
(12) United States Patent
rturk et al.

USOO8812285B2

US 8,812,285 B2
Aug. 19, 2014

(10) Patent No.:
(45) Date of Patent:

(54) DESIGNING DIGITAL PROCESSORS USING
A FLEXBILITY METRIC

(75) Inventors: Ali Umut Irturk, San Diego, CA (US);
Ryan Charles Kastner, San Diego, CA
(US)

(73) Assignee: The Regents of the University of
California, Oakland, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 232 days.

Notice: (*)

(21) 13/223,269

(22)

Appl. No.:

Filed: Aug. 31, 2011

Prior Publication Data

US 2012/OO65956 A1 Mar. 15, 2012
(65)

Related U.S. Application Data
Provisional application No. 61/378.903, filed on Aug.
31, 2010.

(60)

Int. C.
G06F 17/50
U.S. C.
CPC G06F 17/5045 (2013.01); G06F 2217/68

(2013.01)
USPC .. 703/14
Field of Classification Search
None
See application file for complete search history.

(51)

(52)
(2006.01)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

6,178,542 B1* 1/2001 Dave TO3/14
7,337,100 B1* 2/2008 Hutton et al. 703/14
8,006,204 B2 * 8/2011 Killian et al. 716,100

2008/0244471 A1* 10, 2008 Killian et al. T16, 1

30 N
Compiler
30

Design Space
Exploration Tool

Memory . XC . Processing
Element Element
331 332 333

S&E Simulator Tool
330

OTHER PUBLICATIONS

Mesa-Martinez, Francisco; Renau, Jose “Effective Optimistic
Checker Tandem Core Design Through Architectural Pruning” IEEE
ACM Int'l Symp. on Microarchitecture (2007) available from
<http://ieeexplore.com.org/xpls/abs all.
jsp?arnumber=4408259>.*
Mukherjee, S., et al. “Measuring ArchitecturalVulnerability Factors'
IEEE Micro. vol. 23, issue 6,pp. 70-75 (2003) available from <http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1261389.*
Irturk, A. "GUSTO: An Automatic Generation and Optimization Tool
for Matrix Inversion Architectures. ACM Transactions on Embed
ded Computing Systems, 9(4):1-21, Mar. 2010.
Irturk, A. “GUSTO: General Architecture Design Utility and Synthe
sis Tool for Optimization.” Ph.D. dissertation, University of Califor
nia, San Diego, 272 pages, (2009).
Irturk, A., et al., “Simulate and Eliminate: A Top-to-Bottom Design
Methodology for Automatic Generation of Application Specific
Architectures.” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 30(8): 1173-1183, Aug. 2011.

* cited by examiner

Primary Examiner — Kamini S Shah
Assistant Examiner — Jay B Hann
(74) Attorney, Agent, or Firm — Perkins Coie LLP

(57) ABSTRACT

Techniques, structures, and systems are disclosed for imple
menting an efficient design of computer hardware using a
top-to-bottom approach. In one aspect, a method for design
ing a processor includes generating an initial architecture for
a processor to execute algorithms, simulating execution of the
algorithms by the initial architecture to determine a modifi
cation to the initial architecture, and creating a processor
design based on the modification to the initial architecture.
The described method for implementing a hardware design
tool provides a push-button transition from high level speci
fication for algorithms to hardware description language.

20 Claims, 12 Drawing Sheets

Intermediate
Representation
(ex. includes-Low
level Code; data
Flow Graphs)

3.

Report HDL

HDL file(s)
module

generated RTLO

ex, includes
Scheduling info, Binding info;

Register usage info;
Interconnect usage info;

Functional unit binding info) endodule

341 342

HDL Generator Tool

U.S. Patent Aug. 19, 2014 Sheet 1 of 12 US 8,812,285 B2

/ 100

Design Space Exploration
110

Dat General Purpose
aa Architecture Generation ProCeSSOr

Representation 120 Architecture
121 122

Collection of Usage information
130

Application
Trimming and Optimization Specific Processor

140 Architecture
141

F.G. 1A

U.S. Patent Aug. 19, 2014 Sheet 2 of 12 US 8,812,285 B2

Algorithm
Parameters

113
Resource
Parameters

114

Instruction Generation
117

ReSOUrCe AlloCation
118

Error Analyses
MetricS
123

U.S. Patent Aug. 19, 2014 Sheet 3 of 12 US 8,812,285 B2

/ 2OO

User Program
COce
2O6

Code Compiling
2O5

Design Space Exploration
210

General Purpose
PrOCeSSOr

Architecture
222

Data
Representation

221

Architecture Generation
220

Collection of Usage information
230

Application
Specific Processor

Architecture
241

Trimming and Optimization
240

Verification
Results
252

Synthesized
ProCeSSOr

251

Synthesis
250

FIG 2

US 8,812,285 B2

| || 9

U.S. Patent

U.S. Patent Aug. 19, 2014 Sheet 5 of 12 US 8,812,285 B2

saxxx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xx-xxxx

---a--- i
S.

s
- s

$83.
$888sy

&S

ir

sassssssssssssssssssssssssssssssssssssssass&sassa

FIG. 4

s s s rower 8xxars ex : 388x Exiley
s - \Strix Yr--ar.

ss. &S

^ tary
\centre: N. ---

sign
\xters.

FIG. 5

US 8,812,285 B2 U.S. Patent

SO_L OOV/ SO_L OOV/

US 8,812,285 B2 Sheet 7 of 12 Aug. 19, 2014 U.S. Patent

..?

US 8,812,285 B2

&

ser

:

e

ax

&

Srrrrrrrrrrrrrrrrrrrrrrrrrrrr.

Aug. 19, 2014

vivaxx

U.S. Patent

U.S. Patent Aug. 19, 2014 Sheet 10 of 12 US 8,812,285 B2

Throughput
o
ten a do in o f is ry en ea o

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

&
S is
S

t w

&

t w

on s
w

i

SS J0

US 8,812,285 B2 Sheet 11 of 12 Aug. 19, 2014 U.S. Patent

saaaaaaaaaaaaaaaaaaaa waxws,

s
s
s
:
s

3.
s

**************3 #33

U.S. Patent Aug. 19, 2014 Sheet 12 of 12 US 8,812,285 B2

1300
/

Algorithm Generation of initial architecture

Simulation of algorithm
execution On initial architecture

132O

Determination of modification to
initial architecture

1330

MOdification to initial
architecture Processor Design

1340 1341

FIG. 13

US 8,812,285 B2
1.

DESIGNING DIGITAL PROCESSORS USING
A FLEXBILITY METRIC

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims benefit of prior U.S. Provisional
Patent Application No. 61/378.903, filed Aug. 31, 2010. The
entire content of the before-mentioned patent application is
incorporated by reference as part of the disclosure of this
application.

BACKGROUND

This patent document relates to digital hardware designs.
Computational power of integrated circuits has increased

dramatically over the past several decades due to improve
ments in integrated circuit designs and fabrication tech
niques, including shrinking transistor size and the corre
sponding increase in transistor count. In the past years, the
frequency of a single processing core has slowed dramatically
as power dissipation and the resulting heat generation has
limited processor speed.

There has been great interest in increasing in processing
power using parallel processing cores, which can provide
more processing power per watt than can be achieved with a
single processor Solution. Yet, another prevalent trend incom
puting to increase processing power includes the specializa
tion of processors. Early examples of specialized processors
can include digital signal processors (DSPs), which has since
proliferated to application domains including networking,
wireless communication, audio and vision. These processors
can typically be developed for embedded computing systems,
which can have stringent constraints on performance.
Achieving the desired requirements therefore can demand
careful tuning of the underlying architecture that requires
Substantial amounts of time.

SUMMARY

Techniques, systems, and apparatuses are disclosed for
implementing an efficient design of computer hardware.

In one aspect of the disclosed technology, a method for
designing a processor includes generating an initial architec
ture for a processor to execute an algorithm or multiple algo
rithms, in which the initial architecture includes processing
element(s), memory element(s), and information transfer
mechanism(s); simulating execution of the algorithm(s) by
the initial architecture to determine a modification to the
initial architecture; and creating a processor design based on
the modification to the initial architecture.

