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A method for reducing operations in a processing environ 
ment is provided that includes generating one or more binary 
representations, one or more of the binary representations 
being included in one or more linear equations that include 
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one or more of the linear equations to one or more polynomi 
als and then performing kernel extraction and optimization on 
one or more of the polynomials. One or more common Sub 
expressions associated with the polynomials are identified in 
order to reduce one or more of the operations. 
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SYSTEMAND METHOD FOR ELMINATING 
COMMON SUBEXPRESSIONS IN A LINEAR 

SYSTEM 

RELATED APPLICATIONS 

This application claims the priority under 35 U.S.C. S 119 
of provisional application Ser. No. 60/612,389 filed Sep. 23, 
2004. 

TECHNICAL FIELD OF THE INVENTION 

The present invention relates generally to digital signal 
processor (DSP) design and, more particularly, to a system 
and a method for eliminating common Subexpressions in a 
linear system. 

BACKGROUND OF THE INVENTION 

The proliferation of integrated circuits has placed increas 
ing demands on the design of digital systems included in 
many devices, components, and architectures. The number of 
digital systems that include integrated circuits continues to 
steadily increase and may be driven by a wide array of prod 
ucts and systems. Added functionalities may be implemented 
in integrated circuits in order to execute additional tasks or to 
effectuate more Sophisticated operations in their respective 
applications or environments. 

In the context of processing, present generation embedded 
systems have stringent requirements on performance and 
power consumption. Many embedded systems employ digital 
signal processing (DSP) algorithms for communications, 
image processing, video processing etc., which can be com 
putationally intensive. These algorithms each include and 
implicate any number of processing operations. The required 
processing operations (e.g. multiplication, addition, shift, 
etc.) is tantamount to any proposed processing optimization. 
Moreover, it is the operations that dictate the demands, capac 
ity, and capabilities of any given system architecture or con 
figuration. Accordingly, the ability to reduce these operations 
to achieve optimal processing provides a significant chal 
lenge to system designers and component manufacturers 
alike. 

SUMMARY OF THE INVENTION 

From the foregoing, it may be appreciated by those skilled 
in the art that a need has arisen for an improved processing 
approach for minimizing the number of operations. In accor 
dance with the present invention, techniques for reducing 
operations in a linear system are provided. According to spe 
cific embodiments, these techniques can optimize a given set 
of equations by eliminating any number of common Subex 
pressions involving multiple variables. 

According to a particular embodiment, a method for reduc 
ing operations in a processing environment is provided that 
includes generating one or more binary representations, one 
or more of the binary representations being included in one or 
more linear equations. The method also includes converting 
one or more of the linear equations to one or more polynomi 
als and then performing kernel extraction and optimization on 
one or more of the polynomials. One or more common Sub 
expressions associated with the polynomials are identified in 
order to reduce one or more of the operations. 

Embodiments of the invention may provide various tech 
nical advantages. Certain embodiments provide for a signifi 
cant reduction in operations for an associated processing 
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2 
architecture. This is a result of a new transformation of con 
stant multiplications and algorithms to find common Subex 
pressions involving multiple variables (for the matrix form of 
linear systems). The technique offers an implementation with 
a minimal number of additions/subtractions (and/or shifts), in 
contrast to other techniques, which primarily optimize mul 
tiplications with only a single variable at a time. Synthesis 
results, on a Subset of these examples, reflect an implemen 
tation with less area and faster throughput in comparison to 
conventional techniques. Hence, the present invention can 
achieve a saving in operations, which provides for less power 
consumption and Smaller area configurations. Such an 
approach may be ideal for the design of digital signal pro 
cessing hardware. 

Other technical advantages of the present invention may be 
readily apparent to one skilled in the art. Moreover, while 
specific advantages have been enumerated above, various 
embodiments of the invention may have none, some, or all of 
these advantages. 

