and USB. in Proceedings of Design Auto
mation Conference (DAC) 2011, pp. 254-259, 2011., but the
work provides no ability to relate information to timing.

Typical information flow tracking strategies target hard
ware description languages X. Li et al., Caisson: a hardware

5

10

15

25

30

35

40

45

50

55

60

65

2
description language for secure information flow.” in PLDI
2011, pp. 109-120, 20. T. K. Tolstrup, Language-based
Security for VHDL. PhD thesis, Informatics and Mathemati
cal Modelling, Technical University of Denmark, DTU,
2007. This can be effective to prevent timing channels from
developing. However, these languages force a designer to
rewrite code in a new language. This is especially cumber
Some when already designed hardware modules need to be
analyzed.

Mobile systems and point of sale systems are of particular
interest for security against information flows, including tim
ing flows. The uses of mobile devices for trusted and confi
dential information exchanges continue to accelerate. Point
of sale merchant systems have also proved vulnerable. Infor
mation stored and exchanges in these systems can include
identity and financial account information.

Mobile phones, including phones having near field com
munication (NFC) capabilities, incorporate chips that allow
the phones to securely store confidential information. Sys
tems that interact with mobile systems, such as point of sale
systems, also have security domains. Various secure domains
are typically required to safeguard the flow of sensitive infor
mation, and to ensure that only specific secure domains have
access to the information. The Smart Card Alliance has set
forth guidelines for security in mobile payment platforms in
Publication No. CPMC-09001, May 2009. Timing channels
can be used to circumvent many such safeguards.

There are two general classes of information flows: explicit
and implicit. Explicit information flows result from two sub
systems directly communicating. For example, an explicit
flow occurs when a host and device on abus directly exchange
data. Implicit information flows are much more subtle.
Implicit flows generally leak information through behavior.
Typical implicit information flows show up inhardware in the
form of timing, where information can be extracted from the
latency of operations.

For example, it is known that that side channel timing
attacks can be used to extract secret encryption keys from the
latencies of caches and branch predictors, for example. Cache
timing attacks can obtain the Secret key by observing the time
for hit and miss penalties of the cache. Branch predictor
timing channels are exploited in a similar manner, when
information is leaked through the latency of predicted and
mis-predicted branches. It has also been recognized that the
shared bus in modern systems is a source of concern. A
so-called bus-contention channel has been recognized as per
mitting covert transmission of information through the traffic
on a global bus. See, e.g., W.-M. Hu, "Reducing timing chan
nels with fuzzy time.” Proceedings of the 1991 IEEE Sym
posium on Security and Privacy, pp. 8-20, 1991.

Information flow tracking is a common method used in
secure systems to ensure that secrecy and/or integrity of infor
mation is tightly controlled. Given a policy specifying the
desired information flows, such as one requiring that secret
information should not be observable by public objects, infor
mation flow tracking helps detect whether or not flows vio
lating this policy are present.

In general, information flow tracking associates data with a
label that specifies its security level and tracks how this label
changes as the data flows through the system. A simple
example system has two labels: public and secret. A policy for
the example system specifies that any data labeled as secret
(e.g., an encryption key) should not affect or flow to any data
labeled as public (e.g., a malicious process). Information flow
tracking can also be extended to more complex policies and
labeling systems. Information flow tracking has been used in
all levels of the computing hierarchy, including programming

US 9,305,166 B2
3

languages A. Sabelfeld and A. C. Myers, "Language-based
information-flow security.” IEEE Journal on Selected Areas
in Communications, 2003, operating systems M. Krohn, et
al., “Information flow control for standardos abstractions in
SOSP 2007, pp. 321-334, 2007., and instruction-set/mi
croarchitectures G. E. Suh, et al., “Secure program execution
via dynamic information flow tracking in ASPLOS 2004,
pp. 85-96, 2004.. J. R. Crandall et al., “Minos: Control data
attack prevention orthogonal to memory model.” in MICRO
2004, pp. 221-232, 2004.. Recently, information flow track
ing was used by Tiwari et al. M. Tiwari, et al., “Execution
leases: a hardware-supported mechanism for enforcing
strong non-interference,” in MICRO 2009, MICRO 42, pp.
493-504, 2009 at the level of logic gates in order to dynami
cally track the flows of each individual bit.

In the technique used by Tiwari et al., called gate level
information flow tracking (GLIFT), the flow of information
for individual bits is tracked as the bits propagate through
Boolean gates; GLIFT was later used by Oberg et al. J.
Oberg, et al., “Information flow isolation in I2C and USB. in
Proceedings of Design Automation Conference (DAC) 2011,
pp. 254-259, 2011. to test for the absence of all information
flows in the IC and USB bus protocols and by Tiwari et al.
M. Tiwari, et al., “Complete information flow tracking from
the gates up,” in Proceedings of ASPLOS2009, 2009 to build
a system that provably enforces strong non-interference. Fur
ther, it has been used to prove timing-based non-interference
for a network-on-chip architecture in the research project
SurfNoCH. M. G. Wassel et al., “Surfnoc: a low latency and
provably non-interfering approach to secure networks-on
chip.” in ISCA, pp. 583-594, ACM, 2013. Since its introduc
tion, Tiwarietal. have expanded GLIFT to “star-logic.” which
provides much stronger guarantees on information flow M.
Tiwari, et al., “Complete information flow tracking from the
gates up in Proceedings of ASPLOS2009, 2009. Generally,
GLIFT tracks flow through gates by associating with each
data bit a one-bit label, commonly referred to as taint, and
tracking this label using additional hardware known as track
ing logic, which specifies how taint propagates.

Gate-level information flow tracking (GLIFT) provides the
ability to test for information flows. See, e.g., Oberg et al.,
“Information Flow Isolation in I2C and USB. DAC 2011,
Jun. 5-10, 2011. Chip designers can test for information flows
prior to fabricating a chip with GLIFT. However, GLIFT
merely provides identification of information flows, and only
with the single bit tag that is labeled taint. GLIFT tracks each
individual bit in a system as the bits propagate through Bool
ean gates.
GLIFT can be applied, for example, after a design is syn

thesized into a gate-level netlist. With GLIFT, each gate is
then associated with tracking logic. The function of the track
ing logic depends on the function of the gate. The process is
similar to a technology mapping, where each gate in the
system is mapped to specific GLIFT logic. The result is a
gate-level design of a finite state machine (FSM) that contains
both the original logic and tracking logic. The resulting
design equipped with tracking logic can be tested for infor
mation flows. To test for implicit timing flows, GLIFT
accounts for all possible combinations of tainted data bits,
and allows information flows to be observed. A designer can
than make appropriate modifications to the chip design. Since
GLIFT targets the lowest digital abstraction, it is able to
detect and capture information leaking through time. How
ever, GLIFT fails to provide any ability to separate timing
information from functional information. Accordingly, a
hardware designer using GLIFT would be unable to deter
mine with a suspect flow is director indirect.

5

10

15

25

30

35

40

45

50

55

60

65

4
The Bus Covert Channel

Shared buses, such as the inter-integrated circuit (IC) pro
tocol, universal serial bus (USB), and ARM’s system-on-chip
AMBAbus, lie at the core of modern embedded applications.
Buses and their protocols allow different hardware compo
nents to communicate with each other. For example, they are
often used to configure functionality or offload work to co
processors (GPUs, DSPs, FPGAs, etc.). As the hardware in
embedded systems continues to become more complex, so do
the bus architectures themselves. The complexity makes it
difficult to identify potential security weaknesses.