Various implementations of the above aspect can include
one or more of the following features. The method can
include determining a usage pattern of the processing
element(s), memory element(s), and information transfer
mechanism(s). The method can include accepting a high level
program code and transforming the high level program code
into a low level code. The method can include collecting
functional information of the processing element(s), memory
element(s), and information transfer mechanism(s) and pro
ducing a hardware resource usage report. The functional
information can include utilization characteristics of the pro
cessing element(s), memory element(s), and information
transfer mechanism(s). The method can include selectively
eliminating under-utilized processing element(s), under-uti
lized memory element(s) and under-utilized information
transfer mechanism(s) according to the hardware resource

10

15

25

30

35

40

45

50

55

60

65

2
usage report. The method can further include verifying the
processor design. The method can further include producing
a hardware description language of the processor design. The
method can further include determining a flexibility metric
for the processing element(s), memory element(s), and infor
mation transfer mechanism(s). The processor design can
include an application-specific architecture that can be
Smaller in area, higher in throughput, and/or consume lower
power than the initial architecture. The initial architecture can
be fully programmable.

In another aspect, an apparatus for designing a processor
includes a module for generating an initial architecture for a
processor to execute an algorithm or multiple algorithms, in
which the initial architecture includes processing element(s),
memory element(s), and information transfer mechanism(s):
a module for determining computational resources for execu
tion of the algorithm(s) on the initial architecture; and a
module for creating a processor design based on the compu
tational resources and the initial architecture.

Various implementations of the above aspect can include
one or more of the following features. The apparatus can
include a module for iteratively determining a usage pattern
of the processing element(s), memory element(s), and infor
mation transfer mechanism(s). The apparatus can include a
module for accepting a high level program code and trans
forming the high level program code into a low level code.
The apparatus can include a module for collecting functional
information of the processing element(s), memory
element(s), and information transfer mechanism(s) and pro
ducing a hardware resource usage report. The functional
information can include utilization characteristics of the pro
cessing element(s), memory element(s), and information
transfer mechanism(s). The apparatus can include a module
for selectively eliminating under-utilized processing
element(s), under-utilized memory element(s) and under-uti
lized information transfer mechanism(s) according to the
hardware resource usage report. The apparatus can include a
module for verifying the processor design. The apparatus can
include a module for producing a hardware description lan
guage of the processor design. The apparatus can include a
module for determining a flexibility metric for the processing
element(s), memory element(s), and information transfer
mechanism(s).

In another aspect, a computer program product that
includes a nonvolatile computer-readable storage medium
having instructions stored thereon, includes code for gener
ating an initial architecture for a processor to execute an
algorithm or multiple algorithms, in which the initial archi
tecture includes processing element(s), memory element(s),
and information transfer mechanism(s); code for simulating
execution of the algorithm(s) by the initial architecture to
determine a modification to the initial architecture; and code
for creating a processor design based on the modification to
the initial architecture.

Various implementations of the above aspect can include
one or more of the following features. The nonvolatile com
puter-readable storage can include code for iteratively deter
mining a usage pattern of the processing element(s), memory
element(s) and information transfer mechanism(s). The non
Volatile computer-readable storage can include code for
accepting a high level program code and transforming the
high level program code into a low level code. The nonvolatile
computer-readable storage can include code for collecting
functional information of the processing element(s), memory
element(s) and information transfer mechanism(s) and pro
ducing a hardware resource usage report. The functional
information can include utilization characteristics of the pro

US 8,812,285 B2
3

cessing element(s), memory element(s) and information
transfer mechanism(s). The nonvolatile computer-readable
storage can include code for selectively eliminating under
utilized processing element(s), under-utilized memory
element(s) and under-utilized information transfer mecha
nism(s) according to the hardware resource usage report.
The subject matter described in this patent document

potentially can provide one or more of the following advan
tages and be used in many applications. The top-to-bottom
design methodology can provide simplicity (through the use
of a simple tool chain and programming model); flexibility
(through the use of different languages, e.g., C/MATLAB, as
a high level specification and different parameterization
options); scalability (through the ability to handle complex
algorithms); and performance (through the use of trimming
optimization using a simulate & eliminate method). For
example, the disclosed technology can provide a processor
design tool that can provide fast and highly efficient hardware
production capable of executing any algorithm or application.
The disclosed technology can provide the ability to prototype
hardware systems in just minutes instead of days or weeks
with these capabilities. For example, an already fully proven
chip. Such as a computer microprocessor, can be optimized
that allow a user to start with full functionality and then strip
away the unneeded parts for a particular application, thereby
reducing area and power consumption. In an exemplary worst
case scenario, the existing microprocessor can be used as is,
which is capable of running any program. In an exemplary
best case scenario, many un-needed functions of the micro
processor can be stripped away, yielding a minimized final
design that can work as intended with minimal original engi
neering required. This efficient design technology can create
new working designs of an existing computer chip, which can
be brought to market faster and cheaper using proven tech
nology with broad manufacturability.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows a block diagram of an exemplary processor
design process using a top-to-bottom approach.

FIG. 1B shows an exemplary design space exploration
process.

FIG. 2 shows a block diagram of another exemplary pro
cessor design process using a top-to-bottom approach.

FIG.3 shows a design flow process of an exemplary system
to implement the top-to-bottom approach to design a proces
SO.

FIG. 4 shows an exemplary RISC architecture where each
component in the data path and control is modularized.

FIG. 5 shows an exemplary RISC architecture after trim
ming.

FIG. 6 shows an exemplary design space exploration tool
for a VLIW-based processor architecture.

FIG. 7 shows an exemplary instruction scheduling and
register allocation with ACO using two different feedback
approaches.

FIG. 8 illustrates three exemplary interconnect matrices
showing varying amounts of flexibility.

FIGS. 9A, 9B, 9C, and 9D show an example of trimming
and optimization.

FIG. 10 shows an exemplary tradeoff between computa
tional throughput and area for various matrix multiplication
architectures.

FIGS. 11A and 11B show an example of a single core
design for a RISC type general-purpose processor architec
ture.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 12A shows an exemplary initial, general-purpose

multi-core architecture.
FIG. 12B shows a final application-specific multi-core

architecture.
FIG. 13 shows an exemplary method for designing a pro

CSSO.

DETAILED DESCRIPTION

Techniques, systems, and apparatuses are described for
implementing an efficient design of computer hardware.

In one embodiment of the disclosed technology, a hard
ware design utility and synthesis tool for optimization of a
processor using a top-to-bottom approach is described that
can provide a push-button transition from a high level speci
fication (e.g., matrix computation algorithms written as a C,
C++ or MATLAB program) to hardware description lan
guage (HDL). The hardware design utility and synthesis tool
for optimization of a processor is also referred to as a hard
ware design tool. The disclosed hardware design tool can
have a plurality of modular functionalities. For example, the
hardware design tool can include a design space exploration
tool, a simulation and elimination tool, and an HDL genera
tion tool.

In one aspect, an exemplary hardware design tool can
perform design space exploration on different architectures
for a given (set of) application(s) to provide a basis for hard
ware implementation, which can produce cycle accurate
results as well as estimates of area, throughput, and other
performance metrics. Design space exploration can guide the
initial generation of a processorby Scheduling an initial archi
tecture based upon the given (set of) application(s). After
performing the design space exploration, the exemplary hard
ware design tool can run the application(s), determine the
unnecessary components and remove them. Also, HDL reg
ister-transfer level (RTL) code can be generated to create an
optimized processor architecture for that particular (set of)
application(s).
The exemplary hardware design tool can automatically

generate application-specific single-core and multi-core
architectures for a (set of) given application(s). The selective
removal of unnecessary functionalities of the architecture
components, referred to as trimming and optimization, can be
performed by the exemplary hardware design tool in a pro
cess that can also be referred to as simulate and eliminate
(S&E). For example, a top-to-bottom hardware design
approach that includes an exemplary S&E process can first
generate a general-purpose multi-core architecture; the pro
vided applications can be simulated on this architecture and
the unneeded functionality (e.g., interconnect, functional
resources, control and memory) can be eliminated resulting in
an application-specific multi-core architecture. By imple
menting the S&E process, a multi-core architecture can opti
mized into one in which all the processing cores are utilized;
therefore all the processing cores that are not used can be
removed from the final architecture. For example, the proces
Sor can be generated to include only the required resources
internally; the interconnect, functional units, controllers, and
memory elements that are not used can be removed from the
final architecture. Thus, each core may have a different
memory structure, interconnect, controllers, or functional
units.