BRIEF DESCRIPTION OF THE DRAWINGS 

For a more complete understanding of the present inven 
tion and its advantages, reference is now made to the follow 
ing descriptions, taken in conjunction with the accompanying 
drawings, in which: 

FIG. 1 illustrates a digital signal processor (DSP) system 
for eliminating common Subexpressions according to various 
embodiments of the present invention: 

FIG. 2 is a simplified diagram of a linear system of the 
system of FIG. 1; 

FIG. 3 is a more detailed diagram of the linear system of 
FIG. 1: 

FIG. 4 is yet another more detailed diagram of the linear 
system of FIG. 1; 

FIG. 5 is still another more detailed diagram of the linear 
system of FIG. 1; 

FIG. 6 is a simplified diagram of a kernel and a co-kernel 
calculation associated with the system; 

FIG. 7 is a simplified kernel and co-kernel matrix associ 
ated with the system; and 

FIG. 8 is a more detailed illustration of the simplified 
kernel and co-kernel matrix associated with the system. 

DETAILED DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a portion of a system 10 that operates in a digital 
signal processor (DSP) environment. System 10 includes a 
microprocessor 12 and a memory 14 coupled to each other 
using an address bus 17 and a data bus 15. Microprocessor 12 
includes one or more algorithms 19, which include a linear 
system 20 that may be inclusive of multiple linear systems 
where appropriate. 

In accordance with the teachings of the present invention, 
system 10 operates to optimize linear systems 20, which may 
be used in the signal processing. In general, “linear systems’ 
are widely used in signal processing, for example, in the 
context of Discrete Cosine Transform (DCT), Inverse Dis 
crete Cosine Transform (IDCT), Discrete Fourier Transform 
(DFT), Discrete Sine Transform (DST), and Discrete Hartley 
Transform (DHT). System 10 performs a common subex 
pression elimination that involves multiple variables and that 
is applicable to any of these technologies. 
Common Subexpression elimination is commonly 

employed to reduce the number of operations in DSP algo 
rithms, for example after decomposing constant multiplica 
tions into shifts and additions. Conventional optimization 
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techniques for finding common Subexpressions can optimize 
constant multiplications with only a single variable at a time 
and, hence, cannot fully optimize the computations with mul 
tiple variables such as those found in a matrix form of linear 
systems (e.g. DCT, DFT etc.). System 10 transforms these 
computations such that all possible common Subexpressions 
involving any number of variables can be detected. Heuristic 
algorithms can then be presented in order to select the best set 
of common Subexpressions. 

Thus, system 10 can offer a new transformation of constant 
multiplications to find common Subexpressions involving 
multiple variables for the matrix form of linear systems. The 
technique can be used to find common Subexpressions in any 
kind of linear computations, where there are a number of 
multiplications with constants involving any number of vari 
ables. Synthesis results for system 10 yield an implementa 
tion with less area and higher throughput, as compared to 
conventional techniques. 
Custom hardware implementations of computationally 

intensive DSP kernels is a good solution to meet the require 
ments for latency and power consumption. DSP algorithms 
generally contain a large number of multiplications with con 
stants. Decomposing these constant multiplications into 
shifts and additions leads to an efficient hardware implemen 
tation. Finding common Subexpressions in the set of additions 
further reduces the complexity of the implementation. Addi 
tional details relating to this process are provided below with 
reference to subsequent FIGURES. 

Referring back to FIG. 1, microprocessor 12 may be 
included in any appropriate arrangement and, further, include 
algorithms 19 embodied in any suitable form (e.g. software, 
hardware, etc.). For example, microprocessor 12 may be part 
of a simple integrated chip, an application specific integrated 
circuit (ASIC), a field programmable gate array (FPGA), or 
any other Suitable processing object, device, or component. 
Address bus 17 and data bus 15 are wires capable of carrying 
data (e.g. binary data). Alternatively. Such wires may be 
replaced with any other Suitable technology (e.g. optical 
radiation, laser technology, etc.) operable to facilitate the 
propagation of data. 
Memory 14 is a storage element operable to maintain infor 

mation that may be accessed by microprocessor 12. Memory 
14 may be a random access memory (RAM), a read only 
memory (ROM), software, an algorithm, an erasable pro 
grammable ROM (EPROM), an electrically erasable pro 
grammable ROM (EEPROM), a fast cycle RAM (FCRAM), 
a static RAM (SRAM), or any other suitable object that is 
operable to facilitate such storage operations. In other 
embodiments, memory 14 may be replaced by another pro 
cessor that is operable to interface with microprocessor 12. 

