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(57) ABSTRACT 

Techniques, structures, and systems are disclosed for imple 
menting an efficient design of computer hardware using a 
top-to-bottom approach. In one aspect, a method for design 
ing a processor includes generating an initial architecture for 
a processor to execute algorithms, simulating execution of the 
algorithms by the initial architecture to determine a modifi 
cation to the initial architecture, and creating a processor 
design based on the modification to the initial architecture. 
The described method for implementing a hardware design 
tool provides a push-button transition from high level speci 
fication for algorithms to hardware description language. 
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1. 

DESIGNING DIGITAL PROCESSORS USING 
A FLEXBILITY METRIC 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims benefit of prior U.S. Provisional 
Patent Application No. 61/378.903, filed Aug. 31, 2010. The 
entire content of the before-mentioned patent application is 
incorporated by reference as part of the disclosure of this 
application. 

BACKGROUND 

This patent document relates to digital hardware designs. 
Computational power of integrated circuits has increased 

dramatically over the past several decades due to improve 
ments in integrated circuit designs and fabrication tech 
niques, including shrinking transistor size and the corre 
sponding increase in transistor count. In the past years, the 
frequency of a single processing core has slowed dramatically 
as power dissipation and the resulting heat generation has 
limited processor speed. 

There has been great interest in increasing in processing 
power using parallel processing cores, which can provide 
more processing power per watt than can be achieved with a 
single processor Solution. Yet, another prevalent trend incom 
puting to increase processing power includes the specializa 
tion of processors. Early examples of specialized processors 
can include digital signal processors (DSPs), which has since 
proliferated to application domains including networking, 
wireless communication, audio and vision. These processors 
can typically be developed for embedded computing systems, 
which can have stringent constraints on performance. 
Achieving the desired requirements therefore can demand 
careful tuning of the underlying architecture that requires 
Substantial amounts of time. 

SUMMARY 

Techniques, systems, and apparatuses are disclosed for 
implementing an efficient design of computer hardware. 

In one aspect of the disclosed technology, a method for 
designing a processor includes generating an initial architec 
ture for a processor to execute an algorithm or multiple algo 
rithms, in which the initial architecture includes processing 
element(s), memory element(s), and information transfer 
mechanism(s); simulating execution of the algorithm(s) by 
the initial architecture to determine a modification to the 
initial architecture; and creating a processor design based on 
the modification to the initial architecture. 

Various implementations of the above aspect can include 
one or more of the following features. The method can 
include determining a usage pattern of the processing 
element(s), memory element(s), and information transfer 
mechanism(s). The method can include accepting a high level 
program code and transforming the high level program code 
into a low level code. The method can include collecting 
functional information of the processing element(s), memory 
element(s), and information transfer mechanism(s) and pro 
ducing a hardware resource usage report. The functional 
information can include utilization characteristics of the pro 
cessing element(s), memory element(s), and information 
transfer mechanism(s). The method can include selectively 
eliminating under-utilized processing element(s), under-uti 
lized memory element(s) and under-utilized information 
transfer mechanism(s) according to the hardware resource 
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2 
usage report. The method can further include verifying the 
processor design. The method can further include producing 
a hardware description language of the processor design. The 
method can further include determining a flexibility metric 
for the processing element(s), memory element(s), and infor 
mation transfer mechanism(s). The processor design can 
include an application-specific architecture that can be 
Smaller in area, higher in throughput, and/or consume lower 
power than the initial architecture. The initial architecture can 
be fully programmable. 

In another aspect, an apparatus for designing a processor 
includes a module for generating an initial architecture for a 
processor to execute an algorithm or multiple algorithms, in 
which the initial architecture includes processing element(s), 
memory element(s), and information transfer mechanism(s): 
a module for determining computational resources for execu 
tion of the algorithm(s) on the initial architecture; and a 
module for creating a processor design based on the compu 
tational resources and the initial architecture. 

Various implementations of the above aspect can include 
one or more of the following features. The apparatus can 
include a module for iteratively determining a usage pattern 
of the processing element(s), memory element(s), and infor 
mation transfer mechanism(s). The apparatus can include a 
module for accepting a high level program code and trans 
forming the high level program code into a low level code. 
The apparatus can include a module for collecting functional 
information of the processing element(s), memory 
element(s), and information transfer mechanism(s) and pro 
ducing a hardware resource usage report. The functional 
information can include utilization characteristics of the pro 
cessing element(s), memory element(s), and information 
transfer mechanism(s). The apparatus can include a module 
for selectively eliminating under-utilized processing 
element(s), under-utilized memory element(s) and under-uti 
lized information transfer mechanism(s) according to the 
hardware resource usage report. The apparatus can include a 
module for verifying the processor design. The apparatus can 
include a module for producing a hardware description lan 
guage of the processor design. The apparatus can include a 
module for determining a flexibility metric for the processing 
element(s), memory element(s), and information transfer 
mechanism(s). 

In another aspect, a computer program product that 
includes a nonvolatile computer-readable storage medium 
having instructions stored thereon, includes code for gener 
ating an initial architecture for a processor to execute an 
algorithm or multiple algorithms, in which the initial archi 
tecture includes processing element(s), memory element(s), 
and information transfer mechanism(s); code for simulating 
execution of the algorithm(s) by the initial architecture to 
determine a modification to the initial architecture; and code 
for creating a processor design based on the modification to 
the initial architecture. 

Various implementations of the above aspect can include 
one or more of the following features. The nonvolatile com 
puter-readable storage can include code for iteratively deter 
mining a usage pattern of the processing element(s), memory 
element(s) and information transfer mechanism(s). The non 
Volatile computer-readable storage can include code for 
accepting a high level program code and transforming the 
high level program code into a low level code. The nonvolatile 
computer-readable storage can include code for collecting 
functional information of the processing element(s), memory 
element(s) and information transfer mechanism(s) and pro 
ducing a hardware resource usage report. The functional 
information can include utilization characteristics of the pro 
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cessing element(s), memory element(s) and information 
transfer mechanism(s). The nonvolatile computer-readable 
storage can include code for selectively eliminating under 
utilized processing element(s), under-utilized memory 
element(s) and under-utilized information transfer mecha 
nism(s) according to the hardware resource usage report. 
The subject matter described in this patent document 

potentially can provide one or more of the following advan 
tages and be used in many applications. The top-to-bottom 
design methodology can provide simplicity (through the use 
of a simple tool chain and programming model); flexibility 
(through the use of different languages, e.g., C/MATLAB, as 
a high level specification and different parameterization 
options); scalability (through the ability to handle complex 
algorithms); and performance (through the use of trimming 
optimization using a simulate & eliminate method). For 
example, the disclosed technology can provide a processor 
design tool that can provide fast and highly efficient hardware 
production capable of executing any algorithm or application. 
The disclosed technology can provide the ability to prototype 
hardware systems in just minutes instead of days or weeks 
with these capabilities. For example, an already fully proven 
chip. Such as a computer microprocessor, can be optimized 
that allow a user to start with full functionality and then strip 
away the unneeded parts for a particular application, thereby 
reducing area and power consumption. In an exemplary worst 
case scenario, the existing microprocessor can be used as is, 
which is capable of running any program. In an exemplary 
best case scenario, many un-needed functions of the micro 
processor can be stripped away, yielding a minimized final 
design that can work as intended with minimal original engi 
neering required. This efficient design technology can create 
new working designs of an existing computer chip, which can 
be brought to market faster and cheaper using proven tech 
nology with broad manufacturability. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A shows a block diagram of an exemplary processor 
design process using a top-to-bottom approach. 

FIG. 1B shows an exemplary design space exploration 
process. 

FIG. 2 shows a block diagram of another exemplary pro 
cessor design process using a top-to-bottom approach. 

FIG.3 shows a design flow process of an exemplary system 
to implement the top-to-bottom approach to design a proces 
SO. 

FIG. 4 shows an exemplary RISC architecture where each 
component in the data path and control is modularized. 

FIG. 5 shows an exemplary RISC architecture after trim 
ming. 

FIG. 6 shows an exemplary design space exploration tool 
for a VLIW-based processor architecture. 