In terms of Such security weaknesses, a global bus that
connects high and low entities has inherent security prob
lems. An example is a denial-of-service attack. In such an
attack, a malicious device starves a higher integrity device
from bus access. Another example is bus-Snooping, in which
a low device can learn information from a higher one. An
inefficient and expensive solution that has been used to avoid
these problems involves designers building physically iso
lated high and low buses.
The covert channels associated with common buses are

well researched. One Such channel, the bus-contention chan
nel W.-M. Hu, “Reducing timing channels with fuzzy time.”
in Proceedings of the 1991 IEEE Symposium on Security and
Privacy, pp. 8-20, 1991. arises when two devices on a shared
bus communicate covertly by modulating the amount of
observable traffic on the bus. For example, if a device A
wishes to send information covertly to a device B, it can
generate excessive traffic on the bus to transmit a 1 and
minimal traffic to transmit a 0. Even if A is not permitted to
directly exchange information with B, it still may transmit
bits of information using this type of covert channel.
The two most well-known solutions to the bus-contention

channel are clock fuzzing W.-M. Hu, “Reducing timing
channels with fuzzy time in Proceedings of the 1991 IEEE
Symposium on Security and Privacy, pp. 8-20, 1991. and
probabilisitic partitioning J. W. Gray III, “On introducing
noise into the bus-contention channel in Proceedings of the
1993 IEEE Symposium on Security and Privacy, pp. 90-98,
1993.]. Clock fuzzing utilizes a skewed and seemingly ran
dom input clock. The fuzzy clock makes it stochastically
difficult for two covert devices to synchronize. This technique
has limited appeal because it reduces the bandwidth of the
bus J. W. Gray III, “On introducing noise into the bus
contention channel.” in Proceedings of the 1993 IEEE Sym
posium on Security and Privacy, pp. 90-98, 1993.). Probabi
listic partioning permits devices to access the bus in isolated
time slots in a round-robin fashion. Two modes are chosen at
random: Secure and insecure. In insecure mode, the bus oper
ates in the standard fashion where devices contend for its
usage. In Secure mode, the bus is allocated to each device in a
time-multiplexed round-robin manner. The contention phase
burdens bandwidth also.
Cache Timing Channel
CPU caches in modern processors have been demonstrated

to be highly susceptible to hardware timing channels D.
Gullasch, et al., "Cache games—bringing access-based cache
attacks on AES to practice.” in Proceedings of the 2011 IEEE
Symposium on Security and Privacy, pp. 490-505, 2011.
Caches are typically built from faster and higher power
memory technologies, such as SRAM, and sit between slower
main memory (typically DRAM) and the CPU core.
The non-deterministic latencies of caches are a direct

Source of timing channels. When a memory region is refer
enced that is currently stored in the cache (a cache hit), the
time to receive the data is significantly faster than if it needs
to be retrieved from main memory (a cache miss). Many data

US 9,305,166 B2
5

encryption algorithms. Such as the advanced encryption stan
dard (AES), use look-up tables based on the value of the
secret key. Since a look-up table will return a value in an
amount of time that is directly correlated with whether or not
the value is already cached, observing the timing of interac
tions with the look-up table produces valuable information
about the secret key.

This vulnerability has been previously demonstrated to
permit complete extraction of the secret key via different
attacks. The attacks include trace-driven O. Aciigmez et al.,
“Trace-driven cache attacks on AES (short paper).” in ICICS,
pp. 112-121, 2006, time-driven D. J. Bernstein, "Cache
timing attacks on AES. Technical Report, 2005. D. A.
Osvik, et al., "Cache attacks and countermeasures: the case of
aes,' in Proceedings of the 2006 The Cryptographers' Track
at the RSA conference on Topics in Cryptology, pp. 1-20,
2006., and access-driven D. Gullasch, et al. “Cache
games—bringing access-based cache attacks on AES to prac
tice.” in Proceedings of the 2011 IEEE Symposium on Secu
rity and Privacy, pp. 490-505, 2011. Trace-driven attacks
require an adversary to have detailed cache profiling infor
mation. The adversary therfore requires physical access or
another wire to obtain fine granularity cache information.
Time-driven attacks collect timing measurements over sev
eral encryptions by a remote server and correlate their run
ning time to the value of the Secret key. This type of attack has
been shown capable of extracting a complete 128-bit AES key
D. J. Bernstein, "Cache-timing attacks on AES. Technical
Report, 2005.). Access-driven attacks exploit knowledge
about which cache lines are evicted. In particular, a malicious
process observes the latency of cachemisses and hits and uses
these patterns to deduce which cache lines are brought
in/evicted, which in turn leaks information about the memory
address (e.g., the secret key in AES table look-ups). This type
of cache attacks has applications beyond just encryption, Such
as on virtulized systems T. Ristenpart, et al., “Hey, you, get
off of my cloud Exploring information leakage in third-party
compute clouds.” in Proceedings of CCS 2009, pp. 199-212,
2009.).
Most previous work on timing channels has focused on

techniques for identifying timing and storage channels in
larger systems, but not specifically in hardware designs. Prior
efforts have reduced or eliminated specific timing channels.
Little work concerned systematic testing techniques for iden
tifying Such channels.
Wray R. A. Kemmerer, “Shared resource matrix method

ology: an approach to identifying Storage and timing chan
nels.” ACM Trans. Comput. Syst., pp. 256-277, 1983.
describes analysis of timing and storage channels in the VAX
Virtual Machine Monitor. The timing channels are specific to
the VAXVMM and a systematic testing method for identify
ing the channels is not described.
Kemmerer R. A. Kemmerer, “Shared resource matrix

methodology: an approach to identifying storage and timing
channels. ACM Trans. Comput. Syst., pp. 256-277, 1983.
presents a shared matrix methodology for identifying timing
channels. A matrix is created that compares shared resources,
processes, and resource attributes. Based on these fields and
Some proposed criteria for a timing and storage channel, the
matrix can be analyzed to determine whether or not a shared
resource can be used as a side channel. This technique there
fore requires the designer to construct such a matrix and
determine the shared resources, but ultimately still does not
provide a general technique for detecting timing channels in
hardware.

Clock fuZZing is a technique for timing channel mitigation
in secure systems W.-M. Hu, “Reducing timing channels

10

15

25

30

35

40

45

50

55

60

65

6
with fuzzy time in Proceedings of the 1991 IEEE Sympo
sium on Security and Privacy, pp. 8-20, 1991.I. Clock fuzzing
works by presenting the system with a seemingly random
clock to make it stochastically difficult for two objects to
synchronize. Clock fuZZing is ineffective because it reduces
the bandwidth of the timing channel and does not eliminate it
entirely.
More recent work has focused on hardware information

flow tracking. Dynamic information flow tracking (DIFT).
E. Suh, et al., “Secure program execution via dynamic infor
mation flow tracking” in ASPLOS 2004, pp. 85-96, 2004.
tags information that comes from potentially untrusted chan
nels and tracks them throughout a processor. This tag is
checked before branches in execution are taken, and the
branch is prevented if this information originated from an
untrusted source. As demonstrated by Suh et al., DIFT is quite
effective at detecting buffer overflow and format-string
attacks, but works at too high of an abstraction to track infor
mation through timing channels. A similar tracking system.J.
R. Crandall et al., “Minos: Control data attack prevention
orthogonal to memory model in MICRO 2004, pp. 221-232,
2004. keeps an integrity bit on information and uses this bit
to prevent potentially malicious branches in execution.
Another example M. Dalton, et al., “Raksha: a flexible infor
mation flow architecture for software security.” in ISCA 2007,
pp. 482-493, 2007 is a DIFT style processor that allows
security policies to be reconfigured. Others have described a
hardware security language X. Li, et al., "Caisson: a hard
ware description language for secure information flow, in
PLDI 2011, pp. 109-120, 2011. that aids hardware designers
by using programming language type-based techniques to
prevent unintended information flows and eliminate timing
channels.

Gate level information flow tracking (GLIFT) has been
developed by the present inventors and colleagues. GLIFT
M. Tiwari, et al., “Execution leases: a hardware-supported
mechanism for enforcing strong non-interference.” in
MICRO 2009, MICRO 42, pp. 493-504, 2009 works by
tracking each individual bit in a hardware system. It is a
general technique that has been applied to build an execution
lease CPUM. Tiwari, et al., “Crafting a usable microkernel,
processor, and I/O system with strict and provable informa
tion flow security.” in Proceedings of ISCA 2011, pp. 189
200, 2011. and to analyze information flows in bus protocols
J. Oberg, et al., “Information flow isolation in I2C and USB.
in Proceedings of Design Automation Conference (DAC)
2011, pp. 254-259, 2011... Recently, information flow track
ing has also been used in hardware design languages. This
work is effective at helping hardware designers to build
secure hardware, but fails to provide a general technique for
testing for timing channels.