FIG. 1A shows a block diagram of an exemplary processor
design process 100 using the top-to-bottom hardware design
tool by implementing design space exploration process 110.
architecture generation process 120, collection of usage
information process 130, and trimming and optimization pro

US 8,812,285 B2
5

cess 140. The design space exploration process 110 can ulti
lize a user input 111 to determine the architecture comprising
processing elements (PEs), memory elements, and their cor
responding data paths, which can be optimized and specified
to the inputted application. User input 111 can include pro- 5
cess parameters, e.g., programs, algorithms and parameters
specified by a user, e.g., high level specification algorithm(s)
and program(s) (e.g., in C, C++, or MATLAB code), algo
rithmic parameters (e.g., description of inputs), the type and
number of processing elements, data representation 121 (e.g., 10
the integer and fractional bit width), and the mode of opera
tion.

The architecture generation process 120 can create any
general purpose processor architecture 122 as a starting point
(e.g., RISC, VLIW, superscalar). The architecture generation 15
process 120 can utilize user input Such as data representation
121, which can include the integer and fractional bit width.
The general purpose processor can be exploited in the collec
tion of usage information process 130 to information includ
ing the scheduling and binding information from instruction 20
and memory controllers that can be used to eliminate
dynamic scheduling and create a static and Scheduled archi
tecture automatically. An optimized, application-specific
processor architecture 141 can be created in trimming and
optimization process 140 that performs resource trimming, 25
pares away unused resources, and eliminates under-utilized
functionality while ensuring the correctness of the solution is
maintained. This process includes simulating the architecture
to define the usage of arithmetic units, multiplexers, register
entries and input/output ports, etc., and resources and com- 30
ponents determined to be under-utilized can be trimmed away
with their interconnects.

FIG. 1B shows an exemplary design space exploration
process 110 when the user input 111 includes an algorithm,
e.g. a matrix computation algorithm, to gain an understanding 35
of area, throughput, and other performance metrics of the
algorithm on the initial hardware design. An algorithm 112
received from a user can be analyzed by the algorithm analy
sis process 116 to determine a usage pattern of the initial
architecture. The design space exploration process 110 can 40
allow the user to input other algorithmic parameters 113 (if
any is warranted) in instruction generation process 117 and
select the type and number of arithmetic resources (e.g.,
resource parameters 114 and/or design library 115, if any is
warranted) in resource allocation process 118. Error analysis 45
process 119 can be implemented after the resource allocation
step 118 to provide error analysis metrics 123.

There are two different types of approximations for real
numbers: fixed-point and floating-point arithmetic systems.
Floating-point arithmetic can represent a large range of num- 50
bers with some constant relative accuracy. Fixed-point arith
metic can represent a reduced range of numbers with a con
stant absolute accuracy. However, usage of floating point
arithmetic can be expensive in terms for hardware and can
lead to inefficient hardware designs, e.g. for FPGA imple- 55
mentation. On the other hand, fixed point arithmetic can result
in efficient hardware designs, but with the possibility of intro
ducing calculation error, e.g. round-off and truncation errors.
If the user desires, error analysis process 119 can be used to
find an appropriate fixed point representation that provides 60
results with the accuracy similar to that of a floating point
implementation.

For example, this exemplary design exploration process
110 can take the user input data 111 and perform a matrix
computation using single or double precision floating point 65
arithmetic, which can be referred as the actual results. The
same calculations can be performed using different bit widths

6
of fixed point representations to determine the error, the dif
ference between the actual and the computed result. Error
analysis process 119 can provide error analyses metrics 123,
e.g., four different metrics to the user to determine if the
accuracy is enough for the application, which can include
mean error, standard deviation of error, peak error, and mean
percentage error.
A first metric, mean error, can be computed by finding the

error for all resulting matrix entries and then dividing the Sum
of these errors by the total number of entries. This calculation
can be seen as

i

XEly, -S,
i=1

i

where y, y and mare the actual results, the computed results.
and the number of entries that are used in the computation
(e.g., 16 for a 4x4 matrix), respectively. Mean error can be an
important metric for error analysis, however it may not
include the information about outlier errors. This can be the
case where a small number of entries have very high error but
the majority of entries have very small error. To calculate the
dispersion from the mean error, the standard deviation of
error, and the peak error can be introduced. Mean error some
times can lead to misleading conclusions if the range of the
input data is small. Therefore the fourth metric, mean per
centage error, can make better sense if the relative error is
considered. This metric can be defined as

i

XEly, -S,
i=1

i

The architecture generation process 120 (in FIG. 1A) can
utilize user input that can include data representation 121
(e.g., integer and fractional bit width) and automatically gen
erates a general purpose processor architecture 122, capable
of exploiting instruction level parallelism. The general pur
pose initial architecture (e.g., processing element(s), memory
elements and information transfer elements or mechanisms)
can be generated by a scheduling algorithm, for example by
using resource constrained list scheduling after the inputs 111
are given. Simulating this architecture can reveal the assign
ments done to the processing elements, the memory elements
and the information transfer elements during the scheduling
process. Gathering this information and using it to eliminate
unneeded functionality, e.g., removing portions of the pro
cessing elements, memory elements and information transfer
mechanisms can result in an optimized architecture with Sig
nificant area and timing savings.

FIG. 2 shows a block diagram of another exemplary pro
cessor design process 200 using a top-to-bottom approach. In
this example, a user program code 206 can be accepted and
compiled in a code compiling process 205 before implement
ing design space exploration process 210, architecture gen
eration process 220, collection of usage information process
230, trimming and optimization process 240, and synthesis
process 250.

In this example, a user program code 206, e.g., an applica
tion or algorithm written in C, C++, or MATLAB code, can be
inputted into code compiling process 205 to generate an inter
mediate representation of the program code, for example low

US 8,812,285 B2
7

level code and/or data flow graphs. The resulted low level
code and/or data flow graphs, accompanied by any user input
211, can be fed into design space exploration process 210 and
architecture generation process 220 to generate an initial
architecture that can provide a fully programmable, general
purpose processor (initial) architecture 222. For example,
design process 210 can execute the compiled code from code
compiling process 205 on the initial hardware design, which
can determine usage patterns and Scheduling information of
the initial architecture. The initial architecture can include
processing elements, memory elements, and information
transfer mechanisms (e.g., interconnect (IXC)). The architec
ture generation process 220 can utilize the exemplary usage
patterns (and any additional user input that can include data
representation 221 (e.g., integer and fractional bit width), if
any) to generate ageneral purpose processor architecture 222.
The general purpose processor architecture 222 can be simu
lated to collect usage information about its functionality (e.g.,
functional information) in collection of usage information
process 230. The exemplary functional information can
include characteristics on whether or not and how the pro
cessing elements, memory elements and information transfer
mechanisms are utilized (or under-utilized). The exemplary
functional information can be used to generate a hardware
resource usage report in trimming and optimization process
240. The report can be used to selectively eliminate or trim the
general purpose processor architecture 222 to create the
application-specific processor (final) architecture 241. The
report can be used in synthesis process 250 to generate a
processor design (synthesized processor 251) based on the
final architecture and results (verification results 252) to
verify the correctness of the HDL e.g., to insure that it cor
rectly executes the original algorithm.
An exemplary generated process design of a multi-core

architecture can be rendered to only have just the required
functionality between its processing elements, memory ele
ments and information transfer mechanisms. An apparatus or
system that includes disclosed hardware design tool can
employ the top-to-bottom design methodology to generate
correct-by-construction and cycle-accurate multi-core archi
tectures for given application(s). In one example, the exem
plary hardware design process can start from a fully-con
nected, fully-verified, general-purpose multi-core
architecture and pare away unneeded functionality to create
an application-specific multi-core architecture—the process
not only removes unneeded processing elements, but also
unnecessary interconnect, information transfer mechanisms
(e.g., control logic) and memory elements. Implementing a
design space exploration can determine usage patterns and
information that can be used to determine and trim underuti
lized functional resources, which ultimately can create an
application-specific multi-core architecture for executing a
specific (set of) application(s). An apparatus or system that
can implement the top-to-bottom hardware design tool (that
includes S&E) can be utilized using any application
described by algorithms, e.g., image processing applications:
object detection, object recognition, and color classification.