FIG. 7 shows an exemplary instruction scheduling and 
register allocation with ACO using two different feedback 
approaches. 

FIG. 8 illustrates three exemplary interconnect matrices 
showing varying amounts of flexibility. 

FIGS. 9A, 9B, 9C, and 9D show an example of trimming 
and optimization. 

FIG. 10 shows an exemplary tradeoff between computa 
tional throughput and area for various matrix multiplication 
architectures. 

FIGS. 11A and 11B show an example of a single core 
design for a RISC type general-purpose processor architec 
ture. 
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4 
FIG. 12A shows an exemplary initial, general-purpose 

multi-core architecture. 
FIG. 12B shows a final application-specific multi-core 

architecture. 
FIG. 13 shows an exemplary method for designing a pro 

CSSO. 

DETAILED DESCRIPTION 

Techniques, systems, and apparatuses are described for 
implementing an efficient design of computer hardware. 

In one embodiment of the disclosed technology, a hard 
ware design utility and synthesis tool for optimization of a 
processor using a top-to-bottom approach is described that 
can provide a push-button transition from a high level speci 
fication (e.g., matrix computation algorithms written as a C, 
C++ or MATLAB program) to hardware description lan 
guage (HDL). The hardware design utility and synthesis tool 
for optimization of a processor is also referred to as a hard 
ware design tool. The disclosed hardware design tool can 
have a plurality of modular functionalities. For example, the 
hardware design tool can include a design space exploration 
tool, a simulation and elimination tool, and an HDL genera 
tion tool. 

In one aspect, an exemplary hardware design tool can 
perform design space exploration on different architectures 
for a given (set of) application(s) to provide a basis for hard 
ware implementation, which can produce cycle accurate 
results as well as estimates of area, throughput, and other 
performance metrics. Design space exploration can guide the 
initial generation of a processorby Scheduling an initial archi 
tecture based upon the given (set of) application(s). After 
performing the design space exploration, the exemplary hard 
ware design tool can run the application(s), determine the 
unnecessary components and remove them. Also, HDL reg 
ister-transfer level (RTL) code can be generated to create an 
optimized processor architecture for that particular (set of) 
application(s). 
The exemplary hardware design tool can automatically 

generate application-specific single-core and multi-core 
architectures for a (set of) given application(s). The selective 
removal of unnecessary functionalities of the architecture 
components, referred to as trimming and optimization, can be 
performed by the exemplary hardware design tool in a pro 
cess that can also be referred to as simulate and eliminate 
(S&E). For example, a top-to-bottom hardware design 
approach that includes an exemplary S&E process can first 
generate a general-purpose multi-core architecture; the pro 
vided applications can be simulated on this architecture and 
the unneeded functionality (e.g., interconnect, functional 
resources, control and memory) can be eliminated resulting in 
an application-specific multi-core architecture. By imple 
menting the S&E process, a multi-core architecture can opti 
mized into one in which all the processing cores are utilized; 
therefore all the processing cores that are not used can be 
removed from the final architecture. For example, the proces 
Sor can be generated to include only the required resources 
internally; the interconnect, functional units, controllers, and 
memory elements that are not used can be removed from the 
final architecture. Thus, each core may have a different 
memory structure, interconnect, controllers, or functional 
units. 

FIG. 1A shows a block diagram of an exemplary processor 
design process 100 using the top-to-bottom hardware design 
tool by implementing design space exploration process 110. 
architecture generation process 120, collection of usage 
information process 130, and trimming and optimization pro 
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cess 140. The design space exploration process 110 can ulti 
lize a user input 111 to determine the architecture comprising 
processing elements (PEs), memory elements, and their cor 
responding data paths, which can be optimized and specified 
to the inputted application. User input 111 can include pro- 5 
cess parameters, e.g., programs, algorithms and parameters 
specified by a user, e.g., high level specification algorithm(s) 
and program(s) (e.g., in C, C++, or MATLAB code), algo 
rithmic parameters (e.g., description of inputs), the type and 
number of processing elements, data representation 121 (e.g., 10 
the integer and fractional bit width), and the mode of opera 
tion. 

The architecture generation process 120 can create any 
general purpose processor architecture 122 as a starting point 
(e.g., RISC, VLIW, superscalar). The architecture generation 15 
process 120 can utilize user input Such as data representation 
121, which can include the integer and fractional bit width. 
The general purpose processor can be exploited in the collec 
tion of usage information process 130 to information includ 
ing the scheduling and binding information from instruction 20 
and memory controllers that can be used to eliminate 
dynamic scheduling and create a static and Scheduled archi 
tecture automatically. An optimized, application-specific 
processor architecture 141 can be created in trimming and 
optimization process 140 that performs resource trimming, 25 
pares away unused resources, and eliminates under-utilized 
functionality while ensuring the correctness of the solution is 
maintained. This process includes simulating the architecture 
to define the usage of arithmetic units, multiplexers, register 
entries and input/output ports, etc., and resources and com- 30 
ponents determined to be under-utilized can be trimmed away 
with their interconnects. 

FIG. 1B shows an exemplary design space exploration 
process 110 when the user input 111 includes an algorithm, 
e.g. a matrix computation algorithm, to gain an understanding 35 
of area, throughput, and other performance metrics of the 
algorithm on the initial hardware design. An algorithm 112 
received from a user can be analyzed by the algorithm analy 
sis process 116 to determine a usage pattern of the initial 
architecture. The design space exploration process 110 can 40 
allow the user to input other algorithmic parameters 113 (if 
any is warranted) in instruction generation process 117 and 
select the type and number of arithmetic resources (e.g., 
resource parameters 114 and/or design library 115, if any is 
warranted) in resource allocation process 118. Error analysis 45 
process 119 can be implemented after the resource allocation 
step 118 to provide error analysis metrics 123. 

There are two different types of approximations for real 
numbers: fixed-point and floating-point arithmetic systems. 
Floating-point arithmetic can represent a large range of num- 50 
bers with some constant relative accuracy. Fixed-point arith 
metic can represent a reduced range of numbers with a con 
stant absolute accuracy. However, usage of floating point 
arithmetic can be expensive in terms for hardware and can 
lead to inefficient hardware designs, e.g. for FPGA imple- 55 
mentation. On the other hand, fixed point arithmetic can result 
in efficient hardware designs, but with the possibility of intro 
ducing calculation error, e.g. round-off and truncation errors. 
If the user desires, error analysis process 119 can be used to 
find an appropriate fixed point representation that provides 60 
results with the accuracy similar to that of a floating point 
implementation. 

For example, this exemplary design exploration process 
110 can take the user input data 111 and perform a matrix 
computation using single or double precision floating point 65 
arithmetic, which can be referred as the actual results. The 
same calculations can be performed using different bit widths 

6 
of fixed point representations to determine the error, the dif 
ference between the actual and the computed result. Error 
analysis process 119 can provide error analyses metrics 123, 
e.g., four different metrics to the user to determine if the 
accuracy is enough for the application, which can include 
mean error, standard deviation of error, peak error, and mean 
percentage error. 
A first metric, mean error, can be computed by finding the 

error for all resulting matrix entries and then dividing the Sum 
of these errors by the total number of entries. This calculation 
can be seen as 

i 

XEly, -S, 
i=1 

i 

where y, y and mare the actual results, the computed results. 
and the number of entries that are used in the computation 
(e.g., 16 for a 4x4 matrix), respectively. Mean error can be an 
important metric for error analysis, however it may not 
include the information about outlier errors. This can be the 
case where a small number of entries have very high error but 
the majority of entries have very small error. To calculate the 
dispersion from the mean error, the standard deviation of 
error, and the peak error can be introduced. Mean error some 
times can lead to misleading conclusions if the range of the 
input data is small. Therefore the fourth metric, mean per 
centage error, can make better sense if the relative error is 
considered. This metric can be defined as 

i 

XEly, -S, 
i=1 

i 

The architecture generation process 120 (in FIG. 1A) can 
utilize user input that can include data representation 121 
(e.g., integer and fractional bit width) and automatically gen 
erates a general purpose processor architecture 122, capable 
of exploiting instruction level parallelism. The general pur 
pose initial architecture (e.g., processing element(s), memory 
elements and information transfer elements or mechanisms) 
can be generated by a scheduling algorithm, for example by 
using resource constrained list scheduling after the inputs 111 
are given. Simulating this architecture can reveal the assign 
ments done to the processing elements, the memory elements 
and the information transfer elements during the scheduling 
process. Gathering this information and using it to eliminate 
unneeded functionality, e.g., removing portions of the pro 
cessing elements, memory elements and information transfer 
mechanisms can result in an optimized architecture with Sig 
nificant area and timing savings. 