SUMMARY OF THE INVENTION

A preferred method for detecting a timing channel in a
hardware design includes synthesizing the hardware design
to gate level. Gate level information flow tracing is applied to
the gate level of the hardware design via a simulation to
search for tainted flows. If a tainted flow is found, a limited
number of traces are selected. An input on the limited number
of traces is simulated to determine whether the traces are
value preserving with respect to taint inputs, and to determine
that a timing flow exists if the traces are value preserving with
respect to the taint inputs.
A preferred method for detecting a timing channel in a

hardware design includes synthesizing the hardware design
to gate level. Gate level information flow tracing is applied to

US 9,305,166 B2
7

the gate level of the hardware design via a simulation to
search for tainted flows. If a tainted flow is found, a limited
number of traces are selected. An input on the limited number
of traces is simulated to determine whether the traces are
value preserving with respect to taint inputs, and to determine
that a timing flow exists if the traces are value preserving with
respect to the taint inputs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-C respectively illustrate an example AND gate,
a partial truth table for the tracking logic of an AND gate, and
tracking logic for an AND that has been modified to gate level
for tracking via a method of the invention;

FIG. 2 illustrates classes of information flows in hardware
designs that can be identified through the invention and physi
cal phenomena that are not considered;

FIG. 3 is a flowchart illustrating a preferred method to
isolate timing channels;

FIGS. 4A & 4B show the inputs and outputs of a fast
multiplier of a system S that takes in two multi-bit inputs A
and B and two single-bit inputs, fast and a clockinput clk, and
outputs P:=AxB, the system first picks an ALU to use based
on the value of fast and then uses that ALU to perform the
multiplication;

FIGS. 5A-5C illustrate standard IC configurations and
how the configurations can (FIG. 5B) covertly communicate
a 1 to S by sending an acknowledgement or (FIG. 5C) can
communicate a 0 covertly to S by sending a negative-ac
knowledgement;

FIG. 6 shows adding strict time-partitioning of the I°C bus
via an arbiter, such that the bus is only accessed by S and S
in mutually-exclusive time slots;

FIGS. 7A-7C illustrate a typical CPU caches and opera
tions along with the Vulnerabilities to malicious processes;

FIG. 8 is a block diagram of a simple MIPS-based CPU in
which the cache is replaced by one which contains the origi
nal cache and its associated tracking logic to conduct an
analysis of the invention in which a testbench drives the
simulation of the processor to capture the output traces.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Another preferred method for detecting a timing channel in
a hardware design receives a hardware design. At least one
portion of the hardware design is synthesized with gate level
primitives. Tracking logic is added including the gate level
primitives to monitor information flow through the gate level
primitives. Sets of inputs to the gate level primitives including
added taint inputs are tracked to identify information flows by
generating outputs from the gate level primitives for every
clock tick while changing only taint inputs. Timing flows are
separated from informational flows by conducting input to
output deterministic traces to isolate functional flows in the
information flows.
A preferred method for detecting a timing channel in a

hardware design includes synthesizing the hardware design
to gate level. Gate level information flow tracing is applied to
the gate level of the hardware design via a simulation to
search for tainted flows. If a tainted flow is found, a limited
number of traces are selected. An input on the limited number
of traces is simulated to determine whether the traces are
value preserving with respect to taint inputs, and to determine
that a timing flow exists if the traces are value preserving with
respect to the taint inputs.

10

15

25

30

35

40

45

50

55

60

65

8
A preferred method for detecting a timing channel receives

a hardware design and receives or generates a set of test taint
inputs. Response of the hardware design to the test taint
inputs is simulated while tracking flow of information
through the design. A search is conducted for differences
between timing flows that don't affect outputs in the hardware
design and functional flows that do affect outputs in the hard
ware design in response to said simulating. The steps are
repeated, if needed, to identify possible timing flows in the
hardware design. In a preferred embodiment simulating
includes an initial pre-processing of the hardware design. The
pre-processing can include synthesizing at least a portion of
the hardware hardware design. The receiving or generating
can include selecting a Subset of input deterministic traces for
the tracking logic. The hardware design can be, for example,
a design in a hardware description language, and the synthe
sizing synthesizes the design into a gate level netlist, and the
tracking logic is added to every gate level primitive in the
netlist.

Simulating can include tracking additional signals not
specified in the hardware design. Additional signals comprise
modified versions of signals specified in the hardware design.
The additional signals can track taint of signals specified in
the hardware design.

Simulating can include finding a Subset of taint inputs that
cause a changing in the timing of outputs without changing
output values. Finding can begin with selecting input traces
which differ in values of security critical inputs. Finding can
begin with a random selection of input traces. Finding can
begin with selecting input traces aided by information pro
vided by a hardware designer.

Preferred embodiments of the invention use GLIFT, but
unlike prior GLIFT, provides a fully deterministic testing
method for detecting hardware timing channels to make
secure hardware easier to design and test. The invention pro
vides a method for testing for timing channels in computer
hardware. Preferred methods of the invention focus on the
hardware design itself, so that a system can be built with a
secure root-of-trust, thus providing security assurance for the
higher abstractions. Preferred embodiments of the invention
can be directly applied to existing hardware cores without
requiring code rewriting.

Preferred embodiment methods and analysis tools use
gate-level information flow tracking to detect information
flows within a system. If information flows exist, then the
flows are tested to determine whether the flows are merely
timing flows or if the flows are functional flows. A functional
flow is analyzed as a flow that for a given set of inputs to a
circuit system or domain affects values output by the circuit
system or domain. A timing flow exists when changes in the
input affects how long a computation takes to execute.
A fully deterministic framework is provided by methods

and systems of the invention to identify functional flows in
detected information flows. The framework can confirm or
rule out the existence of functional flows, and thereby convert
hardware information flow tracking to an unambiguous tech
nique to identify and effectively isolate timing flows. The
framework has been demonstrated in two example applica
tions: a shared bus (IC) and a cache in a MIPS-based pro
cessor (reduced instruction set architecture from MIPS Tech
nologies), both of which were written in Verilog HDL and
then simulated in a variety of Scenarios. The experiments
show that methods of the invention can separately identify
timing and functional.

Preferred methods and systems of the invention modify
GLIFT to provide a fully deterministic model that isolates
timing information from other flows of information. The

US 9,305,166 B2
9

model is completely specified to separate timing and func
tional flows. An embodiment of the invention demonstrates
that a shared bus, for example, can be analyzed to identify
timing flows and determine if the flows are in threat model are
system dependent.

Preferred methods and systems of the invention provide a
hardware design test method and system that can examine a
hardware to test the design for the potential existence of
timing channels that might contradict design goals, e.g. by
adversely affecting intended confidentiality or integrity goals
for a particular core in a system-on-chip or a security domain
in a multi-security domain system. A method and system of
the invention can determine whether or not an information
leak is a timing or direct threat.
An example hardware design test method and system can

be applied, for example, to test the design of hardware system
caches and the interaction of caches with various cores
against concerns related to timing-based interference. A par
ticular application would benefit a hardware designer, for
example, that is designing a system-on-chip and wishes to
isolate high-integrity cores from less trusted third-party ones,
while still allowing resource sharing. A design can be tested
with the invention prior to fabrication to reveal timing signal
Vulnerabilities. A designer can then modify a design to miti
gate timing effects that the less trusted cores have on the high
integrity ones. In some situations, identified timing flows
might be of no concern. The attack space of the cache or the
timing effects on high-integrity cores could be demonstrated
through the testing as being outside the threat model of the
designer. Regardless, this invention provides hardware
designers with the ability to identify these timing channels. In
other situations, the designer can discover threats requiring a
design change. The test method and system provides an accu
rate evaluation tool to test threat models.

Preferred methods of the invention can be implemented via
computer code stored on a nontransient medium. Methods of
the invention can also be implemented in hardware devices
and systems that connected to microprocessors or other
devices being evaluated for timing channels. Those knowl
edgeable in the art will appreciate that embodiments of the
present invention lend themselves well to practice in the form
of computer program products. Accordingly, it will be appre
ciated that embodiments of the present invention may com
prise computer program products comprising computer
executable instructions stored on a non-transitory computer
readable medium that, when executed, cause a computer to
undertake methods according to the present invention, or a
computer configured to carry out such methods. The execut
able instructions may comprise computer program language
instructions that have been compiled into a machine-readable
format. The non-transitory computer-readable medium may
comprise, by way of example, a magnetic, optical, signal
based, and/or circuitry medium useful for storing data. The
instructions may be downloaded entirely or in part from a
networked computer. Also, it will be appreciated that the term
“computer as used herein is intended to broadly refer to any
machine capable of reading and executing recorded instruc
tions. It will also be understood that results of methods of the
present invention may be displayed on one or more monitors
or displays (e.g., as text, graphics, charts, code, etc.), printed
on Suitable media, stored in appropriate memory or storage,
etc.