For purposes of teaching and discussion, it is useful to 
provide some overview as to the way in which the following 
invention operates. The following foundational information 
may be viewed as a basis from which the present invention 
may be properly explained. Such information is offered ear 
nestly for purposes of explanation only and, accordingly, 
should not be construed in any way to limit the broad scope of 
the present invention and its potential applications. 

Conventional methods for finding common Subexpres 
sions rely on finding common digit patterns in the set of 
constants that are multiplied by a single variable. The com 
mon Subexpressions correspond to the common partial prod 
ucts formed during the multiplication of the variable with the 
constants. Finding all possible common digit patterns can 
extract all possible common Subexpressions when all the 
constant multiplications are with a single variable, such as in 
the transformed form of FIR digital filters. Using the same 
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4 
idea for matrix forms of linear systems like DCT, DFT, etc. 
will not be able to extract common Subexpressions involving 
multiple variables. Hence, system 10 can be used to overcome 
this shortcoming in offering an effective reduction of opera 
tions. 

FIG. 2 is a simplified diagram of linear system 20, which 
includes a matrix. Note that linear system 20 is provided in 
terms of X and Y, which are linear polynomials (or linear 
functions). These coefficients are provided in base ten. Fur 
thermore, all equations are linear (i.e. power of variables Such 
as X or Y do not appear in equations). In this scenario, the 
input variables (e.g. X and X2) are multiplied by some set of 
constants (5, 7, 4, and 12) to produce resultants (e.g. Y and 
Y). 

Turning to FIG. 3, FIG. 3 is a more detailed diagram of 
linear system 20. FIG. 3 further illustrates decomposing con 
stant multiplications into shifts and additions, which is 
reflected by an equation 24. In this example, linear System 20 
has two variables X and X2. Assume that the constants are in 
the two’s complement representation. The constants in col 
umn 1 (5 and 4) are multiplied by X and the constants in 
column 2 (7 and 12) are multiplied by variable X. Decom 
posing the constant multiplications into shifts and additions 
yields an implementation with six shifts and six additions. 

Note that multiplication operations are generally expen 
sive in the context of processing. For example, considerable 
expense could be incurred during the design of a hardware 
block, as the area will be large. In Such a case, the multipli 
cation by a constant number (e.g. 5) can be simplified. Five 
can be represented as “0101 in a binary format, as is illus 
trated in FIG. 3. In this example, Y=5X+7X. If five is 
written as 0101 and then multiplied by X, a person is effec 
tively calculating 4X+X. 
A Summation of selected operations is provided generally 

at equation 24. Usage of shift and addition or Subtraction 
operations may be performed instead of multiplication. Note 
that the symbol “Kn' is translated as a shift to the left by n 
bits. In this box, it is seen that:Y=X+X<2+X+X<1+ 
X3 and YX-3+X<2+X<3. In order to calculate 
Y1, four additions should be performed, along with three 
shifts. This is far easier than performing two multiplications 
and one addition. To calculate Y2, shift and addition opera 
tions may be used to produce the resultant function. In the 
original form, four multiplications and two additions were 
used to produce the functions, as is illustrated in FIG. 3. 
However, in the new form, six shifts and six additions are 
needed, which is far easier than four multiplications. Now, if 
the new format is used and a design hardware block is devel 
oped, its associated area will be Smaller. In addition, the 
power consumption will also be less in Such an environment. 