FIG. 2 shows a block diagram of another exemplary pro 
cessor design process 200 using a top-to-bottom approach. In 
this example, a user program code 206 can be accepted and 
compiled in a code compiling process 205 before implement 
ing design space exploration process 210, architecture gen 
eration process 220, collection of usage information process 
230, trimming and optimization process 240, and synthesis 
process 250. 

In this example, a user program code 206, e.g., an applica 
tion or algorithm written in C, C++, or MATLAB code, can be 
inputted into code compiling process 205 to generate an inter 
mediate representation of the program code, for example low 
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level code and/or data flow graphs. The resulted low level 
code and/or data flow graphs, accompanied by any user input 
211, can be fed into design space exploration process 210 and 
architecture generation process 220 to generate an initial 
architecture that can provide a fully programmable, general 
purpose processor (initial) architecture 222. For example, 
design process 210 can execute the compiled code from code 
compiling process 205 on the initial hardware design, which 
can determine usage patterns and Scheduling information of 
the initial architecture. The initial architecture can include 
processing elements, memory elements, and information 
transfer mechanisms (e.g., interconnect (IXC)). The architec 
ture generation process 220 can utilize the exemplary usage 
patterns (and any additional user input that can include data 
representation 221 (e.g., integer and fractional bit width), if 
any) to generate ageneral purpose processor architecture 222. 
The general purpose processor architecture 222 can be simu 
lated to collect usage information about its functionality (e.g., 
functional information) in collection of usage information 
process 230. The exemplary functional information can 
include characteristics on whether or not and how the pro 
cessing elements, memory elements and information transfer 
mechanisms are utilized (or under-utilized). The exemplary 
functional information can be used to generate a hardware 
resource usage report in trimming and optimization process 
240. The report can be used to selectively eliminate or trim the 
general purpose processor architecture 222 to create the 
application-specific processor (final) architecture 241. The 
report can be used in synthesis process 250 to generate a 
processor design (synthesized processor 251) based on the 
final architecture and results (verification results 252) to 
verify the correctness of the HDL e.g., to insure that it cor 
rectly executes the original algorithm. 
An exemplary generated process design of a multi-core 

architecture can be rendered to only have just the required 
functionality between its processing elements, memory ele 
ments and information transfer mechanisms. An apparatus or 
system that includes disclosed hardware design tool can 
employ the top-to-bottom design methodology to generate 
correct-by-construction and cycle-accurate multi-core archi 
tectures for given application(s). In one example, the exem 
plary hardware design process can start from a fully-con 
nected, fully-verified, general-purpose multi-core 
architecture and pare away unneeded functionality to create 
an application-specific multi-core architecture—the process 
not only removes unneeded processing elements, but also 
unnecessary interconnect, information transfer mechanisms 
(e.g., control logic) and memory elements. Implementing a 
design space exploration can determine usage patterns and 
information that can be used to determine and trim underuti 
lized functional resources, which ultimately can create an 
application-specific multi-core architecture for executing a 
specific (set of) application(s). An apparatus or system that 
can implement the top-to-bottom hardware design tool (that 
includes S&E) can be utilized using any application 
described by algorithms, e.g., image processing applications: 
object detection, object recognition, and color classification. 

Exemplary characteristics of the top-to-bottom design 
methodology can include scalability, reconfigurability, and 
ease of design and Verification. Generating an architecture for 
a given application by using a bottom-to-top methodology 
fails to synthesize larger, more complex applications because 
of the complexity of high level synthesis tasks Such as Sched 
uling, resources allocation and binding. An apparatus or sys 
tem that includes the disclosed hardware design tool can 
synthesize even the largest applications. For example, 
because of its top-to-bottom design methodology, an exem 
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8 
plary worst-case generated architecture could be the initial 
general-purpose architecture, and an exemplary best-case 
generated architecture could be a final architecture that 
includes only the required resources with the unneeded func 
tions stripped away. Generating an architecture for a given 
application by using a bottom-to-top methodology eliminates 
the opportunity of reconfigurability. An apparatus or system 
that includes the disclosed hardware design tool can generate 
an application-specific architecture that can keep part of the 
general-purpose multi-core architecture, so that a user can 
recompile a different application on this existing architecture. 
This is a significant advantage since reconfigurability pro 
vides the reuse of the already existing architectures. An appa 
ratus or system that includes the disclosed hardware design 
tool can provide ease of design through its simplicity in its 
design flow and ease of verification due to its fully-verified 
initial general-purpose architecture. The initial general-pur 
pose processor architecture can utilize a well understood 
programming model that is capable of running any applica 
tion. Using the tool, the generated initial general purpose 
architecture can also be fully-verified for correctness. This 
Verification can occur before the optimizations start. Thus, 
removing unneeded functionality (interconnect, functional 
resources, control and memory), for example, does not affect 
the correctness of the design, providing ease of Verification. 
The disclosed hardware design tool can be included in a 

system, and an exemplary system framework is described 
herein. The exemplary system can take a user defined (set of) 
application(s), perform design space exploration across a set 
of processor architectures, and generate an application spe 
cific processor optimized towards these particular (set of) 
application(s). This top-to-bottom approach can start with a 
fully programmable, general purpose processor of a gener 
ated initial architecture and eliminate unneeded functionality 
to form a final architecture of the accelerated processor. This 
process may reduce Some unnecessary functionality of the 
processor while increasing its performance. Conventional 
high level synthesis tools employ a “bottom-to-top' approach 
where they decide on the number of resources (functional 
units, registers, etc.), perform scheduling of the operations to 
these resources, and generate the interconnect and control 
logic that allows the provided input application to function on 
this data path. The exemplary top-to-bottom approach can 
exhibit Superior performance, power consumption, flexibility 
and programmability. 

FIG.3 shows a design flow process of an exemplary system 
300 to implement the top-to-bottom approach to design a 
processor. The front-end can accept user input, e.g., program 
code such as C code 301, and can transform it to low level 
code, e.g., by compiling the C code 301 using a compiler 310, 
such as a low level virtual machine (LLVM). The compiled 
program can be represented as an intermediate representation 
311, e.g., low level code and data flow graphs (DFGs), that 
can be fed into a design space exploration tool 320 that 
decides the processor architecture (e.g., the best, most opti 
mal processor architecture for the given application(s)). This 
can determine the class of processor (e.g., RISC, VLIW, out 
of order execution, SuperScalar) and the parameters (e.g., 
number of registers, read/write ports, functional units). Addi 
tionally, other user input can include parameters that can 
include anything that is in the library, e.g., specify to use a 
functional unit like a matrix inversion core and singular value 
decomposition core. The design space exploration tool can 
generate an initial architecture that can provide a specific, 
fully programmable processor to the S&E simulator tool 330. 
The initial architecture can include memory elements 331 
(e.g., register file(s), cache?(s)), processing elements 333 (e.g., 



US 8,812,285 B2 

functional units, predictors), and information transfer mecha 
nisms 332 (e.g., the interconnect (IXC), control logic). The 
S&E simulator tool can execute a given application on the 
given processor architecture, which can collect usage infor 
mation, e.g., usage patterns, data flow movement and Sched 
uling information, on the initial architecture. In doing so, the 
S&E simulator can generate a hardware resource usage report 
341 for the given application on the given processor architec 
ture. A hardware usage report can include scheduling infor 
mation, binding information, register usage information, 
interconnect usage information, and functional unit binding 
information. The hardware usage report 341 can be used to 
generate or trim the general purpose processor using the S&E 
simulator 330 to create a final architecture for a hardware 
accelerator, e.g., an augmented application-specific proces 
sor of Smaller area, higher throughput, and less power con 
Sumption. The hardware usage report 341 can be used to 
generate or synthesize HDL using a HDL generator tool 340, 
which the result can include synthesizable HDL 342. 