Preferred embodiments of the invention provide a frame
work for testing hardware for side channels by identifying
whether information can be leaked based on how long a
hardware component takes to execute its normal function.
Embodiments of the invention leverage GLIFT. GLIFT tracks

10

15

25

30

35

40

45

50

55

60

65

10
flow of information through logic gates using a single bit label
in hardware to monitor the security level of each individual
data bit. Preferred embodiments provide a fully deterministic
model in conjunction with GLIFT to identify these informa
tion flows. The preferred methods further identify functional
flows using a fully deterministic model. Intuitively, a func
tional flow exists for a given set of inputs to a system if their
values affect the values output by the system (for example,
changing the value of a will affect the output of the function
f(a; b):=a+b), while a timing flow exists if information about
the input can be learned from the latency of the execution.
While GLIFT will tell the designer only if any such flow
exists, the fully deterministic model determines whether or
not the system contains specifically functional flows. Used in
conjunction GLIFT, this method permits determination of
whether timing flows (and therefore channels) exist. If
GLIFT determines that a flow does exist but the method can
demonstrate that no functional flow exists, then the method
determines that a timing flow must exist. Methods of the
invention have been tested to Successfully identify a timing
channel in a processor cache.
The invention is generally applicable to industries that

require security (trusted platforms, secure storage, network
devices, etc.) and/or integrity (real-time operating systems,
critical embedded system controllers, etc.) would benefit
greatly from the present invention. Most any system that
relies on embedded microcontrollers/cores would benefit,
including, for example, medical equipment, automobiles, air
planes, and building security systems. Methods of the inven
tion can formally validate security and integrity properties
spanning across hardware and Software, enabling more effi
cient solutions while maintaining system integrity.

Before introducing deterministic methods of the invention,
formal definitions are first set forth. First, time is defined with
respect to the system clock.
Definition 1.
The clock is a function with no inputs that outputs values of

the form be{0, 1}. A clock tick is the event in which the
output of the clock changes from 0 to 1. A time t is the number
of clock ticks that have occurred. T is the set of possible
values oft.

With this definition, some stateless hardware component
will output a stream of ticks, and a separate stateful compo
nent will measure the number of ticks and can be used to keep
track of time.
Definition 2.

For a set Y, a discrete event is the paire:=(y,t) for yeY and
te.T (recall is the set of all possible time values). Functions
that recover the value and time components of an event are
val(e) y and time(e)=t respectively.
Definition 3.

For a value neN and a set Y, a trace A(Y.n) is a sequence
of discrete events {e, (yet), "that is ordered by time; i.e.,
time(e)<time(e) for all i, 1sisin, and such that val(e)6Y.
time(e)6T for all i, 1sisn. When the values of Y and n are
clear, they are omitted and the trace is simply A.
The definition of event is broad, such that any value at any

time can be considered an event. By example, a system that
outputs some value on every clock tick that is run fork clock
ticks with each output recorded, results in a trace of size k.
Redundant events in which the system outputs the same value
for many clock ticks while performing some computation are
not of interest. In this case, only the value of the output
changes produces an event of interest. This can be defined as
a distinct trace.

US 9,305,166 B2
11

Definition 4.
For a trace A(Yn), the distinct trace of A is the largest

Subsequence d(A) CACY.n) such that for all e, , e,6d(a) it
holds that val(e)zval(e).

Constructing the distinct trace d(A) of A is straightforward.
First, include the first element of A in d(A). Next, for each
subsequent event e, check whether the last evente' in d(A) is
such that val(e)val(e); if this holds, then skip e (i.e., do not
include it) and if it does not then adde to d(A). As an example,
consider a trace of two-bit values A=((00,1), (002), (0.1.3),
(014), (11.5), (10.6)). Then the distinct trace d(A) will be
d(A):-((00,1). (013), (11.5), (10.6)), as the values at time 2
and 4 do not represent changes and will therefore be omitted.

With these definitions in hand, a finite state machine sys
tem F can be defined that takes as input a value X in some set
X and returns a value Y in some set Y. To be fully general and
consider systems that take in and output vectors rather than
single elements, assume that XXX . . . XX, and that
Y=Yx . . . XY, for some m,nal, which means that an input
X looks like X(x1, X) and an output y looks like
t(y1,...,y). To furthermore acknowledge that the system
is not static and thus both the inputs and outputs might change
over time, we instead provide as input a trace A(X.k) for some
value k, and assume our output is a trace A(Yk).
Definition 5.
A finite state machine (FSM) F is defined as F=(X,Y. S., 8,

O), where X is the set of inputs, Y the set of outputs, and S the
set of states. Ö:XxS->S is the transfer function and C.:
XxS->Y is the output function.

With circuit implementations offinite state machines, both
Ö and C. are represented as combinational logic functions. In
addition, both ö and C. can be called on a trace. B=O(A.so)
generates a trace of output events B (eo, e, ... e) during the
execution on input trace A starting in state so. This notation
describes C. executing recursively; it takes a state and trace as
input and executes to completion producing an output trace.
When the starting state is assumed to be the initial state, the
notation C(A) is used.
Of concern are flows of information from a specific set of

inputs (the Subset of inputs which are of Security concern).
Preferred embodiments formalize how to constrain the oth
ers. Recall that an information flow exists for a set of inputs to
the system F if their values affect the output (either the con
crete value or its execution time). One way to then test
whether or not these inputs affects the output is to change
their value and see if the value of the output changes; con
cretely, this would mean running F on two different traces, in
which the values of these inputs are different. In order to
isolate just this set of inputs, however, it is necessary to keep
the value of the other inputs the same. To ensure isolation,
Preferred embodiments define what it means for two traces to
be value preserving.
Definition 6.

For a set of inputs {x} and two traces ACX.k)–(e.
e) and A(X.k)' (e.,..., e), the traces are value preserving
with respect to I if for all e,6A and e, SA it is the case that
time(e) time(e), and if Val(e)=(a a) and val(e)
(a1, ..., a,), thena, a, for all if I.

If two traces are value preserving, then by this definition
the only difference between them is the value of the tainted
inputs {x, Taint can be, as an example, secret data that
would be tainted and then tracked to ensure that it is not
leaking to somewhere harmful. In this example, the set of
secret inputs would be the set I.

For use in the invention, Preferred embodiments provide
formal definitions of tracking logic and taint. First, it is impor
tant to understand how a “wire' in a logic function is tainted.

5

10

15

25

30

35

40

45

50

55

60

65

12
Definition 7 (Taint)

For a set of wires (inputs, outputs, or internals) X, the
corresponding taint set is X. A wire X, for X (X.
X. . . . , X)6X is tainted by setting X-1 for X6X, and
X, (X-1, . . . , Xits X,t).

In this definition, the elements of X and X, are given as
vectors; i.e., an element X6X has the form X=(X, . . . X) for
nel. For single-bit security labels, X6X and its corresponding
taint vector X,6X, are the same length.

With the definition for taint, preferred embodiments can
formally define the behavior of a tracking logic function and
information flow with a tracking logic function.
Definition 8 (Tracking Logic)

For a combinational logic function f:X->Y, the respective
tracking logic function is f:XXX->Y, where X, is the taint
set of X and Y, the taint set of Y. If f(x1,..., x)=(y1,...,y).
then f(x1,..., X, X1, ..., X,)-(y1,...,ym), where y, 1 3 as

indicates that some tainted input x, (i.e., an input x, such that
x 1) can affect the value of y,
Definition 9 (Information Flow)

For a combinational logic function f:X->Y and a set of
inputs {x} an information flow exists with respect to an
outputy, if f(x,)-(y1,...,y,-1. 1, y1,...,y), where each
entry of x is 1 ifie1 and 0 otherwise. If there exists an index
jSuch that y1, an information flow exists.

To understand how the tracking logic is used, consider a
function with public and secret labels; then a labelx is 1 if x,
is secret, and 0 otherwise. When considering a concrete
assignment (a1, . . . a,) with each a, being 0 or 1, running
f(a1, ...,a) will produce the data output (y1,...,y,,...,y),
and running f,(a, a. a. a) will indicate which
tainted input can affect the values of which outputs (by out
putting y=1 if a tainted input affects the value of y, and 0
otherwise). With references to the sample function, if some
outputy 1 fromf, a secret input affects the outputy, off. If
y, is public, then this flow would violate the security policy.