FIG. 4 is yet another more detailed diagram of linear sys 
tem. 20. FIG. 4 also reflects an extraction of common bit 
patterns among constants (multiplying a single variable) and 
is illustrated by an equation 32. Hence, it is possible to use 
simpler operations and reduce the number of operations from 
this improved format. This may be achieved by finding some 
common internal factors. For example, extracting common 
bit patterns existing in a single constant may yield an even 
greater savings in shifts and additions. In FIG. 4, D was used 
after identifying a common factor among 7 and 12 (box 30). 
The number"11” has been represented twice in this FIGURE. 
This is a common factor that can be used for purposes of 
optimization. 

Thus, in this example, when identifying common bit pat 
terns in the constants (multiplying the same variable), the 
pattern “11” is detected between the constants 7 (0.111) and 
12 (1100), which multiply variable X. After extracting that 
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common Subexpression, the Subsequent implementation 
includes five shifts and five additions, as is illustrated. 

FIG. 5 is still another more detailed diagram of linear 
system 20. FIG. 5 shows the ability to extend common sub 
expressions to include multiple variables, which is illustrated 
by an equation 38. If the common subexpressions are further 
extended to include multiple variables, the resulting imple 
mentation includes just three additions and three shifts, as is 
illustrated. Therefore, by extending common Subexpressions 
to include multiple variables, the number of additions has 
reduced by 40% compared to methods that would extract 
common Subexpressions including only one variable. 

Hence, the common factoring can be used again in the case 
of FIG. 5. FIG. 5 shows extending common subexpression 
elimination to include multiple variables. An identified region 
34 includes two circles, which correspond to X+X. As 
evidenced by equation38, in order to calculate Y,X +X can 
be first calculated and used in several places. Therefore, the 
function corresponding to this pattern can be used to calculate 
the original linear functions. Stated in mathematical terms, 
D and D. can be used to calculate Y and Y. In addition, 
D=X+X; D =D+X shifted to the left one bit; Y =D+ 
D. shifted to the left two bits; and Y-D shifted left one 
bit. These equations may be used in order to optimize the 
functions Y and Y. The pattern 2 corresponds to D2 and 
appears twice (2 and 2'). Pattern 1 appears twice as well (1 and 
1'). Also, pattern 2 is used in pattern 1. 
Thus far, only the binary representations of constants (or 

coefficients) have been used. For example, it has been shown 
that CxX-XCXXL). In our example, this would translate into: 
(14) oxX-(11 10)xX=XL+XL-XL', where the L sig 
nifies a shift operation and the subsequent number represents 
the number of bits to be shifted (e.g. L'—a shift to the left one 
bit). In these representations, there are only additions, not 
Subtractions. 

However, there are other ways of writing this information. 
For example, Canonical Sign Digit (CSD) representation may 
be used. Mathematically, this may be expressed as: CXX-X- 
(XXL). In terms of our example, CSD could be used to show: 
(14), oxx=(1110), xX=XL-XL". This last part of this 
equation illustrates the new representation, which shows that 
16X-2X=14X. If this is compared with the original binary 
representations, where there were 3 terms and 2 additions, an 
obvious saving is clearly seen. The new expression implicates 
only 2 terms and 1 operation (subtraction). Hence, the CSD 
can be more compact than the binary representation. The 
previous optimization can benefit from the CSD, whereby the 
number of operations is reduced and the type of operations is 
also changed. 
As for Y and Y, in mathematical terms: Yi Xi+2, 

XL-3X2+ax-L'+sX-L; and Y ceX, Li+(7X2L +s 
XL. The number in parenthesis represents the term number 
that the element represents. 

FIG. 6 is a simplified diagram of a kernel and a co-kernel 
calculation 50 associated with system 10. In essence, FIG. 6 
illustrates the results of an algorithm for the generation of 
kernels of a set of polynomial expressions. A kernel of a 
polynomial expression is defined as an expression that has at 
least one term with a zero power of L. The set of kernels of an 
expression is a Subset of all algebraic divisors of the polyno 
mial expression. The kernels are generated by Successively 
dividing by the least power of L in the expression. The power 
of L that is used to obtain a kernel is the corresponding 
co-kernel of the kernel expression. 