The exemplary hardware design tool can utilize a single 
instruction issue, out of order execution processor architec 
ture. The parameters of the architecture, which can include 
the number of registers and the number and type of functional 
units, can be specified as input to the tool. The disclosed 
embodiment or other embodiments of the hardware design 
utility and synthesis tool for processor optimization can be 
implemented on other classes of architectures, e.g., RISC 
based and VLIW-based architectures. In these embodiments, 
design space exploration can be performed to determine the 
set of architectural parameters that best suit the needs of the 
given application(s), followed by trimming/elimination of 
unneeded functionality. The tool can render a final architec 
ture for an application-specific processor and output synthe 
sizable HDL. 
RISC processors can be considered simple by definition. 

Therefore, the design space exploration options can be lim 
ited. Two types of RISC processors—single cycle and 5-stage 
pipelined—are explored using an exemplary design space 
exploration process of the disclosed hardware design tool. 
RISC processors can have good area, yet limited throughput 
due to the lack of instruction level parallelism. 

In one example, the single cycle RISC processor can have 
small area, yet the frequency can be lower due to the fact that 
each instruction executes in one cycle. This can limit the 
throughput. Nevertheless, Such a processor can be useful in 
many situations. The Xilinx PicoBlaze processor is similar in 
nature, and can be used for high level control of a larger 
system and for tasks associated with limited throughput and/ 
or latency. In another example, the 5-stage RISC processor 
can increase the throughput by reducing the critical path and 
therefore increasing the clock frequency at the expense of 
adding additional area. Nevertheless, such a processor design 
can still be useful in many different applications too. This 
processor is similar to the Xilinx MicroBlaze, which sees 
widespread use. However, it does not satisfy the demand for 
high throughput applications, like radio frequency modems, 
but can be efficient and effective for lower throughput appli 
cation like audio processing. 
The design space options for RISC processors can involve 

choosing between the single cycle implementation and the 
pipelined implementation. This can be a rather simple 
tradeoff; if a low area solution is desired, then the single cycle 
architecture can be chosen. For better throughput, the pipe 
lined processor can be chosen. However, better throughput 
demands can be met by moving to a different class of proces 
sor, e.g., the VLIW processor, described later in this disclo 
Sure, which can provide significant instruction level parallel 
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10 
ism. Therefore, in some scenarios, it may not be better to 
augment the RISC processor with more complex architec 
tural requirements, e.g., more register ports, and additional 
functional units, but rather to augment the more complex 
architecture of another class of processor. 
The RISC architecture can provide a good solution for low 

throughput applications. The processor can be simple by 
nature and therefore efficient in terms of area. The design 
space exploration options can be rather limited, though sig 
nificant amount of trimming/elimination of the architecture 
can be performed to further reduce the area and increase the 
throughput by eliminating unnecessary functionality on the 
critical path. 
An exemplary implementation of the top-to-bottom pro 

cess is described for a single-cycle RISC processor. An initial 
design can be based upon a single cycle MIPS-like processor 
that includes three parts: the register file, the functional units, 
and the interconnect. The instruction set architecture can 
include all of the basic MIPS instructions. The details of the 
register file (number of registers, bitwidth, number of ports, 
etc.) and functional units (number and type) can be specified 
as inputs to the exemplary base simulator. The base simulator 
can be given a set of assembly instructions along with an 
architectural description. The base simulator can track statis 
tics on the usage of various components. This can include the 
number of times a register is read and written, the usage 
statistics on the functional units, and a description as to which 
interconnects paths are used. These statistics can include the 
exact cycle where each activity occurred. The scheduler can 
act as the processors control module. The scheduler can read 
instructions from the instruction memory, decode them to 
create the necessary control signals for the register file, inter 
connect and functional units. This single cycle processor can 
act as one starting point for the S&E design tool, which can be 
favorable for low area, low throughput solutions. 
An exemplary implementation of the top-to-bottom pro 

cess is described for a 5-stage pipelined MIPS processor to 
create a fully functional processor. Caches and more 
advanced branch predictors can be additional features that 
greatly enhance performance, which can also be incorporated 
in this approach. The processor can be built in a highly modu 
larized manner by trimming or eliminating portions of the 
processor. For example, the processor control can be sepa 
rated from the data path as shown in FIG. 4 to ease the 
transition from fully dynamic control to more static or fixed 
control. FIG. 4 exhibits a pipelined RISC Architecture (e.g., 
an S&E architecture of a MIPS instruction set architecture 
(ISA)), where each component in the data path and control is 
modularized to facilitate the trimming process. 
The disclosed technology can implement a top-to-bottom 

methodology for eliminating unnecessary portions of the 
exemplary 5-stage MIPS processor based upon the given 
application. For example, a 4x4 matrix multiply can trim the 
memory controller, logic for control flow instructions, por 
tions of the forwarding and hazard logic, and eliminate the 
dynamic control for each of the pipeline stages. The exem 
plary resulting 5-stage MIPS data path is shown in FIG. 5, 
which has a ~20% reduction in gates and a ~27% reduction in 
flip-flops (compared to the previous architecture in FIG. 4). 
The top-to-bottom approach to processor design can 

include the follow practices. A data path can be designed 
essentially as a combinational, stateless block that has its 
behavior completely dictated by the control. In this way, the 
portions of the processor that S&E can be configured to 
replace or eliminate can be known. The processor design can 
behighly modularized so that it can be effectively developed, 
tested, and debugged. This modularity not only can apply to 
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the processor as a whole, but to the control and data paths as 
well. If the control is highly modularized, portions can be 
incrementally replaced during the elimination phase. Poor 
modularization can make the control complicated, difficult to 
understand and hard to remove when the application at hand 
does not require it. The processor design can begin with a 
simple design and incrementally add complexity. The main 
concern can be that of a functional processor, adding new 
features for performance can make the processor more robust. 
For example, a fully function pipelined processor can be 
created first. Then, adding new functionality Such as branch 
prediction and caching can be done Subsequently. 
VLIW architecture can have a larger number of parameters 

to optimize. Therefore, the top-to-bottom methodology can 
incorporate a decision process on the number and type of 
functional units, the number of registers, and the number of 
register read/write ports. These parameters are tightly 
coupled, meaning that changes in one can affect the other. For 
example, the framework of the disclosed technology can pro 
vide a design space exploration using allocation, scheduling 
and binding algorithms different from other approaches. For 
each algorithm, the tool can provide the estimated number of 
registers, number of register read/write ports, functional units 
and cost of interconnect for particular architecture(s). This 
can provide a starting point for trimming/elimination. The 
framework can allow time constrained scheduling (TCS), 
resource constrained scheduling (RCS), and a combination of 
RCS and TCS using an exemplary algorithm, e.g. ant colony 
optimization (ACO) meta-heuristic. This can provide much 
richer design space exploration in addition to different param 
eters settings. 