Exemplary characteristics of the top-to-bottom design
methodology can include scalability, reconfigurability, and
ease of design and Verification. Generating an architecture for
a given application by using a bottom-to-top methodology
fails to synthesize larger, more complex applications because
of the complexity of high level synthesis tasks Such as Sched
uling, resources allocation and binding. An apparatus or sys
tem that includes the disclosed hardware design tool can
synthesize even the largest applications. For example,
because of its top-to-bottom design methodology, an exem

10

15

25

30

35

40

45

50

55

60

65

8
plary worst-case generated architecture could be the initial
general-purpose architecture, and an exemplary best-case
generated architecture could be a final architecture that
includes only the required resources with the unneeded func
tions stripped away. Generating an architecture for a given
application by using a bottom-to-top methodology eliminates
the opportunity of reconfigurability. An apparatus or system
that includes the disclosed hardware design tool can generate
an application-specific architecture that can keep part of the
general-purpose multi-core architecture, so that a user can
recompile a different application on this existing architecture.
This is a significant advantage since reconfigurability pro
vides the reuse of the already existing architectures. An appa
ratus or system that includes the disclosed hardware design
tool can provide ease of design through its simplicity in its
design flow and ease of verification due to its fully-verified
initial general-purpose architecture. The initial general-pur
pose processor architecture can utilize a well understood
programming model that is capable of running any applica
tion. Using the tool, the generated initial general purpose
architecture can also be fully-verified for correctness. This
Verification can occur before the optimizations start. Thus,
removing unneeded functionality (interconnect, functional
resources, control and memory), for example, does not affect
the correctness of the design, providing ease of Verification.
The disclosed hardware design tool can be included in a

system, and an exemplary system framework is described
herein. The exemplary system can take a user defined (set of)
application(s), perform design space exploration across a set
of processor architectures, and generate an application spe
cific processor optimized towards these particular (set of)
application(s). This top-to-bottom approach can start with a
fully programmable, general purpose processor of a gener
ated initial architecture and eliminate unneeded functionality
to form a final architecture of the accelerated processor. This
process may reduce Some unnecessary functionality of the
processor while increasing its performance. Conventional
high level synthesis tools employ a “bottom-to-top' approach
where they decide on the number of resources (functional
units, registers, etc.), perform scheduling of the operations to
these resources, and generate the interconnect and control
logic that allows the provided input application to function on
this data path. The exemplary top-to-bottom approach can
exhibit Superior performance, power consumption, flexibility
and programmability.

FIG.3 shows a design flow process of an exemplary system
300 to implement the top-to-bottom approach to design a
processor. The front-end can accept user input, e.g., program
code such as C code 301, and can transform it to low level
code, e.g., by compiling the C code 301 using a compiler 310,
such as a low level virtual machine (LLVM). The compiled
program can be represented as an intermediate representation
311, e.g., low level code and data flow graphs (DFGs), that
can be fed into a design space exploration tool 320 that
decides the processor architecture (e.g., the best, most opti
mal processor architecture for the given application(s)). This
can determine the class of processor (e.g., RISC, VLIW, out
of order execution, SuperScalar) and the parameters (e.g.,
number of registers, read/write ports, functional units). Addi
tionally, other user input can include parameters that can
include anything that is in the library, e.g., specify to use a
functional unit like a matrix inversion core and singular value
decomposition core. The design space exploration tool can
generate an initial architecture that can provide a specific,
fully programmable processor to the S&E simulator tool 330.
The initial architecture can include memory elements 331
(e.g., register file(s), cache?(s)), processing elements 333 (e.g.,

US 8,812,285 B2

functional units, predictors), and information transfer mecha
nisms 332 (e.g., the interconnect (IXC), control logic). The
S&E simulator tool can execute a given application on the
given processor architecture, which can collect usage infor
mation, e.g., usage patterns, data flow movement and Sched
uling information, on the initial architecture. In doing so, the
S&E simulator can generate a hardware resource usage report
341 for the given application on the given processor architec
ture. A hardware usage report can include scheduling infor
mation, binding information, register usage information,
interconnect usage information, and functional unit binding
information. The hardware usage report 341 can be used to
generate or trim the general purpose processor using the S&E
simulator 330 to create a final architecture for a hardware
accelerator, e.g., an augmented application-specific proces
sor of Smaller area, higher throughput, and less power con
Sumption. The hardware usage report 341 can be used to
generate or synthesize HDL using a HDL generator tool 340,
which the result can include synthesizable HDL 342.

The exemplary hardware design tool can utilize a single
instruction issue, out of order execution processor architec
ture. The parameters of the architecture, which can include
the number of registers and the number and type of functional
units, can be specified as input to the tool. The disclosed
embodiment or other embodiments of the hardware design
utility and synthesis tool for processor optimization can be
implemented on other classes of architectures, e.g., RISC
based and VLIW-based architectures. In these embodiments,
design space exploration can be performed to determine the
set of architectural parameters that best suit the needs of the
given application(s), followed by trimming/elimination of
unneeded functionality. The tool can render a final architec
ture for an application-specific processor and output synthe
sizable HDL.
RISC processors can be considered simple by definition.

Therefore, the design space exploration options can be lim
ited. Two types of RISC processors—single cycle and 5-stage
pipelined—are explored using an exemplary design space
exploration process of the disclosed hardware design tool.
RISC processors can have good area, yet limited throughput
due to the lack of instruction level parallelism.

In one example, the single cycle RISC processor can have
small area, yet the frequency can be lower due to the fact that
each instruction executes in one cycle. This can limit the
throughput. Nevertheless, Such a processor can be useful in
many situations. The Xilinx PicoBlaze processor is similar in
nature, and can be used for high level control of a larger
system and for tasks associated with limited throughput and/
or latency. In another example, the 5-stage RISC processor
can increase the throughput by reducing the critical path and
therefore increasing the clock frequency at the expense of
adding additional area. Nevertheless, such a processor design
can still be useful in many different applications too. This
processor is similar to the Xilinx MicroBlaze, which sees
widespread use. However, it does not satisfy the demand for
high throughput applications, like radio frequency modems,
but can be efficient and effective for lower throughput appli
cation like audio processing.
The design space options for RISC processors can involve

choosing between the single cycle implementation and the
pipelined implementation. This can be a rather simple
tradeoff; if a low area solution is desired, then the single cycle
architecture can be chosen. For better throughput, the pipe
lined processor can be chosen. However, better throughput
demands can be met by moving to a different class of proces
sor, e.g., the VLIW processor, described later in this disclo
Sure, which can provide significant instruction level parallel

10

15

25

30

35

40

45

50

55

60

65

10
ism. Therefore, in some scenarios, it may not be better to
augment the RISC processor with more complex architec
tural requirements, e.g., more register ports, and additional
functional units, but rather to augment the more complex
architecture of another class of processor.
The RISC architecture can provide a good solution for low

throughput applications. The processor can be simple by
nature and therefore efficient in terms of area. The design
space exploration options can be rather limited, though sig
nificant amount of trimming/elimination of the architecture
can be performed to further reduce the area and increase the
throughput by eliminating unnecessary functionality on the
critical path.
An exemplary implementation of the top-to-bottom pro

cess is described for a single-cycle RISC processor. An initial
design can be based upon a single cycle MIPS-like processor
that includes three parts: the register file, the functional units,
and the interconnect. The instruction set architecture can
include all of the basic MIPS instructions. The details of the
register file (number of registers, bitwidth, number of ports,
etc.) and functional units (number and type) can be specified
as inputs to the exemplary base simulator. The base simulator
can be given a set of assembly instructions along with an
architectural description. The base simulator can track statis
tics on the usage of various components. This can include the
number of times a register is read and written, the usage
statistics on the functional units, and a description as to which
interconnects paths are used. These statistics can include the
exact cycle where each activity occurred. The scheduler can
act as the processors control module. The scheduler can read
instructions from the instruction memory, decode them to
create the necessary control signals for the register file, inter
connect and functional units. This single cycle processor can
act as one starting point for the S&E design tool, which can be
favorable for low area, low throughput solutions.
An exemplary implementation of the top-to-bottom pro

cess is described for a 5-stage pipelined MIPS processor to
create a fully functional processor. Caches and more
advanced branch predictors can be additional features that
greatly enhance performance, which can also be incorporated
in this approach. The processor can be built in a highly modu
larized manner by trimming or eliminating portions of the
processor. For example, the processor control can be sepa
rated from the data path as shown in FIG. 4 to ease the
transition from fully dynamic control to more static or fixed
control. FIG. 4 exhibits a pipelined RISC Architecture (e.g.,
an S&E architecture of a MIPS instruction set architecture
(ISA)), where each component in the data path and control is
modularized to facilitate the trimming process.
The disclosed technology can implement a top-to-bottom

methodology for eliminating unnecessary portions of the
exemplary 5-stage MIPS processor based upon the given
application. For example, a 4x4 matrix multiply can trim the
memory controller, logic for control flow instructions, por
tions of the forwarding and hazard logic, and eliminate the
dynamic control for each of the pipeline stages. The exem
plary resulting 5-stage MIPS data path is shown in FIG. 5,
which has a ~20% reduction in gates and a ~27% reduction in
flip-flops (compared to the previous architecture in FIG. 4).
The top-to-bottom approach to processor design can

include the follow practices. A data path can be designed
essentially as a combinational, stateless block that has its
behavior completely dictated by the control. In this way, the
portions of the processor that S&E can be configured to
replace or eliminate can be known. The processor design can
behighly modularized so that it can be effectively developed,
tested, and debugged. This modularity not only can apply to