For example, consider the expression Y Stated earlier. 
Since Y satisfies the definition of a kernel, Y is recorded as 
a kernel with co-kernel 1. The minimum non-zero power of 
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6 
L in Y is L. Dividing by L we obtain the kernel expression 
XL+X+XL, which is recorded as a kernel with co-kernel 
L. This expression has L as the minimum non-Zero power of 
L. Dividing by L, the kernel X+X is obtained with co-kernel 
L. In this example, no more kernels are generated and the 
algorithm terminates. For expression Y the kernel X+X+ 
XL with co-kernel L is obtained. 
The importance of kernels is illustrated by the following 

theorem. Theorem: there exists a k-term common Subexpres 
sion if and only if there is a k-term non-overlapping intersec 
tion between at least 2 kernels. As a proof of this theorem, first 
consider the case where all the constant multiplications are 
with a single variable. Hence, finding common Subexpres 
sions is equivalent to finding all common digit patterns 
among the constants multiplying the variable. According to 
the kernel generation algorithm, the set of all kernels for a 
constant (multiplying a variable) corresponds to the set of 
digit patterns starting from the most significant non-zero 
digit, and each time adding the next most significant non-zero 
digit to form a pattern. 

For example, consider the constant multiplication (10 
1010-1)*X=-X+XL-XL'+XL in the example polynomial 
representation. The set of kernels (and co-kernels) generated 
are (XL-X)|L), (XL-XL+X)|Land (XL-XL'+XL 
X)1, which correspond to the digit patterns 10-1, 10-101 
and 10-1010-1 respectively. Therefore, it is clear that each 
non-Zero digit except the most significant non-Zero digit 
appears once as the least significant digit in a digit pattern 
corresponding to a kernel expression. Hence, if there is a 
common digit pattern consisting of k (k-1) non-Zero digits, 
then there will be at least two digit patterns (corresponding to 
kernels) such that the least significant digit of the common 
pattern will be the least significant digit of these two digit 
patterns, aligning the common Subexpression. Thus, an inter 
section between these two patterns will detect the common 
Subexpression. 

Conversely, it is clear that a k-term intersection between 
kernel expressions indicates a k-term common Subexpression 
only if there are no terms that are covered more than once 
(overlapping terms) in the intersection. Overlapping terms 
happen when the kernels in the intersection correspond to the 
same constant and cover at least one non-zero digit in com 
mon. For example, in the pattern 1001001, there are 2 patterns 
“1001 but they cover one non-zero digit in common. 

FIGS. 7 and 8 are simplified kernel and co-kernel matrices 
associated with system 10. These FIGURES illustrate a 
matrix transformation, which is used to find kernel intersec 
tions. Hence, the set of kernels generated is transformed into 
a matrix form called the Kernel Intersection Matrix (KIM), to 
find kernel intersections. There is one row for each kernel 
generated and one column for each distinct term in the set of 
kernel expressions. Each term is distinguished by its sign 
(+/-), variable, and the power of L. 

FIG. 7 shows the KIM for our example linear system 20 
from its set of kernels and co-kernels shown in a previous 
FIGURE. The rows are marked with the co-kernel of the 
kernel which it represents. Each 1 element (i,j) in the matrix 
represents a term in the original set of expressions, which can 
be obtained by multiplying the co-kernel in row i with the 
kernel term in columni. The number in parenthesis represents 
the term number that the element represents. 

Each kernel intersection appears in the matrix as a rect 
angle. A rectangle is defined as a set of rows and columns such 
that its elements are 1. For example, in the matrix illustrated, 
the row set {1,4} and the column set {1,3,4} together make a 
rectangle. A prime rectangle is defined as a rectangle that is 
not contained in any other rectangle. 
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The value of a rectangle is defined as the number of addi 
tions saved by selecting that rectangle (kernel intersection) as 
a common subexpression and is given by: Value (R.C)=(R- 
1)*(C-1), where R is the number of rows and C is the number 
of columns of the rectangle. The value of the rectangle is 
calculated after removing the appropriate rows and columns 
to remove overlapping terms. An algorithm for finding a 
maximal irredundant rectangle (MIR) is then used. 