FIG. 6 shows an exemplary design space exploration tool 
600 for the VLIW-based processor architecture that utilizes 
an extensible framework for scheduling, allocation and bind 
ing. Several different algorithms can be used to determine the 
VLIW processor architecture parameters, and others can eas 
ily be incorporated. The framework can be built to be flexible 
and can be extended to include any algorithm for Scheduling/ 
allocation and binding. For example, the framework can 
employ ACO TCS and ACO RCS and force directed sched 
uling (FDS) for instruction scheduling, and left edge and 
graph coloring for register allocation. The exemplary design 
space exploration can be evaluated using ACO TCS, ACO 
RCS, and FDS combined with left edge algorithm. 
An ACO algorithm is a cooperative heuristic searching 

algorithm based on the behavior of ants to manage to establish 
the optimal path between their colony and a food source 
within a very short period of time. An exemplary ACO algo 
rithm can be applied to the instruction scheduling problem. It 
can start by releasing n ants over m iterations. In each itera 
tion, each of the nants can produce a schedule. Each ant can 
schedule the instructions based upon a local heuristic (a form 
of list scheduling or FDS) and global pheromone that is based 
upon the decisions of previous ants. Then a cost function can 
calculate cost of each schedule, and reinforces the phero 
mones of the best schedules, making those decisions more 
likely to be selected in Subsequentiterations. As the algorithm 
progresses, the ants are more likely to select better decisions 
(e.g., assign an operation to a more favorable control step). 
This algorithm performs significantly better than FDS and 
simulated annealing based approaches. 
The exemplary ACO approach can be extended by incor 

porating register allocation. The left edge algorithm can be 
implemented for register allocation and combined with an 
exemplary ACO instruction scheduler. The results of the left 
edge algorithm can be fed back to the ACO scheduler, e.g., 
augmenting the cost function to include the number of regis 
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ters. This feedback can be provided when each ant produces 
a feasible schedule (a.k.a., ACO with Feedback') or when 
each iteration (a.k.a. ACO with Best Case'. These prin 
ciples are illustrated in FIG. 7, exemplifying Instruction 
scheduling and register allocation with ACO using two dif 
ferent feedback approaches. These two feedback approaches 
can differ in a sense that one gives feedback after every ant 
produces a schedule and the other gives a feedback after every 
iteration. 
The exemplary hardware design tool can perform design 

space exploration with rich set of algorithms that search 
across a variety of architectural options. The design space 
exploration can provide a starting point for trimming/elimi 
nation to create a hardware accelerator from a general pur 
pose processor. The design space exploration can be per 
formed using ACOTCS, ACO RCS, and FDS for instruction 
scheduling and functional unit allocation, and left edge algo 
rithm for register allocation. The tool can be extended to 
include other algorithms and can provide rich set(s) of design 
space exploration information for different algorithms and 
parameters. A graph coloring algorithm for register allocation 
can be implemented, as well as other algorithms, e.g., rela 
tional database (RDB). 

Returning to the examples of VLIW-based processor 
design, as noted before, the design space exploration tool can 
define the architectural parameters, which can include the 
number of functional units and the type of register file. The 
architecture generator can create a fully programmable pro 
cessor based upon these architecture parameters. It is the 
starting point for the Subsequent trimming/elimination phase. 
A VLIW processor can rely on the compiler (or, using the 
disclosed technology, it can rely on the design space explo 
ration tool) to perform scheduling and binding of the instruc 
tions. Therefore, this can be done statically and is inconse 
quential to creating the VLIW processor. 
The architecture generator can take as input the number of 

registers, the number of read/write ports, and the number and 
type of functional units. It can create a fully connected archi 
tecture, meaning that every read/write port can access every 
register. Every register read port can be connected to every 
input to the functional units, and every write port can be 
connected to every output of the functional units. This can be 
defined as a complete interconnect crossbar, which is denoted 
as having the maximum amount of flexibility. 
Once given the requisite architectural parameters, HDL 

generation can be straightforward. A register file, functional 
units and control can be created as separate modules. Trim 
ming/eliminating the processor can include moving from 
fixed control to dynamic control, removing functionality 
from register ports, and eliminating unneeded connections 
between functional units and the register ports. 

After the design of a final architecture, it can be important 
to have the ability to recompile a new application onto the 
existing architecture. This requires a designer to keep some of 
the functionality of the general-purpose architecture in the 
final design. Thus, reconfigurability of the final architecture is 
an important property to consider when exploring the design 
space of architectures from general-purpose (fully program 
mable) to application-specific (limited to no programmabil 
ity). 

Flexibility can be an important consideration for hardware 
accelerators. A fixed accelerator is unable to meet consis 
tently changing market demands. For example, a video stan 
dard may change requiring that the codec be updated. Or a 
newer, more secure cryptography algorithm may appear. An 
accelerator that can adapt to these changes can be considered 
more valuable than one that cannot be changed. 
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Adding flexibility can be inherently opposed to perfor 
mance and can presentabit of conundrum when attempting to 
design a flexible hardware accelerator. Yet, an initial, general 
purpose, fully programmable architecture created using the 
disclosed technology can be inherently flexible. However, for 
example, if components are trimmed/eliminated, then the 
performance of the general purpose architecture can be 
increased, but it can be likely that its flexibility can decrease. 
By removing functionality, the architecture may no longer be 
able to implement future applications that may require this 
flexibility. Therefore, the disclosed technology can provide a 
good balance between performance and flexibility. 
A flexibility metric can be defined for major processor 

components: the register file, functional unit and the intercon 
nect. The flexibility of register file and functional unit can be 
defined by finding ratio of available registers/functional units 
to required registers and functional units. The interconnect 
can be a more important and interesting component particu 
larly, how the current interconnect can satisfy needs of a new 
application. At the highest level, the flexibility for the inter 
connect can revolve around the amount of connections 
between the input and outputs. A flexibility function can be 
made by defining the ability for any input to reach any output. 
A full crossbar would allow every input to reach every output. 
This can be considered as the most flexible interconnect. 
When trimming/elimination is performed, the ability for 
some input to reach other outputs can be removed. FIG. 8 
illustrates three exemplary interconnect matrices showing 
varying amounts of flexibility. The flexibility of the intercon 
nect can be described as the ability for an input to reach an 
output. The left-most featured interconnect is fully flexible as 
all inputs can be routed to all outputs. The middle and right 
most interconnects have more limited degrees of flexibility, 
from left to right. This flexibility can be quantified in a more 
precise manner to demonstrate how it actually handles appli 
cations that were not originally targeted towards the hardware 
accelerator. 

In another embodiment of the disclosed technology, this 
specification describes a system that includes a general archi 
tecture design utility and synthesis tool for optimization 
(GUSTO), a hardware design tool that can provide a push 
button transition from a high level specification (such as 
matrix computation algorithms) to hardware description lan 
guage. An exemplary GUSTO system can employ a top-to 
bottom design methodology to generate correct-by-construc 
tion and cycle-accurate application specific architectures. For 
example, GUSTO can divide given matrix computation algo 
rithm(s) into Smaller processing elements (PEs) and instanti 
ate PEs with hierarchical data paths in a multicore fashion, 
which can provide an architecture Small in area and highly 
optimized for throughput. The different design methods and 
parameterization options that are provided by a GUSTO sys 
tem can enable a user to study area and performance tradeoffs 
over a large number of different architectures and find the 
optimum architecture for the desired objective. 

Exemplary benefits of a GUSTO system can include, but is 
not limited to, (1) rapid development of single-core field 
programmable gate array (FPGA) elements, (2) hierarchy 
data path implementation for multi-core FPGA elements, (3) 
FPGA engine(s) for MATLAB, (4) domain specificity (e.g., 
specifically targeting matrix computation algorithms), (5) 
path(s) to built-in libraries (e.g., including previously imple 
mented matrix computation algorithms to be used while 
designing larger applications), and (6) end platform indepen 
dency. An exemplary GUSTO system can include design 
tool(s) which can allow rapid development of complex matrix 
computation algorithms with different parameterization 
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options; this can be useful for a wide variety of designs, 
providing higher performance computing and faster time to 
market. An exemplary GUSTO system can be capable of 
dividing the given algorithms into Small highly parallelizable 
PEs, generate hardware and combine these small PEs with 
hierarchical data paths in a multi-core architecture fashion; 
this can result in multi-core architecture solutions that are 
smaller, cheaper, and lower power. An exemplary GUSTO 
system can enable Software engineers to implement hardware 
out of MATLAB code (without prior knowledge in hardware 
design); the implemented MATLAB programs can have 
excellent performance for matrix-heavy computations, 
including many scientific computational algorithms such as 
signal processing, computer vision and financial computa 
tions. An exemplary GUSTO system can target different plat 
forms, such as GPUs (Graphics Processing Units) and CMPs 
(chip multiprocessors) with the appropriate changes to the 
back end of the tool. 
An exemplary GUSTO system can include a method that 

operates in the manner previously shown in FIGS. 1A and 1B. 
The system can receive an algorithm from a user and allows 
the user to input parameters, e.g., the type and number of 
arithmetic resources, the data representation (integer and 
fractional bit width). Using the parameters, the system can 
automatically generate optimized application-specific pro 
cessor architecture or processing elements. 