Typically, each individual gate and flip-flop is associated
with Such tracking logic in a compositional manner. In other
words, for each individual gate (AND, OR, NAND, etc.),
tracking logic is added monitors the information flow through
this particular gate. By composing the tracking logic for each
gate and flip-flop together, an entire hardware design consist
ing of all the original inputs and outputs can be formed, with
the addition of security label inputs and outputs can be pro
vided. Care must be taken to derive the tracking logic for each
gate separately, however, as the way in which the inputs to a
gate affect its output vary from gate to gate.
As an example, consider the tracking logic for a AND gate

as shown in FIGS. 1A-1C. By definition, if some input of a
AND gate is 0, the output will always be 0 regardless of the
other inputs. Thus, with inputs x=1 and X=0 with security
labels X=1 and x=0 as shown in FIGS. 1 B-1C, then the
output will actually be untainted even though X-1, because
the value of X has no observable effect on the output of the
gate (again, because X 0 and thus the output will be 1 regard
less). By building a truth table for every gate primitive, track
ing logic can be derived in this manner and stored in a library.
The tracking logic can then be applied to the gate in a manner
similar to technology mapping. As an example of how to
compose these tracking logics, considera2-input multiplexer
(MUX), which is composed of two AND gates and a single
OR gate where the output of the AND gates feed the inputs of
the OR gate. First, the tracking logic for each AND gate and
the single OR gate is generated. Then, the output of the
tracking logic for each AND gate is fed as inputs to the
tracking logic for the OR gate.
To apply modified GLIFT of the invention, a hardware

description of the design is written in a hardware description

US 9,305,166 B2
13

language (HDL), such as Verilog or VHDL, and this descrip
tion is then synthesized into a gate-level netlist using tradi
tional synthesis tools such as Synopsys' Design Compiler. A
gate-level netlist is a representation of the design completely
in logic gates and flip-flops. Next, the GLIFT logic is added in
a compositional manner, i.e., forevery gate in the system, add
associated tracking logic which takes as input the original
gate inputs and their security labels and outputs a security
label. Given a security policy such as the confidentiality
example (i.e., secret inputs should not flow to the public
output), GLIFT can then be used to ensure that the policy is
not violated by checking that the output of the tracking logic
f, is not 1. It is important to remember that if, is defined to
report 1 iffa tainted input can actually affect the output. In
other words, it will report 1 if at any instant in time a tainted
input can affect the value of the output.
One of GLIFT's key properties is that it targets a very low

level of computing abstraction; at Such an abstraction, all
information becomes explicit. In particular, because GLIFT
tracks individual bits at this very low level, it can be used to
explicitly identify timing channels.
A clear understanding of timing channels can be aided by

a definition of a timing channel familiar to hardware design
ers. Preferred embodiments define specifically a timing-only
flow as an input that affects only the timestamp of output
events and not the values. To be clear, preferred embodiments
are concerned with timing leaks at the cycle level. Stated
differently, preferred embodiments assume that an attacker
does not have resources for measuring 'glitches' within a
combinational logic function itself. Rather, an attacker can
only observe timing variations interms of number of cycles at
register boundaries. With these assumptions, it can be dem
onstrated that the present modified version of GLIFT can
capture Such channels and identify timing only flows.
Definition 10. (Timing-Only Flow)

For a FSMF with input space X and output function C., a
timing-only flow exists for a set of inputs {x}, if there exists
some value keT and two input traces ACX.k) and A(X.k)' such
that A and A' are value preserving with respect to I, and for
B=C.(A)val and B'-O.(A') it is the case that val(e)-val(e) for
all eed(B) and e, ed.(B) and there exist eed(B) and e, ed
(B) such that time(e)ztime(e).

This definition captures the case in which a set of inputs
affect only the time of the output. In other words, changing a
Subset of the tainted inputs will cause a change in the time in
which the events appear on the output, but the values them
selves remain the same. Before this definition can be used to
prove that GLIFT captures timing-only channels, the GLIFT
FSMF, must be defined.

Referring back to Definition 5, a FSM consists of two
combinational logic functions C. and 6. Thus, there exists
tracking logic functions C, and Ö, according to Definition 8.
Using this property, preferred embodiments can define the
GLIFT FSM F, which will be used to prove that GLIFT
detects timing-only flows.
Definition 11.

Given a FSM F=(X,Y, S, Ö, C.), the FSM tracking logic F,
is defined as F(X, X,Y, S, S, Ö, C.) where X and S are the
same as in F. S., is the set of tainted States, X, is the set of
tainted inputs, Y, is the set of tainted outputs, 6, the tracking
logic of 6 and C, the tracking logic function of C.

With these definitions are in place, one can prove that
GLIFT can detect timing-only flows.
Theorem 1.
The FSM tracking logic Fofa FSMF captures timing-only

channels.

5

10

15

25

30

35

40

45

50

55

60

65

14
Proof.

Suppose there exists a timing-only channel for a finite state
machine F with respect to the set of tainted inputs I. By
Definition 10, this means there must exist value-preserving
traces A(X.k) and ACX.k)' (such that, for B=O.(A) and B'-O.
(A'), val(e)=val(e) for all e,6d.(B) and e, Sd.(B), but there
existeed(B)andeed(B) such that time(e)-time(e). Since
eed(B) implies that eeB (and likewise for e,,), this means
that BZB'.
F generates an output every clock tick, so for all eeB and

e,6B', time(e)-time(e), and thus there must exist some
e,6B and e, SB' such that val(e) zval(e) (because BzB"). By
Definition 6, all input values remain the same for all iÉI, such
that the only difference between them is in the tainted inputs,
and thus the difference in output must have been caused by a
tainted input. By Definition 8, C, would thus have an output of
(y1,. y =1,...,y), as the value ify, in the output of C.
was affected by a tainted input. By Definition 9, this means
GLIFT has indicated an information flow must exist. As the
only possible flow is timing-based, this statement of GLIFT
thus captures timing-only flows.

Since GLIFT operates at the lowest level of digital abstrac
tion, all information flows become explicit. Thus, if at any
instant in time a tainted input can affect the value of the
output, GLIFT will indicate so by definition. At the FSM
abstraction, as defined in Definition 10, this type of behavior
often presents itself as a timing channel. This proof demon
strates that GLIFT applied with the invention can in fact
identify these types of information flows. The next step is to
separate timing flows from functional flows.

In FIG. 2, GLIFT allows system designers to determine if
any information flows exist within their systems even those
through timing-channels. At the digital level, there are two
possible types of flows which are designated as functional
flows and timing. A functional flow exists for a given set of
inputs to a system if their values affects the values output by
the system (for example, changing the value of a will affect
the output of the function f(a,b):=a+b), while a timing flow
exists if changes in the input only affect how long the com
putation takes to execute. GLIFT in the prior art only can't
separate flows, and demonstrates only that timing and/or
functional flows exist. The invention provides a fully deter
ministic model for determining whether or not a system con
tains specifically functional flows. Applying GLIFT, methods
of the invention determine what type of flow is occurring. If
GLIFT determines that no flow exists, then there is no flow. If
GLIFT instead determines that a flow does exist but one can
demonstrate that no functional flow exists, then the method
identifies that a timing flow must exist. In another case,
GLIFT determines that a flow exists and the method deter
mines that a functional flow does exist. In this instance the
method identifies the existence of functional flows, but does
not separately identify timing flows.
Finding Function Flows
A testing framework is shown in FIG. 3. Here GLIFT is

modified to find functional flows to isolate timing informa
tion. If GLIFT determines that there is no flow, then there is no
functional nor timing information flow. If, however, GLIFT
determines there is a flow and no functional flow is identifies,
then the method determines that the information flow
occurred from a timing channel. A proof begins with the
strongest possible definition and then weakens it to make it
more amenable to testing techniques familiar to hardware
designers. In FIG. 3, generally, synthesis 10 of a hardware
design is conducted, and then GLIFT logic is applied 12 to a
gate netlist. Simulation is conducted 14 to identify tainted
flows 16. The separation between functional and timing flows

US 9,305,166 B2
15

in preferred embodiments only chooses 18 a pair of selected
traces, though more can be selected to strengthen the method
at the cost of some added overhead. Simulation is conducted
on the traces and events are logged 20. A search for different
events 22 determines if there is a difference 24 at an output as
a result of a change in input. If there is, then timing flows can
be identified because functional flows exist. Otherwise, a
timing flow is unambiguously identified.
Definition 12 (Functional Flow)

For a deterministic FSMF with input space X and output
function C, a functional flow exists with respect to a set of
inputs {x}, if there exists some value keT and two input
traces A(X.k) and ACX.k)' such that A and A' are value pre
serving with respect to I, and for B:=C.(A) and B':=C.(A') it is
the case that there exists e.e.d(B) and e, Sd(B') such that
val(e) zval(e).