Finding the best set of common subexpressions for the 
minimum number of additions is equivalent to finding the 
best set of non-overlapping rectangles in the KIM, which is 
analogous to the minimum weighted rectangular covering 
problem in multi-level logic synthesis. The resultant is a 
simplified set of operations that achieve the same final result 
as the more complex equation, which was used as an initial 
starting point. 

Turning to FIG. 8, FIG. 8 is a more detailed illustration of 
the simplified kernel and co-kernel matrix associated with 
system 10. FIG. 8 illustrates extracting kernel intersections 
(2nd iteration). There is only one valuable rectangle in this 
matrix that corresponds to the rows {2,3} and the columns 
{4,5}, and it has a value 1. This rectangle is selected. No more 
rectangles are selected in the further iterations and the algo 
rithm terminates and the final set of expressions is provided as 
equation 38 (identified and discussed above). Thus, the result 
ant of the operations of system 10 yields a significant reduc 
tion in operations, which provides for less power consump 
tion and Smaller area configurations. Processing hardware 
design, in particular, could benefit greatly from Such an 
approach. 
Some of the steps illustrated in the preceding FIGURES 

may be changed or deleted where appropriate and additional 
steps may also be added to the proposed process. These 
changes may be based on specific system architectures or 
particular arrangements or configurations and do not depart 
from the scope or the teachings of the present invention. It is 
also critical to note that the preceding description details a 
number of techniques for reducing operations. While these 
techniques have been described in particular arrangements 
and combinations, system 10 contemplates using any appro 
priate combination and ordering of these operations to pro 
vide for decreased operations in linear system 20. As dis 
cussed above, identification of the common Subexpressions 
may be facilitated by rectangle covering, ping pong algo 
rithms, or any other process, which is operable to facilitate 
such identification tasks. Considerable flexibility is provided 
by the present invention, as any such permutations are clearly 
within the broad scope of the present invention. 

Although the present invention has been described in detail 
with reference to particular embodiments illustrated in FIGS. 
1 through 8, it should be understood that various other 
changes, Substitutions, and alterations may be made hereto 
without departing from the spirit and scope of the present 
invention. For example, although the present invention has 
been described with reference to a number of elements 
included within system 10, these elements may be rearranged 
or positioned in order to accommodate any suitable process 
ing and communication architectures. In addition, any of the 
described elements may be provided as separate external 
components to system 10 or to each other where appropriate. 
The present invention contemplates great flexibility in the 
arrangement of these elements, as well as their internal com 
ponents. Moreover, the algorithms presented herein may be 
provided in any suitable element, component, or object. Such 
architectures may be designed based on particular processing 
needs where appropriate. 
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8 
Numerous other changes, Substitutions, variations, alter 

ations, and modifications may be ascertained to one skilled in 
the art and it is intended that the present invention encompass 
all such changes, Substitutions, variations, alterations, and 
modifications as falling within the scope of the appended 
claims. 

What is claimed is: 
1. A method for reducing operations in a processing envi 

ronment, comprising: 
generating one or more binary representations, wherein 

one or more of the binary representations are included in 
one or more linear Systems that include one or more 
operations and a plurality of different distinct variables: 

converting one or more of the linear systems to one or more 
polynomials including the plurality of different distinct 
variables; 

generating a plurality of kernels from the one or more 
polynomials; 

generating a matrix of the plurality of kernels; 
performing kernel extraction on the matrix for optimiza 

tion of the one or more polynomials; and 
identifying one or more common Subexpressions associ 

ated with the polynomials by extracting common bit 
patterns among constants multiplying two or more vari 
ables of the plurality of different distinct variables in 
order to reduce one or more of the operations, wherein 
the identifying is facilitated by rectangle covering. 

2. The method of claim 1, wherein one or more of the 
operations relate to Subtraction, addition, shifting, or multi 
plication. 

3. The method of claim 1, wherein one or more of the linear 
systems are associated with Discrete Cosine Transforms 
(DCT), Inverse Discrete Cosine Transforms (IDCT), Discrete 
Fourier Transforms (DFT), Discrete Sine Transforms (DST), 
or Discrete Hartley Transforms (DHT). 