Application specific architectures generated by GUSTO 
can employ the optimal number of resources which maxi 
mizes the throughput while minimizing area. GUSTO also 
can incorporate hierarchical data paths and heterogeneous 
architecture generation options. By using these features, a 
user can divide the given algorithms into small highly paral 
lelizable parts, generate hardware using GUSTO, and com 
bine the small PEs with hierarchical data paths to perform 
multi-core processing. 

In the exemplary architecture generation step, GUSTO can 
create a general purpose processor architecture or processing 
elements which exploits instruction level parallelism. 
GUSTO then can simulate the general purpose PE to collect 
scheduling information and perform resource trimming to 
create an optimized application-specific processor architec 
ture or processing elements while ensuring the correctness of 
the solution is maintained. These optimizations can be 
thought of as two sections: (1) static architecture generation 
and (2) trimming for optimization. 

Static architecture generation: GUSTO can generate agen 
eral purpose processor architecture or processing elements 
and its datapath by using resource constrained list scheduling 
after the required inputs are given. Simulating this architec 
ture can reveal the assignments done to the arithmetic units 
and the memory elements during the scheduling process. 
Gathering this information and using it to cancel the sched 
uling process and dynamic memory assignments can result in 
an optimized architecture with significant area and timing 
savings. 
Trimming and optimization: GUSTO can perform trim 

ming of the unused resources from the general purpose PE 
while ensuring that correctness of the solution is maintained. 
GUSTO can simulate the architecture to define the usage of 
arithmetic units, multiplexers, register entries and input/out 
put ports and trims away the unused components with their 
interconnects. An example of trimming and optimization is 
shown in FIG. 9. FIG. 9A Supposes there are two arithmetic 
units (A and B) and one memory; arithmetic units A and B 
have 2 inputs (e.g., In, In, for A, In, In, for B) and 1 
output (e.g., Out for A.; Out for B); and memory unit has 1 
input (e.g., In In2) and 1 output (e.g., Out rers rers 
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Out). FIG.9B shows, for this example, the Input/Output 
ports relationship between A and A, B, Memory, assuming 
that every unit is connected to A. Although Out, Out, 
Out, and Out, are all inputs to In and In, not all 
the inputs may be used during computation. GUSTO can 
represent whether an input/output port is used during simu 
lation displaying the results in a matrix, Such as the one shown 
in FIG. 9C. FIG. 9C shows, for this example, this Input/ 
Output ports relationship can be described as a 2x4 matrix. 1S 
and 0s represent used and non-used interconnects. FIG. 9D 
shows, for this example, the trimming performed using the 
optimization matrix. GUSTO can use these matrices to 
remove the unused resources. In this example, two inputs, 
Out Out to In and another two inputs, Out Out 
to In are removed. If there is an optimization matrix that is 
full of 0s, it can mean that the functional resource is never 
being used in the architecture. Therefore, GUSTO can 
remove the functional resource and interconnect from the 
architecture. 
The exemplary GUSTO system can provide different 

design methods and parameterization options which enables 
a user to study area and performance tradeoffs over a large 
number of different architectures and pick the most efficient 
one in terms of the desired objective. FIG. 10 shows an 
exemplary tradeoff between computational throughput and 
area for various matrix multiplication architectures. Three 
different exemplary design methods include: (1) Using one 
PE for entire matrix multiplication (Implementations 1-3 are 
the outputs of GUSTO with different number of functional 
units); (2) Designing a homogeneous architecture by dividing 
the given computation into identical PES (Implementations 
4-9 are the outputs of GUSTO with different number of PEs); 
and (3) Designing a heterogeneous architecture with different 
types of PEs using hierarchical data paths (Implementations 
10-12 are heterogeneous architectures that are the outputs of 
GUSTO with different types of PEs using hierarchical data 
paths). 
The ability to divide a given algorithm into smaller pro 

cessing elements can result in architectures that are small in 
area and highly optimized for throughput. These different 
design methods and parameterization options can enable a 
user to study area and performance tradeoffs over a large 
number of different architectures. This can result in more 
detailed design space exploration and more efficient hard 
ware implementations that enable users to exploit both 
instruction and task level parallelism. 
The disclosed technology can further be exemplified in the 

following implementations. For example, one embodiment 
can include the hardware design tool system to be configured 
for single core design and optimizations. In another embodi 
ment, the hardware design tool system can be configured for 
multi-core design and optimizations (e.g., that can be specific 
to multi-core architectures). In another embodiment, the 
hardware design tool system can be configured to create a 
design flow specific to image processing that can be imple 
mented using specific image processing applications, which 
can also be used to evaluate the performance of the design 
flow and compare them to hand-coded HDL. 

In an exemplary initial design flow for a single core design 
and optimization using the disclosed technology, an exem 
plary hardware design tool can first receive an algorithm from 
a user and perform algorithm analysis. Initial design space 
exploration can be implemented, which can perform instruc 
tion selection, determine the required type of arithmetic 
resources and the data representation for the general-purpose 
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architecture. The exemplary tool can then use this informa 
tion to generate a fully-connected general-purpose processor 
architecture. 

For example, a RISC type general-purpose processor 
architecture can be designed that exploits instruction level 
parallelism using dynamically scheduled out-of-order execu 
tion using Tomasulo algorithm. This architecture can be cho 
Sen to evaluate the effectiveness of optimizations. The gen 
eral-purpose processor can include an instruction scheduler, a 
memory controller and functional resources. The instruction 
scheduler can read instructions that are pre-generated and 
placed in its instruction memory. The main duty of the 
instruction scheduler can be to generate scheduled instruc 
tions by assigning operations to the functional resources, e.g., 
performing scheduling and binding (as illustrated in FIG. 
11A). This can be achieved by tracking the availability of the 
functional resources and the functional units that can produce 
the operand(s). The instruction scheduler can prevent write 
after read (WAR) andwrite after write (WAW) hazards as well 
as structural hazards. Each functional resource can receive 
the scheduled instructions and waits for the required operands 
for its execution. The required operands can be routed 
through the interconnect matrix, which receives inputs from 
memory and the functional resources. The functional 
resources can receive scheduled instructions and waits for the 
required operands to arrive through the interconnect matrix 
before beginning execution (as illustrated in FIG. 11B). The 
memory controller can watch for the data, update its memory 
entries and prevent read after write (RAW) hazards. The 
generated architectures can define register files as memory 
elements that depend on the required number of inputs/out 
puts for the memory and the required memory size. 
The disclosed hardware design tool can perform several 

optimizations on the general-purpose architecture to create an 
application-specific processing architecture. The hardware 
design tool can simulate the general-purpose processing 
architecture with the given application(s) to collect schedul 
ing and binding information and performs resource trimming 
to eliminate unnecessary functionality. The end result can be 
an optimized application-specific processing architecture 
that maintains correctness of the functionality due to 100% 
code coverage. These optimizations can be divided into two 
areas: collecting scheduling information and trimming for 
optimization. Collecting scheduling information can include 
the disclosed technology currently using a dynamic resource 
constrained list scheduling algorithm to schedule and bind 
operations. Through simulation, it can determine the sched 
uling and binding information and Subsequently use this 
information to eliminate the dynamic scheduling and 
dynamic memory assignments, resulting in a static architec 
ture with significant area and throughput savings. 

Trimming for hardware optimization can include the dis 
closed technology paring away all unused interconnect, con 
trol, functional resources and memory elements from the 
general-purpose processing architecture. The architecture 
can be simulated to define the usage of arithmetic units, 
multiplexers, register entries and input/output ports, and the 
disclosed hardware design tool can trim away the unused 
components along with their interconnect. A detailed 
example of the trimming method was exemplified in FIGS. 
9A-9D. 