According to Definition 12, if there is some functional flow
from this set of inputs to the output, then there exist input
traces of some size k that will demonstrate this flow; i.e., if a
different output pattern is observed by changing only the
values of these particular inputs, then their value does affect
the value of the output and a functional flow must exist. In
practice, however, this definition carries a large overhead: a
system designer wanting to isolate timing flows by ensuring
that no functional flows exist would have to look, for every
possible value of k, at every pair of traces of size k in which
the value of this set of inputs differs in some way; only upon
finding no such pair for any value of k would the designer be
able to conclude that no functional flow exists. An altered,
relaxed definition can provide some guarantees (albeit
weaker ones) about the existence of functional flows, without
requiring an exhaustive search (over a potentially infinite
space).
Definition 13 (Functional Flow)

For a deterministic FSMF with input space X and output
function C, a functional flow exists with respect to a set of
inputs {x}, and an input trace ACX.k)ifthere exists an input
trace ACX.k)' such that A and A' are value preserving with
respect to I and for B:=C.(A) and B':=C.(A') it is the case that
there exists e.ed(B) and e, 6d.(B) such that val(e)zval(e).

Instead of only examining the set of inputs, the definition
also considers fixing the first trace. If one constructs a second
trace given this first trace to ensure that the two are value
preserving, then comparing the distinct traces of the output
will tellus if a functional flow exists for the trace. Once again,
however, the method considers what a system designer would
have to do to ensure that no functional flow exists: given the
first trace A, the designer would have to construct all possible
traces A'; if the distinct traces of the outputs were the same for
all Such A', then the designer could conclude that no func
tional flow existed with respect to A. Once again, this search
space might be prohibitively large, so another meaningful
relaxation of the definition is provided.
Definition 14 (Functional Flow)

For a deterministic FSMF with input space X and output
function C, a functional flow exists with respect to a set of
inputs {x}, and input traces A(X.k) and A(X.k)' that are
value preserving with respect to I if for B:=C(A) and B':=C.
(A') it is the case that there exists e.e.d(B) and e, Sd(B') such
that val(e)zval(e).

While this definition provides the weakest guarantees on
the existence of a functional flow, it allows for the most
efficient testing, as all that is required is to pick only two
traces. In addition, the guarantees of this definition are not as
weak as they might seem: they say that, given the output B, by
observing B' as well, no additional information about the
inputs {x}, is learned than was learned just from seeing B.

5

10

15

25

30

35

40

45

50

55

60

65

16
While this does not imply the complete lack of any functional
flow, it does provide evidence toward that conclusion. This
can be strengthened via methods of the invention by running
the procedure with additional, carefully selected pairs of
traces. For example, when testing timing information flows in
a processor cache when performing data encryption. The
traces should be chosen such that the secret key is different. In
general, if the choice of traces is not clear, a pair of random
traces may be chosen for the analysis. By selection a small set
of pairs, a high level of guarantee is provided with a very
Small search space.
The system F can be deterministic, and can be imple

mented more efficiently than might first be apparent. Only
flows detectable by GLIFT are of interest. Physical processes
that can be used to generate randomness, such as the current
power Supply or electromagnetic radiation, are therefore not
considered explicitly. Randomness can be addressed, how
ever, in the form of something like a linear feedback shift
register (LFSR), which is in fact deterministic given its cur
rent state; the randomness produced by an LFSR can there
fore be held constant between two traces by using the same
initial state.
An Example: Fast/Slow Multiplier
To build intuition for how the present model determines

whether or not a functional flow exists, consider a simple
multiplier system.
Shown in FIGS. 4A and 4B, the system consists of a pair of

two-input multipliers, one fast and one slow. On inputs A, B,
and fast, the system will use fast to determine which of the
hardware multipliers to use. For both A and B, there is a clear
functional flow from the input to the output, as P:=AxB. The
input fast, however, has no effect on the value of the output P.
as it simply selects whether to perform a fast or slow multiply.
There is therefore no functional flow from fast to the output,
but there is a clear timing flow. The latency with which P is
computed is highly dependent on the value of fast.
To confirm that the flow from fast must be timing rather

than functional, this input is evaluated through the present
methods. Using as F, the system in FIGS. 4A and 4B, the input
space can be defined as X:=Z, Z. {0,1}); i.e., all tuples
consisting of two integer values and one bit, and the present
output space to be Y:=Z. Of interest, is whether or not a
functional flow exists for fast, so this is defined to be the
present set of inputs. Picking values Ao and Bo for A and B
respectively, and setting the first trace to be A:= ((A, B, 0).
to): i.e., the single event (at an arbitrary time to) in which A
and Bo are multiplied using the slow ALU. Then set the
second trace to be A':-((A, B, 1), to), and run these two
traces to obtain output traces B=(Pt) and B'=(P't'). As A and
Bo were the same for both traces, P=P" and thus val(e)=val
(e) for alle,6d.(B) and e, Sd.(B), meaning no functional flow
exists with respect to these two traces. This also provides
evidence that no functional flow exists for fast at all, although
further testing would likely be required to rule out this func
tional flow completely.
Detecting Timing Flows in IC

This example application of the invention effectively
shows that finding hardware timing channels in practice is
non-trivial, and testing for them benefits from Some intuition
(for example, knowing which traces to pick). Both clock
fuZZing and probabilistic partitioning discussed in the back
ground have proven to be effective at reducing, the bus
contention channel. The prior techniques sacrifice bandwidth
and do not provide a deterministic method to establish
whether information might leak through timing channels
associated with the bus architecture. The invention provides a

US 9,305,166 B2
17

use of GLIFT to prove that certain information flows in IC
occur through timing channels.
The inter-integrated circuit (IC) protocol is a simple

2-wire bus protocol first proposed by Philips I2c manual.”
http://www.nxp.com/documents/application note?
AN10216.pdf, March 2003.). We chose to look specifically at
I°C because of both its wide usage in embedded applications
for configuring peripherals and its However, the techniques
presented here are applicable to more Sophisticated architec
tures or protocols.

FIGS. 5A-5C illustrate standard IC configurations and
how the configurations can (FIG. 5B) covertly communicate
a 1 to by sending an acknowledgement or (FIG. 5C) can
communicate a 0 covertly by sending a negative-acknowl
edgement. In the IC protocol FIGS.5A-5C, a “master 30 of
the bus initiates a transaction by first sending a start bit by
pulling down the data line (SDA) with the clock line (SCL)
high. "Slaves' 32, 34 on the bus then listen for the master to
indicate either a read or a write transaction. For write trans
actions, the master first sends a device address indicating a
write and the device that matches this address responds with
an acknowledgement (ACK). At this point, the master can
transmit an internal register address (Sub-address for the
device) and the actual data. The transaction terminates with
the master sending a stop bit. A similar behavior occurs for a
read transaction, except here data transfers from a slave to the
master. Since I'C shares a common bus, there is the potential
for several different covert channels, in addition to the bus
contention channel. To explore these different channels,
methods of the invention were considered with respect to
three configurations of the IC bus to discover the potential
ways in which information can be communicated covertly.
The flows in each of these covert communications can be
classified as either a functional or timing flow according to the
invention.

Case 1: global bus: A global bus scenario, wherein multiple
devices contend for a single bus, is the most general and
commonly found bus configuration. Consider the example in
which two devices wish to communicate covertly on the IC
bus as shown in FIGS. 5A-5C. At first glance, there exists an
obvious information flow in this architecture since the
devices themselves can “snoop' the bus. For example, a
device S can send an acknowledgement to the master to
covertly transmit a 1 to another device S, conversely, it can
send a negative-acknowledgement to send a 0. Since S.
observes all activity on the bus, it can simply monitor which
type of message S. sends and thus determine the communi
cated bit. While this is not the only type of flow, it is used for
simplicity.
To put the present model to use on this scenario, the system

shown in FIGS.5A-5C was designed in Verilog by construct
ing IC Master and Slave controllers. The slave and master
RTL descriptions were synthesized down to logic gates using
Synopsys' Design Compiler. For each gate primitive in the
system, appropriate GLIFT logic was added. The result is a
system which contains a master and two slaves, each of which
also has tracking logic associated with it. A test scenario was
executed having the master perform a write transaction with
S and S send an acknowledgement by simulating it in Mod
elSim 10.0a, a Verilog simulator. The GLIFT logic indicates
a flow to S. At this stage, the method identified that some type
of information flow exists, but it is not clear if this was a
functional or timing flow.