US 8,812,285 B2
11

the processor as a whole, but to the control and data paths as
well. If the control is highly modularized, portions can be
incrementally replaced during the elimination phase. Poor
modularization can make the control complicated, difficult to
understand and hard to remove when the application at hand
does not require it. The processor design can begin with a
simple design and incrementally add complexity. The main
concern can be that of a functional processor, adding new
features for performance can make the processor more robust.
For example, a fully function pipelined processor can be
created first. Then, adding new functionality Such as branch
prediction and caching can be done Subsequently.
VLIW architecture can have a larger number of parameters

to optimize. Therefore, the top-to-bottom methodology can
incorporate a decision process on the number and type of
functional units, the number of registers, and the number of
register read/write ports. These parameters are tightly
coupled, meaning that changes in one can affect the other. For
example, the framework of the disclosed technology can pro
vide a design space exploration using allocation, scheduling
and binding algorithms different from other approaches. For
each algorithm, the tool can provide the estimated number of
registers, number of register read/write ports, functional units
and cost of interconnect for particular architecture(s). This
can provide a starting point for trimming/elimination. The
framework can allow time constrained scheduling (TCS),
resource constrained scheduling (RCS), and a combination of
RCS and TCS using an exemplary algorithm, e.g. ant colony
optimization (ACO) meta-heuristic. This can provide much
richer design space exploration in addition to different param
eters settings.

FIG. 6 shows an exemplary design space exploration tool
600 for the VLIW-based processor architecture that utilizes
an extensible framework for scheduling, allocation and bind
ing. Several different algorithms can be used to determine the
VLIW processor architecture parameters, and others can eas
ily be incorporated. The framework can be built to be flexible
and can be extended to include any algorithm for Scheduling/
allocation and binding. For example, the framework can
employ ACO TCS and ACO RCS and force directed sched
uling (FDS) for instruction scheduling, and left edge and
graph coloring for register allocation. The exemplary design
space exploration can be evaluated using ACO TCS, ACO
RCS, and FDS combined with left edge algorithm.
An ACO algorithm is a cooperative heuristic searching

algorithm based on the behavior of ants to manage to establish
the optimal path between their colony and a food source
within a very short period of time. An exemplary ACO algo
rithm can be applied to the instruction scheduling problem. It
can start by releasing n ants over m iterations. In each itera
tion, each of the nants can produce a schedule. Each ant can
schedule the instructions based upon a local heuristic (a form
of list scheduling or FDS) and global pheromone that is based
upon the decisions of previous ants. Then a cost function can
calculate cost of each schedule, and reinforces the phero
mones of the best schedules, making those decisions more
likely to be selected in Subsequentiterations. As the algorithm
progresses, the ants are more likely to select better decisions
(e.g., assign an operation to a more favorable control step).
This algorithm performs significantly better than FDS and
simulated annealing based approaches.
The exemplary ACO approach can be extended by incor

porating register allocation. The left edge algorithm can be
implemented for register allocation and combined with an
exemplary ACO instruction scheduler. The results of the left
edge algorithm can be fed back to the ACO scheduler, e.g.,
augmenting the cost function to include the number of regis

10

15

25

30

35

40

45

50

55

60

65

12
ters. This feedback can be provided when each ant produces
a feasible schedule (a.k.a., ACO with Feedback') or when
each iteration (a.k.a. ACO with Best Case'. These prin
ciples are illustrated in FIG. 7, exemplifying Instruction
scheduling and register allocation with ACO using two dif
ferent feedback approaches. These two feedback approaches
can differ in a sense that one gives feedback after every ant
produces a schedule and the other gives a feedback after every
iteration.
The exemplary hardware design tool can perform design

space exploration with rich set of algorithms that search
across a variety of architectural options. The design space
exploration can provide a starting point for trimming/elimi
nation to create a hardware accelerator from a general pur
pose processor. The design space exploration can be per
formed using ACOTCS, ACO RCS, and FDS for instruction
scheduling and functional unit allocation, and left edge algo
rithm for register allocation. The tool can be extended to
include other algorithms and can provide rich set(s) of design
space exploration information for different algorithms and
parameters. A graph coloring algorithm for register allocation
can be implemented, as well as other algorithms, e.g., rela
tional database (RDB).

Returning to the examples of VLIW-based processor
design, as noted before, the design space exploration tool can
define the architectural parameters, which can include the
number of functional units and the type of register file. The
architecture generator can create a fully programmable pro
cessor based upon these architecture parameters. It is the
starting point for the Subsequent trimming/elimination phase.
A VLIW processor can rely on the compiler (or, using the
disclosed technology, it can rely on the design space explo
ration tool) to perform scheduling and binding of the instruc
tions. Therefore, this can be done statically and is inconse
quential to creating the VLIW processor.
The architecture generator can take as input the number of

registers, the number of read/write ports, and the number and
type of functional units. It can create a fully connected archi
tecture, meaning that every read/write port can access every
register. Every register read port can be connected to every
input to the functional units, and every write port can be
connected to every output of the functional units. This can be
defined as a complete interconnect crossbar, which is denoted
as having the maximum amount of flexibility.
Once given the requisite architectural parameters, HDL

generation can be straightforward. A register file, functional
units and control can be created as separate modules. Trim
ming/eliminating the processor can include moving from
fixed control to dynamic control, removing functionality
from register ports, and eliminating unneeded connections
between functional units and the register ports.

After the design of a final architecture, it can be important
to have the ability to recompile a new application onto the
existing architecture. This requires a designer to keep some of
the functionality of the general-purpose architecture in the
final design. Thus, reconfigurability of the final architecture is
an important property to consider when exploring the design
space of architectures from general-purpose (fully program
mable) to application-specific (limited to no programmabil
ity).

Flexibility can be an important consideration for hardware
accelerators. A fixed accelerator is unable to meet consis
tently changing market demands. For example, a video stan
dard may change requiring that the codec be updated. Or a
newer, more secure cryptography algorithm may appear. An
accelerator that can adapt to these changes can be considered
more valuable than one that cannot be changed.

US 8,812,285 B2
13

Adding flexibility can be inherently opposed to perfor
mance and can presentabit of conundrum when attempting to
design a flexible hardware accelerator. Yet, an initial, general
purpose, fully programmable architecture created using the
disclosed technology can be inherently flexible. However, for
example, if components are trimmed/eliminated, then the
performance of the general purpose architecture can be
increased, but it can be likely that its flexibility can decrease.
By removing functionality, the architecture may no longer be
able to implement future applications that may require this
flexibility. Therefore, the disclosed technology can provide a
good balance between performance and flexibility.
A flexibility metric can be defined for major processor

components: the register file, functional unit and the intercon
nect. The flexibility of register file and functional unit can be
defined by finding ratio of available registers/functional units
to required registers and functional units. The interconnect
can be a more important and interesting component particu
larly, how the current interconnect can satisfy needs of a new
application. At the highest level, the flexibility for the inter
connect can revolve around the amount of connections
between the input and outputs. A flexibility function can be
made by defining the ability for any input to reach any output.
A full crossbar would allow every input to reach every output.
This can be considered as the most flexible interconnect.
When trimming/elimination is performed, the ability for
some input to reach other outputs can be removed. FIG. 8
illustrates three exemplary interconnect matrices showing
varying amounts of flexibility. The flexibility of the intercon
nect can be described as the ability for an input to reach an
output. The left-most featured interconnect is fully flexible as
all inputs can be routed to all outputs. The middle and right
most interconnects have more limited degrees of flexibility,
from left to right. This flexibility can be quantified in a more
precise manner to demonstrate how it actually handles appli
cations that were not originally targeted towards the hardware
accelerator.