It is noted that the disclosed technology can guarantee 
100% code coverage because of the exploration process of 
every possible outcome of a conditional statement. As an 
example, if there is a calculation and the execution of the 
program depends on that calculation in a format of case 
statements, all the possible cases can be executed to achieve 
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100% coverage. Simulations can be performed on the fully 
connected general-purpose architecture to determine which 
interconnect, functional units, memory and control elements 
are used, and can guarantee 100% code coverage by exploring 
the every possible outcome of a conditional statement. 
Because of the 100% code coverage achievement, it can 
determine the hardware components that were never used, 
and removing them cannot interfere with the maintenance of 
the correct functionality of the design. 
A single core may not scale well in Some exemplary cases 

since it exploits instruction level parallelism. Task level par 
allelism can be necessary in order to provide Sufficient per 
formance in complex applications. Furthermore, a single pro 
cessing architecture can limit the design space as it restricts 
parameterization to only varying the number and types of 
functional units and associated memory. Therefore, instead of 
creating one application-specific processing architecture for 
the entire algorithm, one may choose to generate an applica 
tion-specific multi-core architecture, which can expand 
design options and a more efficient final architecture. 

In an exemplary initial design flow for a multi-core design 
and optimization using the disclosed technology, an exem 
plary hardware design tool can utilize any algorithm(s) and 
input into analysis process 116 and instruction generation 
process 117, previously shown in FIG. 1B, e.g., including a 
partitioning algorithm. In an example of inter-core commu 
nications for multi-core architectures, the disclosed hardware 
design tool can start with general-purpose multi-core archi 
tecture utilizing a model of computation that allows all-to-all 
communication. The exemplary initial multi-core architec 
ture can be fully-connected between cores and employ a 
shared memory structure. Each core can have two sections of 
the memory, which can be defined as local and shared vari 
ables (as shown in FIG. 12A for an exemplary multi-core 
architecture employing four processing cores). Local vari 
ables can be specific to a core; shared variables can be data 
communicated between cores. The hardware design tool can 
partition the shared memory of each processing core in Such 
away that the memory accesses between cores can be reduced 
while the overall multi-core architecture can be still fully 
connected. There can be two different types of connectivity in 
this exemplary multi-core architecture: 1) connections from 
the instruction scheduler of one core to another core's local 
memory, so that instructions on one core can access shared 
variables on another core, 2) connections from each shared 
memory to every functional resource, e.g., there is full con 
nectivity between each shared memory and every functional 
resource in all of the cores. However, full connectivity might 
not be required in application-specific architectures. There 
fore if there is no data dependency between two cores, hard 
ware design tool can remove the unused interconnect result 
ing in a platform that has only the necessary connectivity 
between processing cores (as exemplified in FIG. 12B). FIG. 
12A shows an exemplary initial, general-purpose multi-core 
architecture that provides full connectivity between cores 
using shared memory. FIG. 12B shows the final application 
specific multi-core architecture that can employ separate 
memories with only the necessary connections between pro 
cessing cores; GPP and APP correspond to general-purpose 
and application-specific processing cores, respectively. 

In another embodiment, the hardware design tool system 
can be configured to create a design flow specific to image 
processing that can be implemented using specific image 
processing applications. For example, real-time image pro 
cessing can be necessary in a multitude of applications. Such 
as monitoring and Surveillance, human computer interaction, 
Smart rooms, autonomous vehicles and medical image analy 
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sis. These applications can demand Substantial processing 
power to provide quick decisions based on events in a 
sequence of images. However, processing images in real-time 
is far from trivial due to the considerable computational 
power that can be required to manage high throughput 
requirements demanded by these applications. Enabling an 
algorithm to run in real-time can involve intricate knowledge 
of both the application and the target architecture. Unfortu 
nately, there are few to no designers that deeply understand 
both image processing algorithms and hardware, leaving 
application developers with significant challenges to take 
advantage of the parallelism afforded by the underlying hard 
ware, and leaving hardware designers overwhelmed by the 
complexity of vision algorithm. In an exemplary initial 
design flow for an image processing application, the dis 
closed hardware design tool can be implemented to create 
libraries for widely used image processing building blocks 
such as image buffer, line buffer, window buffer, dynamic 
thresholding, edge detection and histogram equalization. For 
example, a number of real-time vision applications can 
include object detection, object tracking, and color classifi 
cation utilizing hand coded HDL. 

FIG. 13 shows an exemplary method 1300 for designing a 
processor. Method 1300 can include generation of initial 
architecture method 1310 that can execute an algorithm or 
multiple algorithms 1311, in which the initial architecture 
includes processing element(s), memory element(s), and 
information transfer mechanism(s). The algorithm 1311 can 
include programs, algorithms, and applications specified by a 
user, for example high level specification program(s) and 
algorithm(s) written as program code (e.g., in C, C++, or 
MATLAB code). Method 1300 also can include simulation of 
algorithm execution on initial architecture method 1320, 
which can collect functional information of the processing 
element(s), memory element(s), and information transfer 
mechanism(s) and produce a hardware resource usage report. 
The simulation of the algorithm(s) execution can be per 
formed on one or more computers or one or more processors. 
The functional information can include utilization character 
istics of the processing element(s), memory element(s), and 
information transfer mechanism(s). Method 1300 also can 
include determination of modification to initial architecture 
method 1330, which can determine under-utilized processing 
element(s), under-utilized memory element(s) and under-uti 
lized information transfer mechanism(s) according to the 
hardware resource usage report. Method 1300 also can 
include modification to initial architecture method 1340, 
which can selectively eliminate under-utilized processing 
element(s), under-utilized memory element(s) and under-uti 
lized information transfer mechanism(s) according to the 
hardware resource usage report. A processor design 1341 
based on the modification to the initial architecture can be 
created after implementing modification to initial architec 
ture method 1340. 

Implementations of the Subject matter and the functional 
operations described in this specification, such as various 
modules, can be implemented in digital electronic circuitry, 
or in computer Software, firmware, or hardware, including the 
structures disclosed in this specification and their structural 
equivalents, or in combinations of one or more of them. 
Implementations of the subject matter described in this speci 
fication can be implemented as one or more computer pro 
gram products, i.e., one or more modules of computer pro 
gram instructions encoded on a tangible and non-transitory 
computer readable medium for execution by, or to control the 
operation of data processing apparatus. The computer read 
able medium can be a machine-readable storage device, a 
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machine-readable storage Substrate, a memory device, a com 
position of matter affecting a machine-readable propagated 
signal, or a combination of one or more of them. The term 
"data processing apparatus' encompasses all apparatus, 
devices, and machines for processing data, including by way 
of example a programmable processor, a computer, or mul 
tiple processors or computers. The apparatus can include, in 
addition to hardware, code that creates an execution environ 
ment for the computer program in question, e.g., code that 
constitutes processor firmware, a protocol stack, a database 
management system, an operating system, or a combination 
of one or more of them. 
A computer program (also known as a program, Software, 

Software application, Script, or code) can be written in any 
form of programming language, including compiled or inter 
preted languages, and it can be deployed in any form, includ 
ing as a stand alone program or as a module, component, 
Subroutine, or other unit Suitable for use in a computing 
environment. A computer program does not necessarily cor 
respond to a file in a file system. A program can be stored in 
a portion of a file that holds other programs or data (e.g., one 
or more scripts stored in a markup language document), in a 
single file dedicated to the program in question, or in multiple 
coordinated files (e.g., files that store one or more modules, 
Sub programs, or portions of code). A computer program can 
be deployed to be executed on one computer or on multiple 
computers that are located at one site or distributed across 
multiple sites and interconnected by a communication net 
work. 

The processes and logic flows described in this specifica 
tion can be performed by one or more programmable proces 
sors executing one or more computer programs to perform 
functions by operating on input data and generating output. 
The processes and logic flows can also be performed by, and 
apparatus can also be implemented as, special purpose logic 
circuitry, e.g., an FPGA (field programmable gate array) or an 
ASIC (application specific integrated circuit). 

Processors suitable for the execution of a computer pro 
gram include, by way of example, both general and special 
purpose microprocessors, and any one or more processors of 
any kind of digital computer. Generally, a processor will 
receive instructions and data from a read only memory or a 
random access memory or both. The essential elements of a 
computer are a processor for performing instructions and one 
or more memory devices for storing instructions and data. 
Generally, a computer will also include, or be operatively 
coupled to receive data from or transfer data to, or both, one 
or more mass storage devices for storing data, e.g., magnetic, 
magneto optical disks, or optical disks. However, a computer 
need not have such devices. Computer readable media Suit 
able for storing computer program instructions and data 
include all forms of non Volatile memory, media and memory 
devices, including by way of example semiconductor 
memory devices, e.g., EPROM, EEPROM, and flash memory 
devices. The processor and the memory can be supplemented 
by, or incorporated in, special purpose logic circuitry. 