Since the devices can directly observe all interactions on
the bus, one might expect this to be a functional flow. The
method of the invention was used to show exactly that. The
output was abstracted to y=(SCL.SDA) of the present model

10

15

25

30

35

40

45

50

55

60

65

18
since these are the only two signals observable by S. (recall
that SCL is the clock line and SDA the data line). In addition,
the input traces were abstracted by the present system as
A(X.k):=(S 1 sendingNACK) and A(X.k):= (S_1 sendin
gACK); running these through the system produced two out
put traces Ac and Ao Ao, was collected by logging the
discrete events that occurred when S. failed to acknowledge a
write transaction from the master (thus intending to covertly
transmit a 0). A related trace A, in which S, does acknowl
edge the write, was obtained. By analyzing these traces, the
method identified events eed(A) and e, ed(A) (recall
that d(A) and d(A) are the distinct traces of Ag, and Aci,
respectively, as defined in Definition 4) such that val(e)aval
(e). As a result, from Definition 14 of a functional flow, a
functional flow must exist. Recall, however, that this does not
mean that there exists only a functional flow. Since GLIFT
indicates that there exists a flow, it may be the case that
information flows from S to S through both functional and
timing channels.
The next case discusses how Such a functional flow can be

easily prevented using time-multiplexing of the bus in a man
ner having some similarities to probabilistic partitioning J.
W. Gray III, “On introducing noise into the bus-contention
channel.” in Proceedings of the 1993 IEEE Symposium on
Security and Privacy, pp. 90-98, 1993.).
A seemingly easy Solution to eliminate this information

flow presented in Case 1 is to add strict partitioning between
when devices may access the bus, as shown in FIG. 6. An
arbiter 36 is added to control slave access. Here, slaves on the
bus may view the bus only within their designated time slots;
this prevents devices from observing the bus traffic at all
times. In this method, partitions are over-conservative by
allowing the bus to be multiplexed between statically set time
slots. In terms of probabilistic partitioning, the case in which
the system is running in secure mode is tested. Of interest is
the same scenario as before: S wishes to transmit informa
tion covertly with S; now, however, the bus-contention chan
nel is eliminated, as partitioning has made contention impos
sible.

Because the bus-contention channel has been ruled out,
one might think that a covert channel between S and S- no
longer exists. Nevertheless, information can still be commu
nicated covertly through the internal state of the master; to
therefore transmit a covert bit, Sneed only leave the master
in a particular state before its time slot expires. For example,
many bus protocols have a time-out period in case a device
fails to respond to a request. If S leaves the master in Such a
state prior to its time-slot expiring, Scan observe this state in
the following time slot and conclude, based on the response
time from the master, whether a 0 or a 1 is being transmitted:
if the master's response time is short, S can conclude S.
wishes to communicate a 1, and if the response time is long it
can conclude a 0. Although this type of covert channel is quite
subtle, the present model can prove that this information flow
occurs through a timing channel.
To make use of the present model, the Verilog master, slave,

and arbiter (as shown in FIG. 6) were again synthesized into
gates and the design annotated with GLIFT logic exactly as in
Case 1. The same scenario as Case 1 was executed by having
the master request a write to S during SS allocated time slot
and having S either acknowledge or not to covertly transmit
a 1 or 0 respectively. After tainting the data out of S, the
GLIFT logic indicated that there is indeed information flow
ing from S to S. ASS can access the bus only afterS's time
slot has expired, this flow must occur through the state of the
master.

US 9,305,166 B2
19

To prove that this is not a functional flow, abstract this
system in the same manner as Case 1, except we now use
y=(SDAs,SCLs), where SDAs, and SCLs, are the wires
observable by S. In the same manner as Case 1, set input
traces A(X.k):=(S 1 sendingNACK) and A(X.k):= (S_1
sending.ACK) to collect output traces Arpa and Arpa,
respectively. Following the present model, it was applied to
find the existence of an event eed(A) and
e, d(Ap) such that val(e)aval(e.); it found, however,
that no such events existed for this particular testing scenario.
As discussed above, this provides evidence for the absence of
a functional flow; although it does not completely rule out the
existence of Such a flow, because we have chosen the input
traces to represent essentially opposite events (sending a
negative-acknowledgement and sending an acknowledge
ment), if a functional flow did exist then it is very likely it
would be captured by these two traces. The present method
determines, therefore, that because GLIFT did indicate the
existence of some information flow and strong evidence was
provided that a functional flow does not exist, this flow is from
a timing-channel.
The work of Oberget al. J. Oberg, et al., “Information flow

isolation in I2C and USB. in Proceedings of Design Auto
mation Conference (DAC) 2011, pp. 254-259, 2011 using
GLIFT for the IC channel indicated that all information
flows are eliminated when the master device is reset back to a
known state on the expiration of a slave's timeslot. In particu
lar, this implies that no timing channels can exist, and thus the
attack from Case 2 no longer applies. In practice, this trusted
reset would need to come from a trusted entity such as a
secure microkernel; the present method will therefore assume
for the testing purposes that this reset comes from a reliable
Source once this Subsystem is integrated into a larger system.
With this assumption, this scenario was validated by adapting
the test setup in Case 2 to incorporate the master being
restored to an initial known state once SS time slot expires.
The slave, master, and arbiter Verilog modules were again

synthesized into logic gates, and the GLIFT tracking logic
was applied. Running this test scenario, GLIFT shows that
there is no information flowing from S to S. At this point,
one could conclude that no information flow exists (either
functional or timing), but for the sake of completeness the
present model is used to test the existence of a functional flow
for this test case.

In the same manner as Case 2, abstract the output
y=(SDAs,SCLs). Create input traces A(X.k):=(S_1 send
ingNACK) and A(X.k):= (S_1 sending ACK) to log output
traces Arpa and Arpa, respectively. As expected,
d(Arpad(Arpia), which is strong evidence that a func
tional flow does not exist.
As is demonstrated by these three cases, identifying the

presented covert channels is not necessarily intuitive; further
more, hardware designers are likely to easily overlook these
problems when building their bus architectures or designing
secure protocols. By combining the tracking logic of GLIFT
with the present model, the invention provides a method for
hardware engineers to systematically evaluate their designs to
determine whether or not techniques such as those used in
Case 3 can in fact eliminate covert channels such as the ones
presented in Case 1 and Case 2.
Overheads

To provide an understanding of the associated overheads
with these techniques, simulation times needed to execute
them are provided. Simulation times were collected by using
ModelSim 10.0a and its built-in time function. The simula

10

15

25

30

35

40

45

50

55

60

65

20
tions were run on a machine running Windows 764-bit Pro
fessional with an Intel Core2 Quad CPU (Q9400) (a) 2.66
GHz and 4.0 GB memory.
As seen in Table 1, there is not a significant difference

between simulating the designs with GLIFT logic and the
base register-transfer level (RTL) designs. This is likely due
to the small size of the designs and the relatively short input
traces required for these particular tests. The overheads asso
ciated with GLIFT become more apparent below when iden
tifying timing channels associated with a CPU cache.

Although two input traces are considered for each case,
Table 1 presents the present simulation times for only a single
input trace. As mentioned, designers may wish to check even
beyond two traces to gain more assurance that a functional
flow does not exist. Since the simulation time of a particular
input trace is independent of the others, the results for a single
trace can be scaled to consider more traces.
Cache Timing Channel
At a high-level, an access-driven cache timing attack first

flushes the cache using some malicious process. Next, a secret
process uses a secret key to perform encryption. Finally, the
malicious process tries to determine which of the cache lines
were brought into the cache in the encryption process. Since
the key is XORed with part of the plaintext before indexing
into a look-up table, the malicious process can correlate fast
accesses with the value of the secret key. As noted by Gullasch
et al. D. Gullasch, et al., "Cache games—bringing access
based cache attacks on AES to practice.” in Proceedings of the
2011 IEEE Symposium on Security and Privacy, pp. 490-505,
2011., this attack assumes that the secret and malicious pro
cess share physical memory. An attack in which the Secret and
malicious process do not share physical memory would
require slightly different behavior from the malicious pro
CCSS,

TABLE 1

Simulation times in milliseconds associated with the three presented
cases for IC, and for a single trace. GLIFT imposes a small

overhead in the simulation time for these test cases.

Case 1 Case 2 Case 3

GLIFT 223.95 ms 230.29ms 222.40 ms
RTL 210.45 ms 211.72ms 219.04 ms

FIGS. 7A-7C are a depiction of this attack. Assume a
malicious process M and secret process V (for victim). First,
as seen in FIG. 7A, M flushes all contents of the cache. Next,
as seen in FIG. 7B, V subsequently runs AES using a secret
key as input for a short duration; this process fills the contents
of the cache. Now, in FIG.7C, Mreads memory locations and
observes the latency of each access. Since M and V share
physical memory, M will receive memory responses with
lower latency if V accessed this data prior to the context
switch, as it will already reside in the cache. Because the
secret key used by Visan index into look-up tables, the access
latencies of M (i.e., a cache hit or miss) directly correlate with
the value of the secret key.
Identifying the Cache Attack as a Timing Channel
As the above attack critically requires on the timing infor

mation available to M, it can clearly be identified as a type of
timing attack. to the invention can test and prove that any
information flows are timing-based.
A complete MIPS based processor written in Verilog was

developed to test this scenario. The processor is capable of
running several of the SPEC 2006 J. L. Henning, “Spec
cpu2006 benchmark descriptions. SIGARCH Comput.