In another embodiment of the disclosed technology, this
specification describes a system that includes a general archi
tecture design utility and synthesis tool for optimization
(GUSTO), a hardware design tool that can provide a push
button transition from a high level specification (such as
matrix computation algorithms) to hardware description lan
guage. An exemplary GUSTO system can employ a top-to
bottom design methodology to generate correct-by-construc
tion and cycle-accurate application specific architectures. For
example, GUSTO can divide given matrix computation algo
rithm(s) into Smaller processing elements (PEs) and instanti
ate PEs with hierarchical data paths in a multicore fashion,
which can provide an architecture Small in area and highly
optimized for throughput. The different design methods and
parameterization options that are provided by a GUSTO sys
tem can enable a user to study area and performance tradeoffs
over a large number of different architectures and find the
optimum architecture for the desired objective.

Exemplary benefits of a GUSTO system can include, but is
not limited to, (1) rapid development of single-core field
programmable gate array (FPGA) elements, (2) hierarchy
data path implementation for multi-core FPGA elements, (3)
FPGA engine(s) for MATLAB, (4) domain specificity (e.g.,
specifically targeting matrix computation algorithms), (5)
path(s) to built-in libraries (e.g., including previously imple
mented matrix computation algorithms to be used while
designing larger applications), and (6) end platform indepen
dency. An exemplary GUSTO system can include design
tool(s) which can allow rapid development of complex matrix
computation algorithms with different parameterization

10

15

25

30

35

40

45

50

55

60

65

14
options; this can be useful for a wide variety of designs,
providing higher performance computing and faster time to
market. An exemplary GUSTO system can be capable of
dividing the given algorithms into Small highly parallelizable
PEs, generate hardware and combine these small PEs with
hierarchical data paths in a multi-core architecture fashion;
this can result in multi-core architecture solutions that are
smaller, cheaper, and lower power. An exemplary GUSTO
system can enable Software engineers to implement hardware
out of MATLAB code (without prior knowledge in hardware
design); the implemented MATLAB programs can have
excellent performance for matrix-heavy computations,
including many scientific computational algorithms such as
signal processing, computer vision and financial computa
tions. An exemplary GUSTO system can target different plat
forms, such as GPUs (Graphics Processing Units) and CMPs
(chip multiprocessors) with the appropriate changes to the
back end of the tool.
An exemplary GUSTO system can include a method that

operates in the manner previously shown in FIGS. 1A and 1B.
The system can receive an algorithm from a user and allows
the user to input parameters, e.g., the type and number of
arithmetic resources, the data representation (integer and
fractional bit width). Using the parameters, the system can
automatically generate optimized application-specific pro
cessor architecture or processing elements.

Application specific architectures generated by GUSTO
can employ the optimal number of resources which maxi
mizes the throughput while minimizing area. GUSTO also
can incorporate hierarchical data paths and heterogeneous
architecture generation options. By using these features, a
user can divide the given algorithms into small highly paral
lelizable parts, generate hardware using GUSTO, and com
bine the small PEs with hierarchical data paths to perform
multi-core processing.

In the exemplary architecture generation step, GUSTO can
create a general purpose processor architecture or processing
elements which exploits instruction level parallelism.
GUSTO then can simulate the general purpose PE to collect
scheduling information and perform resource trimming to
create an optimized application-specific processor architec
ture or processing elements while ensuring the correctness of
the solution is maintained. These optimizations can be
thought of as two sections: (1) static architecture generation
and (2) trimming for optimization.

Static architecture generation: GUSTO can generate agen
eral purpose processor architecture or processing elements
and its datapath by using resource constrained list scheduling
after the required inputs are given. Simulating this architec
ture can reveal the assignments done to the arithmetic units
and the memory elements during the scheduling process.
Gathering this information and using it to cancel the sched
uling process and dynamic memory assignments can result in
an optimized architecture with significant area and timing
savings.
Trimming and optimization: GUSTO can perform trim

ming of the unused resources from the general purpose PE
while ensuring that correctness of the solution is maintained.
GUSTO can simulate the architecture to define the usage of
arithmetic units, multiplexers, register entries and input/out
put ports and trims away the unused components with their
interconnects. An example of trimming and optimization is
shown in FIG. 9. FIG. 9A Supposes there are two arithmetic
units (A and B) and one memory; arithmetic units A and B
have 2 inputs (e.g., In, In, for A, In, In, for B) and 1
output (e.g., Out for A.; Out for B); and memory unit has 1
input (e.g., In In2) and 1 output (e.g., Out rers rers

US 8,812,285 B2
15

Out). FIG.9B shows, for this example, the Input/Output
ports relationship between A and A, B, Memory, assuming
that every unit is connected to A. Although Out, Out,
Out, and Out, are all inputs to In and In, not all
the inputs may be used during computation. GUSTO can
represent whether an input/output port is used during simu
lation displaying the results in a matrix, Such as the one shown
in FIG. 9C. FIG. 9C shows, for this example, this Input/
Output ports relationship can be described as a 2x4 matrix. 1S
and 0s represent used and non-used interconnects. FIG. 9D
shows, for this example, the trimming performed using the
optimization matrix. GUSTO can use these matrices to
remove the unused resources. In this example, two inputs,
Out Out to In and another two inputs, Out Out
to In are removed. If there is an optimization matrix that is
full of 0s, it can mean that the functional resource is never
being used in the architecture. Therefore, GUSTO can
remove the functional resource and interconnect from the
architecture.
The exemplary GUSTO system can provide different

design methods and parameterization options which enables
a user to study area and performance tradeoffs over a large
number of different architectures and pick the most efficient
one in terms of the desired objective. FIG. 10 shows an
exemplary tradeoff between computational throughput and
area for various matrix multiplication architectures. Three
different exemplary design methods include: (1) Using one
PE for entire matrix multiplication (Implementations 1-3 are
the outputs of GUSTO with different number of functional
units); (2) Designing a homogeneous architecture by dividing
the given computation into identical PES (Implementations
4-9 are the outputs of GUSTO with different number of PEs);
and (3) Designing a heterogeneous architecture with different
types of PEs using hierarchical data paths (Implementations
10-12 are heterogeneous architectures that are the outputs of
GUSTO with different types of PEs using hierarchical data
paths).
The ability to divide a given algorithm into smaller pro

cessing elements can result in architectures that are small in
area and highly optimized for throughput. These different
design methods and parameterization options can enable a
user to study area and performance tradeoffs over a large
number of different architectures. This can result in more
detailed design space exploration and more efficient hard
ware implementations that enable users to exploit both
instruction and task level parallelism.
The disclosed technology can further be exemplified in the

following implementations. For example, one embodiment
can include the hardware design tool system to be configured
for single core design and optimizations. In another embodi
ment, the hardware design tool system can be configured for
multi-core design and optimizations (e.g., that can be specific
to multi-core architectures). In another embodiment, the
hardware design tool system can be configured to create a
design flow specific to image processing that can be imple
mented using specific image processing applications, which
can also be used to evaluate the performance of the design
flow and compare them to hand-coded HDL.

In an exemplary initial design flow for a single core design
and optimization using the disclosed technology, an exem
plary hardware design tool can first receive an algorithm from
a user and perform algorithm analysis. Initial design space
exploration can be implemented, which can perform instruc
tion selection, determine the required type of arithmetic
resources and the data representation for the general-purpose

naena2

10

15

25

30

35

40

45

50

55

60

65

16
architecture. The exemplary tool can then use this informa
tion to generate a fully-connected general-purpose processor
architecture.