While this patent document contains many specifics, these 
should not be construed as limitations on the scope of any 
invention or of what may be claimed, but rather as descrip 
tions of features that may be specific to particular embodi 
ments of particular inventions. Certain features that are 
described in this patent document in the context of separate 
embodiments can also be implemented in combination in a 
single embodiment. Conversely, various features that are 
described in the context of a single embodiment can also be 
implemented in multiple embodiments separately or in any 
suitable subcombination. Moreover, although features may 
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be described above as acting in certain combinations and even 
initially claimed as Such, one or more features from a claimed 
combination can in Some cases be excised from the combi 
nation, and the claimed combination may be directed to a 
Subcombination or variation of a Subcombination. 

Similarly, while operations are depicted in the drawings in 
a particular order, this should not be understood as requiring 
that such operations be performed in the particular order 
shown or in sequential order, or that all illustrated operations 
be performed, to achieve desirable results. In certain circum 
stances, multitasking and parallel processing may be advan 
tageous. Moreover, the separation of various system compo 
nents in the embodiments described above should not be 
understood as requiring Such separation in all embodiments. 

Only a few implementations and examples are described 
and other implementations, enhancements and variations can 
be made based on what is described and illustrated in this 
patent document. 
What is claimed is: 
1. A method for designing a processor, comprising: 
generating an initial architecture for a processor to execute 

at least one algorithm, wherein the initial architecture 
includes a set of processor components that comprise, at 
least, a processing element, a memory element and an 
information transfer mechanism; 

simulating execution of the at least one algorithm by the 
initial architecture to determine a modification to the 
initial architecture; 

creating a processor design based on the modification to 
the initial architecture; and 

determining a flexibility metric for a processor component 
in the set of processor components to measure a change 
in functional flexibility due to the modification to the 
processor component of the initial architecture, 

wherein the flexibility metric comprises: 
a quantification of the ability for any input to reach any 

output for information transfer mechanisms in the 
processor component, and one of 
a ratio of available processing elements to required 

processing elements for processing elements in the 
processor component; and 

a ratio of available memory elements to required 
memory elements for memory elements in the pro 
cessor component, 

wherein the functional flexibility of the modified processor 
component decreases if one or more design elements are 
eliminated from the processor component of the initial 
architecture. 

2. The method of claim 1, wherein the generating com 
prises determining a usage pattern of the processing element, 
the memory element and the information transfer mecha 
nism. 

3. The method of claim 1, wherein the generating com 
prises accepting a high level program code and transforming 
the high level program code into a low level code. 

4. The method of claim 1, wherein the simulating com 
prises collecting functional information of the processing 
element, the memory element and the information transfer 
mechanism and producing a hardware resource usage report, 
wherein the functional information comprises utilization 
characteristics of the processing element, the memory ele 
ment and the information transfer mechanism. 

5. The method of claim 4, wherein the creating comprises 
selectively eliminating at least one of an under-utilized pro 
cessing element, an under-utilized memory element and an 
under-utilized information transfer mechanism according to 
the hardware resource usage report. 
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6. The method of claim 1, further comprising verifying the 
processor design. 

7. The method of claim 1, further comprising producing a 
hardware description language of the processor design. 

8. The method of claim 1, wherein the effect is a tradeoff to 
an increase in performance. 

9. The method of claim 1, wherein the processor design 
includes an application-specific architecture that is smaller in 
area or is higher in throughput or consumes lower power than 
the initial architecture. 

10. The method of claim 1, wherein the initial architecture 
is fully programmable. 

11. An apparatus for designing a processor, comprising: 
one or more processors; 
a module that generates an initial architecture for a proces 

Sor to execute at least one algorithm, wherein the initial 
architecture includes a set of processor components that 
comprise, at least, a processing element, a memory ele 
ment and an information transfer mechanism; 

a module that determines computational resources for 
execution of the at least one algorithm on the initial 
architecture; 

a module that creates a processor design based on the 
computational resources and the initial architecture; and 

a module that determines a flexibility metric for a processor 
component in the set of processor components to mea 
sure a change in functional flexibility due to the modi 
fication to the processor component of the initial archi 
tecture, 

wherein the flexibility metric comprises: 
a quantification of the ability for any input to reach any 

output for information transfer mechanisms in the 
processor component, and one of: 
a ratio of available processing elements to required 

processing elements for processing elements in the 
processor component; and 

a ratio of available memory elements to required 
memory elements for memory elements in the pro 
cessor component, 

wherein the functional flexibility of the modified processor 
component decreases if one or more design elements are 
eliminated from the processor component of the initial 
architecture. 

12. The apparatus of claim 11, wherein the module that 
generates comprises a module that iteratively determines a 
usage pattern of the processing element, the memory element 
and the information transfer mechanism. 

13. The apparatus of claim 11, wherein the module that 
generates comprises a module that accepts a high level pro 
gram code and transforms the high level program code into a 
low level code. 

14. The apparatus of claim 11, wherein the module that 
determines computational resources comprises a module that 
collects functional information of the processing element, the 
memory element and the information transfer mechanism and 
produces a hardware resource usage report, wherein the func 
tional information comprises utilization characteristics of the 
processing element, the memory element and the information 
transfer mechanism. 

15. The apparatus of claim 14, wherein the module that 
creates comprises a module that selectively eliminates at least 
one of an under-utilized processing element, an under-uti 
lized memory element and an under-utilized information 
transfer mechanism according to the hardware resource usage 
report. 
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16. The apparatus of claim 11, further comprising at least 

one of a module that verifies the processor design, and a 
module that produces a hardware description language of the 
processor design. 

17. A computer program product comprising a non-transi 
tory nonvolatile computer-readable storage medium having 
instructions stored thereon, the instructions comprising: 

code for generating an initial architecture for a processor to 
execute at least one algorithm, wherein the initial archi 
tecture includes a set of processor components that com 
prise, at least, a processing element, a memory element 
and an information transfer mechanism: 

code for simulating execution of the at least one algorithm 
by the initial architecture to determine a modification to 
the initial architecture; 

code for creating a processor design based on the modifi 
cation to the initial architecture; and 

code for determining a flexibility metric for a processor 
component in the set of processor components to mea 
Sure a change in functional flexibility due to the modi 
fication to the processor component of the initial archi 
tecture, 

wherein the flexibility metric comprises: 
a quantification of the ability for any input to reach any 

output for information transfer mechanisms in the 
processor component, and one of: 
a ratio of available processing elements to required 

processing elements for processing elements in the 
processor component; and 

a ratio of available memory elements to required 
memory elements for memory elements in the pro 
cessor component, 

wherein the functional flexibility of the modified processor 
component decreases if one or more design elements are 
eliminated from the processor component of the initial 
architecture. 

18. The non-transitory nonvolatile computer-readable stor 
age medium of claim 17, wherein the code for generating an 
initial architecture for a processor to execute at least one 
algorithm comprises at least one of code for iteratively deter 
mining a usage pattern of the processing element, the memory 
element and the information transfer mechanism and code for 
accepting a high level program code and transforming the 
high level program code into a low level code. 

19. The non-transitory nonvolatile computer-readable stor 
age medium of claim 17, wherein the code for simulating 
execution of the at least one algorithm by the initial architec 
ture to determine a modification to the initial architecture 
comprises code for collecting functional information of the 
processing element, the memory element and the information 
transfer mechanism and producing a hardware resource usage 
report, wherein the functional information comprises utiliza 
tion characteristics of the processing element, the memory 
element and the information transfer mechanism. 

20. The non-transitory nonvolatile computer-readable stor 
age medium of claim 19, wherein the code for creating a 
processor design based on the modification to the initial 
architecture comprises code for selectively eliminating at 
least one of an under-utilized processing element, an under 
utilized memory element and an under-utilized information 
transfer mechanism according to the hardware resource usage 
report. 