4. The method of claim 1, wherein a Canonical Sign Digit 
(CSD) representation is used to reduce the operations. 

5. The method of claim 1, further comprising: 
identifying one or more of the common Subexpressions 

using a rectangle covering algorithm or a ping pong 
algorithm. 

6. A system for reducing operations in a processing envi 
ronment, comprising: 
means for generating one or more binary representations, 

wherein one or more of the binary representations are 
included in one or more linear systems that include one 
or more operations and a plurality of different distinct 
variables; 

means for converting one or more of the linear systems to 
one or more polynomials including the plurality of dif 
ferent distinct variables; 

means for generating a plurality of kernels from the one or 
more polynomials; 

means for generating a matrix of the plurality of kernels; 
means for performing kernel extraction and optimization 

on one or more of the polynomials; and 
means for identifying one or more common Subexpres 

sions associated with the polynomials by extracting 
common bit patterns among constants multiplying two 
or more variables of the plurality of different distinct 
variables in order to reduce one or more of the opera 
tions, wherein the identifying is facilitated by rectangle 
covering. 

7. The system of claim 6, wherein one or more of the 
operations relate to Subtraction, addition, shifting, or multi 
plication. 



US 7,895,420 B2 

8. The system of claim 6, wherein one or more of the linear 
systems are associated with Discrete Cosine Transforms 
(DCT), Inverse Discrete Cosine Transforms (IDCT), Discrete 
Fourier Transforms (DFT), Discrete Sine Transforms (DST), 
or Discrete Hartley Transforms (DHT). 

9. The system of claim 6, wherein a Canonical Sign Digit 
(CSD) representation is used to reduce the operations. 

10. The system of claim 6, further comprising: 
generating a resultant, for one or more of the linear sys 

tems, based on the reduction in the operations. 
11. Software for reducing operations in a processing envi 

ronment, the Software being embodied in a non-transitory 
computer readable medium and comprising computer code 
such that when executed is operable to: 

generate one or more binary representations, wherein one 
or more of the binary representations are included in one 
or more linear systems that include one or more opera 
tions and a plurality of different distinct variables; 

convert one or more of the linear systems to one or more 
polynomials including the plurality of different distinct 
variables; 

perform kernel extraction and optimization on one or more 
of the polynomials; 

generate a plurality of kernels from the one or more poly 
nomials; 
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generate a matrix of the plurality of kernels; and 
identify one or more common Subexpressions associated 

with the polynomials by extracting common bit patterns 
among constants multiplying two or more variables of 
the plurality of different distinct variables in order to 
reduce one or more of the operations, wherein the iden 
tifying is facilitated by rectangle covering. 

12. The medium of claim 11, wherein one or more of the 
operations relate to Subtraction, addition, shifting, or multi 
plication. 

13. The medium of claim 11, wherein a Canonical Sign 
Digit (CSD) representation is used to reduce the operations. 

14. The medium of claim 11, wherein the code is further 
operable to: 

generate a resultant, for one or more of the linear systems, 
based on the reduction in the operations. 

15. The medium of claim 11, wherein the code is further 
operable to: 

identify one or more of the common Subexpressions using 
a kernel extraction algorithm or a ping pong algorithm. 

16. The method of claim 1, wherein identifying one or 
more common Subexpressions comprises identifying a set of 
non-overlapping rectangles in the matrix. 



UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 

PATENT NO. : 7,895.420 B2 Page 1 of 1 
APPLICATIONNO. : 1 1/067357 
DATED : February 22, 2011 
INVENTOR(S) : Farzan Fallah, Anup Hosangadi and Ryan C. Kastner 

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: 

On the Title Page 
Item (73) Assignee: After “Fujitsu Limited, Kawasaki (JP) insert -- University of California, Santa 
Barbara, CA (US) --. 

Signed and Sealed this 
Nineteenth Day of June, 2012 

() 

David J. Kappos 
Director of the United States Patent and Trademark Office 

  