US 9,305,166 B2
21

Archit. News, pp. 1-17, 2006 benchmarks including mcf.
specrand, and bzip2, in addition to two security benchmarks:
sha and aes, all of which are executed on the processor being
simulated in ModelSim SE 10.0a (a commercial HDL simu
lator). All benchmarks are cross-compiled to the MIPS
assembly using gcc and loaded into instruction memory using
aVerilog testbench. The architecture of the processor consists
of a 5-stage pipeline and 16K-entry direct mapped cache
(1-way cache). A direct-mapped cache is used for the experi
ments for ease of testing, but note that this analysis would
apply directly to a cache with greater associativity.

FIG. 8 is a block diagram of a simple MIPS-based CPU 40
in which the cache is replaced by a GLIFT cache 42 which
contains the original cache 44 and its associated tracking
logic 46 to conduct an analysis of the invention in which a
testbench 48 drives the simulation of the processor to capture
the output traces. GLIFT logic is applied directly to the cache
system. Hardware modules associated with the cache (cache
control logic and the memory itself) are removed and synthe
sized to logic gates and flip-flops using Synopsys' Design
Compiler using their and ordb library; this library contains
basic 2-input ANDs, ORs, inverters and flip-flops, and thus
the resulting design contains only these primitives. Each gate
and flip-flop in the design is then process and its associated
tracking logic is added in a compositional manner. Each gate
and flip-flop is processed linearly and the GLIFT logic asso
ciated with their function (AND, OR, etc.) is added. This new
“GLIFTed' cache is re-inserted into the register-transfer level
(RTL) processor design in the place of the original RTL
cache. This is shown in FIG.8. The input and output to the
cache system include address and data lines and control sig
nals (write-enable, memory stall signals, etc.); each such
input and output is now associated with a taint bit which will
be essential to testing whether or not information flows from
the victim process V to the malicious process M.

To execute the test scenario, the same procedure is fol
lowed as in the access-driven timing attack previously dis
cussed by having malicious and victim executions share the
cache. Have M first flush the cache by resetting all data in the
cache. Then have V execute AES with all inputs to the cache
marked as tainted (i.e. secret). Subsequently, have Mexecute
and observe whether or not information from V flows to M. As
expected, it is observed that as M reads from memory loca
tions, secret information immediately flows out of the cache.
The method therefore knows that a flow exists, but at this
stage it is still ambiguous whether the flow is functional or
timing.

To identify exactly which type of channel was identified by
GLIFT, leverage the benefits of the present model by working
to identify a functional flow; as previously discussed, if no
functional flow is detected, then the flow must be from a
timing channel. To fit the present model, abstract the output of
the cache as y=(data) to indicate the cache output observ
able by M (note that, in particular, stall is not included in this
output, as it cannot be observed directly by M). Following the
present model, two traces are: A (X.k):=(V using K 1) and
A(X.k):=(Vusing K. 2); i.e., the cases in which V encrypts
using two different keys. These were simulated and all of the
discrete events captured by ModelSim were logged to obtain
to output traces A and A2, by definition of y, these output
traces contain all events observable by M. After collecting
these traces, the method then checked whether or not a func
tional flow exists for these particular traces by looking for the
existence of events eed(A) and e, ed(A2) such that val
(e)aval(e). For these particular traces, no such pair of events
were found. Again, although the fact that no functional flow
exists with respect to these particular traces does not imply

10

15

25

30

35

40

45

50

55

60

65

22
the lack of a functional flow for any traces, it does lend
evidence to the theory that the flow must be timing-based
rather than functional (and additional testing with different
keys would provide further support).
Overheads
As for IC, the overheads associated with the present tech

nique were estimated by measuring simulation time. The
measurements were collected using ModelSim 10.0a and its
built in time function running on the same Windows 764-bit
Professional machine with an Intel Core2 Quad CPU
(Q9400) (a) 2.66 GHz and 4.0 GB of memory. The time for the
secret process (V) to run AES on a secret key K was mea
Sured followed by a malicious process (M) attempting to
observe which cache lines were evicted. This measurement
was repeated for both the design with and without GLIFT. For
completeness, the same process was repeated for the second
input traces; namely when V executes AES using K followed
by Mattempting to observe which cache lines were evicted.
The resulting times from these simulations can be found in
Table 2.
As Table 2 shows, there is a substantial overhead (s6x) for

using GLIFT to detect whether or not a flow exists. Further
more, since the behavior of M is fixed between both input
traces and the only value changing is the secret key, the results
clearly show that a timing channel exists with regards to the
cache, as the execution time for AES on K2 is longer than that
of K, the existence of Such a timing channel was also iden
tified by GLIFT and the present model

With more and more embedded systems governing the
most critical aspects of our lives, the need to provide strong
information flow guarantees becomes essential. Using exist
ing techniques, we can do quite well at identifying these
information flows, even those through timing channels. The
simiulations show that where prior techniques fail, timing and
functional flows can be efficiently distinguished, allowing
designers to make informed decisions about whether or not to
be concerned with information flows identified by hardware
information flow tracking techniques. In many cases, the
designer is likely to be more concerned by timing channels
than by functional flows, while in other cases the existence of
timing channels might cause little concern.
The simulations and testing showed the usefulness of the

present invention applied to a shared bus and cache, and
artisans will appreciate the broader applicability. The
examples showed how information flows can indeed be iden
tified as timing-based with a modified approach that applies
gate level information flow tracking. While in some cases the
present method does not provide any definite guarantees, it
does provide strong evidence to rule out the existence of
functional flows. The present framework can therefore pro
vide strong evidence for the existence of timing channels.

While specific embodiments of the present invention have
been shown and described, it should be understood that other
modifications, Substitutions and alternatives are apparent to
one of ordinary skill in the art. Such modifications, substitu
tions and alternatives can be made without departing from the
spirit and scope of the invention, which should be determined
from the appended claims.

Various features of the invention are set forth in the
appended claims.

The invention claimed is:
1. A method for detecting a timing channel in a hardware

design, the method comprising:
receiving a hardware design;
synthesizing at least one portion of the hardware design

with gate level primitives;

US 9,305,166 B2
23

adding tracking logic to the gate level primitives to monitor
information flow through the gate level primitives;

simulating sets of inputs to the gate level primitives includ
ing added taint inputs to identify information flows by
generating outputs from the gate level primitives for
every clock tick while changing only taint inputs;

isolating timing flows from information flows by conduct
ing input-to-output deterministic traces to isolate func
tional flows in the information flows.

2. The method of claim 1, wherein said separating com
prises selecting a Subset of input deterministic traces for the
tracking logic.

3. The method of claim 2, wherein the subset is selected by
changing the value of only the security critical inputs ran
domly or by a designers choice.

4. The method of claim 1, wherein said simulating com
prises finding a Subset oftaint inputs that cause a change in the
timing of outputs without changing output values.

5. The method of claim 4, wherein said finding begins with
selecting input traces which differ in values of security criti
cal inputs.

6. The method of claim 4, wherein said finding begins with
a random selection of input traces.

10

15

24
7. The method of claim 4, wherein said finding begins with

selecting input traces aided by information provided by a
hardware designer.

8. The method of claim 1, wherein said hardware design
comprises a design in a hardware description language, said
synthesizing the design into a gate level netlist, and the track
ing logic is added to every gate level primitive in the netlist.

9. A method for detecting a timing channel in a hardware
design, the method comprising:

synthesizing the hardware design to gate level;
applying gate level information flow tracing to the gate

level of the hardware design via a simulation to search
for tainted flows:

wherein the simulation includes simulating sets of inputs to
gate level primitives including added taint inputs to iden
tify tainted flows by generating outputs from the gate
level primitives for every clock tick while changing only
taint inputs; and

if a tainted flow is found, selecting a limited number of
traces, simulating an input on the limited number of
traces, determining whether the traces are value preserv
ing with respect to taint inputs, and determining that a
timing flow exists if the traces are value preserving with
respect to the taint inputs.

k k k k k