For example, a RISC type general-purpose processor
architecture can be designed that exploits instruction level
parallelism using dynamically scheduled out-of-order execu
tion using Tomasulo algorithm. This architecture can be cho
Sen to evaluate the effectiveness of optimizations. The gen
eral-purpose processor can include an instruction scheduler, a
memory controller and functional resources. The instruction
scheduler can read instructions that are pre-generated and
placed in its instruction memory. The main duty of the
instruction scheduler can be to generate scheduled instruc
tions by assigning operations to the functional resources, e.g.,
performing scheduling and binding (as illustrated in FIG.
11A). This can be achieved by tracking the availability of the
functional resources and the functional units that can produce
the operand(s). The instruction scheduler can prevent write
after read (WAR) andwrite after write (WAW) hazards as well
as structural hazards. Each functional resource can receive
the scheduled instructions and waits for the required operands
for its execution. The required operands can be routed
through the interconnect matrix, which receives inputs from
memory and the functional resources. The functional
resources can receive scheduled instructions and waits for the
required operands to arrive through the interconnect matrix
before beginning execution (as illustrated in FIG. 11B). The
memory controller can watch for the data, update its memory
entries and prevent read after write (RAW) hazards. The
generated architectures can define register files as memory
elements that depend on the required number of inputs/out
puts for the memory and the required memory size.
The disclosed hardware design tool can perform several

optimizations on the general-purpose architecture to create an
application-specific processing architecture. The hardware
design tool can simulate the general-purpose processing
architecture with the given application(s) to collect schedul
ing and binding information and performs resource trimming
to eliminate unnecessary functionality. The end result can be
an optimized application-specific processing architecture
that maintains correctness of the functionality due to 100%
code coverage. These optimizations can be divided into two
areas: collecting scheduling information and trimming for
optimization. Collecting scheduling information can include
the disclosed technology currently using a dynamic resource
constrained list scheduling algorithm to schedule and bind
operations. Through simulation, it can determine the sched
uling and binding information and Subsequently use this
information to eliminate the dynamic scheduling and
dynamic memory assignments, resulting in a static architec
ture with significant area and throughput savings.

Trimming for hardware optimization can include the dis
closed technology paring away all unused interconnect, con
trol, functional resources and memory elements from the
general-purpose processing architecture. The architecture
can be simulated to define the usage of arithmetic units,
multiplexers, register entries and input/output ports, and the
disclosed hardware design tool can trim away the unused
components along with their interconnect. A detailed
example of the trimming method was exemplified in FIGS.
9A-9D.

It is noted that the disclosed technology can guarantee
100% code coverage because of the exploration process of
every possible outcome of a conditional statement. As an
example, if there is a calculation and the execution of the
program depends on that calculation in a format of case
statements, all the possible cases can be executed to achieve

US 8,812,285 B2
17

100% coverage. Simulations can be performed on the fully
connected general-purpose architecture to determine which
interconnect, functional units, memory and control elements
are used, and can guarantee 100% code coverage by exploring
the every possible outcome of a conditional statement.
Because of the 100% code coverage achievement, it can
determine the hardware components that were never used,
and removing them cannot interfere with the maintenance of
the correct functionality of the design.
A single core may not scale well in Some exemplary cases

since it exploits instruction level parallelism. Task level par
allelism can be necessary in order to provide Sufficient per
formance in complex applications. Furthermore, a single pro
cessing architecture can limit the design space as it restricts
parameterization to only varying the number and types of
functional units and associated memory. Therefore, instead of
creating one application-specific processing architecture for
the entire algorithm, one may choose to generate an applica
tion-specific multi-core architecture, which can expand
design options and a more efficient final architecture.

In an exemplary initial design flow for a multi-core design
and optimization using the disclosed technology, an exem
plary hardware design tool can utilize any algorithm(s) and
input into analysis process 116 and instruction generation
process 117, previously shown in FIG. 1B, e.g., including a
partitioning algorithm. In an example of inter-core commu
nications for multi-core architectures, the disclosed hardware
design tool can start with general-purpose multi-core archi
tecture utilizing a model of computation that allows all-to-all
communication. The exemplary initial multi-core architec
ture can be fully-connected between cores and employ a
shared memory structure. Each core can have two sections of
the memory, which can be defined as local and shared vari
ables (as shown in FIG. 12A for an exemplary multi-core
architecture employing four processing cores). Local vari
ables can be specific to a core; shared variables can be data
communicated between cores. The hardware design tool can
partition the shared memory of each processing core in Such
away that the memory accesses between cores can be reduced
while the overall multi-core architecture can be still fully
connected. There can be two different types of connectivity in
this exemplary multi-core architecture: 1) connections from
the instruction scheduler of one core to another core's local
memory, so that instructions on one core can access shared
variables on another core, 2) connections from each shared
memory to every functional resource, e.g., there is full con
nectivity between each shared memory and every functional
resource in all of the cores. However, full connectivity might
not be required in application-specific architectures. There
fore if there is no data dependency between two cores, hard
ware design tool can remove the unused interconnect result
ing in a platform that has only the necessary connectivity
between processing cores (as exemplified in FIG. 12B). FIG.
12A shows an exemplary initial, general-purpose multi-core
architecture that provides full connectivity between cores
using shared memory. FIG. 12B shows the final application
specific multi-core architecture that can employ separate
memories with only the necessary connections between pro
cessing cores; GPP and APP correspond to general-purpose
and application-specific processing cores, respectively.

In another embodiment, the hardware design tool system
can be configured to create a design flow specific to image
processing that can be implemented using specific image
processing applications. For example, real-time image pro
cessing can be necessary in a multitude of applications. Such
as monitoring and Surveillance, human computer interaction,
Smart rooms, autonomous vehicles and medical image analy

10

15

25

30

35

40

45

50

55

60

65

18
sis. These applications can demand Substantial processing
power to provide quick decisions based on events in a
sequence of images. However, processing images in real-time
is far from trivial due to the considerable computational
power that can be required to manage high throughput
requirements demanded by these applications. Enabling an
algorithm to run in real-time can involve intricate knowledge
of both the application and the target architecture. Unfortu
nately, there are few to no designers that deeply understand
both image processing algorithms and hardware, leaving
application developers with significant challenges to take
advantage of the parallelism afforded by the underlying hard
ware, and leaving hardware designers overwhelmed by the
complexity of vision algorithm. In an exemplary initial
design flow for an image processing application, the dis
closed hardware design tool can be implemented to create
libraries for widely used image processing building blocks
such as image buffer, line buffer, window buffer, dynamic
thresholding, edge detection and histogram equalization. For
example, a number of real-time vision applications can
include object detection, object tracking, and color classifi
cation utilizing hand coded HDL.

FIG. 13 shows an exemplary method 1300 for designing a
processor. Method 1300 can include generation of initial
architecture method 1310 that can execute an algorithm or
multiple algorithms 1311, in which the initial architecture
includes processing element(s), memory element(s), and
information transfer mechanism(s). The algorithm 1311 can
include programs, algorithms, and applications specified by a
user, for example high level specification program(s) and
algorithm(s) written as program code (e.g., in C, C++, or
MATLAB code). Method 1300 also can include simulation of
algorithm execution on initial architecture method 1320,
which can collect functional information of the processing
element(s), memory element(s), and information transfer
mechanism(s) and produce a hardware resource usage report.
The simulation of the algorithm(s) execution can be per
formed on one or more computers or one or more processors.
The functional information can include utilization character
istics of the processing element(s), memory element(s), and
information transfer mechanism(s). Method 1300 also can
include determination of modification to initial architecture
method 1330, which can determine under-utilized processing
element(s), under-utilized memory element(s) and under-uti
lized information transfer mechanism(s) according to the
hardware resource usage report. Method 1300 also can
include modification to initial architecture method 1340,
which can selectively eliminate under-utilized processing
element(s), under-utilized memory element(s) and under-uti
lized information transfer mechanism(s) according to the
hardware resource usage report. A processor design 1341
based on the modification to the initial architecture can be
created after implementing modification to initial architec
ture method 1340.

Implementations of the Subject matter and the functional
operations described in this specification, such as various
modules, can be implemented in digital electronic circuitry,
or in computer Software, firmware, or hardware, including the
structures disclosed in this specification and their structural
equivalents, or in combinations of one or more of them.
Implementations of the subject matter described in this speci
fication can be implemented as one or more computer pro
gram products, i.e., one or more modules of computer pro
gram instructions encoded on a tangible and non-transitory
computer readable medium for execution by, or to control the
operation of data processing apparatus. The computer read
able medium can be a machine-readable storage device, a

US 8,812,285 B2
19

machine-readable storage Substrate, a memory device, a com
position of matter affecting a machine-readable propagated
signal, or a combination of one or more of them. The term
"data processing apparatus' encompasses all apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul
tiple processors or computers. The apparatus can include, in
addition to hardware, code that creates an execution environ
ment for the computer program in question, e.g., code that
constitutes processor firmware, a protocol stack, a database
management system, an operating system, or a combination
of one or more of them.
A computer program (also known as a program, Software,

Software application, Script, or code) can be written in any
form of programming language, including compiled or inter
preted languages, and it can be deployed in any form, includ
ing as a stand alone program or as a module, component,
Subroutine, or other unit Suitable for use in a computing
environment. A computer program does not necessarily cor
respond to a file in a file system. A program can be stored in
a portion of a file that holds other programs or data (e.g., one
or more scripts stored in a markup language document), in a
single file dedicated to the program in question, or in multiple
coordinated files (e.g., files that store one or more modules,
Sub programs, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net
work.

The processes and logic flows described in this specifica
tion can be performed by one or more programmable proces
sors executing one or more computer programs to perform
functions by operating on input data and generating output.
The processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or an
ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto optical disks, or optical disks. However, a computer
need not have such devices. Computer readable media Suit
able for storing computer program instructions and data
include all forms of non Volatile memory, media and memory
devices, including by way of example semiconductor
memory devices, e.g., EPROM, EEPROM, and flash memory
devices. The processor and the memory can be supplemented
by, or incorporated in, special purpose logic circuitry.

While this patent document contains many specifics, these
should not be construed as limitations on the scope of any
invention or of what may be claimed, but rather as descrip
tions of features that may be specific to particular embodi
ments of particular inventions. Certain features that are
described in this patent document in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may

10

15

25

30

35

40

45

50

55

60

65

20
be described above as acting in certain combinations and even
initially claimed as Such, one or more features from a claimed
combination can in Some cases be excised from the combi
nation, and the claimed combination may be directed to a
Subcombination or variation of a Subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum
stances, multitasking and parallel processing may be advan
tageous. Moreover, the separation of various system compo
nents in the embodiments described above should not be
understood as requiring Such separation in all embodiments.

Only a few implementations and examples are described
and other implementations, enhancements and variations can
be made based on what is described and illustrated in this
patent document.
What is claimed is:
1. A method for designing a processor, comprising:
generating an initial architecture for a processor to execute

at least one algorithm, wherein the initial architecture
includes a set of processor components that comprise, at
least, a processing element, a memory element and an
information transfer mechanism;

simulating execution of the at least one algorithm by the
initial architecture to determine a modification to the
initial architecture;

creating a processor design based on the modification to
the initial architecture; and

determining a flexibility metric for a processor component
in the set of processor components to measure a change
in functional flexibility due to the modification to the
processor component of the initial architecture,

wherein the flexibility metric comprises:
a quantification of the ability for any input to reach any

output for information transfer mechanisms in the
processor component, and one of
a ratio of available processing elements to required

processing elements for processing elements in the
processor component; and

a ratio of available memory elements to required
memory elements for memory elements in the pro
cessor component,

wherein the functional flexibility of the modified processor
component decreases if one or more design elements are
eliminated from the processor component of the initial
architecture.

2. The method of claim 1, wherein the generating com
prises determining a usage pattern of the processing element,
the memory element and the information transfer mecha
nism.

3. The method of claim 1, wherein the generating com
prises accepting a high level program code and transforming
the high level program code into a low level code.

4. The method of claim 1, wherein the simulating com
prises collecting functional information of the processing
element, the memory element and the information transfer
mechanism and producing a hardware resource usage report,
wherein the functional information comprises utilization
characteristics of the processing element, the memory ele
ment and the information transfer mechanism.

5. The method of claim 4, wherein the creating comprises
selectively eliminating at least one of an under-utilized pro
cessing element, an under-utilized memory element and an
under-utilized information transfer mechanism according to
the hardware resource usage report.

US 8,812,285 B2
21

6. The method of claim 1, further comprising verifying the
processor design.

7. The method of claim 1, further comprising producing a
hardware description language of the processor design.

8. The method of claim 1, wherein the effect is a tradeoff to
an increase in performance.

9. The method of claim 1, wherein the processor design
includes an application-specific architecture that is smaller in
area or is higher in throughput or consumes lower power than
the initial architecture.

10. The method of claim 1, wherein the initial architecture
is fully programmable.

11. An apparatus for designing a processor, comprising:
one or more processors;
a module that generates an initial architecture for a proces

Sor to execute at least one algorithm, wherein the initial
architecture includes a set of processor components that
comprise, at least, a processing element, a memory ele
ment and an information transfer mechanism;

a module that determines computational resources for
execution of the at least one algorithm on the initial
architecture;

a module that creates a processor design based on the
computational resources and the initial architecture; and

a module that determines a flexibility metric for a processor
component in the set of processor components to mea
sure a change in functional flexibility due to the modi
fication to the processor component of the initial archi
tecture,

wherein the flexibility metric comprises:
a quantification of the ability for any input to reach any

output for information transfer mechanisms in the
processor component, and one of:
a ratio of available processing elements to required

processing elements for processing elements in the
processor component; and

a ratio of available memory elements to required
memory elements for memory elements in the pro
cessor component,

wherein the functional flexibility of the modified processor
component decreases if one or more design elements are
eliminated from the processor component of the initial
architecture.

12. The apparatus of claim 11, wherein the module that
generates comprises a module that iteratively determines a
usage pattern of the processing element, the memory element
and the information transfer mechanism.

13. The apparatus of claim 11, wherein the module that
generates comprises a module that accepts a high level pro
gram code and transforms the high level program code into a
low level code.

14. The apparatus of claim 11, wherein the module that
determines computational resources comprises a module that
collects functional information of the processing element, the
memory element and the information transfer mechanism and
produces a hardware resource usage report, wherein the func
tional information comprises utilization characteristics of the
processing element, the memory element and the information
transfer mechanism.

15. The apparatus of claim 14, wherein the module that
creates comprises a module that selectively eliminates at least
one of an under-utilized processing element, an under-uti
lized memory element and an under-utilized information
transfer mechanism according to the hardware resource usage
report.

10

15

25

30

35

40

45

50

55

60

22
16. The apparatus of claim 11, further comprising at least

one of a module that verifies the processor design, and a
module that produces a hardware description language of the
processor design.

17. A computer program product comprising a non-transi
tory nonvolatile computer-readable storage medium having
instructions stored thereon, the instructions comprising:

code for generating an initial architecture for a processor to
execute at least one algorithm, wherein the initial archi
tecture includes a set of processor components that com
prise, at least, a processing element, a memory element
and an information transfer mechanism:

code for simulating execution of the at least one algorithm
by the initial architecture to determine a modification to
the initial architecture;

code for creating a processor design based on the modifi
cation to the initial architecture; and

code for determining a flexibility metric for a processor
component in the set of processor components to mea
Sure a change in functional flexibility due to the modi
fication to the processor component of the initial archi
tecture,

wherein the flexibility metric comprises:
a quantification of the ability for any input to reach any

output for information transfer mechanisms in the
processor component, and one of:
a ratio of available processing elements to required

processing elements for processing elements in the
processor component; and

a ratio of available memory elements to required
memory elements for memory elements in the pro
cessor component,

wherein the functional flexibility of the modified processor
component decreases if one or more design elements are
eliminated from the processor component of the initial
architecture.

18. The non-transitory nonvolatile computer-readable stor
age medium of claim 17, wherein the code for generating an
initial architecture for a processor to execute at least one
algorithm comprises at least one of code for iteratively deter
mining a usage pattern of the processing element, the memory
element and the information transfer mechanism and code for
accepting a high level program code and transforming the
high level program code into a low level code.

19. The non-transitory nonvolatile computer-readable stor
age medium of claim 17, wherein the code for simulating
execution of the at least one algorithm by the initial architec
ture to determine a modification to the initial architecture
comprises code for collecting functional information of the
processing element, the memory element and the information
transfer mechanism and producing a hardware resource usage
report, wherein the functional information comprises utiliza
tion characteristics of the processing element, the memory
element and the information transfer mechanism.

20. The non-transitory nonvolatile computer-readable stor
age medium of claim 19, wherein the code for creating a
processor design based on the modification to the initial
architecture comprises code for selectively eliminating at
least one of an under-utilized processing element, an under
utilized memory element and an under-utilized information
transfer mechanism according to the hardware resource usage
report.

